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Abstract

Entrained flow gasification is the prevailing gasification technology for the production
of tar-free synthesis gas. However, in view of the rapid climate changes, the technology
needs to be adapted to biogenic and anthropogenic feedstocks. Therefore, new validated
mathematical models are required for design, optimisation and scale-up.

This thesis focusses on the numerical modelling and simulation of atmospheric entrained
flow gasification of surrogate fuels to accelerate the model development for high-pressure
entrained flow gasification of biomass. Firstly, RANS based models were developed to
describe the gasification of ethylene glycol and of mixtures of ethylene glycol and wood
char. Specifically, improved inlet conditions and injection properties and new wood char
devolatilisation kinetics were derived using data from laboratory-scale experiments. Subse-
quently, numerical simulations of gasification experiments with ethylene glycol and with
mixtures of ethylene glycol and wood char were performed using improved implementations
and meshes to close the elemental and energy balances. The predictions were compared
with experimental flame shape observations, experimental axial droplet velocities and
experimental radial profiles of gas temperature and dry gas species concentrations. Further-
more, sensitivity analyses were carried out to investigate the impact of the homogeneous
reaction kinetics, the vaporisation model, the turbulence model, the thermal gas radiation
property model, the inlet conditions, the injection properties and the wood char kinetics.

The comparisons show that (i) appropriate inlet conditions and injection properties are
essential for accurate predictions of flame shape and recirculation strength when using the
RANS approach and (ii) predictions of gas temperature and dry gas species concentrations
outside the flame region can even be accurate when applying strongly simplified injection
properties or kinetics. Specifically, for both the gasification of ethylene glycol and the
gasification of mixtures of ethylene glycol and wood char, the predictions of gas temperature
and dry gas species concentrations outside the flame region were mainly in good to excellent
agreement with the experimental data. Larger deviations were found for the conversion of
ethylene glycol and of wood char in the near-axis region as the adopted common models
for turbulent mixing and turbulent dispersion led to erroneous predictions. Thus, the
mathematical description of the physical and thermo-chemical process steps in the flame
region of entrained flow gasification processes should be further improved in future studies.
Furthermore, the sensitivity analyses have shown three major findings. Firstly, the HVI1
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Abstract

mechanism is highly recommended for preliminary simulations due to its low stiffness
while the DLR2017/RM mechanism provides the most reasonable flame temperature
predictions at adequate computing times. Secondly, the specific models for turbulence
and the thermal gas radiation properties are not decisive for accurate predictions of gas
temperature and dry gas species concentrations. Thirdly, for the gasification of mixtures
with wood char contents of up to 30%, accurate predictions of gas temperature and dry
gas species concentrations outside the flame region are possible within the uncertainty
limits of the wood char kinetics.
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Kurzfassung

Flugstromstromvergasung ist die dominierende Vergasungstechnologie für die Produktion
von teerfreiem Synthesegas. Die Technologie muss jedoch in Anbetracht der rapiden
Klimaveränderungen an biogene und anthropogene Ausgangsmaterialien angepasst werden.
Daher sind neue validierte mathematische Modelle für die Auslegung, Optimierung und
Hochskalierung erforderlich.

Diese Dissertation fokussiert sich auf die numerische Modellierung und Simulation der
atmosphärischen Flugstromvergasung von Ersatzbrennstoffen, um die Modellentwick-
lung für die Hochdruckflugstromvergasung von Biomasse zu beschleunigen. Zunächst
wurden auf dem RANS-Ansatz basierende Modelle entwickelt, um die Vergasung von
Ethylenglykol sowie von Mischungen aus Ethylenglykol und Holzkoks zu beschreiben.
Insbesondere wurden verbesserte Eintrittsbedingungen und Injektionseigenschaften und
neue Holzkoksentgasungskinetiken aus Daten von Experimenten im Labormaßstab ent-
wickelt. Anschließend wurden numerische Simulationen von Vergasungsexperimenten
mit Ethylenglykol bzw. mit Mischungen aus Ethylenglykol und Holzkoks unter Anwen-
dung von verbesserten Implementierungen und Netzen zur Schließung von Element- und
Energiebilanzen durchgeführt. Die Vorhersagen wurden mit experimentellen Flammenform-
beobachtungen, experimentellen axialen Tropfengeschwindigkeiten und experimentellen
Radialprofilen von Gastemperaturen und trockenen Gaskomponentenkonzentrationen ver-
glichen. Darüber hinaus wurden Sensitivitätsanalysen durchgeführt, um den Einfluss der
homogenen Reaktionskinetiken, des Verdampfungsmodells, des Turbulenzmodells, des
thermischen Gasstrahlungseigenschaftsmodells, der Eintrittsbedingungen, der Injektions-
eigenschaften und der Holzkokskinetiken zu untersuchen.

Die Vergleiche zeigen, dass (i) geeignete Eintrittsbedingungen und Injektionseigenschaften
für genaue Vorhersagen von Flammenform und Rezirkulationsstärke bei Anwendung des
RANS-Ansatzes erforderlich sind und (ii) Vorhersagen von Gastemperaturen und trockenen
Gaskomponentenkonzentrationen außerhalb der Flammenregion auch genau sein können,
wenn die Injektionseigenschaften oder die Kinetiken stark vereinfacht beschrieben werden.
Für die Vergasung von Ethylenglykol sowie von Mischungen aus Ethylenglykol und Holzkoks
waren insbesondere die Vorhersagen von Gastemperaturen und trockenen Gaskomponen-
tenkonzentrationen außerhalb der Flammenregion überwiegend in guter bis exzellenter
Übereinstimmung mit den experimentellen Daten. Größere Abweichungen wurden für den
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Kurzfassung

Umsatz von Ethylenglykol und von Holzkoks an axialen Reaktorpositionen gefunden, da
die eingesetzten üblichen Modelle für turbulente Vermischung und turbulente Dispersion
zu fehlerbehafteten Vorhersagen führten. Folglich sollte die mathematische Beschreibung
der physikalischen und thermisch-chemischen Prozessschritte in der Flammenregion von
Flugstromvergasungsprozessen in künftigen Arbeiten weiter verbessert werden. Darüber
hinaus haben die Sensitivitätsanalysen drei Erkenntnisse aufgezeigt. Erstens ist der kürzlich
entwickelte HVI1-Mechanismus auf Grund seiner geringen Steifigkeit sehr empfehlenswert
für Vorberechnungen, während der DLR2017/RM-Mechanismus die vernünftigsten Vorher-
sagen für die innere Flammenregion in angemessenen Rechenzeiten liefert. Zweitens
sind die konkreten Modelle für Turbulenz und thermische Gasstrahlungseigenschaften für
genaue Vorhersagen von Gastemperaturen und trockenen Gaskomponentenkonzentrationen
nicht entscheidend. Drittens sind für die Vergasung von Mischungen mit Holzkoksanteilen
von bis zu 30% genaue Vorhersagen von Gastemperaturen und trockenen Gaskompo-
nentenkonzentrationen außerhalb der Flammenregion innerhalb der Unsicherheiten der
Holzkokskinetiken möglich.
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1 Introduction

Numerical modelling and simulation are important elements for design, optimisation
and scale-up of high-temperature processes. Through better understanding of process
steps, technology developments can be achieved faster with significantly reduced risks and
costs, which is also crucial in the fight against climate change. The gasification research
at Forschungszentrum Karlsruhe (FZK) / Karlsruhe Institute of Technology (KIT) in
collaboration with Clausthal University of Technology (TU Clausthal) has consequently
relied on numerical modelling and simulation to adapt existing entrained flow gasification
technologies for coal to biogenic and anthropogenic feedstocks. In the early stages,
sensitivity simulations with focus on geometry and model parameters were performed
using simplified CFD models for the design of the high-pressure entrained flow gasifier
of the bioliq pilot plant, the bioliq Entrained Flow Gasifier (bioliq EFG) [61, 87, 148].
At that time, two major limitations were identified for the numerical modelling of the
entrained flow gasification of biomass [64, 65]:

(i) Lack of experimental data on gas temperatures and gas species concentrations from
entrained flow gasification processes with biogenic fuels.

(ii) Lack of appropriate, sufficiently detailed and validated sub-models for the mathe-
matical description of the physical and thermo-chemical conversion of biogenic fuels
in entrained flow gasification processes.

To address these knowledge gaps, interdisciplinary research has been carried out in the
frame of the Helmholtz Virtual Institute for Gasification Technology (HVIGasTech) [124,
154] and in further direct collaboration between (i) the Engler-Bunte-Institute, Fuel
Technology (EBI ceb) of KIT, (ii) the Institute for Technical Chemistry, Gasification
Technology (ITC vgt) of KIT and (iii) the Institute for Energy Process Engineering and
Fuel Technology (IEVB) of TU Clausthal. The research has been focussed on the overall
entrained flow gasification process and its physical and thermo-chemical sub-processes
including atomisation, vaporisation, decomposition, devolatilisation and heterogeneous
gasification.
Since not all sub-processes can be investigated inside pilot plants even in presence of
excellent measurement techniques and possibilities, several atmospheric and pressurised
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1 Introduction

laboratory-scale plants have been established at KIT to investigate the sub-processes and
to develop appropriate sub-models following a two-step approach [63]:

(i) Experiments and numerical simulations at atmospheric conditions for the development
and the validation of improved mathematical sub-models.

(ii) Experiments and numerical simulations at high-pressure conditions for the develop-
ment and validation of overall models and for design, operation, optimisation and
scale-up.

The work presented in this thesis contributed to this research. Firstly, improved sub-models
were developed, evaluated and integrated into overall entrained flow gasification models.
Subsequently, the overall models were tested and validated for the atmospheric entrained
flow gasification of surrogate fuels.

This chapter provides firstly the introductions to gasification, gasification technologies and
the bioliq process in Section 1.1, Section 1.2 and Section 1.3, respectively. Subsequently,
the laboratory-scale plants accounted for in this work are presented in Section 1.4. Then,
the preceding works are described in Section 1.5. Finally, the objectives of this thesis are
given in Section 1.6.

1.1 Gasification

Gasification is the conversion of carbonaceous fuels into a raw gas using gasification media
under high-temperature and sub-stoichiometric conditions. Gasification media can be
oxygen, oxygen enriched air and/or steam. The raw gas is called synthesis gas or syngas.
Major components are hydrogen, carbon monoxide, carbon dioxide, water and nitrogen;
minor components include methane, higher hydrocarbons, ammonia, hydrogen sulphide,
hydrogen cyanide and hydrogen chloride. In addition to gas components, synthesis gas
can contain solid or liquid residues such as tar, soot and ash. The exact composition
of the synthesis gas depends on the fuel, the gasification technology and the operating
conditions.

Gasification technologies have been developed and used for two centuries [125]. The
history of gasification is particularly connected (i) with commercial coal gasification for
illumination in England during the industrial revolution and (ii) with coal gasification
for synthetic fuel production by Lurgi (now Air Liquide) in Germany between the 1920s
and 1940s and by Sasol in South Africa since the 1950s [125]. Further gasification tech-
nologies were developed for oil gasification by Texaco (later Chevron and now GE Energy)
and Shell. However, gasification technologies remained niche technologies until the 1980s
despite steadily increasing research expenditures and number of plants [125]. Since then,
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1.2 Gasification technologies

there has been an increased interest in these technologies which is partially related to the
gasification of biomass and waste fuels [125].
Biomass and waste as feedstocks for gasification processes offer the possibility to close the
anthropogenic carbon cycle which is one of the main challenges in the fight against climate
change. In order to reduce carbon dioxide emissions, fossil energy carriers in the industrial
and the transport sectors need to be replaced by renewable energy carriers. In this context,
electricity from renewable sources is the best option for the short-distance transport sector
(electric vehicles), while synthetic fuels for the long-distance transport sector (trucks, ships
and aircrafts) and chemicals should be produced from renewable feedstocks in the medium
term [87]. Therefore, both Power-to-X (PtX) technologies and Biomass-to-Liquid (BtL)
technologies are under development [87]. PtX technologies typically rely on hydrogen from
electrolysis and on carbon dioxide from industry and atmosphere, whereas BtL technologies
are based on synthesis gas from the gasification of biomass.

1.2 Gasification technologies

Gasification technologies for biomass rely on the existing gasifier types: fixed bed, fluidised
bed and entrained flow. Fixed bed gasifiers consists of moving fuel beds passed by the
gas, while fluidised bed gasifiers are based on the suspension of fuel particles in the gas,
and entrained flow gasifiers rely on the atomisation of the fuel and the entrainment of the
recirculating gas. The technologies are described and discussed in detail elsewhere (for
example, see [87, 125, 252]). However, some fundamentals are given below.

Fixed bed gasifiers are operated either in counter-current or in co-current mode and
typically below the ash melting temperatures. Non-caking fuels with typically high
mechanical strength are fed at the top of the gasifier. The gasification media enter
the gasifier at the bottom in counter-current operating mode or at the centre in
co-current operating mode. The synthesis gas leaves the gasifier at the top in
counter-current operating mode or at the bottom in co-current operating mode. It is
characterised by fluctuating compositions and high methane, tar or soot contents [87],
which are typically lower in co-current than in counter-current mode. Build units of
fixed bed gasifiers for biomass are operated at atmospheric conditions with thermal
inputs below 1 MW [87]. The units are partially combined with co-generation and
produce low-quality synthesis gas for combustion [87].

Fluidised bed gasifiers are operated either in stationary fluidised or in circulating mode
typically below the ash melting temperatures. The fuels with typically higher
corrosive ash contents are fluidised in gasification media. The gasification media
enter the gasifier at the centre above the fuel inlet while solid residues and the
synthesis gas leave the gasifier at the bottom and the top, respectively. The synthesis

3



1 Introduction

gas can contain high methane, tar or soot contents [252]. Build units of fluidised bed
gasifiers for wood developed at TU Wien are operated at atmospheric conditions
with thermal inputs of up to 32 MW [87]. The units are combined with co-generation
and produce synthesis gas for production of synthetic fuels such as natural gas [87].

Entrained flow gasifiers are operated with fuels from a wide range of feedstocks at
high-temperature and high-pressure conditions (25-80 bar) either in one-stage or in
two-stage mode [125]. In one-stage mode, fuels and gasification media are fed at the
top; in two-stage mode, fuels are fed at the centre of both stages while gasification
media are fed at the centre of the lower stage. Due to operating temperatures above
the ash melting temperature, ash is typically deposited as slag at the cooled wall
surfaces. Subsequently, the slag flows down the wall and exits the gasifier at the
bottom through a quench. In one-stage mode, the synthesis gas also passes the quench
while, in two-stage mode, the synthesis gas leaves the gasifier at the top. High-quality
synthesis gas is produced since it is characterised by low methane and tar contents.
Large-scale units of entrained flow gasifiers for coal have been constructed for decades
while only pilot plants with thermal inputs of up to 15 MW have been developed yet
for biomass [206, 239]. At Karlsruhe Research Center (FZK) (until 2009) and Campus
North of Karlsruhe Institute of Technology (KIT) (since 2009), a one-stage entrained
flow gasifier with a thermal input of approximately 5 MW has been developed as
main component of the second stage of the bioliq pilot plant [61, 148].

In comparison with coal, biomass is characterised by lower heating values, by higher
moisture and ash contents, by lower ash melting temperatures and by more fluctuating
chemical and physical properties. The existing gasifier technologies have accordingly to be
adapted to biomass using new concepts such as the bioliq process [87].

1.3 bioliq process

The bioliq process is a concept that relies on (i) regional biomass production and supply,
(ii) regional energy densification and (iii) central, large-scale conversion to synthetic
fuels [61, 148, 350]. The concept was implemented between 2005 and 2013 through the
construction of the bioliq pilot plant, which was done in a collaboration between institutes
of FZK/KIT, industrial partners1 and public funding agencies2 [148]. The bioliq pilot
plant consists of four stages:
1Air Liquid Global Engineering & Construction Solutions Germany, Calida Cleantech, Chemieanlagenbau
Chemnitz, MUT Advanced Heating, Bauer MAT Slurry Handling Systems

2Federal Ministry of Food and Agriculture (BMEL), Agency for Renewable Resources e.V. (FNR),
European Union (EU), the European Regional Development Fund (ERDF), the Baden-Württemberg
Ministry of the Environment, Climate Protection and the Energy Sector, Helmholtz Association of
German Research Centres (HGF)
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1.3 bioliq process

bioliq I: fast pyrolysis and slurry production Dried and crushed biomass mixed with hot
fluidised sand is converted at 500 ◦C under inert and atmospheric conditions using a
twin-screw mixing reactor to organic liquid (34%), aqueous liquid (25%), char (20%)
and non-condensable gas (21%) [87]. The gas is used for providing combustion heat
to the process, while the organic liquid (pyrolysis oil) and the char (pyrolysis char)
are mixed to pumpable pyrolysis slurries containing up to 40% char. The pyrolysis
slurries from the bioliq pilot plant are called Biosyncrude [87].

bioliq II: high-pressure gasification Raw, tar-free synthesis gas is produced from pyroly-
sis slurries or surrogate slurries with high mineral contents using oxygen and steam
as gasification media at high-temperature and high-pressure conditions (40 or 80 bar)
enabled by two different burner and reactor configurations. [87] The gasifier is exten-
sively equipped with instrumentation for pressure, temperature and concentration
measurements, with optical access for non-intrusive (laser) diagnostics and camera
visualisations and with sampling possibilities. The fuel is composed of slurry and
natural gas. Natural gas is used for ignition and flame stabilisation. Due to operation
in slagging mode, mineral residues leave the gasifier as slag via the segmental cooling
screen and the water quench. The slag layer on the cooling screen serves also as
protection of the refractory made of SiC. In addition to six water cooling circuits
along the cooling screen, one water cooling circuit each is used for the cooling of
slurry burner and natural gas burner. Characteristic parameters of the gasifier are
given in Tables A.1-A.4.

bioliq III: gas cleaning and gas conditioning Raw synthesis gas must be purified after
passing the quench in order to protect the catalysts in the gas synthesis [87]. Under
high-pressure conditions of up to 80 bar, (i) particles, (ii) alkali salts, heavy metals,
H2S, HCl and COS and (iii) NH3 and HCN are removed from the raw synthesis gas
using a particle separator at 700-800 ◦C, a fixed bed adsorber at 500-800 ◦C and a
catalytic converter at 500-800 ◦C, respectively [61, 87].

bioliq IV: gas synthesis Purified synthesis gas is converted to dimethylether (DME) using
a water-gas shift reactor, providing an equimolar H2/CO ratio, and a synthesis reactor
operating at 250 ◦C and 55 bar [87]. Dimethylether serves as basis for the production
of synthetic fuels in a further synthesis reactor at 350 ◦C and 25 bar [87].

Each stage of the bioliq pilot plant can be operated independently. However, a joint
operation of bioliq II, bioliq III and bioliq IV has already been achieved in 2014 [61]. The
bioliq pilot plant is used as a demonstration platform [350], as a data generation platform
for process design, optimisation and scale-up of industrial size units [154] and as a research
platform for KIT and its scientific and industrial partners [350].
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1.4 Laboratory-scale plants

The experimental data that was used to develop and validate overall models and sub-models
in this work was obtained at three laboratory-scale plants:

(i) the atmospheric research entrained flow gasifier (REGA) at the Institute for Technical
Chemistry, Gasification Technology,

(ii) the atmospheric spray test rig (ATMO) at the Institute for Technical Chemistry,
Gasification Technology and

(iii) the drop-tube reactor (DTR) at Engler-Bunte-Institute, Fuel Technology.

The laboratory-scale plants are described in detail in Sections A.2, A.3 and A.4 and are
briefly introduced below.

The research entrained flow gasifier (REGA) is used for stationary gasification of car-
bonaceous liquid and suspension fuels at atmospheric pressure. Surrogate fuels,
including ethylene glycol and mixtures of ethylene glycol and wood char, and techni-
cal fuels based on biogenic or anthropogenic pyrolysis oils are converted to synthesis
gas using oxygen-enriched air as gasification medium and external mixing nozzles.
The gasifier is laterally heated up enabling near adiabatic operating conditions.
Stoichiometry, process temperature and spray quality can be adjusted independently
through changes of the fuel and gas flow rates and the nozzle configuration. Intrusive
and non-intrusive measurements inside the gasifier at variable local positions are
facilitated by a movable top and multiple lateral ports. The measurements enable
the investigation of gas temperature, gas composition, carbon conversion, carbon
morphology, droplet velocity distribution and droplet size distribution. Further
information is given in Table A.5 and Section A.2.

The atmospheric spray test rig (ATMO) is applied for stationary atomisation of liquids
and liquid suspensions in an atmospheric open surrounding using pressurised gas and
external mixing nozzles and for spray characterisation using laser-based measurements
and imaging at different local positions. The nozzle configuration, the operating
conditions and the liquid medium are varied in order to investigate the effects of
gas velocity, liquid velocity, gas-to-liquid ratio, liquid viscosity and liquid surface
tension on spray quality. The spray quality is characterised, for example, by ligament
lengths, spray angles, droplet velocity distributions and droplet size distributions.
Further information is given in Table A.8 and Section A.3.

The drop-tube reactor (DTR) is used for stationary pyrolysis and gasification of solid
fuels at atmospheric pressure. The reactor is laterally heated and enables approxi-
mately isothermal conditions for the conversion of solid fuels. In addition to fuel and
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gas flow rates and gas compositions at the reactor inlets, gas temperatures inside the
reactor are adjusted to investigate kinetics and morphology through analysis of the
quenched product gas and the characterisation of solid residues. Further information
is given in Table A.9 and Section A.4.

Furthermore, results from several internal and external analyses were used in this work
including particle size distribution analyses of wood char particles. These analyses and
the corresponding devices are introduced in the respective paragraphs.

1.5 Preceding works

The work presented in this thesis drew upon the experience which has been gained
since 2008 through the constant development of overall models and sub-models for the
atmospheric and the high-pressure entrained flow gasification of biogenic fuels. The models
for atmospheric conditions were developed with emphasis on the REGA [63, 64, 185,
186, 187] while models for high-pressure conditions were established with focus on the
bioliq EFG [65, 66, 135, 136, 186]. Furthermore, numerous CFD simulations have been
performed for model validation and sensitivity analysis of the effects of turbulence, thermal
radiation, turbulence-chemistry interaction, chemistry and slagging [63, 64, 65, 66, 135,
136, 185, 186, 187].
Since this work continued the research on atmospheric entrained flow gasification, the
most important aspects and results from the preceding works [63, 64, 65, 66, 135, 136,
185, 186, 187] are summarised below.

The preceding CFD models

The development of CFD models with focus on REGA experiments started in 2011 and
has been carried out using ANSYS Fluent [9, 10, 11, 12, 13, 17], the RANS approach (see
Section 2.2.2) and the Euler-Lagrange approach (see Sections 2.2, 2.2.1 and 2.2.5). The
first CFD models applied the standard k-ε, the realisable k-ε model, the SST k-ω model
or the Reynolds stress equation model as turbulence model (see Section 2.2.2) and the
discrete ordinates model as thermal radiation model (see Section 2.5). Thermodynamic
and transport properties of the gas phase were described using ANSYS Fluent databases
and polynomials, Sutherland laws, Chapman-Enskog equations, mass-weighted mixing
rules and Wilke mixing rules. The gas absorption coefficient was estimated using the
mean beam length model, where the gas emissivity was firstly [185] estimated using an
exponential wide-band model [165] and later [187] using the improved emissivity charts of
Alberti [8]. Droplet scattering and absorption were firstly [185] neglected and later [187]
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approximated using the Mie theory. The physical properties required by the vaporisation
model were based on constant values except for the vapour pressure and the effective
diffusion coefficient of the fuel. The vapour pressure was approximated using linear
splines, and the effective diffusion coefficient was described using an empirical polynomial.
Two-dimensional axis-symmetric meshes of the complete REGA geometry with resolved
nozzle geometry and approximately 105 triangular cells were generated [187]. Boundary
conditions for the inlets were adopted from the REGA experiments but adjusted in two
ways. Firstly, the streams of infiltrated air and purge nitrogen were added to the inlet gas
stream. Secondly, the total gas stream was partially passed through the central orifice of
the nozzle in order to stabilise the numerical gas flow (see Section 2.2.4.3) [187].

