
Brief Announcement: New Pruning Rules for Optimal Task
Scheduling on Identical Parallel Machines

Matthew Akram

Dominik Schreiber

uqozz@student.kit.edu

dominik.schreiber@kit.edu

Karlsruhe Institute of Technology

Karlsruhe, Baden-Württemberg, Germany

ABSTRACT
We address optimal makespan-minimizing identical parallel ma-

chine scheduling (𝑃 | |𝐶max) by introducing new pruning rules for
branch-and-bound (BnB) and integrating them into a prior BnB
algorithm. Experimental results indicate that the presented rules
are inexpensive to evaluate, applicable frequently, and extremely
beneficial to the BnB algorithm’s overall performance.

KEYWORDS
scheduling, branch and bound, combinatorial optimization

1 INTRODUCTION
In this work we address unconstrained task scheduling on identical
parallel machines. This problem is often denoted by its Graham
notation 𝑃 | |𝐶max [5]—a three-part definition where 𝑃 represents
identical parallel machines, no side constraints are present, and
𝐶max is the maximum makespan (completion time) of any machine,
which we wish to minimize. Since this problem is strongly NP-
hard [3], it is necessary to consider heuristic approaches and/or
approximation schemes [1]. We are concerned with finding ex-
act solutions and thus utilize a heuristic search method named

branch-and-bound (BnB), which proved to be highly effective for
this task [8]. Our main contributions are new rules for 𝑃 | |𝐶max

which help to prune the search space of BnB.
Formally, a 𝑃 | |𝐶max optimization instance (𝑊 , 𝑚) is defined by 𝑛

durations𝑊 = {𝑤1, . . . , 𝑤𝑛 } of 𝑛 corresponding jobs 𝐽 = { 𝑗1, . . . , 𝑗𝑛 }
and by the number 𝑚 of identical processors 𝑃 = {𝑝1, . . . , 𝑝𝑚}. An
instance (𝑊 , 𝑚) asks for an assignment 𝐴 = {𝑎1, . . . , 𝑎𝑛 } of jobs to

machines (1 ≤ 𝑎𝑖 ≤ 𝑚) such that the maximum completion time

𝐶max := max𝑖 {
∑
𝑘 | 𝑎𝑘=𝑖 𝑤𝑘 } is minimized. By contrast, a decision

instance (𝑊,𝑚,𝑈) additionally imposes an upper bound 𝑈 for𝐶max

and poses the question whether a feasible solution exists. Through-

out this paper we assume that the jobs are sorted by duration in

decreasing order, i.e., (𝑤1 ≥ 𝑤2 ≥ . . . ≥ 𝑤𝑛).
A BnB algorithm for 𝑃 | |𝐶max is a tree-like search where we

successively extend an initially empty partial assignment 𝐴 of jobs

to processors until |𝐴| = 𝑛. At each decision level ℓ , where |𝐴| = ℓ ,

we identify a set of decisions (“branches”) which each extend 𝐴

by one element. In addition, we maintain admissible bounds on

𝐶max during search, which allows us to exclude decisions which

inevitably lead to sub-optimal solutions (“bound”). We recursively

and heuristically search the remaining decisions. For each decision

level ℓ , we define the assigned workload of processor 𝑝𝑥 as 𝐶ℓ
𝑥 :=∑

𝑖 | 𝑎𝑖=𝑥 𝑤𝑖 . The least loaded processor is the one with smallest 𝐶ℓ
𝑥 .

2 PRUNING RULES
In current research there are a few BnB based approaches to find

exact solutions to 𝑃 | |𝐶max (see [8]). Since the search tree of possible

assignments grows exponentially, it is important to find rules with

which large branches can be left unexplored. Consequently, we

restrict the search space by imposing further rules on the structure

of the solution, while preserving at least one optimal assignment.

We refer to these rules as pruning rules. Other common names

include dominance criteria or (in some cases) symmetry breaking.

2.1 Prior Pruning Rules
Dell’Amico and Martello [2] present a number of BnB pruning rules.

Note that any pruning rule for the 𝑃 | |𝐶max optimization problem

is also a valid pruning rule for the 𝑃 | |𝐶max decision problem. For

each rule we assume a partial assignment 𝐴 at decision level ℓ .

Pruning Rule 1. If there are processors 𝑝𝑖 , 𝑝𝑘 (𝑖 < 𝑘) where

𝐶ℓ
𝑖
= 𝐶ℓ

𝑘
, then w.l.o.g. each assignment to 𝑝𝑘 can be pruned.

Pruning Rule 2. If ℓ = 𝑛−3, only two options must be considered:

(1) Assign each of the three final jobs to the least loaded processor

respectively.