Table 1.1: Conditions of the REGA experiments: fuel, nozzle, gas-to-liquid ratio (GLR), technical stoichiometric
ratio λtech and adiabatic temperature Tad [63, 64, 98, 99, 100, 113, 114]. Acronyms: G: ethylene
glycol; GHKS10: 90% ethylene glycol + 10% wood char HK01 (in mass fractions); GHKS30: 70%
ethylene glycol + 30% wood char HK07 (in mass fractions). Further details about the external
mixing nozzles D1, D2 and D1.1 and the wood chars HK01 and HK07 are given in Section C.1 and
Sections 2.7.1 and I.1, respectively.

REGA experiment Fuel Nozzle GLR λtech
Tad
K Previously reported as

TUC2 V468 G D1 1.965 0.750 2677 TUC2 [185]

TUC3 V479 G D1 1.283 0.571 2282 TUC3 [185, 186] and rega-
glycol-T1 [187]

TUC3 V786 G D1 1.286 0.572 2284 rega-glycol-T1 [98]

TUC5 V1105 G D2 0.830 0.466 1973 rega-glycol-T2 [64]

TUC5 V1374 G D1.1 0.829 0.466 1974 −
TUC5 GHKS10 V1071 GHKS10 D2 0.855 0.453 2041 rega-slurry1-T2 [63, 64]

TUC5 GHKS30 V1284 GHKS30 D2 0.817 0.420 1971 rega-slurry2-T2 [64, 100]

The earlier CFD studies

The earlier studies focused on the CFD simulations of the REGA experiments TUC2
V468 [185] and TUC3 V479 [185, 186, 187] with ethylene glycol (see Tables 1.1, B.1, B.2
and B.3). The CFD simulations were performed to identify the most appropriate model
for the gas chemistry [185, 186, 187] (see Sections 2.3 and 2.4). Turbulence-chemistry
interaction models and reaction mechanisms were tested with focus (i) on the prediction of
the micro-mixing in the flame region, (ii) on the prediction of the gas composition outside
the flame region and (iii) on the applicability to industrial entrained flow gasifiers [187].
Therefore, the gas chemistry was described using (i) the β-PDF model combined with
the equilibrium approach, (ii) the β-PDF model combined with the flamelet approach or
(iii) the eddy-dissipation-concept model combined with a global reaction mechanism [185,
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186, 187]. For the latter approach, global reaction mechanisms were calibrated using
one-dimensional PFR and PSTR simulations with Chemkin [253, 254] and using the DLR
mechanism of Hafner et al. [115, 116] and the GRI mechanism [294] (see Section 2.3) as
benchmark reaction mechanisms.
Preliminary and final results of the CFD simulations demonstrated that the β-PDF model
provided superior predictions of gas temperatures and dry gas species concentrations for the
REGA experiment TUC2 V468 and superior predictions of gas temperatures for the REGA
experiment TUC3 V479, when the model was combined with the equilibrium approach and
radicals were accounted for [185, 186, 187]. In contrast, the eddy-dissipation-concept model
was superior for the predictions of the dry gas species concentrations with respect to the
REGA experiment TUC3 V479 when applying an appropriate global reaction mechanism
for the gasification of ethylene glycol [187].
Two reaction mechanisms were proposed [187]: the first HVIGasTech (HVI1) mechanism
and the extended Jones-Lindstedt (eJL) mechanism (see Section 2.3.1). Both reaction
mechanisms provided accurate dry gas species concentrations of CO, CO2 and H2 at
two specific nozzle distances (300mm and 680mm). Dry gas species concentrations of
CH4 were slightly overpredicted by the HVI1 mechanism and underpredicted by the eJL
mechanism [187]. Generally, the HVI1 mechanism was slightly superior since the correct
CO/CO2 ratios could be predicted in the near-axis region [187]. However, gas temperatures
in the flame region were slightly overpredicted since radicals are not included in both
reaction mechanisms [187].
Further sensitivity analyses were performed to investigate the effects of the turbulence
model, the initial droplet diameter distribution, the thermal gas radiation property model
and the thermal droplet radiation property model [187]. The results are described below.

Turbulence model Small sensitivities were found for the gas temperature and the dry gas
species concentrations when the baseline SST k-ω model was replaced by the stan-
dard k-ε model, the realisable k-ε model or the Reynolds stress equation model [187].
Larger deviations were visible for the gas velocity and for the strength of the
recirculation zone [187].

Initial droplet diameter distribution Effects on the radial profiles of gas temperature
and dry gas species concentrations were found when particles were injected based
on a broadened droplet size distribution (generated from the baseline droplet size
distribution) since the vaporisation behaviour is directly affected by the initial droplet
diameters [187]. Particles with larger diameters vaporised increasingly outside the
flame region [187].

Thermal gas radiation property model Visible differences were found in the predictions
of the wall temperatures as well as the total, the convection and the radiation wall
heat fluxes, each in the upper region, when the constant gas absorption coefficient
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based on the mean beam length model was replaced by a weighted-sum-of-grey-gas
model generated using improved emissivity charts [187]. The wall temperatures
increased slightly whereas the radiation and the total heat flow rates decreased [187].
The proportion of radiative heat transfer in the total heat flow rate increased
from 77% to 93% [187].

Thermal droplet radiation property model Radiation source terms were strongly af-
fected in the injection region when droplet scattering and absorption were described
by improved correlations instead of by an isotropic phase function and constant
values for droplet emissivity and droplet scattering factor [187]. The improved
approximations were based on the Mie theory, the software of Maetzler [195], the
refractive index measurements of Sani and Dell’Oro [266], the initial droplet size
distribution and a reference source temperature of 1400K. Outside the injection
region, the radiation source terms were not affected due to the low proportion of
thermal droplet radiation in thermal radiation [187].

The later CFD studies

The later studies focussed on the CFD simulations of the REGA experiments TUC5 V1105,
TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 [63, 64] (see Tables 1.1, B.1, B.2
and B.3) that are characterised by similar adiabatic temperatures. The REGA experiment
TUC5 V1105 is another gasification experiment with ethylene glycol while the REGA
experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 are gasification experiments
with mixtures of ethylene glycol and wood char.
The first CFD simulations of the REGA experiment TUC5 V1105 were challenged by
species imbalances. Therefore, finer meshes of the upper part of the REGA were generated
and subsequently applied for the CFD simulations. The improved meshes enabled a
continuing good performance of the HVI1 mechanism and the eJL mechanism [63, 64].
Additionally, new modelling approaches for the supply of infiltrated air and purge nitrogen
and for the droplet injection were initiated to comply with the momentum balance at
nozzle inlet and to improve the predictions of the recirculation zone and the droplet
dispersion [64] (see Section 2.2.4).
The first results of the CFD simulations of the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284 with the HVI1 mechanism demonstrated that the radial
profiles of the gas temperature were in good agreement with the measurement data [63, 64].
However, this did not apply for the radial profiles of the dry gas species concentrations [63,
64]. The deviations were related to errors in the elemental balances. The errors increased
with increasing wood char content and were probably induced by the coupling of the gas
phase and the dispersed phase.
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1.6 Objectives

This thesis is focussed on the development, implementation and evaluation of improved
CFD sub-models for the atmospheric entrained flow gasification and has got five main
objectives:

1. Improvement of the preceding overall model [187] for the atmospheric entrained flow
gasification of ethylene glycol.

2. Application of the improved overall model to two atmospheric entrained flow gasi-
fication experiments with ethylene glycol (REGA experiments TUC3 V786 and
TUC5 V1105).

3. Development and implementation of improved sub-models for the atmospheric
entrained flow gasification of wood char.

4. Development of an overall model for the atmospheric entrained flow gasification of
mixtures of ethylene glycol and wood char.

5. Application of the second overall model to two atmospheric entrained flow gasification
experiments with mixtures of ethylene glycol and wood char (REGA experiments
TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284).

Improved sub-models were developed or tested for the supply of infiltrated air and purge
nitrogen (see Section 2.2.3.3 and 4.2), the inlet conditions and the injection properties
(see Section 2.2.4.4, 4.1, 4.2, 4.3 and 4.9), the vaporisation of ethylene glycol (see Sec-
tion 2.6.4 and 4.6), the particle diameter changes during heterogeneous gasification (see
Section 2.7.3.12), the devolatilisation of beech wood char (see [68] and Sections 2.7.4.3,
2.7.4.5 and 4.10) and the heterogeneous gasification of beech wood char (see Sections 2.7.5.4
and 4.10). This thesis presents (i) the model fundamentals for the atmospheric entrained
flow gasification of ethylene glycol and mixtures of ethylene glycol and wood char, (ii) the
methods used to perform and evaluate the CFD simulations and (iii) the results of the
CFD simulations of the REGA experiments. The model fundamentals are described in
Chapter 2. The methods are summarised in Chapter 3. The results are presented in
Chapter 4. In comparison with previous publications [63, 64, 187], the results are based
on revised models and methods especially to close the elemental and energy balances (see
Section 1.5). The conclusions are finally given in Chapter 5.
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2 Model fundamentals

This chapter describes the model fundamentals for the atmospheric entrained flow gasi-
fication of ethylene glycol and mixtures of ethylene glycol and wood char. Firstly, the
general physical and thermo-chemical process steps of entrained flow gasification are
summarised in Section 2.1. Then, the model fundamentals of multiphase flows, homo-
geneous reaction kinetics, turbulence-chemistry interactions and thermal radiation are
presented in Section 2.2, Section 2.3, Section 2.4 and Section 2.5, respectively. Due to
the application of widely established models in this work, the models are only briefly
described. Detailed information about multiphase flows, turbulent flows, atomisation
processes, turbulence-chemistry interaction, combustion and thermal radiation can be
found elsewhere (for example, see [59], [245, 335], [170], [243] and [129, 209], respectively).
Subsequently, overviews of the models for the vaporisation of ethylene glycol and the
conversion of wood char are given in Section 2.6 and Section 2.7, respectively.
General reviews of entrained flow gasification and its sub-processes are not provided in this
thesis since they can be found elsewhere. Specifically, Nikrityuk et al. [223] and Mularski
et al. [214] recently reviewed the latest developments in CFD models for coal entrained
flow gasification and discussed the improvements in sub-models for coal devolatilisation
and coal char conversion.

2.1 Physical and thermo-chemical process steps

Physical and thermo-chemical process steps are used to simplify the mathematical de-
scription of more complex processes. For entrained flow gasification, numerous process
steps have been identified, which are linked and influence each other in diverse ways.
However, following Fig. 2.1, some major sub-processes can be used to describe the overall
conversion [170, 187, 265]:

Atomisation is primarily the disintegration of the continuous slurry into a dispersed phase
containing smaller discrete elements of different sizes, shapes and compositions using
atomisation media. The elements include slurry fragments, slurry ligaments, slurry
droplets and solid particles. Important process steps linked with atomisation are
collision, coalescence, bouncing, near head-on separation and off-centre separation.
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Liquid conversion describes the phase transition of liquid components from the dispersed
into the gas phase through drying, vaporisation or boiling.

Devolatilisation / secondary pyrolysis is characterised by the release of secondary vola-
tiles from the primary char into the gas phase. Important process steps connected
with devolatilisation are swelling, fragmentation and thermal annealing.

Homogeneous gasification describes the conversion of gas components inside and outside
the flame to synthesis gas through hydrogen oxidation, carbon monoxide oxidation,
methane reforming reaction, water-gas shift reaction, secondary gas decomposition,
soot formation and tar formation.

Heterogeneous gasification focusses on the conversion of secondary char with the gas
species (for example, carbon dioxide and water vapour) and is linked with film
diffusion, pore diffusion, adsorption, chemical reactions and desorption.

Non-reactive gas heat and mass transfer summarises the process steps associated with
diffusion, convection and thermal radiation.

Non-reactive particle heat and mass transfer describes the motion, the collision and
the heating and cooling of particles.

Mineral matter transformation summarises all process steps connected with the con-
version of mineral components during fuel conversion, which includes vaporisation,
homogeneous and heterogeneous condensation, chemical reactions, nucleation and
sintering.

Slagging describes the impingement of particles containing mainly liquid mineral compo-
nents on walls surfaces, the formation of the slag flow and the heat transfer in wall,
slag and wall boundary layer.
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2 Model fundamentals

Some sub-processes are schematically illustrated in Fig. 2.2 using the numerical trajec-
tories of slurry particles inside the bioliq EFG. The slurry consisting of ethylene glycol
and primary wood char is converted through atomisation, liquid conversion, devolatilisa-
tion/secondary pyrolysis and heterogeneous gasification to synthesis gas, which contains
H2, CO, CO2, H2O, N2, CH4, NH3, H2S, HCN, HCl, higher hydrocarbons, tar, soot as
well as char and ash residues. Further relevant sub-processes are slagging, homogeneous
gasification and mineral matter transformation. Slagging takes place on the wall while
homogeneous gasification and mineral matter transformation occur in almost the entire
reactor.

Cooling water

Synthesis gas + slag

Slurry

SiC
Burner

Membrane wall

Slagging

Heterogenous gasification

Devolatilisation − Secondary pyrolysis

Atomisation

Liquid conversion

Natural gas + NitrogenOxygen + Steam

Figure 2.2: Sub-processes of entrained flow gasification illustrated for the gasification of ethylene glycol and
wood char in the bioliq EFG [64, 67]. For a visible distinction, the trajectories with regard to
devolatilisation are marked in orange.

2.2 Multiphase flows

Multiphase flows are flows with at least two different phases and can be divided into
separated flows and dispersed flows [59]. Separated flows contain continuous phases with
interphases [59] and are typically described using the Euler-Euler approach, while dispersed
flows consist of discrete elements in continuous phases including droplets and solid particles
in gas flows [59] and are mainly modelled using the Euler-Lagrange approach.
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2.2 Multiphase flows

The Euler-Euler approach applies the Eulerian specification for both the primary and the
secondary phase and requires calibrated terms for the phase interactions. This approach
is advantageous not only when higher volume fractions of the solid/liquid phase are
expected but also when low computing times and parallelisation possibilities are regarded
as beneficial.
The Euler-Lagrange approach describes the primary phase in the Eulerian specification and
the secondary phase in the Langrangian specification and is used in combination with both
RANS based simulations and large eddy simulations (see Section 2.2.2). The injection prop-
erties for the dispersed phase are either assumed or derived from measured particle, droplet
or bubble quantity distributions, while the particle, droplet or bubble trajectories are deter-
mined using steady-state tracking or transient tracking. Steady-state tracking is typically
applied when performing steady-state RANS based simulations while transient tracking is
usually combined with transient RANS based or large eddy simulations. Transient tracking
enables to integrate break-up models but typically increases the computing time. This ap-
plies in particular when describing particles, droplets or bubbles with long residence times.
In entrained flow gasification processes, either solid particles are mixed with gas or liquid/
slurry droplets are generated through gas-assisted atomisation of continuous liquids/
slurries. Therefore, the Euler-Lagrange approach was used in most of previous CFD stud-
ies on entrained flow gasification, while the Euler-Euler approach was only applied in a
few CFD studies [101, 102, 326].
Vicente et al. [326] listed computing time and parallelisation as advantages of the Euler-
Euler approach, while Fradet [102] pointed out high volume fractions of liquid or slurry
in the near nozzle region and injection properties as challenges of the Euler-Lagrange
approach. However, high droplet volume fractions are typically confined to the near-nozzle
region. Furthermore, computing times nowadays only matter for large eddy simulations
coupled with transient tracking of solid particles. Therefore, only the injection properties
should be regarded as major challenge of the Euler-Lagrange approach. If computing
times do not matter, appropriate injection properties can be generated for the gasification
of liquids/slurries using large eddy simulations combined with the volume-of-fluid method
as the transition from the continuous phase to the dispersed phase (i. e. from the Eulerian
to the Lagrangian specification) can be completely described using numerical methods.
However, this approach is currently not feasible for a substantial number of CFD simu-
lations. Therefore, injection properties are typically calibrated using experiments. Such
an approach was also used in this work and the preceding works [63, 64, 185, 186, 187].
The model equations for the continuous gas phase are presented in Sections 2.2.1 and 2.2.3,
while the transport equations for the dispersed phase are described in Section 2.2.5. In
addition, turbulent flows and atomisation processes are introduced in Section 2.2.2 and
Section 2.2.4, respectively.
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2 Model fundamentals

2.2.1 Continuous gas phases

Continuous gas phases are generally described using the transient transport equations for
mass, species, momentum and energy in the Eulerian specification. The balance equations
can be derived in differential or integral form assuming local thermal equilibrium and
using the principles of conservation of mass, momentum and energy1. The equations for
steady-state gas phases are given in Sections 2.2.1.1, 2.2.1.2, 2.2.1.3 and 2.2.1.4, while
detailed derivations of the Navier-Stokes equations and the species balance equations are
not be provided in this thesis.

2.2.1.1 Continuity equation

The continuity equation for steady-state gas phases is given by

div (ρugas) = Sm,part + Sm,atwall , (2.1)

where ρgas is the gas density, ugas is the gas velocity and Sm,part and Sm,atwall are the mass
source terms due to interactions with the dispersed phase (see Section 2.2.5) and due to air
infiltration and supply of purge nitrogen near the wall (see Section 2.2.3.3), respectively.

2.2.1.2 Species balance equation

The species balance equations for steady-state gas phases are given by

div (ρgas ugaswi,gas) = − div (̇m,i,gas) + Sw,reac,i + Sw,part,i + Sw,atwall,i

for i = 1, . . . ,Nsp − 1 ,
(2.2)

wNsp,gas = 1−
Nsp−1∑
i=1

wi,gas , (2.3)

where wi,gas is the gas species mass fraction of species i, ̇m,i,gas is the mass diffusion flux of
species i, Sw,reac,i, Sw,part,i and Sw,atwall,i are the source terms of species i due to chemical
reactions, due to interactions with the dispersed phase and due to air infiltration and
supply of purge nitrogen near the wall, respectively, and Nsp is the number of species.
Neglecting the influence of thermal diffusion, the mass diffusion flux of species i ̇m,i,gas is
defined by

̇m,i,gas = −
Nsp∑
j=1

ρgas Fi,j,gas∇wj,gas + ρgasDturb∇wi,gas for i = 1, . . . ,Nsp− 1 , (2.4)

1Only the principles of conservation of momentum and energy are actually physical laws while the
principle of conservation of mass is an approximation of the classical mechanics.
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2.2 Multiphase flows

where Fi,j,gas is the Fickian gas diffusion coefficient of species i in j, which is not identical
with the binary gas diffusion coefficient of species i in j Di,j,gas (see Section F.5.5). The
turbulent diffusion coefficient Dturb is defined by

Dturb = ηturb
ρgas Scturb

, (2.5)

where ηturb is the turbulent viscosity and Scturb = 0.7 is the turbulent Schmidt number.
Since turbulent diffusion dominates in turbulent flows, the dilute approximation can be
accepted to simplify the mathematical description of laminar diffusion. The mass diffusion
flux of species i ̇m,i,gas is given by

̇i,gas = − (ρgasDi,gas,eff + ρgasDturb)∇wi,gas for i = 1, . . . ,Nsp − 1 , (2.6)

where Di,gas,eff is the effective laminar gas diffusion coefficient of species i (see Sec-
tion F.5.5).

2.2.1.3 Momentum equation

The momentum equation can be derived from the second law of Newton. Neglecting
external forces beyond gravity, the momentum equation for steady-state gas phase is given
by

div (ρgas ugas ugas) = −∇pgas + div (τ ) + div (τR) + ρgas g + Su,part + Su,atwall , (2.7)

where pgas is the (absolute) gas pressure, τ is the shear stress tensor, τR is the Reynolds
shear stress tensor, g is the acceleration due to gravity and Su,part and Su,atwall are the
momentum source terms due to interactions with the dispersed phase and due to air
infiltration and supply of purge nitrogen near the wall, respectively. The Reynolds shear
stress tensor τR accounts for turbulence and is discussed in Section 2.2.2.3, while the shear
stress tensor τ = (τi,j) is generally given for a Newtonian fluid by

τ = µgas div (ugas) I + 2 ηgas S , (2.8)

where µgas is the second gas viscosity and S is the strain rate tensor. The strain rate
tensor S = (Si,j) is given by

Si,j = 1
2

(
∂ugas,i
∂xj

+ ∂ugas,j
∂xi

)
(2.9)

and is the symmetric part of the Jacobian matrix of the gas velocity Jugas , whereas the
rotation rate tensor Ω = (Ωi,j) is the antisymmetric part and is defined by
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Ωi,j = 1
2

(
∂ugas,i
∂xj

− ∂ugas,j
∂xi

)
. (2.10)

As the shear stress tensor τ is independent of the rotation rate tensor Ω and depends
only on the strain rate tensor S, the gas phase is isotropic. Furthermore, assuming the
hypothesis of Stokes

µgas + 2
3 ηgas = 0 , (2.11)

the shear stress tensor τ = (τi,j) can also be described by

τi,j = 2 ηgas
(
Si,j −

1
3
∂ugas,k
∂xk

δi,j

)
= ηgas

(
∂ugas,i
∂xj

+ ∂ugas,j
∂xi

− 2
3
∂ugas,k
∂xk

δi,j

)
. (2.12)

2.2.1.4 Energy equation

The energy equation was applied using the specific (total) gas energy Êgas defined by

Êgas = Ĥphys,gas −
pgas
ρgas

+ 1
2 ‖ugas‖2 , (2.13)

where

Ĥphys,gas =
∑
i

wi,gas

∫ Tgas

Tref
Ĉp,i,gas dT (2.14)

is the specific physical gas enthalpy calculated using the gas temperature Tgas, the reference
temperature Tref and the specific gas heat capacity of species i Ĉp,i,gas. Based on the first
law of thermodynamics, the energy equation for steady-state gas phases is given by

div (ugas (ρgasEgas + pgas)) = div

λeff∇T +
∑
i

Ĥphys,i,gas ̇i,gas + τeff ugas︸ ︷︷ ︸
=0


+ SE,reac + SE,rad + SE,part + SE,atwall ,

(2.15)

where λeff is the effective thermal conductivity, Ĥphys,i,gas is the specific physical gas
enthalpy of species i, τeff is the effective shear stress tensor and SE,reac, SE,rad, SE,part and
SE,atwall are the energy source terms due to chemical reactions, due to thermal radiation,
due to interactions with the dispersed phase and due to air infiltration and supply of purge
nitrogen near the wall, respectively. The viscous dissipation term has been neglected in
this work. The effective thermal conductivity λeff is given by

λeff = λgas + λturb , (2.16)
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2.2 Multiphase flows

where λgas is the gas thermal conductivity and λturb is the turbulent thermal conductivity.
The turbulent thermal conductivity λturb is defined by

λturb = Ĉp,gas ηturb
Prturb

, (2.17)

where Ĉp,gas is the specific gas heat capacity and Prturb = 0.85 is the turbulent Prandtl
number.

2.2.2 Turbulent flows

Turbulent flows are unsteady, three-dimensional, irregular, seemingly random and chaotic
flows [245] consisting of eddies with a wide range of time and length scales. As turbulent
flows have been studied experimentally and theoretically for many decades, numerous
mathematical approaches have been developed to describe the turbulence effects. Currently,
direct numerical simulations, large eddy simulations, PDF based simulations and RANS
based simulations are mainly used to compute turbulent flows.

Direct numerical simulations (DNS) are used to describe all turbulent scales through
the numerical solution of the Navier-Stokes equations using appropriate fine resolutions
for time and space. This can already be achieved for reactive flows in small domains
(for example, see [2]), while simulations of reactive flows with atomisation processes in
technical domains are currently not feasible even on high-performance computers.

Large eddy simulations (LES) rely on the separation of the larger and the smaller turbulent
scales since the larger scales strongly depend on the domain and are not universal while the
smaller scales have a more universal character [245, 264]. Therefore, filtered Navier-Stokes
equations are solved using closure models for turbulence and chemistry to incorporate the
effects of the smaller structures [245, 264]. Large eddy simulations can be performed for
reactive flows in technical domains but only using additional simplifications in presence of
dispersed phases (for example, see [88]). Simulations are typically carried out for selected
operating conditions while extensive sensitivity analyses are not performed for computing
time reasons.

PDF based simulations are based either on two transport equations for the dissipation and
the probability density function of gas velocity or, superior to that, on a single transport
equation for the joint probability density function of gas velocity and frequency [245].
Since the joint probability density function is a function of seven variables, the transport
equation is solved using particle methods instead of finite methods. However, this still
requires high computing times.
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2 Model fundamentals

RANS based simulations rely on the Reynolds averaged Navier-Stokes (RANS) equations
or the Favre averaged Navier-Stokes equations. Both approaches are based on averaged
Navier-Stokes equations and on calibrated closure models for turbulence and chemistry.
RANS based simulations are usually applied for technical domains and sensitivity analyses
due to relatively short computing times compared to direct numerical simulations and
large eddy simulations. However, the accuracy of the solutions strongly depends on the
closure models.

In previous CFD studies on entrained flow gasification, RANS based simulations were
strongly preferred over large eddy simulations. Although the requirements on computing
time have significantly diminished for some time now, large eddy simulations were only
applied in the studies of Abani and Ghoniem [1] and of Eckel et al. [88, 89]. Both studies
have shown that large eddy simulations have advantages to describe mixing and particle
dispersion but can obviously not solve deficiencies of homogeneous and heterogeneous
reaction kinetics and incomplete information about boundary conditions.
Since large eddy simulations cannot be used for extensive sensitivity analyses, RANS
based simulations using the Favre averaged Navier-Stokes equations were eventually ap-
plied in this work. Thus, simplified models were incorporated to describe turbulence and
turbulence-related phenomena such as atomisation and turbulence-chemistry interaction.
The Favre averaged Navier-Stokes equations are based on the concepts of Reynolds av-
eraging and Favre averaging, which are described in Section 2.2.2.1 and Section 2.2.2.2,
respectively. Subsequently, the Favre averaged Navier-Stokes equations are introduced in
Section 2.2.2.3.

2.2.2.1 Reynolds averaging

Reynolds averaging is applied for constant density flows and is based on the decomposition
of a transported quantity ϕ into an averaged part 〈ϕ〉R and a fluctuating part ϕ′ as given
by

ϕ (x, t) = 〈ϕ (x, t)〉R + ϕ′ (x, t) , (2.18)

where

〈ϕ (x, t)〉R = 1
∆t

∫ t+∆t

t
ϕ
(
x, t̃

)
dt̃ . (2.19)

Thus, Reynolds averaging is characterised by 〈ϕ′ (x, t)〉R = 0.
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2.2 Multiphase flows

2.2.2.2 Favre averaging

Favre averaging is used for compressible flows and is defined by

〈ϕ (x, t)〉F = 〈ρϕ (x, t)〉R
〈ρ (x, t)〉R

, (2.20)

where

〈ρϕ (x, t)〉R = 1
∆t

∫ t+∆t

t
ρ
(
x, t̃

)
ϕ
(
x, t̃

)
dt̃ , (2.21)

〈ρ (x, t)〉R = 1
∆t

∫ t+∆t

t
ρ
(
x, t̃

)
dt̃ . (2.22)

Thus, Favre averaging is characterised by 〈ρϕ′ (x, t)〉R = 0 and 〈ϕ′ (x, t)〉F 6= 0.

2.2.2.3 Favre averaged Navier-Stokes equations

In order to obtain the Favre averaged Navier-Stokes equations, Favre averaging is applied
on the Navier-Stokes equations. In this thesis, this should be illustrated for the transport
equation of a quantity ϕ

∂ (ρϕ)
∂t

+ div (ρϕu) = div (Γϕ∇ϕ) + Sϕ , (2.23)

where ρ is the density, u is the velocity, Γϕ is the diffusion coefficient with respect to ϕ
and Sϕ is the source term with respect to ϕ.
Applying Favre averaging, the Favre averaged transport equation is given by

∂ (〈ρ〉R 〈ϕ〉F)
∂t

+ div (〈ρ〉R 〈ϕ〉F 〈u〉F + 〈ρϕ′ u〉R) = 〈div (Γϕ∇ϕ)〉R + Sϕ . (2.24)

Since this equation still contains a fluctuating part, the averaged transport equation is
not closed, which represents the closure problem of Favre averaged transport equations.
Furthermore, this demonstrates that the closure problem is not restricted to one specific
transport equation in view of the fact that the momentum equation and the corresponding
fluctuating part, the Reynolds stress tensor, are the typical focus of the discussion of the
closure problem. Other transport equations such as the energy equation and the species
balance equations also require models for the unclosed terms.

In this work, the Reynolds stress tensor was described using the approximation of
Boussinesq in combination with either the standard k-ε model [166, 167] or the shear-
stress transport (SST) k-ω model [200] since the preceding work [187] demonstrated only
small sensitivities with respect to the distributions of gas temperature and gas species
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concentrations (see Section 1.5). The Reynolds stress tensor τR = (τR,i,j) is given by

τR,i,j = −〈ρgas u′gas,i u′gas,j〉 = 2 ηturb Si,j −
2
3

(
ρgas k + ηturb

∂ugas,k
∂xk

)
δi,j , (2.25)

where ηturb is the turbulent dynamic viscosity and k is the turbulent kinetic energy. The
latter is the first transported quantity of both the standard k-ε model and the shear-stress
transport (SST) k-ω model and is defined by

k = 1
2 〈u

′
gas,iu

′
gas,i〉 . (2.26)

Additionally, either the turbulent dissipation rate

ε = η

〈
∂u′gas,i
∂xk

∂u′gas,i
∂xk

〉
(2.27)

or the specific turbulent dissipation rate

ω = ε

Cη k
(2.28)

is the second transported quantity, where Cη = 0.09 is a model constant. The respective
transported quantities are used to approximate the turbulent dynamic viscosity ηturb

(see Eqs. 2.31 and 2.37). The equations of the standard k-ε model are summarised in
Section 2.2.2.4, and the equations of the shear-stress transport (SST) k-ω model are
provided in Section 2.2.2.5.

2.2.2.4 Standard k-ε model

The standard k-ε model [166, 167] is a two-equation turbulence model and consists of
transport equations for the turbulent kinetic energy k and the turbulent dissipation rate ε.
For free shear flows at high Reynolds numbers, it provides a good compromise between
computational efficiency, computational stability and accuracy. However, boundary layer
flows and flow separation cannot be well described. The transport equations are given
by [15]

∂

∂xi
(ρgas k ugas,i) = ∂

∂xj

((
ηgas + ηturb

σk

)
∂k

∂xj

)
+ ηturb S

2

− gi
ηturb

ρgas Prturb

∂ρgas
∂xi

− ρgas ε ,
(2.29)

∂

∂xi
(ρgas ε ugas,i) = ∂

∂xj

((
ηgas + ηturb

σε

)
∂ε

∂xj

)
+ Cε,1

ε

k

(
ηturb S

2

− Cε,3 gi
ηturb

ρgas Prturb

∂ρgas
∂xi

)
− Cε,2 ρgas

ε2

k
,

(2.30)
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where [15]

ηturb = ρgasCη
k2

ε
(2.31)

is the turbulent viscosity, S =
√

2Si,j Si,j is the mean rate of the strain-rate tensor, σk = 1.0,
σε = 1.3, Cε,1 = 1.44 and Cε,2 = 1.92 are model constants and Cε,3 = tanh (ugas,1/ugas,2) is
a model parameter.

2.2.2.5 Shear-stress transport (SST) k-ω model

The shear-stress transport (SST) k-ω model [199, 200] is a two equation turbulence model
and was developed by blending the standard k-ε model, transformed to a k-ω model, and
the standard k-ω model [336] using the blending function F1 in order establish a model
that is appropriate for both free shear flows and boundary layer flows. The transport
equations for the turbulent kinetic energy k and the specific turbulent dissipation rate ω
are given by [15]

∂

∂
(ρgas k ugas,i) = ∂

∂xj

((
ηgas + ηturb

σk

)
∂k

∂xj

)
+ ηturb S

2 − ρgas β∗ ω k , (2.32)

∂

∂
(ρgas ω ugas,i) = ∂

∂xj

((
ηgas + ηturb

σω

)
∂ω

∂xj

)
+ γ ρgas S

2 − ρgas β ω2

+ 2 ρgas (1− F1) 1
σω,2

1
ω

∂k

∂xj

∂ω

∂xj
.

(2.33)

The model constants are given by [15]

σk,1 = 1.176 , σk,2 = 1.0 , σk = 1
F1/σk,1 + (1− F1) /σk,2

,

σω,1 = 2.0 , σω,2 = 1.168 , σω = 1
F1/σω,1 + (1− F1) /σω,2

,

β∗ = 0.09 , β1 = 0.075 , β2 = 0.0828 , β = F1 · β1 + (1− F1) · β2 ,

κ = 0.41 , γ1 = β1

β∗
− 1
σω,1

κ2
√
β∗

, γ2 = β2

β∗
− 1
σω,2

κ2
√
β∗

,

γ = F1 · γ1 + (1− F1) · γ2 .

The blending function F1 is given by [15]

F1 = tanh
(
Φ4

1

)
, (2.34)

where [15]

Φ1 = min
(

max
( √

k

β∗ ω y
, 500 ηgas
ρgas y2 ω

)
, 4 ρgas k
σω,2D y2

)
, (2.35)
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D = max
(

2 ρgas
1
σω,2

1
ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
. (2.36)

The turbulent viscosity ηturb is defined by [15]

ηturb = ρgas k/ω

max
(

1
α∗ , S F2

0.31·ω

) , (2.37)

where S is the mean rate of the strain-rate tensor (see Section 2.2.2.3) and [15]

α∗ =
(

0.024 +Returb/6
1 +Returb/6

)
, Returb = ρgas k

ηgas ω
, α1 = 0.31 ,

F2 = tanh
(
Φ2

2

)
, Φ2 = max

(
2
√
k

β∗ ω y
, 500 ηgas
ρgas y2 ω

)
.

2.2.3 Boundary conditions

The transport equations of the gas phase are solved using boundary conditions for the
inlet, the outlet and the walls. In this work, the boundary conditions have been defined
using the available methods mass-flow inlet, outflow and wall in ANSYS Fluent [15, 17]
and the experimental boundary conditions (see Section 1.5 and Chapter B).

2.2.3.1 Inlet

At the inlet, the gas temperature Tgas and the gas composition in mass fractions wgas are
explicitly defined by

Tgas|inlet = Tinlet , (2.38)

wi,gas|inlet = wi,inlet , (2.39)

where Tinlet is the temperature at inlet and wi,inlet is the mass fraction of species i at inlet.
The magnitude of the gas velocity ugas at inlet is determined by

ugas|inlet = ṁinlet

ρgas|inlet As,inlet
(2.40)

using the mass flow rate at inlet ṁs,inlet and the surface area of the inlet As,inlet while the
direction of the gas velocity ugas is defined to be normal to the inlet surface.
The turbulent kinetic energy k, the turbulent dissipation rate ε and the specific turbulent
dissipation rate ω at inlet are estimated by [16]

k|inlet = 3
2
(
ugas|inlet Iinlet

)2
, (2.41)
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ε|inlet =
C3/4
η

0.07
(k|inlet)

3/2

Linlet
, (2.42)

ω|inlet =
C−1/4
η

0.07
(k|inlet)

1/2

Linlet
, (2.43)

where Iinlet = 10 % is an assumed intensity at inlet and Linlet is the characteristic length
scale of the inlet, i. e. the (equivalent) nozzle diameter dnozzle,eq (see Sections 2.2.4.4
and 2.2.4.5).

2.2.3.2 Outlet

At the outlet, zero-gradient boundary conditions are assumed for the gas velocity ugas, the
gas temperature Tgas, the gas pressure pgas, the gas composition in mass fractions wgas,
the turbulent kinetic energy k and the turbulent dissipation rate ε.

2.2.3.3 Wall

At the walls, boundary conditions of first or second kind are combined with wall functions
in order to avoid a fine resolution of the boundary layer. Wall functions are used to
approximate the viscous hydrodynamic and thermal boundary layer effects in turbulent
flows and in particular to estimate the gas velocity ugas and the gas temperature Tgas in
the near-wall fluid cells. The distance of near-wall fluid cells is defined by y, while the
dimensionless distance of the hydrodynamic boundary layer to the wall ỹu is given by [15]

ỹu =
ρgasC

1/4
η k1/2 y

ηgas
, (2.44)

and the dimensionless distance of the thermal boundary layer to the wall ỹT is defined as
intersection of the linear temperature wall function and the logarithmic temperature wall
function.
Due to sufficiently small dimensionless distances to the wall ỹu for the fluid cells in this
work, the linear velocity wall function was applied for the gas velocity. This function is
defined by [15]

ũ ≡
ugasC

1/4
η k1/2

τwall/ρgas
= ỹu , (2.45)

where ũ is the dimensionless gas velocity and [15]

τwall = ηgas
∂ugas
∂n

∣∣∣∣∣
wall

(2.46)
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is the shear stress at the wall. The gas velocity at the wall is defined by the no-slip
condition [15]

ugas|wall = 0 . (2.47)

The temperature wall function is defined by [15]

T̃ ≡

(
Tgas|wall − Tgas

)
ρgas Ĉp,gasC

1/4
η k1/2

q̇wall
= T̃conv+cond + T̃visc , (2.48)

where [15]

T̃conv+cond =

Pr ỹu , if ỹu < ỹT

Prturb
(

1
κ

ln (E ỹu) + P
)

, else
(2.49)

is the dimensionless convective-conductive part while the dimensionless viscous heating
part T̃visc is neglected. q̇wall is the heat flux at the wall, κ = 0.4187 is the van Kármán
constant and E = 9.793 is an empirical constant [15].

P = 9.24
((

Pr

Prturb

)3/4
− 1

) (
1 + 0.28 exp

(
−0.007 Pr

Prturb

))
(2.50)

is an auxiliary function for smooth walls. Assuming a thin wall, the gas temperature at
the wall is determined by [16]

Tgas|wall = Twall + q̇wall
dwall
λwall

, (2.51)

where Twall is the wall temperature, dwall is the wall thickness and λwall is the wall thermal
conductivity. The wall temperature Twall of approximately 1473.15 K is measured using
thermocouples, which are located approximately 50mm below the surface of the refractory
concrete. The refractory concrete is made of 94% Al2O3, 0.1% SiO2, 0.1% Fe2O3 and
4.6% CaO [134]. The wall thermal conductivity λwall was determined as 2.240W/(mK)
at 1273.15K and 2.220W/(mK) at 1473.15K based on DIN 51046 [73] according to the
manufacturer’s information [134]. However, this work applied the slightly larger value of
2.3W/(mK) in agreement with the preceding works [63, 64, 185, 186, 187] (see Section 3.1).

Wall functions are not required for the species balance equations and the turbulent kinetic
energy equation as zero-gradient boundary conditions are applied for the gas species mass
fraction of each species i and for the turbulent kinetic energy. The boundary conditions
are given by [15]

∂wi,gas
∂n

∣∣∣∣∣
wall

= 0 , (2.52)
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∂k

∂n

∣∣∣∣∣
wall

= 0 . (2.53)

Further equations are used depending on the turbulence model. For the standard k-ε model,
the turbulent dissipation rate ε in the near-wall cells and the turbulent production term
are approximated by [15]

ε =
C3/4
η k3/2

κ y
, (2.54)

ηturb S
2 ≈ τwall

τwall

κ ρgasC
1/4
η k1/2 y

. (2.55)

For the SST k-ω model, the specific turbulent dissipation rate ω in the near-wall cells is
described using the linear function and is given by [15]

ω|wall = ρgas (ũ)2

ηgas

6
β (y+)2 , (2.56)

where [15]

y+ =
ρgas

√
τwall/ρgas y

ηturb
. (2.57)

In addition to the boundary conditions described above, source terms have been defined
near the wall between the points (0mm | 140mm) and (300mm | 140mm) for the continuity
equation, the oxygen balance equation and the energy equation in order to account for
infiltrated air and purge nitrogen. The source terms eventually replace lateral inlets to
decrease the computing time and increase the numerical stability. The source terms are
defined by

Sm,atwall =
(
ṁinf + ṁN2

) Vgas∑
atwall Vgas

, (2.58)

Sw,atwall,O2
=
wO2,inf ṁinf

ṁinf + ṁN2

Sm,atwall , (2.59)

Su,atwall = 0 , (2.60)

SE,atwall =
(
Ḣinf + ḢN2

) Vgas∑
atwall Vgas

, (2.61)

where ṁinf is the mass flow rate of infiltrated air, ṁN2
is the mass flow rate of purge

nitrogen, Vgas is the gas volume of the wall-adjacent cell, ∑atwall Vgas is the gas volume
of all wall-adjacent cells between the points (0mm | 140mm) and (300mm | 140mm),
wO2,inf is the mass fraction of oxygen in the infiltrated air, Ḣinf is the enthalpy flow rate of
infiltrated air and ḢN2

is the enthalpy flow rate of purge nitrogen.
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2.2.4 Atomisation

Atomisation is a process in which a continuous liquid based phase is disintegrated to
smaller discrete elements of different sizes and shapes in a surrounding gas phase using an
atomiser [170]. The process is primarily characterised by the interaction of stabilising and
destabilising forces [170, 265]. The stabilising forces include surface tension and viscosity
forces, while the destabilising forces comprise normal, shear and gravity forces [170,
265]. The increase of destabilising forces leads to the primary break-up after exiting the
atomiser [170, 265]. Liquid fragments, ligaments and larger droplets can be observed. Since
the liquid elements move forwards to reach new equilibrium states, secondary break-up to
smaller droplets and relaxation to spherical and distorted droplets happen [170, 265]. In
addition, phase transition by vaporisation and interactions such as coalescence, bouncing,
off-centre separation and near head-on separation are possible phenomena [265]. The
liquid elements stop to break up when reaching new equilibrium states [170, 265].
The break-up based on various break-up regimes occurs in both quiescent and moving gas
phases and depends on the physical properties of the liquid based phase, on the geometry
of the atomiser and on the operating conditions [170, 265]. The obtained collective of
liquid elements is called spray and can be characterised by spray angles and droplet
velocity and droplet size distributions. Such data is typically obtained through high-speed
camera images and anemometry techniques such as Laser-Doppler Anemometry (LDA)
and Phase-Doppler Anemometry (PDA) [265].
Results from spray characterisation experiments are used to develop empirical spray
correlations (for example, see [138, 171, 176, 177, 189, 215, 265, 328, 329]) or to validate
numerical interphase tracking methods such as the volume-of-fluid method (for example,
see [86, 216, 217, 290, 330, 347]), the level-set method (for example, see [236]), the
front-tracking method (for example, see [319]) or the smoothed particle hydrodynamics
method (for example, see [45, 46, 47, 48]). In addition, if atomisation itself should not be
described for computing time reasons, droplet velocity, droplet size and droplet mass flux
distributions and the spray angle at atomiser exit can be used to estimate the initial particle
state properties of simplified multi-phase simulations (see Section 2.2.5.6). Following the
discussion in Section 2.2, this approach was used in this work. Initial particle state
properties and equivalent nozzle diameters dnozzle,eq were determined from atmospheric
spray experiments [98, 113, 114, 137].

The experiments were carried out by Sänger and Jakobs [98, 137] and by Haas [113, 114]
at ATMO (see Sections 1.4 and A.3) using ethylene glycol (G) and pressurised air. The
experiments are directly linked to the REGA experiments TUC3 V479, TUC3 V786,
TUC5 V1105 and TUC5 V1374, i. e. the input conditions of the atmospheric spray ex-
periments were defined using the input conditions of the gasification experiments [98,
113, 114, 137]. Furthermore, atmospheric spray experiments with glycerine (GL) were
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performed that are linked to the REGA experiment TUC5 GHKS30 V1284 [113], whereas
atmospheric spray experiments with char slurries have been not performed yet since
laser-based measurements are challenged by safety requirements [113, 137].
The conditions of the ATMO experiments are summarised in Table 2.1 while some char-
acteristic results are given in Table 2.2. Further information about the experiments of
Sänger and Jakobs [98, 137] and of Haas [113, 114] are provided in Section 2.2.4.1 and
Section 2.2.4.2, respectively. The (new) approaches to obtain simplified initial particle
state properties and equivalent nozzle diameters dnozzle,eq are described in Sections 2.2.4.4
and 2.2.4.5, while the previous approach is discussed in Section 2.2.4.3.

Table 2.1: Conditions of the ATMO experiments [98, 113, 114, 137]: liquid mass flow rates ṁliq, gas
mass flow rates ṁgas, liquid velocities uliq, gas velocities ugas, gas-to-liquid ratios GLR, operating
temperatures Top and operating pressures pop. Acronyms: G: ethylene glycol; GL: glycerine. Further
details about the external mixing nozzles D1, D2, D1.1 and D2.1 are given in Section C.1.

ATMO experiment Fuel Nozzle ṁliq

kg/h
ṁgas

kg/h
uliq
m/s

ugas
m/s GLR Top

K
pop
bar

TUC3 D1 [98] G D1 12.526 16.079 1.00 111.7 1.284 293.15 1
TUC5 D2 [137] G D2 12.419 10.295 0.99 165.1 0.829 293.15 1
TUC5 D1.1 [113] G D1.1 11.690 9.690 0.93 67.3 0.829 293.15 1
TUC5 D2.1 [113] G D2.1 11.690 9.690 0.93 155.4 0.829 293.15 1
TUC5 PO D2.1 [113] GL D2.1 11.690 9.690 0.82 155.4 0.829 293.15 1

Table 2.2: Characteristic results from the ATMO experiments [98, 113, 114, 137]: spray angles αspray, Sauter
diameters dS at centre position and axial gas velocities ugas at centre position.

ATMO experiment αspray
dS|r=0
µm

ugas|r=0
m/s

TUC3 D1 [98] 22.4° 62.1 62.4
TUC5 D2 [137] 18.8° 65.8 65.7
TUC5 D1.1 [113] 60.2° 106.4 28.2
TUC5 D2.1 [113] 20.0° 72.9 52.0
TUC5 PO D2.1 [113] 58.8° 82.8 17.9

2.2.4.1 Experiments of Sänger and Jakobs

In the ATMO experiments TUC3 D1 and TUC3 D2 of Sänger and Jakobs, ethylene
glycol was atomised using pressurised air with gas and liquid mass flow rates quite sim-
ilar to the mass flow rates used in the REGA experiments TUC3 V479/TUC3 V786
and TUC5 V1105 [98, 137]. Measurements using two-dimensional Phase-Doppler Anemo-
metry were performed at nozzle distances of 50mm and at seven radial positions between
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−15 mm and 15 mm with a radial step size of 5mm since the spray break-up was approxi-
mately completed after 50mm in each experiment [98, 137]. Subsequently, droplet velocity,
droplet size and droplet mass flux distributions were estimated from the measurement
data using limit droplet sizes of 220µm (TUC3 D1) and 200µm (TUC3 D2) [98, 137]. In
addition, high-speed camera images were generated to derive the image based spray angle
of each experiment [98, 137].
The characteristic droplet diameters, the characteristic axial droplet velocities and the
characteristic radial droplet velocities are shown in Figs. D.6 and D.7 demonstrating that
the droplet size and droplet velocity measurement data is characterised by a high degree
of axial symmetry and that the characteristic droplet diameters slightly increase with
increasing centre distance [98, 137].
The axial and radial gas velocity distributions were estimated from the axial and radial
droplet velocity distributions of droplets with diameters less than than 0.5 µm assuming
that such droplets follow the gas flow. The characteristic values are shown in Figs. D.6
and D.7 and indicate that the axial gas velocities in the ATMO experiment TUC5 D2
could be similar to the droplet velocities and that the axial gas velocities in the ATMO
experiment TUC3 D1 could be higher than the axial droplet velocities. Furthermore, the
image based spray angles spray angles were determined to be 22.4 ° and 18.8 ° [137] and
were thus significantly greater than the usual free jet angle of 9.5 ° [110].