(2) Assign the third-to-last job to the second least loaded processor,

then assign the other two jobs as in (1).

Pruning Rule 3. If 𝑖 < 𝑚 jobs remain unassigned, then only the

𝑖 least loaded processors must be considered for the next decision.

For more rules, we refer to the literature on the subject [2, 7, 8].

https://orcid.org/0009-0006-2054-8147
https://orcid.org/0000-0002-4185-1851

2.2 New Pruning Rules
When restricting ourselves to the decision problem, we can de-

rive stronger pruning rules. Consider an instance (𝑊,𝑚,𝑈) of the
𝑃 | |𝐶max decision problem where we already assigned 𝑢 < 𝑈 work

to a certain processor and now decide whether to assign 𝑗𝑖 to this

processor as well. Given the set 𝐽𝑖 = { 𝑗𝑖 , . . . , 𝑗𝑛} of smaller jobs, we

can calculate the function

𝜙 (𝑗𝑖 , 𝑢) = {𝐽 ′ ⊆ 𝐽𝑖 | 𝑢 +
∑︁
𝑗𝑘 ∈ 𝐽 ′

𝑤𝑘 ≤ 𝑈 }.

𝜙 lists all possible combinations of jobs we can assign to a pro-

cessor to still have an assigned workload (on this processor) that is

at most𝑈 . With that we obtain the following pruning rules.

Pruning Rule 4. Given an instance (𝑊,𝑚,𝑈) of the decision
problem of 𝑃 | |𝐶max and a partial assignment 𝐴 with |𝐴| = ℓ , if there

are processors 𝑝𝑥 , 𝑝𝑦 with assigned workload 𝐶ℓ
𝑥 and 𝐶ℓ

𝑦 such that

𝜙 (𝑗𝑖 ,𝐶ℓ
𝑥) = 𝜙 (𝑗𝑖 ,𝐶ℓ

𝑦), then w.l.o.g. we can prune the decision 𝑎𝑖 = 𝑦.

This is a generalization of Pruning Rule 1. The reasoning behind

this rule is that if two processors have equal𝜙 sets for a given partial

assignment, then any completion of one processor can also be used

as a completion of the other. Therefore, this rule breaks symmetry

and preserves feasibility of a given 𝑃 | |𝐶max decision instance.

Pruning Rule 5 (The Fill-Up Rule, FUR). Given an instance

(𝑊,𝑚,𝑈) of the decision problem of 𝑃 | |𝐶max and a partial assignment

𝐴 with |𝐴| = ℓ , let 𝑗𝑖 be the largest unassigned job that can still be

assigned to processor 𝑥 (i.e., 𝐶ℓ
𝑥 +𝑤𝑖 ≤ 𝑈). If

𝑤𝑖 = max

∑︁
𝑗𝑘 ∈ 𝐽 ′

𝑤𝑘 | 𝐽 ′ ∈ 𝜙 (𝑗𝑖 ,𝐶ℓ
𝑥)

then w.l.o.g. we only need to consider the assignment 𝑎𝑖 = 𝑥 .

This rule is valid since any set of jobs that can be used to complete

this processor will have a total weight of at most𝑤𝑖 . Thus, the jobs

assigned to complete this processor can always be swapped with 𝑗𝑖
in any completion where it is not assigned to this processor. We can

check if this property holds by checking if 𝜙 (𝑗𝑖 ,𝐶ℓ
𝑥) = 𝜙 (𝑗𝑖 ,𝑈 −𝑤𝑖).

2.3 Efficient Computation
Since calculating 𝜙 explicitly would be prohibitively expensive, we

introduce the auxiliary range equivalency table (RET), which allows

us to implicitly determine when 𝜙 (𝑗𝑖 ,𝐶ℓ
𝑥) = 𝜙 (𝑗𝑖 ,𝐶ℓ

𝑦).
For the construction, we highlight two interesting properties of

𝜙 . Intuitively, one can see that 𝜙 (𝑗𝑖 , 𝑢) ⊇ 𝜙 (𝑗𝑖 , 𝑢 + 1) for all 𝑢 < 𝑈 .

This is because the sets of admissible jobs will never decrease when

increasing the available processing time. The second important

property is the fact that for 𝑖 < 𝑛

𝜙 (𝑗𝑖 , 𝑢) = 𝜙 (𝑗𝑖+1, 𝑢) ∪ { 𝑗𝑖 ∪ 𝑋 | 𝑋 ∈ 𝜙 (𝑗𝑖+1, 𝑢 +𝑤𝑖)}. (1)

In words, the valid ways to assign jobs that may or may not include

𝑗𝑖 is equal to the union of valid ways of assigning jobs that do not

include 𝑗𝑖 , and the valid ways of assigning jobs that do.