2.2.4.2 Experiments of Haas

In the ATMO experiments TUC5 D2.1 and TUC5 D1.1 of Haas, ethylene glycol was
atomised using pressurised air with the gas-to-liquid mass flow rate ratios of the REGA
experiments TUC5 V1105 and TUC5 V1374 [113, 114]. PDA measurements were performed
in line with the methods described in Section 2.2.4.1 but at nozzle distances of 50mm,
100mm, 150mm, 200mm and 250mm and at radial positions between −40 mm and 40 mm
with a radial step size of 4mm [113, 114]. Limit droplet sizes above 425µm were applied
for the evaluation of the measurement data [113]. Furthermore, patternator measurements
using a radial step size of 6.35mm were carried out to derive mass flux distributions [113].
The number-based cumulative distribution functions Q0 and the mass-based cumulative
distribution functions Q3 are shown in Fig. D.4 demonstrating that the droplet break-up
is approximately completed after 50mm. Furthermore, Fig. D.5 shows that the ATMO
experiment TUC5 D2.1 is characterised by clearly deviating spray properties compared to
the ATMO experiment TUC5 D2. This can mainly be attributed to the different input
conditions and to the different limit droplet sizes for the evaluation of the measurement
data.
Furthermore, glycerine was atomised using pressurised air at conditions similar to those of
the REGA experiment TUC5 GHKS30 V1284 [113]. PDA measurements were only carried
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out at 200mm since the spray break-up was not finished before that distance. Patternator
measurement data was not performed since the measurements were completely impeded
by glycerine foaming [113]. The number-based cumulative distribution function Q0 and
the mass-based cumulative distribution function Q3 are shown in Fig. D.5. The number-
based cumulative distribution function Q0 is accordingly quite similar to the distribution
functions based on the ATMO experiments TUC5 D2 and TUC5 D2.1, while the mass-based
cumulative distribution function Q3 is significantly affected by a few larger droplets.

2.2.4.3 Previous initial particle state properties for liquid gasification

In the preceding works [63, 64, 187], the initial particle state properties for the CFD simu-
lations of the REGA experiments TUC3 V479, TUC3 V786 and TUC5 V1105 were defined
using the measurement data from the ATMO experiments TUC3 D1 and TUC5 D2 [98,
137]. Global droplet diameter distributions were obtained using area and mass flux
weighted summation of the data from all measurement points since similar droplet diame-
ter distributions were obtained at each measurement point [137]. The method is described
in detail by Sänger [265] while the local and global droplet diameter distributions are
compared in Figs. D.1 and D.2.
The global number-based and mass-based droplet diameter distributions were approxi-
mated using gamma (γ) and Weibull (W) distributions (see Section E.2), respectively. The
number-based probability density function q0, the number-based cumulative distribution
function Q0, the mass-based probability density function q3 and the mass-based cumulative
distribution function Q3 are shown in Fig. D.3.
The preceding works [63, 64, 187] additionally relied on estimates for the initial axial and
radial droplet velocities. The initial axial droplet velocities were estimated with 20m/s,
while the initial radial droplet velocities were defined by values evenly distributed be-
tween 0 and 4m/s. However, considering the atomiser nozzles D1 and D2, this approach
has deficiencies since (i) the nozzle momentum balance is not satisfied and (ii) the spray
dispersion is not well described in the RANS based simulations of the REGA experiments.
The last point needs to be explained further. If the details of the atomisation process
are not retained in the model, no continuous liquid enters the domain through the inner
duct. Therefore, the zones, that are actually filled with liquid, contain gas. A tiny
recirculation zone establishes in the near nozzle region which impedes appropriate droplet
injections and decreases the numerical stability. Therefore, the total gas stream at inlet
was split in the preceding works [63, 64, 187]. Some gas was allowed to enter through the
central duct (see Section 1.5). This obviously stabilised the numerical gas flow but also
affected the predictions of the droplet dispersion and the droplet velocities as the tracked
droplets typically passed through the flame in the near-axis region. Since vaporisation
and decomposition of ethylene glycol are endothermic processes, this also affected the
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predictions of gas temperature and gas species concentrations in the flame region. Instead
of possible V-shaped flames, W-shaped flames with lower gas temperatures in the near axis
region were always formed and stabilised by the combustion of the recirculated synthesis
gas (see Fig. 2.3 and [63, 64, 187]).

TUC5 1105 (HVI1, 2018)

TUC3 V479 (HVI1, 2018)

250 565 880 1195 1510 1825 2140 2455 2770 3085 3400

Gas temperature / K

Figure 2.3: Predicted gas temperature distributions. TUC3 V479 (2018): results for the REGA experiment
TUC3 V479 obtained in the preceding work [187]; TUC5 V1105 (HVI1, 2018): results for the
REGA experiment TUC5 V1105 obtained in the preceding work [63].

2.2.4.4 Improved initial particle state properties for liquid gasification

Due to the large impact of the droplet dispersion on the flame predictions, the previous
injection approach was not adopted in this work. Instead, the gas stream was fed through
a cylindrical nozzle with an equivalent diameter dnozzle,eq. In addition, the droplets were
injected with velocities, diameters and mass flow rates that enabled a sufficient description
of the spray dispersion. The initial particle state properties and the equivalent nozzle
diameter dnozzle,eq were determined complying with the nozzle momentum balance and
using the steps described below.

1. Interpolation of the experimental global droplet diameter distribution with cubic
smoothing splines to 50 diameter bins evenly distributed between the minimum and
the limit droplet diameter.

2. Normalisation of the experimental droplet velocity, axial droplet velocity and droplet
mass flux distributions using the maximum values.

3. Approximation of the normalised distributions using generalised membership bell-
shaped (GMBS) functions, generalised Gaussian probability density (GGPD) func-
tions and combinations thereof, GGPD/GMBS functions (see Section E.1).

4. Centring of the normalised distributions.
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5. Narrowing of the normalised and centred approximations using the equivalent nozzle
diameter dnozzle,eq.

6. Definition of 13 uniform distributed injection positions using the equivalent nozzle
diameter dnozzle,eq at a nozzle distance of 5mm.

7. Calculation of the initial droplet momentum flow rates and the initial droplet mass
flow rates for each injection position complying (i) with the normalised, centred and
narrowed approximations and (ii) with the mass and momentum flow rates at nozzle
inlet.

8. Definition of the spray angles for each injection position using spray angles evenly
distributed between zero and the image based spray angle.

9. Calculation of the initial axial and radial droplet velocities using the discrete spray
angles and the initial droplet momentum flow rates.

10. Definition of the initial droplet properties using the interpolated global droplet
diameter distribution, the 13 discrete initial droplet mass flow rates, the 13 discrete
initial axial droplet velocities and the 13 discrete initial radial droplet velocities.

The approximations of the normalised distributions are shown in Figs. E.1-E.4. Accord-
ingly, different bell functions need to be applied for the approximations of the measurement
data. In the case of the ATMO experiments TUC3 D1 and TUC5 D2, GMBS functions
were used for the velocity distribution, and GGPD/GMBS functions were applied for the
mass flux distribution. In the case of the ATMO experiments TUC5 D2.1 and TUC5 D1.1,
GGPD functions were used for the velocity distribution, and GMBS functions were applied
for the mass flux distribution. The final approximations of the injection properties are
shown in Figs. E.5-E.9 while the equivalent nozzle diameters dnozzle,eq are given in Table 2.3.

Table 2.3: Equivalent nozzle diameters dnozzle,eq based on the ATMO experiments and applied for the CFD sim-
ulations of the REGA experiments TUC3 V479/TUC3 V786, TUC5 V1105 and TUC5 V1374.

ATMO experiment REGA experiment dnozzle,eq
mm

TUC3 D1 TUC3 V479/TUC3 V786 7.150
TUC5 D2 TUC5 V1105 5.093
TUC5 D1.1 TUC5 V1374 4.646
TUC5 D2.1 TUC5 V1105 4.895
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2.2.4.5 Initial particle state properties for slurry gasification

The methods described in Section 2.2.4.4 could only be used in this work to generate
the initial particle state properties for the CFD simulations of the REGA experiments
TUC3 V479, TUC3 V786, TUC5 V1105 and TUC5 V1374 as spray characterisation experi-
ments could not be performed yet for mixtures of ethylene glycol and wood char. Therefore,
in spite of the fact that the initial particle state distributions and the particle dispersion
in the flame region are sensitive aspects in RANS based simulations (see Section 2.2.4.3),
assumptions were used to define the initial particle state properties for the CFD simulations
of the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284.
Since it is generally expected that slurry atomisation generates droplets that contain
both liquid and solid fractions, the initial particle state properties need to reflect the
droplet velocity, droplet diameter, droplet mass flux and droplet solid fraction distribu-
tions. This is aggravated by the facts (i) that the original wood char particles can form
agglomerates during atomisation and flame crossing and (ii) that the agglomerates and
particles can break up again during devolatilisation (see Section 2.7.3). In view of the
uncertainties and in view of the particle morphology changes observed in the REGA
experiments (see Section 2.7.3.2), the initial particle state properties were defined with
major simplifications:

1. Ethylene glycol droplets and wood char particles were injected separately.

2. Normalised, centred and shifted axial particle velocity and particle mass flux distri-
butions of the ATMO experiments TUC5 D1.1 were used for the calculation of the
initial particle velocity and particle mass flow rate distributions of both the ethylene
glycol droplets and the wood char particles.

3. Assumed Weibull parameters were used for the definition of the droplet diameter
distribution with 50 diameter bins.

4. Measured particle size distributions of the wood char particles (see Section 2.7.3.1)
were interpolated using cubic smoothing splines and were subsequently used for the
particle diameter distribution with 50 diameter bins.

The equivalent nozzle diameters dnozzle,eq are given in Table 2.4 while the final approxima-
tions of the injection properties are shown in Figs. E.10-E.13. Accordingly, the droplet
diameter distributions were defined using shapes similar to the global droplet diameter
distributions from the ATMO experiments TUC3 D1 and TUC5 D2. In contrast, the global
droplet diameter distribution from the ATMO experiments TUC5 PO D2.1 is characterised
by significant larger droplets, which demonstrates the need of future experimental and
numerical research (see Chapter 5).
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Table 2.4: Equivalent nozzle diameters dnozzle,eq applied for the CFD simulations of the REGA experiments
TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284.

REGA experiment Nozzle dnozzle,eq
mm

TUC5 GHKS10 V1071 D2 4.856
TUC5 GHKS30 V1284 D2 4.895

2.2.5 Dispersed phases

Dispersed phases are typically described using the transient differential transport equations
in the Lagrangian specification. Accordingly, numerous particles are injected with well-
defined injection properties and are subsequently tracked while heat and mass transfer
including thermal radiation and particle-gas interaction are accounted for. The particle-
particle interactions are usually neglected when the particle volume fractions are small,
whereas the mass flow rate of the dispersed phase can still be higher than the mass flow
rate of the gas phase [15].
In this work, spherical particles were injected in the near-nozzle region. Subsequently,
the particle trajectories were determined using simplified particle motion equations for
the particle position xpart and the particle velocity upart [15, 33, 34, 332]. The particle
position xpart and the particle velocity upart (based on the second law of Newton) are
described by [15]

dxpart

dt = upart , (2.62)

xpart|t=0 = xpart,0 , (2.63)

mpart
dupart

dt = Fd + Fg + Fl , (2.64)

upart|t=0 = upart,0 , (2.65)

where xpart,0 is the initial particle position, upart,0 is the initial particle velocity, mpart

is the particle mass, Fd is the drag force, Fg is the gravity force and Fl is the lift force.
Further forces such as the virtual mass force, the thermophoretic force, the Brownian force
and the Saffman’s lift force have been neglected due to small gas phase/dispersed phase
density ratios, due to small temperature gradients near surfaces, due to the presence of
turbulence and due to super-micron particles, respectively.
The drag force Fd, the gravity force Fg and the lift force Fl are given by [15]

Fd = ρpart
2 ‖ugas − upart‖ (ugas − upart)

π

4 d
2
partCd , (2.66)

Fg = ρpart
π

6 d
3
part g , (2.67)

37



2 Model fundamentals

Fl = −ρgas
π

6 d
3
part g , (2.68)

where ρpart is the particle density, dpart is the particle diameter, g is the earth acceleration
and Cd is the drag coefficient. Inserting Eqs. (2.66), (2.67) and (2.68) into Eq. (2.64), the
time derivative of the particle velocity is given by [15]

dupart

dt = 1
τpart

(ugas − upart) + (ρpart − ρgas)
ρpart

g (2.69)

where [15]

τpart =
ρpart d

2
part

18 ηgas
24

CdRepart
(2.70)

is the particle relaxation time and Repart is the particle Reynolds number. The particle
Reynolds number Repart is defined by

Repart = ρpart dpart‖upart − ugas‖
ηgas

. (2.71)

2.2.5.1 Drag coefficient

The drag coefficient Cd depends on the particle Reynolds number Repart and the particle
shape. For spheres, several relationships have been derived (see [55]) including the Stokes
equation [302]

Cd = 24
Repart

, if 0 < Repart < 0.25 , (2.72)

the Schiller-Naumann equation [274]

Cd = 24
Repart

(1 + 0.15Repart) , if 0 < Repart < 800 , (2.73)

and the Morsi-Alexander equation [212]

Cd = C1 + C2

Repart
+ C3

Re2
part

, (2.74)

where C1, C2 and C3 are coefficients, which are given for several ranges of the particle
Reynolds number Repart in Table 2.5.

Within the respective limits, the three approximations provide similar accurate predictions
and are in good agreement with the most recent findings (for example, see [223, 258]).
This work eventually adopted the Morsi-Alexander equation.
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Table 2.5: Coefficients C1, C2 and C3 for the calculation of the drag coefficient Cd using the Morsi-Alexander
equation [212].

Range C1 C2 C3

0 < Repart ≤ 0.1 0 24 0
0.1 < Repart ≤ 1 3.69 22.73 0.0903
1 < Repart ≤ 10 1.222 29.1667 −3.8889
10 < Repart ≤ 100 0.6167 46.5 −116.67
100 < Repart ≤ 1000 0.3644 98.33 −2778
1000 < Repart ≤ 5000 0.357 148.62 −47500
5000 < Repart ≤ 10000 0.46 −490.546 578700
10000 < Repart ≤ 50000 0.5191 −1662.5 5416700

2.2.5.2 Turbulent dispersion

The turbulent dispersion of the particles is described using the discrete random walk model.
In the case of two-equation turbulence models, this model modifies the gas velocity ugas

using random gas velocity fluctuations u′gas =
(
u′gas,i

)
with [15]

u′gas,i = ζG

√
2
3 k , (2.75)

where ζG is a Gaussian distributed random number and k is the turbulent kinetic energy.
The random particle velocity fluctuation is preserved over the minimum of two time scales:
the characteristic eddy lifetime τeddy and the particle eddy crossing time τcross [15].
The characteristic eddy lifetime τeddy is defined by [15]

τeddy = −τL ln (ζu) , (2.76)

where 0 < ζu < 1 is a uniform random number and τL = CL k/ε is the Langrangian integral
time scale. CL is typically approximated with 0.15 in the case of two-equation turbulence
models [15] while a modification of this value to 0.6 following the studies of Kumar and
Ghoniem [161, 162] was not accounted for in this work.
The particle eddy crossing time τcross is given by [15]

τcross =
(

1−
(

Leddy

τpart‖upart − ugas‖

))
, (2.77)

where τpart is the particle relaxation time (see Eq. (2.70)) and Leddy is the eddy length
scale, which is defined by [15]

Leddy = C3/4
η

k3/2

ε
(2.78)
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or [15]

Leddy = C−1/4
η

k1/2

ω
. (2.79)

2.2.5.3 Heat and mass transfer

The heat and mass transfer between the dispersed phase and the gas phase depends on
the particle type. While vaporisation only is accounted for liquid droplets, consecutive
processes are assumed for solid char particles and slurry droplets. The processes are
summarised in Table 2.6 while the conditions of the processes are specified in Table 2.7,
where mpart is the particle mass, Tpart is the particle temperature (assumed to be uniform
at each time step for computing time reasons), Tvap, min is the minimum vaporisation
temperature (assumed to be the reference temperature Tref) and mpart,min,vap, mpart,min,dev

and mpart,min,het are auxiliary minimum masses. The latter are defined by

mpart,min,vap = (1− wliq,0) mpart,0 , (2.80)

mpart,min,dev = (1− wvol,solid,0) (1− wliq,0) mpart,0 , (2.81)

mpart,min,het = (1− wvol,solid,0 − wcomb,solid,0) (1− wliq,0) mpart,0 , (2.82)

where wliq,part,0 is the initial particle mass fraction of the liquid phase, wvol,solid,0 is the
initial solid mass fraction of the volatiles and wcomb,solid,0 is the initial solid mass fraction of
the combustibles and mpart,0 is the initial particle mass. The initial particle mass fraction
of the liquid phase wliq,part,0 is one in the case of liquid droplets and is zero in the case of
solid particles.

Table 2.6: Particle conversion processes for the different particle types.

Particle Processes

Inert particle Inert heating or cooling
Solid particle Devolatilisation, heterogeneous gasification and inert

heating or cooling
Liquid droplet Vaporisation
Slurry droplet Vaporisation, devolatilisation, heterogeneous gasification

and inert heating or cooling
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Table 2.7: Conditions for the particle conversion processes.

Process Conditions

Inert heating or cooling Tpart < Tvap, min or mpart < mpart,min,het

Vaporisation Tpart ≥ Tvap, min and mpart ≥ mpart,min,vap

Devolatilisation Tpart ≥ Tvap, min and mpart,min,dev ≤ mpart < mpart,min,vap

Heterogeneous gasification Tpart ≥ Tvap, min and mpart,min,het ≤ mpart < mpart,min,dev

Since vaporisation is discussed in Section 2.6 and wood char conversion is described in
Section 2.7, the overall heat and mass transfer equations for the calculation of particle
mass mpart and particle temperature Tpart are focussed here. The particle mass mpart is
obtained by [15]

dmpart

dt = −Rm,part , (2.83)

mpart|t=0 = mpart,0 , (2.84)

where Rm,part is the particle mass transfer rate which depends on the particle conversion
process.
The particle temperature Tpart changes due to convective and radiative heat transfer and
due to transition enthalpies. Since, as mentioned above, uniform particle temperatures are
assumed and small temperature gradients are neglected, the particle temperature Tpart is
determined by [15]

mpart Ĉp,part
dTpart
dt =As,part hconv,part (Tgas − Tpart)

+ As,part εpart σ
(
T 4
rad − T 4

part

)
+RE,part ,

(2.85)

Tpart|t=0 = Tpart,0 , (2.86)

where Ĉp,part is the specific particle heat capacity, As,part is the particle surface area,
εpart is the particle emissivity, σ is the Stefan-Boltzmann constant, Trad is the thermal
radiation temperature, RE,part is the particle energy transfer rate depending on the particle
conversion process. The thermal radiation temperature Trad is estimated by [15]

Trad =
(
G

4σ

)1/4
, (2.87)

where G is the incident radiation (see Eqs. (2.131), (2.132) and (2.135)). The convective
particle heat transfer coefficient hconv,part is determined by

hconv,part = Nufilm λgas,film
dpart

, (2.88)
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where Nufilm is the Nusselt number at film condition and λgas,film is the gas thermal
conductivity at film condition. Except for vaporisation (see Section 2.6), the film condition
is identical to the gas condition.
The Nusselt number at film condition Nufilm is determined using the Ranz-Marshall
equation [248, 249]

Nufilm = 2 + 0.6Re1/2
film Pr

1/3
film , (2.89)

where Refilm is the Reynolds number and Prfilm is the Prandtl number, each at film
condition. Since recent studies [90, 258] showed that the Ranz-Marshall equation is still
an accurate approximation for spherical particles, no adjustments have been made in this
work, even in view of possible effects connected with vaporisation (for example, see [139]).
This also applies for the calculation of the Sherwood number at film condition Shfilm which
is obtained using the Ranz-Marshall equation [248, 249]

Shfilm = 2 + 0.6Re1/2
film Sc

1/3
film , (2.90)

where Scfilm is the Schmidt number at film condition.
The Reynolds number at film condition Refilm, the Prandtl number at film condition Prfilm
and the Schmidt number at film condition Scfilm are defined by

Refilm = ρgas,film dpart ‖upart − ugas‖
ηgas,film

, (2.91)

Prfilm = ηgas,film Ĉp,gas,film
λgas,film

, (2.92)

Scfilm = ηgas,film
ρgas,filmDgas,film

. (2.93)

In addition to the convective particle heat transfer coefficient hconv,part, a radiative particle
heat transfer coefficient hrad,part and a (total) particle heat transfer coefficient hpart are
given by

hrad,part = εpart σ
(
T 2
rad + T 2

part

)
(Trad + Tpart) , (2.94)

hpart = hconv,part + hrad,part . (2.95)

2.2.5.4 Source terms

The interaction between the continuous gas phase and the dispersed phase is accounted
for using source terms in the continuity equation (see Section 2.2.1.1), the species balance
equations (see Section 2.2.1.2), the momentum equation (see Section 2.2.1.3) and the
energy equation (see Section 2.2.1.4). These terms are determined by accounting for all
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particles entering or leaving each gas cell. Particles entering a gas cell are characterised
by the particle time tpart,in, the particle position xpart,in, the particle velocity upart,in, the
particle mass mpart,in and the particle temperature Tpart,in [15]. In contrast, particles
leaving the gas cell are characterised by the particle time tpart, the particle position xpart,
the particle velocity upart, the particle mass mpart and the particle temperature Tpart as
determined by the differential transport equations [15].
Practically, instead of particles, parcels are defined consisting of numerous particles. The
number flow rate of particles Npart of a parcel i is defined by [15]

Ṅpart,i = ṁpart,0,i

mpart,0,i
, (2.96)

where ṁpart,0,i is the initial particle mass flow rate of parcel i and mpart,0,i is the initial
particle mass of parcel i. Applying this definition, the source terms for the continuity
equation Sm,part, the momentum equation Su,part and the energy equation SE,part are given
by [15]

Sm,part = 1
Vgas

∑
i

(mpart,in,i −mpart,i) Ṅpart,i , (2.97)

Su,part = 1
Vgas

∑
i

(
1

τpart,i
(upart,i − ugas)

)
dmpart,i

dt (tpart,in,i − tpart,i) , (2.98)

SE,part = 1
Vgas

∑
i

Ṅpart,i

(
(mpart,in,i −mpart,i) ∆trsĤi

−mpart,i

∫ Tpart,i

Tref
Ĉp,part,i dT +mpart,in,i

∫ Tpart,in,i

Tref
Ĉp,part,in,i dT

) .
(2.99)

In addition, source terms for the species balance equations Sw,part,i, i = 1, . . . ,Nsp − 1, are
used to describe the mass transfer during vaporisation, devolatilisation and heterogeneous
gasification. The source terms for the species balance equations Sw,part,i, i = 1, . . . ,Nsp− 1,
are zero except for

(i) the species balance equation of ethylene glycol Sw,part,C2H6O2
during vaporisation (see

Section 2.6),

(ii) the species balance equations of methane Sw,part,CH4
, carbon monoxide Sw,part,CO,

carbon dioxide Sw,part,CO2
, hydrogen Sw,part,H2

and water vapour Sw,part,H2O during
devolatilisation (see Section 2.7.4) and

(ii) the species balance equations of carbon monoxide Sw,part,CO, carbon dioxide Sw,part,CO2
,

hydrogen Sw,part,H2
and water vapour Sw,part,H2O during heterogeneous gasification

(see Section 2.7.5).
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The source term of the species balance equation of ethylene glycol during vaporisation
is given by the source term for the continuity equation Sm,part, while the source terms of
the species balance equations during devolatilisation are described by the source term for
the continuity equation Sm,part and the volatiles composition in mass fractions wvol (see
Section 2.7.4). Finally, the source terms for the species balance equations during heteroge-
neous gasification are defined by the source term for the continuity equation Sm,part and the
reaction rates of the Boudoard reaction and the water-gas reaction (see Section 2.7.5).

2.2.5.5 Physical properties

The physical particle properties depend on the particle composition and the particle type.
In the case of liquid droplets, the physical particle properties are given by the physical
properties of the liquid phase (see Section F.6). In the case of solid particles, the physical
particle properties are given by the physical properties of the solid phase (see Section F.7).
In the case of slurry droplets, the specific particle heat capacity and the specific physical
particle enthalpy are described using the mass-weighted mixing rule and the correlations
for the liquid phase and the solid phase, while the particle density ρpart is determined using
the volume-weighted mixing rule and the correlations for the liquid phase and the solid
phase. Furthermore, the particle emissivity εpart is specified following Section 2.5.3.

2.2.5.6 Initial particle state properties

The initial particle state properties are defined according to the particle type and the
experiment (see Section 2.2.5.3). First of all, the initial particle position xpart,0, the initial
particle velocity upart,0, the initial particle temperature Tpart,0, the initial particle mass flow
rate ṁpart,0 and the initial particle diameter dpart,0 are given. Furthermore, the initial parti-
cle composition is defined by the initial particle mass fraction of the liquid phase wliq,part,0,
the initial particle mass fraction of the volatiles in the solid phase wvol,solid,part,0 and the
initial particle mass fraction of the combustibles in the solid phase wcomb,solid,part,0.

2.3 Homogeneous reaction kinetics

Homogeneous reaction kinetics are used to describe the chemical reactions in the gas phase
and are typically based on detailed, reduced or global reaction mechanisms. Such mecha-
nisms differ in the number of species, the number of chemical reactions, the computational
requirements and the transferability to different conditions. However, the same models
are applied to describe the reaction rates of the chemical reactions. Some details of the
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mechanisms used in this work are given in Section 2.3.1 while the models for the reaction
rates are described in Section 2.3.2.

2.3.1 Detailed, reduced and global reaction mechanisms

Detailed reaction mechanisms take into account all potential species and all possible
reactions and have thus high computational requirements on spatial and temporal res-
olutions. This still restricts the broad application for technical domains and has led to
the development of global and reduced reaction mechanisms. Global reaction mechanisms
typically account for a few major species and reactions and provide a sufficiently accurate
and computationally efficient basis for selected operating conditions in technical domains.
However, the transfer of global reaction mechanisms to deviating operating conditions
is limited. Furthermore, gas temperatures and gas species concentrations in the flame
region are seldom predicted concurrently with sufficient accuracy. Erroneous flame gas
temperatures and gas species concentrations are usually accepted. In order to overcome
these limitations, reduced reaction mechanisms, that can provide lower and more reason-
able flame temperatures, are developed from detailed mechanisms, for example, using
graph-based methods (DRG and DRGEP) or timescale separation methods (QSSA, CSP
and PCA) [320]. Unfortunately, reduced and global reaction mechanisms are typically
characterised by higher stiffness due to a wide range of chemical times scales [89].

Numerous reaction mechanisms have been developed so far. Some of them are introduced
in the paragraphs below.

Detailed reaction mechanisms are, for example, the GRI mechanism (version 3.0) [294]
and the DLR mechanism for ethylene glycol [115, 116, 149].
The GRI mechanism (version 3.0) [294] was developed for the combustion of natural gas ac-
counting for 53 species and 325 reactions. The mechanism was optimised using shock-tube,
laminar flame and flow reactor experiments at fuel-rich and fuel-lean conditions, partially
at very high temperatures up to 2800K and high pressures above 80 bar [294]. However,
the mechanism has been recommended for temperatures between 1000K and 2500K and
pressures between 10Torr and 10 atm [294].
The DLR mechanism for ethylene glycol was originally developed by Hafner et al. [115,
116] and is based on the C1-C4 hydrocarbon oxidation mechanism of Hedges [122] and the
ethanol mechanism of Marinov et al. [190]. Further reactions related to ethylene glycol
and its products have been included using experiments, similarity methods and analogy
methods [115]. Kathrotia et al. [149] recently revised the thermodynamic database and the
reaction parameters to reduce numerical instabilities and validated the updated mechanism
(DLR2017/DK; 78 species, 574 reactions) using ignition delay times from shock-tube
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experiments and using species profiles from flow reactor experiments [149]. The shock-
tube experiments were performed at equivalence ratios of 0.5, 1.0 and 2.0 between 800K
and 1500K and at 16 bar, while the flow reactor experiments were carried out at equiva-
lence ratios of 1.0 and 2.0 between 700K and 1200K [149]. The experimental results were
mainly in good agreement with the numerical results except for some species profiles.

Reduced reaction mechanisms have been generated by numerous research groups. For
example, Kazakov and Frenklach [150] and Lu and Law [178] developed reduced mecha-
nisms based on the GRI mechanism (version 1.2) and the GRI mechanism (version 3.0),
respectively. Furthermore, Kathrotia et al. [149] and Methling et al. [204] proposed reduced
mechanisms for ethylene glycol using the directed relation graph method (DLR2017/RK
mechanism; 43 species, 270 reactions) and the rapid reduction method (DLR2017/RM
mechanism; 24 species, 87 reactions), respectively.

Previous CFD studies on entrained flow gasification have seldom used reduced and detailed
reaction mechanism. Variants based on the GRI mechanism [150, 255, 294, 345] were
applied for RANS based simulations of coal gasification at TU Freiberg [259, 263, 322,
323, 324]. Variants of the DLR mechanism for ethylene glycol [115, 116, 149, 204] were
used by Rashidi et al. [250, 251] and Fradet et al. [101, 102] for RANS based simulations
and by Eckel et al. [88, 89] for a large eddy simulation. The experimental results were
mainly in good agreement with the numerical results in the studies of TU Freiberg and
in good to sufficient agreement with the numerical results in the studies of Rashidi et
al. [250, 251], Eckel et al. [88, 89] and Fradet et al. [101, 102]. However, note that these
conclusions assume accurate turbulence-chemistry interaction models and heterogeneous
reaction kinetics.

Global reaction mechanisms are, for example, the four-step mechanisms of Jones and
Lindstedt (JL and JL/A) [144] and the two-step mechanism of Westbrook and Dryer
(WD) [333, 334]. The JL mechanism and the JL/A mechanism consist of the oxidation
reactions of methane and hydrogen, the methane reforming reaction and the water-gas
shift reaction while the WD mechanism contains the oxidation reactions of methane and
carbon monoxide. Chemical equations and reaction parameters of the WD mechanism,
the JL mechanism and the JL/A mechanism are given in Sections G.1, G.2 and G.3.

Previous CFD studies on entrained flow gasification typically adopted the chemical
equations of the WD mechanism, the JL mechanism and the JL/A mechanism and
combined them with reaction parameters that were either taken from literature [26, 41,
42, 144, 181, 333, 334] or adapted to the prevailing operating conditions in order to
reduce the discrepancies between the numerical and the experimental results. Mularski et
al. [214] recently compiled detailed overviews of the chemical equations and the reaction
parameters used in previous studies and concluded that reaction rates from literature
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might only be reasonable as initial guess and should be adjusted for the respective specific
gasifier condition. Eventually, global reaction mechanisms have typically been preferred
to reduce the computing times, to calibrate the reaction rates and to understand the
overall phenomena, considering that reduced and detailed reaction mechanisms should
not be further optimised for single operating conditions and may also provide imperfect
predictions.
For the gasification of ethylene glycol, Mancini et al. [187] proposed two global reaction
mechanisms, the first mechanism of HVIGasTech (HVI1; 8 species, 6 reactions) and the
extended mechanism of Jones and Lindstedt (eJL; 8 species, 6 reactions). Both mechanisms
consist of an ethylene glycol decomposition reaction, the methane reforming reaction,
the methane and hydrogen oxidation reactions and the water-gas shift reaction. The
HVI1 mechanism and the eJL mechanism also include the oxidation reaction of carbon
monoxide and ethylene glycol, respectively. Chemical equations and reactions parameters
of the HVI1 mechanism and the eJL mechanism are given in Section G.4 and Section G.5,
respectively. The HVI1 mechanism and the eJL mechanism were applied in the preceding
works of Mancini et al. [187] and Dammann et al. [63, 64] providing a good agreement
between experimental and numerical results (see Section 1.5).

In summary, detailed, reduced and global reaction mechanisms were established for the
gasification of ethylene glycol and were already tested in several studies [63, 64, 89, 101,
102, 187, 250, 251]. However, none of these studies investigated whether global or reduced
reaction mechanisms should be preferred for technical domains and whether the efforts for
the calibration of the reaction rates of global reaction mechanisms are justified. Therefore,
CFD simulations performed in this work were based on both global and reduced reaction
mechanisms.
The global reaction mechanisms applied in this work were the HVI1 mechanism and
the eJL mechanism of Mancini et al. [187]. Furthermore, an alternative eJL mechanism
(eJL/A) was defined corresponding to the JL/A mechanism with the alternative reaction
rate for the hydrogen oxidation. Chemical equations and reaction parameters are presented
in Section G.6.
The detailed reaction mechanisms used in this work were the reduced DLR2017 mechanism
of Kathrotia et al. [149] (DLR2017/RK) and the reduced DLR2017 mechanism of Methling
et al. [204] (DLR2017/RM). However, single highly stiff backward reactions were removed
from both mechanisms to enable the application in ANSYS Fluent [17] without any
integration failures [205]. Details are given in Sections G.7 and G.8.

2.3.2 Reaction rates

Reactions in detailed, reduced or global reaction mechanisms are elementary reactions,
adapted elementary reactions, three-body reactions or fall-off reactions.
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Elementary reactions are the basic chemical reactions between two species A and B and
can be described by

νA A + νB B −−⇀↽−− νC C + νB D . (2.100)

The forward reaction rate of an elementary reaction j is

Rf,j = kf,j c
νA
A,gas c

νB
B,gas , (2.101)

where cA,gas and cB,gas are the molar gas species concentrations of A and B, respectively.
kf,j is the forward rate constant of reaction j which is defined by

kf,j = k0,j T
bj exp

(
−Ea,j

RT

)
, (2.102)

where k0,j is the pre-exponential factor of reaction j, bj is the temperature exponent of
reaction j and Ea,j is the molar activation energy of reaction j.

Adapted elementary reactions are elementary reactions with non-default reaction orders
and are common in global reaction mechanisms. The forward reaction rate of an adapted
elementary reaction j is

Rf,j = kf,j c
nA,j
A,gas c

nB,j
B,gas , (2.103)

where nA,j and nB,j are the reaction orders with respect to A and B, respectively.

Three-body reactions include unspecified collision partners M in elementary reactions
and are described by

A + B + M −−⇀↽−− AB + M . (2.104)

The forward reaction rate of a three-body reaction j is

Rf,j = kf,j cA,gas cB,gas cMj ,gas , (2.105)

where kf,j is the forward rate constant of reaction j as defined by Eq. (2.102) and

cMj ,gas =
∑
k

εk,j ck,gas (2.106)

is the molar gas species concentration of M for reaction j calculated using the efficiencies ε
and the molar gas species concentrations of selected species.

Fall-off reactions changes the reaction order for the collision partner M from first order
at low-pressures to zero order at high pressures and applies the forward rate constants k0,j
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and k∞,j at the low-pressure limit and the high-pressure limit, respectively. The forward
rate constant of reaction j is given by

kf,j = k∞,j

(
Pj

1 + Pj

)
Fj (T ,Pj) , (2.107)

where

Pj =
k0,j cMj ,gas

k∞,j
(2.108)

is a dimensionless reduced pressure and Fj (T ,Pj) is the broadening/fall-off function.
Detailed and reduced reaction mechanisms used in this work applied the Troe fall-off
function [105] based on the relationships [105]

lg (Fj (T ,Pj)) = lg (Fcent,j) (T )
1 + f 2

1,j
,

Fcent,j (T ) = (1− k0,j) exp
(
− T

T3,j

)
+ k0,j exp

(
− T

T1,j

)
+ exp

(
−T2,j

T

)
,

f1,j = lg (Pj) + Cj
Nj − 0.14 (lg (Pj) + Cj)

,

Cj = −0.4− 0.67 lg (Fcent,j) ,

Nj = 0.75− 1.27 lg (Fcent,j) .

(2.109)

2.4 Turbulence-chemistry interactions

Turbulence-chemistry interactions describe the influence of turbulence on the homoge-
neous reactions and vice versa. Following Mancini [188], turbulence-chemistry interaction
models are typically focussed on the first aspect while turbulence models are expected to
appropriately describe the latter aspect.
In previous CFD studies on entrained flow gasification, typical turbulence-chemistry in-
teraction models were the eddy-dissipation model, the finite-rate/eddy-dissipation model,
the eddy-dissipation-concept model, the assumed probability-density function model using
a flamelet or an equilibrium approach and the transported probability-density function
model. Since the eddy-dissipation-concept model has been proven superior to β-PDF
models in the preceding works on entrained flow gasification of ethylene glycol of Rashidi
et al. [250, 251] and Mancini et al. [185, 187], the eddy-dissipation-concept model was the
only model applied in this work.

The eddy-dissipation-concept model was originally developed by Magnussen [184] and is
based on the eddy-break up model of Spalding [296] and the eddy-dissipation model of
Magnussen and Hjertager [183]. The eddy-break up model and the eddy-dissipation model
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assume infinitely fast chemical reactions leading to reaction rates controlled by turbulence.
In addition, the eddy-break up model differentiates between burnt and unburnt zones and
depends on the mass fraction of the fuel, while the eddy-dissipation model assumes lean
and rich zones and depends on the minimum mass fraction of the reactants and on the
total mass fraction of the products.
The eddy-dissipation-concept model is a more sophisticated approach and divides each
gas cell into the fine structure and the surrounding, which is illustrated in Fig. 2.4.

Fine

Surrounding

wfs

Tfs

wsur

Tsur

structure

Figure 2.4: Fluid zones assumed by the eddy-dissipation-concept model: fine structure with the composition
in mass fractions wfs and the temperature Tfs and the surrounding with the composition in mass
fractions wsur and the temperature Tsur.

The volume of the fine structure γfs is defined by [184]

γfs =
(

3C2

4C2
1

)1/4 (
νgas ε

k2

)1/4
, (2.110)

where C1 = 0.135 and C2 = 0.5 are model constants and νgas = ηgas/ρgas is the kinematic
gas viscosity. Inside the fine structure, the gas phase is well mixed at the molecular level
and can be described using a perfectly stirred reactor, a plug-flow reactor or an equilibrium
reactor. In this work, the reaction rates were determined using a plug-flow reactor at
constant pressure over the timescale [184]

τfs =
(
C2

3

)1/2√νgas
ε

. (2.111)

The mass fraction of species i in the fine structure wi,fs and the temperature in the fine
structure Tfs are calculated by

dwi,fs
dt = Ri,fs

ρfs
, (2.112)
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wi,fs|t=0 = wi,gas , (2.113)
dTfs
dt = − 1

Ĉp,fs ρfs

∑
i

Ri,fsH i,fs , (2.114)

Tfs|t=0 = Tgas , (2.115)

where ρfs is the density, Ĉp,fs is the specific heat capacity and H i,fs is the molar enthalpy
of species i, each in the fine structure. The gas phase reaction rate for a species i in the
fine structures Ri,fs is defined by [15]

Ri,fs = Mi

∑
r

(
νPi,r − νEi,r

)kf,r ∏
j

c
nj,r
j,gas − kb,r

∏
j

c
νP

j,r
j,gas

 , (2.116)

where kf,r is the forward rate constant of reaction r, kb,r is the backward rate constant
of reaction r, cj,gas is the molar gas species concentration of species j, νPi,r is the product
stoichiometric coefficient of species j for reaction r, νEi,r is the reactant stoichiometric
coefficient of species j for reaction r and nj,r is the reactant exponent of species j, which
can be but does not have necessarily to be the reactant stoichiometric coefficient of species j
(see Section 2.3). The backward rate constant of reaction r is defined by [15]

kb,r =



kf,r

K−◦r

(
p−◦

RTfs

)∑
i(νP

i,r−ν
E
i,r)

, if r is reversible

0 , otherwise

, (2.117)

where

K−◦r = exp
∆rS

−◦
r

R
− ∆rH

−◦
r

RTgas

 , (2.118)

∆rH
−◦
r =

∑
i

(
νPi,r − νEi,r

)
H
−◦
i , (2.119)

∆rS
−◦
r =

∑
i

(
νPi,r − νEi,r

)
S
−◦
i . (2.120)

p−◦ is the standard pressure, K−◦r is the standard equilibrium constant of reaction r, ∆rH
−◦
r

is the molar standard enthalpy of reaction of reaction r, ∆rS
−◦
r is the molar standard

entropy of reaction of reaction r, H−◦i is the molar standard enthalpy of species i and S−◦i
is the molar standard entropy of species i.
The gas phase reaction rate for a species i in the fluid cell Ri is defined by [15, 184]

Ri = ρgas γ
3
fs

τfs
(wi,fs − wi,sur) , (2.121)

where wi,fs is the (final) mass fraction of species i in the fine structure and wi,sur is the
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mass fraction of species i in the surrounding. Both mass fractions are linked by [15, 184]

wi,gas = γ3
fswi,fs +

(
1− γ3

fs

)
wi,sur . (2.122)

The reaction rate of species i in the gas cell Ri is finally expressed by [15, 184]

Ri = ρgas γ
3
fs

τfs (1− γ3
fs)

(wi,fs − wi,gas) (2.123)

and is used as source term of species i due to the chemical reactions Sw,reac,i.

The model parameters of the eddy-dissipation-concept model have been adjusted in some
previous CFD studies on gasification. For example, Rehm et al. [255] derived model
parameters for the flame zone and the reforming zone from the analysis of conditions
prevailing in a high-pressure partial oxidation gasifier used for reforming of natural gas
and high-pressure partial oxidation of liquid hydrocarbons [260]. In this work, however,
the eddy-dissipation-concept model was applied without any changes.

2.5 Thermal radiation

Thermal radiation describes the heat transfer between gas molecules, particles and bound-
aries through electromagnetic waves with wavelength between 0.1 µm and 1000 µm or
through corresponding photons [209]. Similar to conduction, thermal radiation is taken
into account as source term in the energy equation (see Section 2.2.1.4). However, the
different nature of thermal radiation requires an advanced calculation approach, for which
several mathematical models and numerous physical property models have been developed
using different assumptions and simplifications.
Possible mathematical models are the discrete ordinates model, the P-1 model, the discrete
transfer radiation model and the Monte Carlo model while the physical property models
can be divided into grey-gas, spectral and band models. Grey-gas models are based on
non-spectral physical properties, which, however, can be temperature or composition
dependent. Spectral models are identical to line-by-line models, and band models can be
divided into narrow-band models, wide-band models, weighted-sum-of-grey-gas models,
spectral-line-weighted-sum-of-grey-gas models or full-spectrum-k distribution models.
In previous CFD studies on entrained flow gasification, thermal radiation has always been
accounted for, except for the CFD study of Eckel et al. [88, 89], since thermal radiation
significantly contributes to the energy transfer at high temperature and high pressure
conditions. However, the vast majority of CFD studies was contented to include (i) the
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discrete ordinates, the P-1 or the discrete transfer radiation model, (ii) the weighted-sum-
of-grey-gas model of Smith et al. [293] and (iii) the mean beam length model [128] into
their CFD models. Only Lu and Wang [179] and Park et al. [238] investigated the effect of
the thermal radiation model while the influence of the thermal radiation property model
was discussed briefly by Marklund et al. [193] and extensively by Mancini et al. [187] and
Dammann et al. [66, 67].
The scarce focus on thermal radiation is probably due to the fact that even larger errors in
the thermal radiation model or in the thermal radiation property model do not significantly
affect the overall results, as long as thermal radiation is accounted for in some way. The
recent results of Mancini et al. [187] and Dammann et al. [66, 67] confirm this observation.
Furthermore, improved thermal radiation property models and implementations have not
been made available in popular CFD software. Nikrityuk et al. [223] also emphasised this
aspect and the need for further research.
This work drew on the experience and the software from the preceding works of Mancini
et al. [187] and Alberti [8] in order to describe thermal radiation based on the most recent
knowledge. Hence, the discrete ordinates model was used as thermal radiation model
and combined with simplified thermal gas and particle radiation property models. The
discrete ordinates model is introduced in Section 2.5.1 while the assumptions and models
for the thermal gas, thermal particle and thermal wall radiation properties are described
in Section 2.5.2, Section 2.5.3 and Section 2.5.4, respectively.

2.5.1 Discrete ordinates model

The discrete ordinates model determines the energy source terms due to thermal radi-
ation SE,rad by solving the radiative transfer equation for an absorbing, emitting and
scattering medium using the discrete ordinates or the finite volume method. In this
work, the model was based on the finite volume method [54, 218] as incorporated in
ANSYS Fluent [15]. Furthermore, the model was combined either with a grey-gas model
or a weighted-sum-of-grey-gas model, i. e. the radiative transfer equation was solved
either for a single grey gas or for a gas consisting of five grey gases and one clear gas.
Furthermore, the numerical integration was carried out using 4×8×8 discrete solid angles,
i. e. each quadrant was divided into 8 polar and 8 azimuthal angles. Due to the use of
unstructured meshes, pixelation of 4× 4 was additionally applied to minimise the influence
of the control-angle overhang.

If the discrete ordinates model is combined with the grey-gas model, the radiative transfer
equation is given by [15]

div (I) + (Kgas +Kpart + σpart) I = Kgas Ib + Epart + σpart
4 π

∫ 4π

0
I Φpart dΩ , (2.124)
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where I is the intensity, Kgas is the (mean) gas absorption coefficient, Kpart is the (mean)
particle absorption coefficient, σpart is the (mean) particle scattering coefficient, Ib is the
black body intensity, Epart is the particle emission, Φpart is the particle scattering phase
function and Ω is the solid angle. The black body intensity Ib is defined by [15]

Ib = n2
gas

σ T 4
gas

π
, (2.125)

where ngas is the gas refractive index and is assumed to be one.

If the discrete ordinates model is combined with the weighted-sum-of-grey-gas model, the
radiative transfer equation is solved for each pseudo-gas c and is defined by

div (Ic) + (Kgas,c +Kpart + σpart) Ic = Kgas,c Ib,c

+ acEpart + σpart
4π

∫ 4π

0
Ic Φpart dΩ .

(2.126)

where Ic is the intensity, Kgas,c is the gas absorption coefficient, ac is the weight and
Ib,c = ac Ib is the black body intensity, each of pseudo-gas c. Details on the gas absorption
coefficients Kgas = (Kgas,c) and the weights a = (ac) are given in Section 2.5.2.

Solving the radiative transfer equations requires boundary conditions for the inlet, the
outlet and the walls. For reflecting and emitting boundaries, the boundary conditions are
defined by [15]

Ibound = εbound n
2
gas
σ T 4

bound
π

+ ρbound
π

∫
〈n,s〉<0

Ibound |〈n, s〉| dΩ (2.127)

or

Ibound,c = abound,c εbound,c n
2
gas
σ T 4

bound
π

+ ρbound,c

π

∫
〈n,s〉<0

Ibound,c |〈n, s〉| dΩ , (2.128)

where εbound is the boundary emissivity, Tbound is the boundary temperature, ρbound is
the boundary reflectivity, n is the normal vector, s is the radiation beam vector, Ibound
is the intensity at the boundary, abound,c is the weight of pseudo-gas c at the boundary
temperature, εbound,c is the boundary emissivity for pseudo-gas c, ρbound,c is the boundary
reflectivity for pseudo-gas c and Ibound,c is the intensity at the boundary for pseudo-gas c.
The boundary emissivity εbound and the boundary reflectivity ρbound are linked by

ρbound + εbound = 1 , (2.129)

while the boundary emissivity εbound,c and the boundary reflectivity ρbound,c are connected
through

ρbound,c + εbound,c = 1 . (2.130)
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The boundary emissivities and the boundary reflectivities are defined according to the
boundary type; the inlet and the outlet are treated as black bodies while the walls are
described as grey with application of both grey-gas and weighted-sum-of-grey-gas models.
The intensities I and Ic are used to determine the incident radiations G and Gc, respectively.
The incident radiations G and Gc are given by

G =
∫ 4π

0
I dΩ , (2.131)

Gc =
∫ 4π

0
Ic dΩ (2.132)

and are used to determine the energy source term due to thermal radiation SE,rad (see
Section 2.2.1.4). When applying the grey-gas model, the source term due to thermal
radiation SE,rad is defined by

SE,rad = − div (q̇rad) = (Kgas +Kpart) G− 4 π (Kgas Ib + Epart) , (2.133)

where q̇rad is the heat flux due to thermal radiation. When using the weighted-sum-of-
grey-gas model, the source term due to thermal radiation SE,rad is given by [15]

SE,rad = − div
(∑

c

q̇rad,c

)
=

Nps∑
c=1

(Kgas,c +Kpart) Gc

− 4 π (Kgas,c Ib,c) + acEpart,c ,
(2.134)

where q̇rad,c is the heat flux due to thermal radiation of pseudo-gas c. Furthermore, the
incident radiations G = (Gc) are summed up using the number of pseudo-gases Nps for
the calculation of the thermal radiation temperature Trad (see Eq. (2.87)). The (total)
incident radiation G is given by

G =
Nps∑
c=1

Gc . (2.135)

2.5.2 Thermal gas radiation property models

The thermal gas radiation properties were described according to Section 2.5 either using
a grey-gas model or a weighted-sum-of-grey-gas model.