The RET is an 𝑛 × (𝑈 + 1) table with entries in N. The first di-
mension of the RET is indexed from 1 to 𝑛, since each row of the

RET represents the equivalence ranges for a single job. The second

dimension of the RET is indexed from 0 to𝑈—one entry for each pos-

sible assigned workload. For a job 𝑗𝑖 , an equivalence range is a range

of workloads 𝑢, . . . , 𝑢′ such that 𝑅𝐸𝑇 [𝑖] [𝑢] = . . . = 𝑅𝐸𝑇 [𝑖] [𝑢′]. For
such a range we assert that 𝜙 (𝑗𝑖 , 𝑢) = . . . = 𝜙 (𝑗𝑖 , 𝑢′).

We construct the RET going from the smallest (𝑗𝑛) to the largest

job (𝑗1). For 𝑗𝑛 , 𝜙 (𝑗𝑛, 𝑢) = {∅, { 𝑗𝑛}} if 𝑢 +𝑤𝑛 ≤ 𝑈 , and 𝜙 (𝑗𝑛, 𝑢) =
{∅} otherwise.We thus initialize two equivalence ranges:𝑅𝐸𝑇 [𝑛] [𝑈−
𝑤𝑛+1] = . . . = 𝑅𝐸𝑇 [𝑛] [𝑈] = 1 and𝑅𝐸𝑇 [𝑛] [0] = . . . = 𝑅𝐸𝑇 [𝑛] [𝑈−
𝑤𝑛] = 2. For job 𝑗𝑖 (𝑖 < 𝑛), we denote the two entries of 𝑗𝑖+1 that are
relevant for applying property (1) as left(𝑖, 𝑢) := 𝑅𝐸𝑇 [𝑖 + 1] [𝑢] and
right(𝑖, 𝑢) := 𝑅𝐸𝑇 [𝑖 + 1] [𝑢 +𝑤𝑖] (with right(𝑖, 𝑢) := 0 if 𝑢 +𝑤𝑖 > 𝑈).

We start by setting 𝑅𝐸𝑇 [𝑖] [𝑈] := 1 and then proceed sequentially

for 𝑢 = 𝑈 − 1,𝑈 − 2, . . . , 0:

𝑅𝐸𝑇 [𝑖] [𝑢] :=

𝑅𝐸𝑇 [𝑖] [𝑢 + 1], if left(𝑖, 𝑢) = left(𝑖, 𝑢 + 1)

∧ right(𝑖, 𝑢) = right(𝑖, 𝑢 + 1),
𝑅𝐸𝑇 [𝑖] [𝑢 + 1] + 1, otherwise.

In words, we initialize a new equivalency range for 𝑗𝑖 if left or right

changes from 𝑢 + 1 to 𝑢, and we extend the prior range otherwise.

Theorem 2.1. Given an instance (𝑊,𝑚,𝑈) of the 𝑃 | |𝐶max decision

problem, for any 𝑖 ∈ {1, . . . , 𝑛} and 𝑢,𝑢′ < 𝑈

𝑅𝐸𝑇 [𝑖] [𝑢] = 𝑅𝐸𝑇 [𝑖] [𝑢′] ⇐⇒ 𝜙 (𝑗𝑖 , 𝑢) = 𝜙 (𝑗𝑖 , 𝑢′) .

The reasoning for this theorem is that the value of a 𝑅𝐸𝑇 entry

changes iff 𝜙 (𝑗𝑖+1, 𝑢) ≠ 𝜙 (𝑗𝑖+1, 𝑢 +1) or 𝜙 (𝑗𝑖+1, 𝑢 +𝑤𝑖) ≠ 𝜙 (𝑗𝑖+1, 𝑢 +
𝑤𝑖 + 1). We provide a full proof online (see footnote 2).

The space requirements of the RET are in O(𝑈 · 𝑛). Note that
we can compress this further to O(𝑈) by only storing at index 𝑢

the index of the smallest job 𝑖 where 𝑅𝐸𝑇 [𝑖] [𝑢] ≠ 𝑅𝐸𝑇 [𝑖] [𝑢 + 1].
While we do not discuss this technique in detail, we found it to

significantly cut our scheduler’s memory usage for large instances.

3 BRANCH AND BOUND ALGORITHM
We now present an adaptation of the algorithm by Dell’Amico

and Martello [2] to demonstrate how our new pruning rules can

be integrated into BnB algorithms for the 𝑃 | |𝐶max optimization

problem (see also [8]). We begin with initializing upper and lower

bounds𝑈 , 𝐿 for the given instance. For this paper, we use the trivial

lower bound [6] and the upper bound obtained using LPT [4]. Next,

we set𝑈 ← 𝑈 − 1 and consider the decision problem 𝐼 = (𝑊,𝑚,𝑈).
We then call Algorithm 1 with 𝐴 = ∅. This recursive algorithm

returns true iff it found an improved solution. It proceeds as fol-

lows: We first perform some infeasibility checks given 𝐴 (l. 1) and

apply Rule 2 if only three unassigned jobs remain (l. 2–5).
1
Other-

wise, we check if the FUR can be applied, and if so we apply it and

recurse (l. 6–8). If that recursion is unsuccessful, then the respective

bound cannot be improved using the current partial assignment

and we return with the current best solution (l. 11). Otherwise, we

assume𝑈 and the 𝑅𝐸𝑇 have been updated accordingly. We undo the

assignment made by FUR and need to recurse again in case further

improvements are possible given the new bound (l. 9–10). Lastly, if

all else fails, we branch over all processors (l. 12–18) while using

Rules 3 and 4. Note that the modifications made by a recursion may

change which pruning rules apply to later processors, which is why

we perform pruning individually and just-in-time.

1
In this algorithm we assume w.l.o.g. that 𝑛 ≥ 3. The problem is trivial if 𝑛 < 3.

Matthew Akram & Dominik Schreiber

(a)

10-4 10-2 100 102

Running time t [s]

0

250

500

750

1000

1250

1500

#
so

lv
ed

in
≤
t

R4+5
R4
BASE

(b)

102 104 106 108

x

0.00

0.25

0.50

0.75

1.00

P
r[
≤
x

n
o
d

es
ex

p
lo

re
d

]

R4+5

R4

BASE

(c)

10-4 10-2 100 102

Time of BASE [s]

10-4

10-2

100

102

T
im

e
of

R
4

[s
]

(d)

10-4 10-2 100 102

Time of R4 [s]

10-4

10-2

100

102

T
im

e
of

R
4+

5
[s

]

Figure 1: Solved instances relative to running time (a); distri-
bution over explored nodes on commonly solved instances
(b); scatter plot for BASE vs. R4 (c) and R4 vs. R4+5 (d).

Algorithm 1: ImproveSolution

Global Data : 𝑊 ,𝑚, 𝑅𝐸𝑇 , 𝐿,𝑈 , BestSolution =⊥
Data: Partial Assignment 𝐴

1 if Infeasible(𝐴) then return false;

2 if |𝐴| = 𝑛 − 3 then
3 BestSolution,𝑈 ←Apply Rule 2;

4 𝑅𝐸𝑇 ← 𝑅𝐸𝑇 ::𝑛𝑒𝑤 (𝑊,𝑚,𝑈);
5 return true;

6 if ∃ 𝑖, 𝑥 : 𝑅𝐸𝑇 [𝑖] [𝑈 −𝑤𝑖] = 𝑅𝐸𝑇 [𝑖] [𝐶 |𝐴 |𝑥] then
7 𝐴′ ← 𝐴 ∪ {𝑎𝑖 = 𝑥} ; // Apply FUR

8 if 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴′) then
9 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴) ; // retry with new 𝑈

10 return true;

11 else return false; // infeasible!

12 𝑗𝑖 ←largest unassigned job; 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← false;

13 for each processor 𝑝𝑥 by free space descendingly do
14 if 𝑎𝑖 = 𝑥 can be pruned via Rules 3–4 then continue;
15 𝐴′ ← 𝐴 ∪ {𝑎𝑖 = 𝑥};
16 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ∨ 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴′);
17 end
18 return 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

4 EVALUATION
We now evaluate the effect of our pruning rules on Algorithm 1. We

consider 3500 problem instances defined by Mrad and Souyah [9]

with 𝑛/𝑚 ∈ [2, 3], 𝑛 ∈ [20, 220], and both uniform and normal

distributions to generate job sizes. We implemented our approach

in Rust and run the experiments in parallel on a 128-core (256-

thread) AMD EPYC 77132 server with 2 TB of DDR4 RAM.

We considered three runs: The baseline BnB algorithm without

computing the RET (“BASE”), which uses Rules 1-3; an enhance-

ment where we compute the RET and use it for Rule 4 (“R4”) instead

of Rule 1; and the full Algorithm 1 also including Rule 5 (“R4+5”).