2.5.2.1 Grey-gas model

Grey-gas models assume non-spectral gas absorption coefficients Kgas. In this work,
a constant value of 0.53m−1 was applied following the preceding work [187], which
demonstrated that similar predictions of gas temperature and gas species concentration
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distributions can be obtained with this value and with a customised weighted-sum-of-grey-
gas model (see Section 1.5).

2.5.2.2 Weighted-sum-of-grey-gas model

Weighted-sum-of-grey-gas models are described using weights a = (ac) and gas absorption
coefficients Kgas = (Kgas,c) for pseudo-gases and are generally defined by

εgas,tot =
Nps∑
c=1

ac (T ) (1− exp (−Kgas,c L)) , (2.136)

where εgas,tot is the total gas emissivity and L is the path length. The gas absorption
coefficient Kgas,c and the weight ac are given by

Kgas,c = CK,c
(
xH2O,gas + xCO2,gas + xCO,gas

)
pgas , (2.137)

ac =
Na∑
i=1

Ca,c,i

(
T

1200 K

)i−1
, (2.138)

where CK,c is a (pressure-based gas absorption) coefficient of pseudo-gas c, Na is the
number of terms for the calculation of the weights and Ca,c,1, . . . , Ca,c,Na are polynomial
coefficients for pseudo-gas c.

The weighted-sum-of-grey-gas model used in this work was adopted from the preceding
work [187] and actually consists of several individual weighted-sum-of-grey-gas models.
The latter were generated using emissivity charts for atmospheric gasification conditions
corresponding to 13 mole fraction ratios of water vapour and carbon dioxide between 1.5
and 3.3 and corresponding to constant mole fractions of carbon monoxide. Accordingly,
only water vapour, carbon dioxide and carbon monoxide were assumed to be radiating
gases; absorption and emission contributions of other gases such as methane were neglected.
Typical gas species mole fractions of carbon monoxide, carbon dioxide and water vapour
are summarised for the REGA experiments TUC3 V786 and TUC5 V1105 in Table 2.8.

Table 2.8: Typical gas species mole fractions of carbon monoxide xCO,gas, carbon dioxide xCO2,gas and water
vapour xH2O,gas in the CFD simulations of the REGA experiments TUC3 V786 and TUC5 V1105.

REGA experiment xCO,gas xCO2,gas xH2O,gas

TUC3 V786 0.08-0.17 0.13-0.20 0.24-0.37
TUC5 V1105 0.19-0.24 0.11-0.15 0.31-0.37

Each emissivity chart was obtained using (i) line-by-line calculations with the cut-off
criteria and the software of Alberti et al. [5, 6, 7, 8] at 51 temperatures between 450K
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and 2950K and (ii) using 30 discrete pressure path lengths based on logarithmic spacing
between 0.001 bar cm and 6000 bar cm. The emissivity charts were fitted using non-
linear optimisation with the fmincon method of Matlab [194] and using a pre-defined
number of pseudo-gases Nps = 6, a pre-defined number of terms for the calculation of the
weights Na = 7 and Eqs. (2.136)-(2.138) [67]. However, since setting the mole fraction
of carbon dioxide xCO,gas in Eq. (2.137) to zero improved the numerical approximations,
Eq. (2.137) was replaced by

Kgas,c = CK,c
(
xH2O,gas + xCO2,gas

)
pgas . (2.139)

This finding was actually not reported in the preceding work [187] but can be explained
by the overlapping of the 4.67 µm-absorption band of carbon monoxide with the 6.3µm-
absorption band of water vapour and the 4.3 µm-absorption band of carbon dioxide [66,
67]. Compared to the preceding work [187], improvements were focussed on the previously
erroneous implementation (see Section 3.1).

2.5.3 Thermal particle radiation property models

The thermal particle radiation properties introduced in Section 2.5 are the (mean) particle
absorption coefficient Kpart, the (mean) particle scattering coefficient σpart, the particle
emission Epart and the particle scattering phase function Φpart. In ANSYS Fluent [17], the
former are defined by [15]

Kpart = 1
Vgas

∑
i

εpart,iAp,part,i , (2.140)

σpart = 1
Vgas

∑
i

(1− fpart,i) (1− εpart,i) Apart,i , (2.141)

Epart = 1
Vgas

∑
i

εpart,iAp,part,i
σ T 4

part,i

π
, (2.142)

where εpart,i is the particle emissivity, Ap,part,i is the projected particle area, Tpart,i is the
particle temperature and fpart,i is the particle scattering factor, each of parcel i. The
projected particle area Ap,part is given by [15]

Ap,part = π

4 d
2
part . (2.143)

In ANSYS Fluent [17], approximations have thus to be provided for the particle emissiv-
ity εpart, the particle scattering factor fpart and the particle scattering phase function Φpart.
These quantities can be obtained, for example, using Mie theory, which provides spectral
particle absorption coefficients Qabs,part,η, spectral particle scattering coefficients Qscat,part,η

and spectral particle scattering phase function values Φpart,η. Subsequently, the spectral
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averaged particle absorption coefficient Qabs,part, the spectral averaged particle scattering
coefficient Qscat,part and the spectral averaged particle scattering phase function value Φpart

can be determined by

Qabs,part =
∫∞

0 Qabs,part,η ėb,η dη∫∞
0 ėb,η dη

, (2.144)

Qscat,part =
∫∞
0 Qscat,part,η ėb,η dη∫∞

0 ėb,η dη
, (2.145)

Φpart =
∫∞
0 Qscat,part,η Φpart,η ėb,η dη∫∞

0 Qscat,part,η ėb,η dη
. (2.146)

Here, ėη,b is the spectral emissive power of a black body and is defined by

ėη,b = C1 η
3

exp (C2 η/T )− 1 , (2.147)

where C1 = 3.7417... · 10−12 W cm2 and C2 = 1.4387... cm K are the common radiation
constants.
The diameter dependent particle emissivity εpart and the diameter dependent particle
scattering fpart factor can finally be obtained by

εpart = Qabs,part , (2.148)

fpart = 1− Qscat,part (1− g)
1− εpart

, (2.149)

where g is the asymmetric factor determined by Mie theory. Concerning the particle
scattering phase function value Φpart, additional diameter averaging needs to be applied due
to interface restrictions of ANSYS Fluent [14, 17]. The diameter averaged approximation
is defined by

Φpart :=
∫ dpart,max
dpart,min qγ d

2
partQscat,part Φpart ddpart∫ dpart,max

dpart,min qγ d2
partQscat,part ddpart

, (2.150)

where qγ is the probability density function of the gamma distribution (see Section E.2).
The preceding work of Mancini et al. [187] already established approximations for ethylene
glycol using the Mie software of Mätzler [195] and the measurement data of Sani and
Dell’Oro [266]. The particle emissivity εpart was approximated by

εpart = 0.0129977
(

lg
(
dpart
µm

))2

+ 0.231115 lg
(
dpart
µm

)
+ 0.007101 . (2.151)

In this work, this approximation was adopted for the CFD simulations while particle
scattering of ethylene glycol was described based on previous results (see Section 1.5),
i. e. assuming isotropic scattering with a zero particle scattering factor fpart. However, for
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sensitivity analyses, more accurate emissivity values were tabulated using Mie calculations
and using interpolated and extrapolated data for the spectral refractive index npart,η

and the spectral absorption index kpart,η. The interpolated and extrapolated data for
the spectral refractive index npart,η and the spectral absorption index kpart,η is compared
with the measurement data [266] in Fig. 2.5. The tabulated values of the absorption
efficiency Qabs,part and the particle scattering efficiency Qscat,part are shown for four different
thermal radiation temperatures Trad in Fig. 2.6.
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Figure 2.5: Spectral refractive index nη and spectral absorption index kη of ethylene glycol based on measure-
ments [266] and piecewise cubic hermite interpolation and extrapolation.
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Figure 2.6: Particle absorption efficiency Qabs,part and the particle scattering efficiency Qscat,part of ethylene
glycol for four different thermal radiation temperatures Trad based on measurements [266] and
Mie theory.

Mie calculations can also be applied for wood char or slurry particles. However, in view of
the significant uncertainties related to atomisation and conversion of solids and slurries
(see Sections 2.2.4.5 and 2.7), detailed a-priori calculations were not performed in this work.
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For wood char particles, isotropic scattering was assumed while the particle emissivity εpart
and the particle scattering factor fscat,part were given by a value of 0.8. The particle
emissivity εpart was thus not described as function of temperature or conversion (for
example, see [180, 273]). For slurry particles, the properties were approximated using the
properties of ethylene glycol during vaporisation while the properties of wood char were
used during devolatilisation and heterogeneous gasification.

2.5.4 Thermal wall radiation property models

The thermal wall radiation properties are assumed to be grey. The emissivity values re-
ported for Al2O3 rich materials and temperatures above 1473.15K are typically between 0.4
and 0.8 [24, 325]. In this work, the wall emissivity εwall was approximated with 0.8 in
agreement with the preceding works [63, 64, 185, 186, 187] (see Section 3.1).

2.6 Ethylene glycol vaporisation

Distilled ethylene glycol of high purity (> 99.5 %) was used in the REGA experiments
as liquid surrogate fuel for pyrolysis oil [98, 99] since ethylene glycol is characterised by
chemical properties similar to those of biogenic pyrolysis oils and enables a simplified math-
ematical description of the entrained flow gasification process [98]. While the conversion
of pyrolysis oils needs to be modelled through combined vaporisation, decomposition and
heterogeneous gasification models, the vaporisation of ethylene glycol can be accounted
for using a single-component vaporisation model.
Numerous vaporisation models have been developed so far. Following Sirignano [292],
they can be classified into six types. The simplest model assumes a constant particle
temperature and is not sufficiently accurate for CFD simulations while the most detailed
model relies on the Navier-Stokes equations and requires high computing times in CFD sim-
ulations. Good compromises are infinite thermal conductivity models and effective thermal
conductivity models.

Infinite thermal conductivity models assume uniform temperature distributions inside
the droplet, that only change with time. Internal heat transfer is accordingly
neglected.

Effective thermal conductivity models assume one-dimensional temperature distribu-
tions inside the droplet and rely on an algebraic function for the effective liquid
thermal conductivity. Appropriate approximations for the algebraic function have
been derived from detailed CFD predictions (for example, see [3]).
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Due to the assumption of uniform particle temperatures at each time step, the infinite
thermal conductivity model in form of the classical vaporisation model was applied in this
work. Additionally, the model of Abramzon and Sirignano [3] and the model of Sazhin et
al. [270] were used for comparative calculations. The model of Abramzon and Sirignano [3]
is an infinite thermal conductivity model while the model of Sazhin et al. [270] belongs to
the effective thermal conductivity models.
Infinite thermal conductivity models and effective thermal conductivity models have in
common that they do not resolve the film boundary layer and rely on the definition of a
film condition. This condition is used for the calculation of most of the physical properties
in each vaporisation model and is defined for single-component droplets using the film
temperature [3]

Tfilm = Tpart,s + ffilm (Tgas − Tpart,s) , (2.152)

where Tpart,s is the particle surface temperature and ffilm is the film factor and is usually
assumed to be 1/3 due to the good agreement between experimental and numerical results
(for example, see [3, 301, 343]). Note that the particle surface temperature Tpart,s is
identical to the particle temperature Tpart used in the classical vaporisation model and the
model of Abramzon and Sirignano [3].
The classical vaporisation model, the vaporisation model of Abramzon and Sirignano [3]
and the vaporisation model of Sazhin et al. [270] are described in Section 2.6.1, Section 2.6.2
and Section 2.6.3, respectively, and are compared in Section 2.6.4.

2.6.1 Classical model

The classical vaporisation model for single-component droplets assumes a spherical droplet
with a uniform temperature distribution and a film boundary layer. The mass transfer
rate between droplet and gas is given by

Rm,part =
As,part ρgas,filmDC2H6O2,gas,eff,film

dpart
Shmod,film ln (1 +Bm) , (2.153)

where As,part is the particle surface area, ρgas,film is the gas density at film condition,
DC2H6O2,gas,eff,film is an effective gas diffusion coefficient of ethylene glycol evaluated at
film condition, Shmod,film is a modified Sherwood number at film condition and Bm is the
Spalding mass transfer number.
The modified Sherwood number at film condition Shmod,film as well as the corresponding
modified Nusselt number at film condition Numod,film are calculated using the Ranz-
Marshall correlations (see Section 2.2.5.3). The actual Sherwood number at film condi-
tion Shfilm is defined by
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Shfilm =

Shmod,film , if Bm = 0

Shmod,film ln
(

1+Bm
Bm

)
, else

, (2.154)

and the actual Nusselt number at film condition Nufilm is obtained by

Nufilm =

Numod,film , if BT = 0

Numod,film ln
(

1+BT
BT

)
, else

, (2.155)

where BT is the Spalding heat transfer number. The Spalding mass transfer number Bm

and the Spalding heat transfer number BT are defined by

Bm =
wC2H6O2,gas,s − wC2H6O2,gas

1 + wC2H6O2,gas,s
, (2.156)

BT = (1 +Bm)ϕ − 1 , (2.157)

where wC2H6O2,gas,s and wC2H6O2,gas are the gas mass fractions of ethylene glycol at the
surface and in the bulk, respectively. The model parameter ϕ is given by

ϕ = 1
Lefilm

Shmod,film

Numod,film

Ĉp,C2H6O2,gas,film

Ĉp,gas,film
, (2.158)

where Lefilm is the Lewis number at film condition, Ĉp,C2H6O2,gas,film is the specific gas heat
capacity of ethylene glycol at film condition and Ĉp,gas,film is the specific gas heat capacity
at film condition. The Lewis number at film condition Lefilm is defined by

Lefilm = λgas,film

ρgas,film Ĉp,gas,filmDC2H6O2,gas,eff,film
, (2.159)

where λgas,film is the gas thermal conductivity at film condition.
The heat transfer between droplet and gas neglects the pressure change work and the
pressure dependency of enthalpy. The energy transfer rate RE,part and the specific enthalpy
of transition ∆trsĤ are given by

RE,part = −Rm,part ∆vapĤC2H6O2
, (2.160)

∆trsĤ = ∆vapĤC2H6O2,ref , (2.161)

where ∆vapĤC2H6O2
and ∆vapĤC2H6O2,ref are the specific enthalpies of vaporisation of

ethylene glycol at particle temperature and reference temperature, respectively.
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2.6.2 Model of Abramzon and Sirignano

In contrast to the classical vaporisation model, the vaporisation model of Abramzon and
Sirignano [3] takes into account the thickening of the laminar boundary layer due to Stefan
flow [3] and relies on a modified Sherwood number at film condition [3]

Shmod,film = 2 + Sh0,film − 2
Fm

(2.162)

and a modified Nusselt number at film condition [3]

Numod,film = 2 + Nu0,film − 2
FT

. (2.163)

Here, Sh0,film is the default Sherwood number and Nu0,film is the default Nusselt number,
each at film condition; both numbers are calculated using the Ranz-Marshall correlations
(see Section 2.2.5.3). Fm and FT are the correction factors for mass transfer and heat
transfer and are defined by [3]

Fm =

(1 +Bm)0.7 , if Bm = 0

(1 +Bm)0.7 ln
(

1+Bm
Bm

)
, else

(2.164)

and [3]

FT =

(1 +BT)0.7 , if BT = 0

(1 +BT)0.7 ln
(

1+BT
BT

)
, else

. (2.165)

2.6.3 Model of Sazhin

The vaporisation model of Sazhin et al. [270] adopts most parts of the model of Abramzon
and Sirignano [3] but relies on the analytical solution of the heat conduction equation
to describe the temperature distribution inside a droplet [270]. Adaptions have been
made to account for a non-uniform initial (or temporary) temperature distribution and
intra-droplet radiative heat transfer [270]. Accordingly, Eq. (2.85) corresponding to the
calculation of the uniform particle temperature Tpart is replaced by a series formula that
assumes or neglects intra-droplet radiative heat transfer. The initial condition given by
Eq. (2.86) is used for the initial particle temperature distribution.
The series formulae accounting for or neglecting the intra-droplet radiative heat transfer
are given in Section 2.6.3.1 and Section 2.6.3.2, respectively. Absorption and emission
are accounted for using a thermal radiation power distribution, which is described in
Section 2.6.3.3.
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2.6.3.1 Temperature distribution in presence of intra-droplet radiation

If absorption and emission inside the droplet are accounted for using a thermal radiation
power distribution P , the particle temperature Tpart at an inner radius r after a small time
step ∆t is given by [270]

Tpart = 1
r̃

∞∑
n=1

 pn
κT Λ2

T,n
+ exp

(
−κT Λ2

T,n ∆t
)(

qT,n −
pn

κT Λ2
T,n

)

− sin (ΛT,n)
‖vT,n‖2 Λ2

T,n
µ0 exp

(
−κT Λ2

T,n ∆t
)

− sin (ΛT,n)
‖vT,n‖2 Λ2

T,n

dµ0

dt

(
1− exp

(
−κT Λ2

T,n ∆t
))

κΛ2
T,n

 sin (ΛT,n r̃) + Teff ,

(2.166)

where [270]

r̃ = r

rpart
, κT = λeff

ρliq Ĉp,liq r2
part

, qT,n = 1
‖vT,n‖2

∫ 1

0
r̃ T sin (ΛT,n r̃) dr̃ ,

pn = 1
ρliq Ĉp,liq

1
‖vT,n‖2

∫ 1

0
r̃ P sin (ΛT,n r̃) dr̃ ,

‖vT,n‖ = 1
2

(
1 + h0,T

h2
0,T + Λ2

T,n

)
, h0,T = hconv,part rpart

λeff
− 1 ,

µ0 (t) = hconv,part Teff (t) rpart
λeff

, Teff = Tgas −
ρpart ∆vapĤ

hconv,part

1
4π r2

part ρliq

dmpart

dt .

ΛT = (ΛT,n) are eigenvalues for the calculation of the temperature distribution inside the
droplet and are obtained from [270]

ΛT,n cos (ΛT,n) + h0,T sin (ΛT,n) = 0 . (2.167)

Furthermore, rpart is the particle radius, ρliq is the liquid density, Ĉp,liq is the specific liquid
heat capacity and λeff is the effective thermal conductivity. The latter is defined by [3]

λeff = χλliq , (2.168)

where λliq is the liquid thermal conductivity and χT is a factor accounting for the effect of
internal recirculation. Abramzon and Sirignano [3] fitted this factor as

χT =

1.86 + 0.86 tanh
(
2.225 lg

(
Peliq

30

))
, if Peliq > 0

1 , else
, (2.169)

where Peliq is the liquid Peclet number which is the product of the liquid Reynolds number
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2.6 Ethylene glycol vaporisation

Reliq = ρliq uliq,max dpart
ηliq

(2.170)

and the liquid Prandtl number

Prliq = ηliq Ĉp,liq
λliq

. (2.171)

The maximum liquid velocity uliq,max at the particle surface is given by [3]

uliq,max = 1
32 ‖upart − ugas‖

(
ηgas,film
ηliq

)
Repart,filmCd , (2.172)

where Repart,film is the particle Reynolds number at film condition and ηliq is the liquid
dynamic viscosity.
The calculation using Eq. (2.166) should generally be performed twice for each time
step [271]. Firstly, a temporary new particle temperature distribution should be obtained
using the particle radius rpart from the previous time step [271]. Subsequently, the particle
radius rpart should be updated, and the particle temperature distribution should be
recalculated using the new particle radius rpart [271]. However, the recalculation has not
always been accounted for in previous works (for example, see [262]) since the double
amount of computing time restricts the application in CFD simulations. Corresponding to
that, baseline calculations were performed in this work without recalculation. Furthermore,
previous works (for example, see [262]) have mainly neglected the time derivative of µ0 in
Eq. (2.166) in presence of constant gas temperatures Tgas, which is not valid anymore for
gasification or combustion conditions. However, the successful implementation of the time
derivative of µ0 based on

dµ0

dt ≈
Teff (t)− Teff (t−∆t)

∆t
hconv,part rpart

λeff
(2.173)

could not be achieved for the conditions assumed in this work. Therefore, the time
derivative of µ0 was not accounted for in the simulations.
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2.6.3.2 Temperature distribution in absence of intra-droplet radiation

If absorption and emission inside the droplet are neglected, the Fourier series for the
temperature distribution inside the particle Tpart after a small time step ∆t reduces
to [271]

Tpart = 1
r̃

∞∑
n=1

qT,n exp
(
−κT Λ2

T,n ∆t
)
− sin (ΛT,n)
‖vT,n‖2 Λ2

T,n
µ0 exp

(
−κT Λ2

T,n ∆t
)

− sin (ΛT,n)
‖vT,n‖2 Λ2

T,n

dµ0

dt

(
1− exp

(
−κT Λ2

T,n t
))

κΛ2
T,n

 sin (ΛT,n r̃) + Teff .
(2.174)

2.6.3.3 Thermal radiation power distribution

The thermal radiation power distribution is calculated by [78, 270]

P = 6
π dpart

∫ η2

η1
wQabs,part,η ėη,b dη , (2.175)

where w is the weighing function and Qabs,part,η is the spectral absorption efficiency. The
weighting function w is given by [78, 270]

w =


(1− µ∗Θ (r̃ − 1/npart,η)) (r̃2 + γη)
0.6 (1− µ5

c)− µ3
c/n

2
part,η (1− µ3

c)
, if τη,0 < npart,η

√
2.5

ξ2 τ 2
η,0

3
exp (−ξ (τη,0 − τη))

τη,0 (ξ τη,0 − 2) + 2/ξ (1− exp (−ξ τη,0)) , else
, (2.176)

where [78, 270]

µ∗ =

√√√√1−
(

1
npart,η r̃

)2

, µc =

√√√√1−
(

1
npart,η

)2

, τη,0 = 4π kpart,η η rpart ,

Θ (x) =

0 , if x < 0

1 else
, γη = 1.5

τ 2
η,0
− 0.6
n2
part,η

, τη = 4π kpart,η η r̃ rpart ,

ξ = 2
(1 + µc)

.

The exact spectral particle absorption efficiency Qabs,part,η can be obtained using Mie theory
(see Section 2.5.3). However, since this is time consuming for single-droplet vaporisation
simulations, Dombrovsky et al. [78, 270] developed an approximation, which is given
by [78, 270]

Qabs,part,η = 4npart,η
(npart,η + 1)2 (1− exp (−2 π kpart,η η rpart)) . (2.177)
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2.6 Ethylene glycol vaporisation

2.6.4 Comparisons and conclusions

2.6.4.1 Thermal radiation power distribution

The spectral particle absorption efficiencies Qabs,part,η based on Mie theory or Dombrovsky
approximation (see Eq. (2.177)) are shown for ethylene glycol and several particle diame-
ters dpart in Fig. 2.7. The comparison demonstrates that the Dombrovsky approximation
mainly provides similar predictions for the spectral particle absorption efficiency Qabs,part,η

compared to Mie theory. Smaller deviations can typically be found for wavenumbers below
1800 cm−1.
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Figure 2.7: Spectral particle absorption efficiencies Qabs,part,η based on Mie theory or Dombrovsky approxima-
tion for particle diameters of 1 µm (top left), 25 µm (top right), 75 µm (bottom left) and 225 µm
(bottom right).

The radial profiles of the thermal radiation power P for several thermal radiation tem-
peratures Trad are illustrated for ethylene glycol in Fig. 2.8. The comparison shows that
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the predicted thermal radiation powers for ethylene glycol based on Dombrovsky approxi-
mation are quite similar to values based on Mie theory. This applies particular for larger
particle diameters. Therefore, the Dombrovsky approximation was regarded as accurate
in this work and was coupled with the vaporisation model of Sazhin et al. [270] for the
single-droplet vaporisation simulations described in Section 2.6.4.2.
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Figure 2.8: Thermal radiation powers P (based on Mie theory or Dombrovsky approximation) for thermal
radiation temperatures Trad of 300K, 600K, 1300K and 3300K and for particle diameters of
1 µm (top left), 25 µm (top right), 75 µm (bottom left) and 225 µm (bottom right).

2.6.4.2 Single-droplet vaporisation

Preceding works [63, 64, 88, 89, 187] relied either on the classical vaporisation model or on
the vaporisation model of Abramzon and Sirignano [3]. In order to verify the rather minor
influence for the vaporisation of ethylene glycol, comparative single-particle vaporisation
simulations were carried out using the classical vaporisation model, the vaporisation model
of Abramzon and Sirignano [3] and the vaporisation model of Sazhin et al. [270].
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2.6 Ethylene glycol vaporisation

For two prescribed trajectories shown in Fig. 2.9, profiles of gas temperature, thermal
radiation temperature and gas composition were extracted from the CFD simulation
of the REGA experiment TUC3 V786 (see Chapter 4). The first trajectory is defined
along the axis, between the points (5mm | 0mm) and (1100mm | 0mm). The second
trajectory is defined along a diagonal, between the points (5mm | 0mm) and (1100mm |
140mm). The profiles of gas temperature Tgas and gas velocity ugas are shown in Fig. 2.10.
Accordingly, both trajectories are characterised by non-constant gas conditions in contrast
to the conditions regarded in typical comparisons (for example, see [262, 271]).

Axis
Diagonal

300 520 740 960 1180 1400 1620 1840 2060 2280 2500

Gas temperature / K

Figure 2.9: Predicted gas temperature distribution for the REGA experiment TUC3 V789 obtained using
the DLR2017/RM mechanism. Axis: trajectory along the axis; Diagonal: trajectory along the
diagonal.
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Figure 2.10: Predicted gas temperatures Tgas and predicted gas velocities ugas along the reactor axis and the
reactor diagonal for the REGA experiment TUC3 V786.

The single-particle vaporisation simulations subsequently accounted for or neglected
thermal radiation and were performed using non-constant time steps ∆t estimated by

∆t|t = ∆t|t−∆t

(
dpart|t

dpart|t−∆t

)2

, (2.178)

where ∆t|t=0 was given through values between 10−5 s and 10−6 s. The emissivity was
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described using the polynomial approximation (see Section 2.5.3 and Eq. (2.151)), and
the vapour film diffusion coefficient was accounted for using the Fickian approximation
(see Section F.6.6 and Eq. (F.50)). Furthermore, the simulations with the model of Sazhin
et al. were carried out without recalculation (see Section 2.6.3.1), with a wavenumber
discretisation of 25 cm−1, with 1001 equidistant radial nodes and 200 sum terms. Such set-
tings ensured numerically stable simulations and provided accurate results (see Chapter H).
The results of the simulations that neglected thermal radiation are shown in Figs. 2.11,
while the results of the simulations that accounted for thermal radiation are depicted in
Fig. 2.12. Accordingly, all three vaporisation models predict similar vaporisation times in
both absence and presence of thermal radiation (see Fig. 2.11 (right) and Fig. 2.12 (right)).
However, the results also show that non-uniform temperature heating is very likely and
that thermal intra-droplet radiation significantly changes the heating process (see Fig. 2.11
(left) and Fig. 2.12 (left)).
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Figure 2.11: Simulated particle temperatures Tpart and simulated particle diameters dpart along the reactor
axis (top) and the reactor diagonal (bottom) based on the classical model (CM), the model
of Abramzon and Sirignano (ASM) or the model of Sazhin et al. (SM) in absence of thermal
radiation.
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Figure 2.12: Simulated particle temperatures Tpart and simulated particle diameters dpart along the reactor
axis (top) and the reactor diagonal (bottom) based on the classical model (CM), the model
of Abramzon and Sirignano (ASM) or the model of Sazhin et al. (SM) in presence of thermal
radiation.

2.7 Wood char conversion

Wood char is the solid product of the fast pyrolysis of wood at moderate temperatures
(∼900 K) using high heating rates (∼104-105 K/s) and short residence times (< 2 s) [210].
Its properties are influenced by the properties of the original wood and by the pyrolysis
operating conditions. Increasing residence times or increasing operating temperatures
typically decrease the hydrogen and oxygen contents and increase the carbon content.
Wood chars become increasingly similar to graphite [220]. Furthermore, wood chars
are characterised by high porosities and large pore sizes [72] and are assumed to be
phenomenologically similar to coal chars. According to that, the compositions of both
chars are determined using elemental and proximate analyses. Furthermore, the conversion
of both chars are typically defined using two consecutive processes: devolatilisation and
heterogeneous gasification (for example, see [72]).
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Devolatilisation reflects the decomposition of the solid phase into volatiles (vol), fixed
combustible substances (comb) and fixed residual substances (ash) according to

solid −→ vol + comb + ash , (2.179)

while heterogeneous gasification describes the chemical reactions of the fixed combustible
substances with the major gas species (i. e. carbon monoxide, carbon dioxide, hydro-
gen, water vapour and oxygen). In previous CFD studies on entrained flow gasification,
devolatilisation and heterogeneous gasification kinetics have usually been adopted from
literature (for example, see [214]), whereas customised kinetics were seldom applied in spite
of the fact that devolatilisation and heterogeneous gasification kinetics should be developed
for the specific gasifier conditions. Exemplary exceptions are the studies of Watanabe and
Otaka [331], Vascellari et al. [322, 323, 324], Halama and Spliethoff [117] and Steibel et
al. [299]. Watanabe and Otaka [331] used the kinetics of Kajitani et al. [146] developed
for high-temperature and high-pressure conditions. Vascellari et al. [322, 323, 324] used
detailed char devolatilisation and gasification models and laboratory-scale experiments
to calibrate devolatilisation and heterogeneous gasification rates and showed that the
agreement between numerical and experimental results was good for lower-rank coals and
sufficient for higher-rank coals. Halama and Spliethoff [117] and Steibel et al. [299] also
used models for char devolatilisation and gasification based on laboratory-scale experiments
and accounting for the effect of thermal annealing.
In this work, devolatilisation and heterogeneous gasification kinetics were adopted from
HVIGasTech works and were combined with assumptions and models for the chemical and
physical properties and the morphology changes during both devolatilisation and heteroge-
neous gasification. The chemical and physical properties are presented in Sections 2.7.1
and 2.7.2, the morphology changes are discussed in Section 2.7.3, and the devolatilisation
and heterogeneous gasification kinetics are finally focussed in Sections 2.7.4 and 2.7.5.

2.7.1 Chemical properties

Wood char characterisation and gasification experiments at the laboratory-scale and pilot-
scale plants that were carried out in the frame of HVIGasTech [124] have relied on com-
mercial wood chars produced by Chemviron [49] or Holzkohlenverarbeitung Schütte [126].
Furthermore, several characterisation experiments [155, 156, 157, 275, 300, 303] were
conducted using wood char that was produced in a bench-scale intermediate screw pyrolysis
reactor with integrated hot gas filtration, the STYX reactor of the Institute for Technical
Chemistry [211]. The origins and applications of the wood chars applied at KIT are
summarised in Table I.1 while the elemental and proximate compositions are reported in
Table I.2. The compositions in mass fractions wsolid are based on proximate and ultimate
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analyses of the laboratories of Eurofins (EF) [94] and Engler-Bunte-Institute (EBI). The
elemental compositions given in Table I.2 are commented below.

1. The wood chars HK01, HK02, HK04, HK06 and HK07 differ in the compositions.
The deviations in the elemental contents can be attributed to different natural origins,
different pyrolysis conditions or different sampling and analysis methods. As the
experimental conditions restricted the use of a wood char with constant material
properties, the deviations have to be accepted from the modelling point of view.

2. The wood chars HK06 and HK07 differ in carbon, hydrogen and oxygen contents in
spite of the fact that the batches originated from the same charge. The deviations
in the elemental contents thus demonstrate the challenges in the use of a wood char
with constant material properties.

3. The wood chars HK01, HK04, HK06 and HK07 have a significantly lower volatiles
content than the wood char HK02. Since this indicates different physical and chemical
properties, available physical property data and devolatilisation and heterogeneous
gasification kinetics for the fir char HK02 [156, 275, 303] could not be appropriate
for the beech wood chars HK01, HK04, HK06 and HK07.

4. The wood chars HK02-1600, HK06-1400-200 and HK06-1600-200 have high carbon
and low hydrogen and oxygen contents since they were produced from the (primary)
wood chars HK02 and HK06, respectively, in the drop-tube reactor at Engler-
Bunte-Institute, Fuel Technology. These secondary wood chars should represent
intermediate chars in entrained flow gasification processes.

2.7.1.1 Simplified elemental and proximate compositions

Simplified elemental and proximate compositions have been defined for the CFD simulations
using the original analyses of Eurofins (EF simple) [94] and Engler-Bunte-Institute (EBI
simple) under the assumption that the simplified wood chars do not contain sulphur (S),
chlorine (Cl) and moisture (H2O). The mass fraction of moisture wH2O,solid,0, the mass frac-
tion of sulphur wS,solid,0 and the mass fraction of chlorine wCl,solid,0 were added to the mass
fractions of (atomic) hydrogen wH,solid,0, (atomic) oxygen wO,solid,0 and nitrogen wN,solid,0

using the equations

wH,solid,0 := wH,solid,0 + 2 · MH

MH2O
wH2O,solid,0 , (2.180)

wO,solid,0 := wO,solid,0 + MO

MH2O
wH2O,solid,0 , (2.181)

wN,solid,0 := wN,solid,0 + wS,solid,0 + wCl,solid,0 , (2.182)
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where MH, MH2O and MO are the molar masses of (atomic) hydrogen, water and (atomic)
oxygen.

2.7.1.2 Equilibrium contents and equilibrium volatiles compositions

Equilibrium calculations were performed to determine the equilibrium mass fraction of
the volatiles wvol,solid,eq, the equilibrium mass fraction of the combustibles wcomb,solid,eq and
the equilibrium composition of the volatiles in mass fractions wvol,eq. The calculations
were carried out with Python [261] and Cantera [106] using the minimisation of the Gibbs
energy at 1 bar and assuming C(gr), CH4, CO, CO2, H2, H2O, O2 and N2 as possible
species. The changes of the equilibrium mass fraction of the volatiles wvol,solid,eq and of
the equilibrium composition of the volatiles in mass fractions wvol,eq with the equilibrium
temperature Teq are shown for several wood chars in Fig. 2.13.
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Figure 2.13: Mass fractions of the volatiles wvol,solid measured at 1173.15K or calculated for 1 bar (left) and
equilibrium volatiles composition in mass fractions wvol,eq (right).

Only minor changes of both the equilibrium mass fraction of the volatiles wvol,solid,eq

and the equilibrium volatiles composition in mass fractions wvol,eq can accordingly be
expected for equilibrium temperatures Teq above 1473.15K. At such temperatures, the
volatiles mainly consist of carbon monoxide, hydrogen and nitrogen, while the composition
shifts to methane, carbon dioxide and water with decreasing equilibrium temperature Teq.
Therefore, the equilibrium temperature Teq of 1473.15K was selected to obtain appropriate
and consistent model estimates for both the mass fraction of the volatiles wvol,solid and
the composition of the volatiles at atmospheric entrained flow gasification conditions with
temperatures typically above 1473.15K (see Section 2.7.4.5). The equilibrium mass fraction
of the volatiles wvol,solid,eq and the equilibrium mass fraction of the combustibles wcomb,solid,eq
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are given in Table I.2, alongside the mass fraction of the volatiles wvol,solid according to
DIN 51720:2001 [75] and the mass fraction of the combustibles wcomb,solid according to
DIN 51734:2008 [76]. Significant deviations can be found between the mass fraction of
the volatiles wvol,solid and the equilibrium mass fraction of the volatiles wvol,solid,eq, as some
volatiles are not released during the analyses due to a lower temperature of 1173.15K and
too short residence times.

2.7.1.3 Compositions during devolatilisation and heterogeneous gasification

An averaged composition of the volatiles which obeys the elemental balances enables to
describe the solid composition during devolatilisation and heterogeneous gasification. The
solid composition during devolatilisation in mass fractions wsolid = (wi,solid) is given by

wi,solid =



1− wvol,solid − wash,solid , if i = comb
wvol,solid,0 (1−Xdev,part)∑

j 6=vol,combwj,solid,0 − wj,volwvol,solid,0Xdev,part
, if i = vol

wi,solid,0 − wi,volwvol,solid,0Xdev,part∑
j 6=vol,combwj,solid,0 − wj,volwvol,solid,0Xdev,part

, else

, (2.183)

where wi,vol and wj,vol are the volatiles mass fractions of element i and j, respectively,
wi,solid,0, wj,solid,0 and wvol,solid,0 are the initial mass fractions of component i, component j
and the volatiles, respectively, in the solid phase and Xdev,part is the particle devolatilisation
conversion. The elemental volatiles composition in mass fractions wvol = (wi,vol) is defined
by

wC,vol = MC

(
wCH4,vol

MCH4

+ wCO,vol

MCO
+
wCO2,vol

MCO2

)
, (2.184)

wH,vol = MH

(
4 ·

wCH4,vol

MCH4

+ 2 ·
wH2,vol

MH2

+ 2 ·
wH2O,vol

MH2O
+ wHCl,vol

MHCl

+ 2 ·
wH2S,vol

MH2S
+ 3 ·

wNH3,vol

MNH3

)
,

(2.185)

wO,vol = MO

(
wCO,vol

MCO
+ 2 ·

wCO2,vol

MCO2

+
wH2O,vol

MH2O

)
, (2.186)

wN,vol = MN

(
2 ·

wN2,vol

MN2

+
wNH3,vol

MNH3

)
, (2.187)

wS,vol = MS
wH2S,vol

MH2S
, (2.188)

wCl,vol = MCl
wHCl,vol

MHCl
, (2.189)

where MC, MCH4
, MCO, MCO2

, MH, MH2
, MH2O, MHCl, MH2S, MNH3

, MO, MN, MN2
, MS

and MCl are molar masses. After complete devolatilisation, the solid composition in mass
fractions wsolid,dev = (wi,solid,dev) is given by
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wi,solid,dev =



1− wash,solid,0

1− wvol,solid,0
, if i = C

wash,solid,0

1− wvol,solid,0
, if i = ash

0 , else

. (2.190)

During the heterogeneous gasification, the solid composition in mass fractions wsolid =
(wi,solid) changes again according to

wi,solid =



wC,solid,dev (1−Xhet,part)
(1−Xhet,part)

, if i = C
wash,solid,dev

(1−Xhet,part)
, if i = ash

0 , else

, (2.191)

where Xhet,part is the particle gasification conversion. The particle devolatilisaton conver-
sion Xdev,part and the particle gasification conversion Xhet,part are defined by

Xdev,part = mpart,min,vap −mpart

mpart,min,vap −mpart,min,dev
, (2.192)

Xhet,part = mpart,min,dev −mpart

mpart,min,dev −mpart,min,het
. (2.193)

In addition, the carbon conversions XC,fuel,gas, XC,solid,gas and XC,part are used in this thesis
following preceding studies [98, 99, 100]. The carbon conversions XC,fuel,gas and XC,solid,gas

are based on the gas composition and are given by [98, 99, 100]

XC,fuel,gas = 1− ṁC,gas

ṁC,fuel
, (2.194)

XC,solid,gas = 1− 1−XC,fuel,gas

ṁC,solid,fuel/ṁC,fuel
, (2.195)

where ṁC,gas is the carbon mass flow rate in the gas, ṁC,fuel is the carbon mass flow
rate in the fuel and ṁC,solid,fuel is the carbon mass flow rate in the solid. The carbon
conversion XC,part is based on the solid composition and is defined by [99, 100]

XC,part = 1− mC,part

mC,part,min,vap
, (2.196)

where mC,part is the carbon mass in the particle and mC,part,min,vap is the remaining carbon
mass in the particle after vaporisation.

2.7.2 Physical properties

Physical solid property models are used to describe the (true) solid density ρsolid, the
effective solid density ρsolid,eff (see Sections 2.7.3.10, 2.7.3.11 and 2.7.3.12), the (true) solid

76



2.7 Wood char conversion

thermal conductivity λsolid, the effective solid thermal conductivity λsolid,eff, the specific
solid heat capacity Ĉp,solid and the solid emissivity εsolid (see Section 2.5.3) during wood
char conversion. Models for the effective solid density ρsolid,eff, the specific solid heat
capacity Ĉp,solid and the solid emissivity εsolid are required to describe the heat and mass
transfer in simplified particle models (see Section 2.2.5.3) while correlations for the true
solid density ρsolid, the true solid thermal conductivity λsolid and the effective solid thermal
conductivity λsolid,eff are useful to estimate the effective solid porosity εsolid,eff and the
influence of temperature gradients, respectively. However, such relationships have not been
developed yet for wood chars since the physical properties of wood char (i) strongly depend
on the natural origin and the pyrolysis and conversion conditions and (ii) can hardly
be accessed at intermediated states. Fortunately, several experimental and modelling
studies [4, 23, 43, 56, 69, 119, 131, 152, 169, 172, 182, 197, 198, 202, 203, 313] already
focussed on the physical properties of graphite, coal and coke. Specifically, Kirov [152] and
Merrick et al. [202] suggested models for the heat capacity (see Section F.7.2). The model
of Kirov [152] describes the heat capacity only as function of temperature, while the model
of Merrick et al. [202] relies on both elemental composition and temperature. Consequently,
previous numerical studies with focus on the conversion of wood or wood char used existing
approaches. For example, Ragland et al. [247] and Fradet [102] applied the heat capacity
correlations of graphite and of Merrick et al. [202], respectively. Furthermore, constant
values were used. For example, DiBlasi [71] applied a specific heat capacity of 1100 J/(kg K)
and a thermal conductivity of 0.1 W/(m K).

Eventually, some physical property data was measured for biogenic fuels. Most of the data
is for raw biomasses at ambient conditions (see [85]), while the studies of Gupta et al. [112],
Dupont et al. [85], Brewer et al. [36], Dubil [80] and Arnold et al. [20] investigated the
physical properties of biomass chars at moderate temperatures.

2.7.2.1 Experiments of Gupta et al.

Gupta et al. [112] measured the thermal conductivity of softwood char between 310K
and 713K and the specific heat capacity of softwood char between 313K and 713K. While
the specific heat capacity of softwood char increased from 768 J/(kgK) to 1506 J/(kgK),
the thermal conductivity of softwood char only slightly increased and can approximately
be described by a value of 0.1W/(mK) [112]. In addition, Gupta et al. [112] measured
thermal conductivities and specific heat capacities of both softwood and softwood bark.
The thermal conductivities and specific heat capacities of softwood and softwood bark
were up to twice as large compared to the respective properties of softwood char [112].
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2.7.2.2 Experiments of Dupont et al.

Dupont et al. [85] measured the specific heat capacities of several biomasses between 313K
and 353K including woods and crops and two beech wood chars, produced at pyrolysis
temperatures of 773K and 1073K. The biomasses showed similar, approximately lin-
ear relationships between temperature and specific heat capacity while the values were
between 1300 J/(kgK) and 1850 J/(kgK). In contrast, the specific heat capacities of
the beech wood chars were above 1127 J/(kgK) and less than those of beech wood [85].
Furthermore, the measured specific heat capacities of the wood chars were interfered with
exothermic phenomena at higher temperatures such as atomic recombination [85].

2.7.2.3 Experiments of Brewer et al.

Brewer et al. [36] measured true solid densities of grass and mesquite wood chars obtained
from pyrolysis at several temperatures. The true density was increasing with increasing
pyrolysis temperature from 1300 kg/m3 to 1700 kg/m3 for both grass chars and mesquite
wood chars [36].

2.7.2.4 Experiments of Dubil

Dubil [80] measured solid densities ρsolid of devolatised and gasified wood chars using
helium pycnometry (Micromeritics AccuPyc 1330). The measured solid densities ρsolid are
reproduced in Table 2.9.

Table 2.9: Solid densities of wood char HK02-1600 based on measurements [80] and predictions using the
model of Merrick et al. [203], the model of IGT for coals [131] and the model of IGT for coal
chars [131].

Material
ρsolid

m3/kg
Exp. Merrick IGT | coal IGT | char

HK02-1600 (XC,part = 0 %) 2187.8 2297.3 2284.7 2288.7
HK02-1600 (XC,part = 9.1 %) 2288.5 2298.7 2285.7 2290.1
HK02-1600 (XC,part = 21.2 %) 2321.8 2301.0 2287.4 2292.5
HK02-1600 (XC,part = 31.9 %) 2315.1 2303.8 2289.4 2295.2
HK02-1600 (XC,part = 40.7 %) 2343.8 2306.8 2291.5 2298.2
HK02-1600 (XC,part = 56.0 %) 2347.6 2314.7 2297.3 2306.2
HK02-1600 (XC,part = 68.2 %) 2298.6 2326.1 2305.5 2317.7
HK02-1600 (XC,part = 78.0 %) 2203.1 2343.6 2318.1 2335.4
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2.7.2.5 Experiments of Arnold et al.

Arnold et al. [20] characterised several bio-oil chars, that were obtained in a tube oven
at 873.15K and 1173.15K for 30min and 60min, and measured thermal conductiv-
ities between 0.238 W/(m K) and 0.285 W/(m K) and volumetric heat capacities be-
tween 2.5 J/(m3K) and 3.24 J/(m3K).

2.7.2.6 Conclusions

Valuable data was obtained in the studies of Gupta et al. [112], Dupont et al. [85], Brewer
et al. [36], Dubil [80] and Arnold et al. [20] while further data is not available to the
best knowledge of the author. The conclusions based on the scarce data (see [85]) are
summarised below.

1. The measured solid densities ρsolid are compared with the solid densities calculated
using the model of Merrick et al. [203], the model of IGT for coals [131] and the
model of IGT for coal chars [131] (see Section F.7) in Table 2.9. Except for the
particle carbon conversions XC,part of 0% and 78%, the predictions are in very good
agreement with the measurement results; the relative errors are smaller than 2.5%.
Thus, all three correlations originally developed using densities of coals, coking coals
or coal chars can be accepted for devolatised and gasified wood chars.

2. The measured specific solid heat capacities Ĉp,solid reported by Gupta et al. [112]
are in a basic agreement with the measurement data of Dupont et al. [85]. However,
future studies should provide additional measurement data and should focus on the
development of models reflecting the deviating data.

In view of the lack of appropriate data and customised models for wood chars, this
work used the models of Merrick et al. [202, 203] for the true solid density ρsolid and
the specific solid heat capacity Ĉp,solid (see Section F.7), while the effective solid thermal
conductivity λsolid,eff was approximated with 0.1-0.3W/(mK).

2.7.3 Morphology

Devolatilisation and heterogeneous gasification are not only affected by changes of chemical
and physical properties but also by changes of particle morphology, i. e. internal particle
surface area, particle pore diameter distribution, particle shape distribution and particle
size distribution.
In entrained flow gasification processes, the first minor changes of the particle morphologies
occur during the fuel preparation due to collision and abrasion, while significant changes
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are likely during the heat-up and the release of secondary volatiles. Since mechanical
and thermal stresses are induced, particle break-ups according to different fragmentation
modes (exfoliation, fragmentation at the particle centre, fragmentation at an internal
radial position, exfoliation and fragmentation) are generally likely following Senneca et
al. [284]. At least several new particles with different particles sizes and shapes emerge from
each particle. The release of the volatiles also increases the internal particle surface area
and changes the particle pore size distribution of each particle. In addition, the particle
morphology can be affected by shrinking, swelling and mineral matter transformation
such as fusion. After devolatilisation, heterogeneous gasification can further increase the
internal particle surface area and accordingly change the particle pore size distribution of
each particle in the initial stages. However, this can reverse in the final stages. Due to
hollow solid matrices with reduced stabilities, particles can collapse which obviously affects
the particle morphology. Furthermore, the particle morphology properties can change due
to abrasion induced by particle and wall collisions.
Although the qualitative changes of the particle morphology are known, the mathematical
description of the changes is challenged by variable fuel properties and operating conditions.
In order to give an insight into the changes, numerous experimental and modelling
studies [25, 53, 57, 58, 60, 62, 82, 83, 123, 147, 158, 246, 267, 268, 269, 272, 281, 282,
283, 284, 285, 286, 287, 289, 297, 298, 304, 308, 337] have contributed to fragmentation
only. Several coal/ash fragmentation models [25, 53, 82, 83, 151, 158, 208, 284, 285,
286, 287, 298, 308] have been proposed, mainly for combustion conditions and using the
percolation theory or using the population balance method. Recently, Syred et al. [308] and
Kreutzkam et al. [158] showed feasible fragmentation implementations for ANSYS Fluent
and large-scale simulations. Furthermore, Simone et al. [291] and Costa et al. [57, 58]
investigated experimentally the fragmentation of biomass. Simone et al. [291] performed
drop-tube reactor devolatilisation experiments with cacao shells at 873.15K and 1073.15K
while Costa et al. [57, 58] carried out drop-tube reactor combustion experiments with olive
stones, pine shells and wheat straw between 1173.15K and 1373.15K. The results showed
that fragmentation of biomass particles is likely to occur. However, some results of Costa
et al. [57, 58] also indicated no (significant) fragmentation as raw biomass particles can be
more affected by shrinking during pyrolysis or devolatilisation (see [40, 44, 51, 70, 160,
174, 237]).