R4 was able to solve 92 more problems (+12.6%) than BASE and

R4+5 was able to solve 724 more problems (+99%) than BASE (see

Fig. 1a). Rule 4 thus appears to bring modest improvements while

the FUR results in substantial performance benefits. In line with this

observation, the number of explored nodes per problem (Fig. 1b)

decrease by a geometric mean factor of 1.78 from BASE to R4 and

36.9 from R4 to R4+5 (49.4 from BASE to R4+5). When enabling

FUR, scheduling times decrease consistently and, in many cases,

by several orders of magnitude (Fig. 1d). The optimal makespans

reported by R4+5 ranged from 90 to 1503 (median 163, mean 217).

We provide a comparison to an ILP-based approach [9] online.
2

In short, our approach uses much less memory and outperforms ILP

on a situational basis. Adding more advanced bounding techniques

may render our BnB algorithm even more competitive.

5 CONCLUSION
We introduce new pruning rules for BnB-based optimal 𝑃 | |𝐶max

scheduling which empirically result in substantial performance im-

provements to a prior BnB algorithm. In the future, we are interested

in combining our rules with other promising 𝑃 | |𝐶max scheduling

techniques such as generic translation or randomized search.

ACKNOWLEDGMENTS
This project has received funding from the Eu-

ropean Research Council (ERC) under the Euro-

pean Union’s Horizon 2020 research and inno-

vation program (grant agreement No. 882500).

REFERENCES
[1] Sebastian Berndt, Max A. Deppert, Klaus Jansen, and Lars Rohwedder. 2022. Load

balancing: The long road from theory to practice. In Proc. ALENEX. 104–116.

https://doi.org/10.1137/1.9781611977042.9

[2] Mauro Dell’Amico and Silvano Martello. 1995. Optimal Scheduling of Tasks

on Identical Parallel Processors. INFORMS J. Computing 7 (05 1995), 191–200.

https://doi.org/10.1287/ijoc.7.2.191

[3] Michael R. Garey and David S. Johnson. 1978. Strong NP-completeness results. J.

ACM 25, 3 (1978), 499–508. https://doi.org/10.1145/322077.322090

[4] Ronald L. Graham. 1966. Bounds for certainmultiprocessing anomalies. Bell System

Tech. J. 45 (1966), 1563–1581. https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

[5] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and AHG Rinnooy Kan. 1979.

Optimization and approximation in deterministic sequencing and scheduling: a

survey. In Annals of discrete mathematics. Vol. 5. 287–326. https://doi.org/10.1016/

s0167-5060(08)70356-x

[6] Mohamed Haouari, Anis Gharbi, and Mahdi Jemmali. 2006. Tight bounds for the

identical parallel machine scheduling problem. Int. Trans. Operational Research 13

(10 2006), 529 – 548. https://doi.org/10.1111/j.1475-3995.2006.00562.x

[7] Mohamed Haouari and Mahdi Jemmali. 2008. Tight bounds for the identical

parallel machine-scheduling problem: Part II. Int. Trans. Operational Research 15,

1 (2008), 19–34. https://doi.org/10.1111/j.1475-3995.2007.00605.x

[8] Alexander Lawrinenko. 2017. Identical parallel machine scheduling problems:

structural patterns, bounding techniques and solution procedures. Ph. D. Dissertation.

Jena. https://www.db-thueringen.de/receive/dbt_mods_00032188

[9] Mehdi Mrad and Nizar Souayah. 2018. An Arc-Flow Model for the Makespan

Minimization Problem on Identical Parallel Machines. IEEE Access 6 (2018), 5300–

5307. https://doi.org/10.1109/ACCESS.2018.2789678

2
https://github.com/matthewakram/spaa24-pcmax-bnb.git

Brief Announcement: New Pruning Rules for Optimal Task Scheduling on Identical Parallel Machines

https://doi.org/10.1137/1.9781611977042.9
https://doi.org/10.1287/ijoc.7.2.191
https://doi.org/10.1145/322077.322090
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1016/s0167-5060(08)70356-x
https://doi.org/10.1016/s0167-5060(08)70356-x
https://doi.org/10.1111/j.1475-3995.2006.00562.x
https://doi.org/10.1111/j.1475-3995.2007.00605.x
https://www.db-thueringen.de/receive/dbt_mods_00032188
https://doi.org/10.1109/ACCESS.2018.2789678
https://github.com/matthewakram/spaa24-pcmax-bnb.git

	Abstract
	1 Introduction
	2 Pruning Rules
	2.1 Prior Pruning Rules
	2.2 New Pruning Rules
	2.3 Efficient Computation

	3 Branch and Bound Algorithm
	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