Previous studies clearly show the range of possible changes of particle morphology and
indicate that detailed experimental and theoretical investigations of the particle morphology
are required for the slurry entrained flow gasification with wood char. However, such
investigations were beyond the objectives of this work. Only first experimental results
obtained in the frame of HVIGasTech [124] were used to draw conclusions concerning
the changes of particle morphology during devolatilisation and heterogeneous gasification.
Five analyses or measurements were accounted for:
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1. Particle size distribution analyses of wood char HK06 and wood char HK06-1400-200
from the DTR experiments of Schneider et al. [68, 276, 279].

2. Scanning electron microscope analyses from wood char particles used and collected
in the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 of
Fleck et al. [97, 99, 100].

3. Mineral matter analyses from wood char particles collected in the REGA experiment
TUC5 GHKS30 V1284 of Fleck et al. [99, 100].

4. Particle temperature and particle diameter measurements of Kreitzberg et al. [157]
using 3CCD camera images in the course of heterogeneous gasification experiments
with single particles of wood char HK02.

5. Particle micropore surface area measurements of Müller et al. [213], Dubil [80],
Stösser [303] and Schneider et al. [276] with focus on several wood chars.

The analyses, measurements or experiments are described in Sections 2.7.3.1, 2.7.3.2,
2.7.3.3 and 2.7.3.4 while conclusions concerning fragmentation, particle shape, particle
shrinking and particle pore structures are drawn in Sections 2.7.3.5, 2.7.3.6, 2.7.3.7 and
2.7.3.8. Sections 2.7.3.9, 2.7.3.10, 2.7.3.11 and 2.7.3.12 finally describe the model equations
that were used in this work to describe the particle pore diameter, the initial effective
particle density and the particle diameter.

2.7.3.1 DTR experiments of Schneider et al.

In the DTR experiments of Schneider et al. [68, 276, 279], sieved samples of wood
char HK06 were devolatised at several operating temperatures and residence times. Most
of the devolatised particles were collected using a cyclone separator while some particles
could only be trapped in the subsequent candle filter (see Section A.4). Particle size
distributions were determined for a sieved sample of wood char HK06 and for the collected
sample of wood char HK06-1400-200 with laser diffraction (Sympatec HELOS H0309) at
the Institute of Mechanical Process Engineering and Mechanics of Karlsruhe Institute of
Technology [68]. The cumulative distribution functions Q3 are shown in Figure 2.14 (left)
and demonstrate a shift of the particle size distribution to smaller particles.

2.7.3.2 REGA experiments of Fleck et al.

In the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 of Fleck
et al. [97, 99, 100], the wood chars HK01 and HK07 were gasified in suspensions with
ethylene glycol. The particle size distributions of the original wood chars were determined
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with laser-diffraction (Fritsch Analysette 22 NanoTec plus) at Fritsch [103] or with laser
diffraction (Sympatec HELOS H0309) at the Institute of Mechanical Process Engineering
and Mechanics of Karlsruhe Institute of Technology [97, 99, 100]. The cumulative dis-
tribution functions Q3 are shown in Figure 2.14 (left) demonstrating the strong reduced
particle sizes of wood char HK01 due to grinding.
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Figure 2.14: Cumulative particle size distributions Q3 of the wood chars HK01, HK06, HK06-1400-200
and HK07 based on laser diffraction measurements (left), interpolated cumulative particle size
distributions Q3 of the wood chars HK06 and HK06-1400-200 (right) and calculated cumulative
particle size distributions Q3 based on simplified break-up approaches (right). The primary wood
chars HK01 and HK07 were applied in the REGA experiments while the primary wood char HK06
was used in the DTR experiments and the secondary wood char HK06-1400-200 was obtained in
the DTR experiments.

Table 2.10: Carbon conversions XC in the REGA experiment TUC5 GHKS30 V1284 [99, 100]. The carbon
conversions XC,part were determined using the Ca tracer method and the Mg tracer method [99,
100] while the carbon conversions XC,solid,gas were calculated using the balancing method [98].

Sample
XC,part / %

XC,solid,gas / %
Ca tracer method Mg tracer method

Particles sucked at 680mm 77.2 71.0 79.7
Particles sucked at exit 89.0 87.4 85.4

Furthermore, in both REGA experiments, solid particles were collected at the exit of the
reactor and were extracted from the reactor using a ceramic suction probe and using a
high-separation, high-temperature candle filter [99]. The non-isokinetic particle suctions
were carried out for 60-90 minutes in the REGA experiment TUC5 GHKS10 V1071 and for
30-60 minutes in the REGA experiment TUC5 GHKS30 V1284 [99]. The long suction times
and the non-isokinetic conditions were essential in order to collect at least enough sample
material for scanning electron microscope (SEM) and mineral matter analyses [99]. The
images of the SEM analyses of the original wood char samples and of the collected samples
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are reproduced from Fleck et al. [97, 100] in Fig. 2.15 and indicate that particles partially
retain their size and their non-spherical shape during devolatilisation and heterogeneous
gasification [97, 100]. The mineral matter analyses were performed to estimate the carbon
conversions XC,part using the Ca tracer method and the Mg tracer method [99, 100].

Figure 2.15: SEM images of particles of wood char HK01 (top left), of particles collected in the REGA
experiment TUC5 GHKS10 V1071 at 300mm (centre left) and at the outlet (bottom
left), of particles of wood char HK07 (top right) and of particles collected in the REGA
experiment TUC5 GHKS30 V1284 at 680mm (centre right) and at the outlet (bottom right) [97,
99, 100].

However, since the sample material from the REGA experiment TUC5 GHKS10 V1071
was not sufficiently large, this could only be done for the collected samples of the REGA
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experiment TUC5 GHKS30 V1284 [99, 100]. For the sample collected at 680mm and for
the sample obtained at the outlet [99, 100], the carbon conversions XC,part based on both
tracer methods are given in Table 2.10 and are in good agreement with each other. The
experimental carbon conversions XC,part of the sample collected at the outlet are also in
good agreement with the balanced carbon conversions XC,solid,gas [99, 100].

2.7.3.3 Experiments of Kreitzberg et al.

In the experiments of Kreitzberg et al. [157], single particles of wood char HK02 with
initial equivalent particle diameters of 1061µm, 1622 µm and 2135 µm were converted in
an optically accessible reaction chamber with a McKenna type flat flame burner. The
chamber was applied to establish combustion or gasification conditions at high heating
rates. Images recorded with a 3CCD camera were used to determine a particle surface
temperature and a normalised equivalent particle diameter

d̃part = dpart − dpart,het,f
dpart,het,0 − dpart,het,f

(2.197)

as function of a normalised time

t̃ = t− thet,f
thet,0 − thet,f

, (2.198)

where dpart,het,0 is the initial particle diameter before gasification, dpart,het,f is the final
particle diameter after gasification, tpart,het,0 is the initial gasification time and tpart,het,f
is the final gasification time. The initial and the final gasification times were defined
using visual observations, i. e. using the end of particle swelling (and thus devolatilisation)
and the end of particle diameter changes (and thus conversion). Fragmentation was not
observed in spite of the fact that the experiments were carried out with relatively large
particles. The experiments also showed (i) that the particle surface temperature was
approximately constant during the conversion, except for the final stages, and (ii) that
the particle diameter slowly decreases until a normalised conversion time of 70-90%. The
experimental results for the normalised particle diameter are reproduced in Figure 2.16.

2.7.3.4 Experiments of Müller et al., Dubil, Stösser and Schneider et al.

In the experiments of Müller et al. [213], Dubil [80], Stösser [303] and Schneider et al. [276],
specific particle pore surface areas Âpore,part were determined in a physisorption analyser
(Micromeritics ASAP 2020) either using nitrogen adsorption at 77K and the Brunauer-
Emmett-Teller (BET) method [38] following DIN ISO 9722:2014 [77] or using carbon
dioxide adsorption at 273.15K and the Dubinin-Radushkevich (DR) method [81]. Before
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each analysis, the samples were firstly degassed over a longer period (12-24 h) at high
vacuum and moderate temperatures (378.15-453.15K) and were subsequently flushed with
nitrogen [80, 276, 303]. The specific particle pore surface area measurement results are
summarised in Table I.4. The results indicate that the specific surface area increases
(i) during devolatilisation until fusion of mineral matter compounds and (ii) during hetero-
geneous gasification until a specific carbon conversion (certainly above 50%). Specifically,
Schneider et al. [276] observed that the surface area of wood char HK06 increased with
increasing pyrolysis temperature (from 1273.15K to 1673.15K) and significantly decreased
at a pyrolysis temperature of 1873.15K. The surface area also decreased with increas-
ing residence times [276]. Furthermore, the values reported by Schneider et al. [276]
are in terms of magnitude in good agreement with the values that were determined by
Stösser [303] in connection with the pyrolysis of wood char HK02.
In addition to surface areas, Dubil [80] and Stösser [303] determined particle pore volumes
and particle porosities of both macro pores and micro pores. Macro pore volumes and
macro porosities εsolid,macro were obtained using mercury porosimetry (Micromeritics Au-
toPore III 9420 / AutoPore IV 9420) following DIN 66133:1993 [74], while micro pore
volumes and micro porosities εsolid,micro were determined using carbon dioxide adsorp-
tion at 273.15K up to a relative pressure of 0.35 and using the Dubinin-Radushkevich
method [81]. However, pore volumes and porosities based on both approaches should be
regarded carefully since, for example, macro pore volumes are generally overestimated due
to inter-particle voids [80].

2.7.3.5 Conclusions concerning fragmentation

The results of the REGA experiments of Fleck et al. [97, 99, 100] (see Section 2.7.3.2) and
the experiments of Kreitzberg et al. [157] (see Section 2.7.3.3) indicate that wood char
particles were not subject to fragmentation and approximately retained their sizes during
conversion.
In contrast, the results of the DTR experiments [68] (see Section 2.7.3.1) indicate changes
of the particle size distribution, which can be caused by fragmentation. However, since
the particles passed several pipes after the outlet of the DTR [68], abrasion and similar
effects cannot be ruled out. Therefore, particle break-up calculations were performed to
test possible fragmentation modes (exfoliation, fragmentation at the centre, fragmentation
at an internal radial position and combinations thereof). The calculations were carried
out assuming (i) that the particle samples obtained at the cyclone separator were not
affected by abrasion and (ii) that the particles can be described with equivalent diameters
and with uniform material properties. The calculated cumulative distributions Q3 for
fragmentation at an internal radial position of 0.6 rpart with numerous small particles or
fragmentation at the particle centre are shown in Figure 2.14 (right). Accordingly, both
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fragmentation modes can reflect the results of the DTR experiments, while abrasion or
exfoliation may only lead to modestly changed particle sizes. Therefore, changes of the
particle size distribution in the DTR experiments were most likely caused by internal
fragmentation, while different explanations as abrasion or exfoliation can be discarded
under the assumptions chosen for the calculations.
Eventually, due to the good agreement of the observations of Fleck et al. [97, 99, 100]
with the results of Kreitzberg et al. [157] in spite of the fundamentally different set-ups,
fragmentation of wood char particles was not accounted for in this work. Modifications
are left for future works when particle size distribution measurements of samples collected
in both REGA and DTR experiments provide further information.

2.7.3.6 Conclusions concerning particle shape

The results of the SEM analyses (see Section 2.7.3.2) demonstrate that the wood char
particles have non-spherical shapes, which is in agreement with previous observations (for
example, see [51]) and can affect CFD predictions. Recently, Zhang et al. [348] accounted
for non-spherical shapes in the CFD simulations of the laboratory-scale DTU entrained
flow gasifier in order to investigate the influence of the aspect ratio and of the particle
shape factor on the particle predictions. In their simulations, prolate particles were more
scattered to the heated wall and showed faster heat-up and higher carbon conversion [348].
Such effects are of course unlikely for the REGA experiments due to quite similar wall
and gas temperatures. Possible effects could be rather changes of the particles trajectories
and the particle conversion. However, in view of the uncertainties related to kinetics and
fragmentation, such investigations were not accounted for in this work. Thus, spherical
particles were assumed in this work (see Section 2.2.5.6) following most of the preceding
CFD studies on entrained flow gasification (for example, see [223]), while future works
may focus on the the implementation of particle shape models and the investigation of
possible effects.

2.7.3.7 Conclusions concerning particle shrinking

The results of the experiments of Kreitzberg et al. [157] indicate a significant effect
of shrinking during heterogeneous gasification above a carbon conversion of 70-90%.
Therefore, shrinking was reflected in this work (see Section 2.7.3.12).

2.7.3.8 Conclusions concerning particle pore structures

The internal particle pore structures are significantly affected by devolatilisation, heteroge-
neous gasification, fragmentation, shrinking, abrasion and mineral matter transformation.
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This obviously challenges predictions of particle quantities such as particle surface area
and particle pore size distribution. Thus, common particle pore structure models, such as
isolated pore models [311] and random pore models [28, 29], cannot simply be adopted
but need to be calibrated using measurement data. For coal entrained flow gasification,
calibrated models were developed by the group of Spliethoff [117, 118, 299, 316, 314,
315]. The proposed models relied on uniform cylindrical pores with a mean particle pore
diameter and a mean particle pore length, while reflecting the impact of thermal annealing
and neglecting fragmentation and swelling. However, similar investigations were beyond
the objectives of this work. Therefore, the effective solid density and the particle diameter
were approximated using simplified approaches (see Sections 2.7.3.10 and 2.7.3.12).
Furthermore, as one mean particle pore diameter is required for the heterogeneous gasifica-
tion kinetics (see Section 2.7.5.1), the measured mean particle pore diameters dpore,part,meas

(based on nitrogen adsorption at 77K [303]) and estimated mean particle pore diam-
eters dpore,part,est (see Section 2.7.3.9) were compared with the fitted particle pore di-
ameters dpore,part of Kreitzberg et al. [156], that were derived from measured apparent
reaction rates assuming constant solid porosities εsolid and constant carbon densities ρC

and should be considered as fitted parameters. The data is summarised in Table I.3.
The fitted diameters are accordingly in the range of the measured mean particle pore
diameters dpore,part,meas and estimated mean particle pore diameters dpore,part,est (between
1 nm and 30 nm). Thus, the fitted parameters could be appropriate estimates.
Finally, the results of the particle surface area measurements of Müller et al. [213],
Dubil [80], Stösser [303] and Schneider et al. [276] were reviewed demonstrating that the
measurement results are in agreement with the findings of Di Blasi [72], Fleck et al. [99,
100] and Kreitzberg et al. [157]. Thus, the effect of higher flame temperatures on the
specific surface area and the wood char kinetics should be focussed in future works.

2.7.3.9 Particle pore diameter

The mean particle pore diameter dpore,part,est can be estimated assuming particles with a
uniform distribution of cylindrical pores and can be determined by

dpore,part,est = 4
ρsolid,eff Âpore,part

εsolid,eff = 4
ρsolid Âpore,part

εsolid,eff

1− εsolid,eff
, (2.199)

where Âpore,part is the specific particle pore area, ρsolid,eff is the effective solid density, ρsolid
is the true solid density and εsolid,eff is the effective solid porosity. The specific particle pore
area Âpore,part, the effective solid density ρsolid,eff and the effective solid porosity εsolid,eff are
defined by

Âpore,part = Apore,part

mpart
= 4
ρsolid,eff dpore,part

Vpore,part
Vpart

= 4 εsolid,eff

ρsolid,eff dpore,part
, (2.200)
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ρsolid,eff = (1− εsolid,eff) ρsolid , (2.201)

εsolid,eff = 1− ρsolid,eff

ρsolid
, (2.202)

where Apore,part is the particle pore area and Vpore,part is the particle pore volume. The
particle pore area Apore,part and the particle pore volume Vpore,part are given by

Apore,part = π dpore,part Lpore,part , (2.203)

Vpore,part = π
d2
pore,part

4 Lpore,part , (2.204)

where dpore,part is the mean particle pore diameter and the Lpore,part is the mean particle
pore length. The estimated mean particle pore diameters dpore,part,est are given in Table I.3.

2.7.3.10 Initial effective solid density

The initial effective solid density ρsolid,eff,0 can be determined using the initial true particle
density ρsolid,0 and the initial effective solid porosity εsolid,eff,0. However, firstly, the effective
solid density ρsolid,eff and the effective solid porosity εsolid,eff depend on the natural origin
and the pyrolysis condition. For example, Brewer et al. [36] determined a wide range of
effective solid densities for wood chars (475-600 kg/m3) and for grass chars (200-300 kg/m3).
Secondly, the experiments of Dubil [80] and Stösser [303] only provided the macro solid
porosity εsolid,macro and the micro solid porosity εsolid,micro, which both cannot be used
to approximate the effective solid porosity εsolid,eff. Therefore, the initial effective solid
densities ρsolid,eff,0 were obtained in this work from the mass flow controller measurements
in the REGA experiments. Measured fuel densities ρfuel at inlet were used to determine the
initial effective solid densities ρsolid,eff,0 for the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284. The initial effective solid densities ρsolid,eff were calculated by

ρsolid,eff,0 = ṁsolid|inlet
ṁfuel|inlet
ρfuel|inlet

−
ṁC2H6O2

∣∣∣
inlet

ρC2H6O2

∣∣∣
inlet

, (2.205)

where ṁsolid|inlet = wsolid,fuel|inlet ṁfuel|inlet is the solid mass flow rate at inlet, ṁfuel is
the measured fuel mass flow rate, ρfuel is the measured fuel density, ṁC2H6O2

|inlet =
wC2H6O2,fuel |inlet ṁfuel|inlet is the ethylene glycol mass flow rate at inlet, ρC2H6O2

is the
density of ethylene glycol, wC2H6O2,fuel is the mass fraction of ethylene glycol at inlet
and wsolid,fuel is the mass fraction of wood char at inlet. The initial effective solid den-
sities ρsolid,eff,0 as well as the calculated initial effective solid porosities εsolid,eff,0 and the
calculated initial solid densities ρsolid,0 for the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284 are given in Table 2.11.
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Table 2.11: Initial effective solid densities ρsolid,eff,0, initial effective solid porosities εsolid,eff,0 and initial solid
densities ρsolid,0 based on the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284.

REGA experiment ρsolid,eff,0

kg/m3 εsolid,eff,0
ρsolid,0

kg/m3

TUC5 GHKS10 V1071 1448.5 0.158 1719.3
TUC5 GHKS30 V1284 1460.3 0.132 1682.6

2.7.3.11 Initial particle diameter

The initial particle diameter dsolid,0 is correlated with the initial effective solid den-
sity ρsolid,eff,0 by

dsolid,0 = 3

√
6
π

msolid,0

ρsolid,eff,0
. (2.206)

2.7.3.12 Particle diameter

The particle diameter dpart changes during devolatilisation and heterogeneous gasification.
Four approaches for the particle diameter were focussed in this work.

The first approach assumes a constant particle diameter dpart during devolatilisation and
heterogeneous gasification. The effective solid density ρsolid,eff changes according to

ρsolid,eff = mpart
π
6 d

3
part

. (2.207)

Such an assumption leads to a sharp increase of the effective solid porosity εsolid,eff in the
final stages of the heterogeneous gasification. Thus, a highly porous solid particle is left
behind.

The second approach is based on a constant particle diameter during devolatilisation
and on a constant effective solid density ρsolid,eff during heterogeneous gasification; the
corresponding particle diameter dpart is given by

dpart = 3

√
6
π

msolid

ρsolid,eff
. (2.208)

The third approach and the fourth approach are based on a constant particle diameter
during devolatilisation and on a changing particle diameter during heterogeneous gasifica-
tion, where the relationships for the particle diameter were derived using the experimental
results of Kreitzberg et al. [157] (see Section 2.7.3.3). Firstly, the experimental data was
approximated by
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d̃part =


1−

3∑
i=1

Ci t̃
i , if 0 ≤ t̃ ≤ C9

C6

(
1−

∣∣∣t̃∣∣∣C7
)1/C8

, else
, (2.209)

where C1, . . . , C9 are coefficients, which were determined using the least_squares method
of SciPy [280, 327]. The approximations are shown in Fig. 2.16. Subsequently, since the
fragmentation probability (for coal particles) increases with increasing particle diameter
at constant temperature [284], it was assumed that small wood char particles do not
show fragmentation just as the large wood char particles applied in the experiments of
Kreitzberg et al. [157]. Based on the approximations for the large particles, a relationship
was derived for small particles; the normalised particle diameter of small particles has
been determined by

d̃part = 1−
∣∣∣t̃∣∣∣14

. (2.210)

This relationship is shown in Fig. 2.16. Accordingly, the particle diameter of small particles
is retained in the initial conversion stages and rapidly decreases in the final conversion
stages.
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Figure 2.16: Normalised particle diameters during heterogeneous gasification based on measurements [157],
fitting and extrapolation.

Finally, several attempts were made in order to correlate this relationship with the particle
gasification conversion Xhet,part. Two empirical approaches were eventually developed,
which are referred as the third approach and the fourth approach in this work. In the
third approach, a linear correlation between the particle gasification conversion Xhet,part

and the normalised time t̃ is assumed. The particle diameter dpart is defined by
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dpart = dpart,0
(
(1− Csw)

(
1− |Xhet,part|C

)
+ Csw

)
, (2.211)

where C = 14 is the exponent already used in Eq. (2.210) and Csw = 0.3 is an (estimated)
swelling/shrinking coefficient. In the fourth approach, the exponent C in Eq. (2.211) is
described by

C =

max
(
200 + arctanh (Xhet,part)5.4 , 105

)
, if Xhet,part < 1

105 , else
. (2.212)
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Figure 2.17: Simulated particle diameters dpart during heterogeneous gasification Xhet,part at constant gas
condition (Tgas = 1673.15 K, xCO2,gas = 0.16, xH2O,gas = 0.38, xN2,gas = 0.46) and based on
different approaches.

Assuming heterogeneous gasification kinetics for the Boudouard and the water gas reaction
(see Section 2.7.5) and a constant gas condition, the four approaches are compared in
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Fig. 2.17. Accordingly, the curves for the particle diameter dpart strongly differ. While the
particle diameter dpart remains constant using the first approach, the particle shrinks either
continuously when using the second approach or in short periods of time when applying
the third or the fourth approach. As the short periods of time are typically at particle
gasification conversions Xhet,part above 75%, similar curves were determined for the particle
gasification conversion Xhet,part using the first approach, the third approach and the fourth
approach. In contrast, the second approach for the particle diameter dpart significantly
affects the prediction of the particle gasification conversion Xhet,part. Furthermore, none
of the approaches can reflect the experimental observations of Kreitzberg et al. [157]
for the particle diameter dpart during heterogeneous gasification. This is because of
the experimental approach for the definition of the initial and final gasification times.
Therefore, detailed evaluations of both the third approach and the fourth approach (or
similar approaches) are hardly possible, and only the first approach was applied in the
CFD simulations carried out in this work.

2.7.4 Devolatilisation

Devolatilisation describes the decomposition of the solid char matrix, the transport of
the volatiles through the pores and the secondary reactions of the volatiles inside and
outside the pores (for example, see [188]) and usually occurs during the heat-up of the
solid particles in both solid and slurry entrained flow gasification. Thus, devolatilisation
depends on the fuel properties and the operating conditions and is a strong non-isothermal
process. The heat transfer Biot numbers BiT = hpart rpart/(3λsolid,eff) are typically greater
than 0.1. This is usually accounted for in single-particle simulations [39, 50, 104, 108, 116,
141, 175, 256] while non-uniform temperature distributions are generally not regarded in
CFD simulations of combustion or gasification processes due to computing time reasons.
Uniform temperature distributions are assumed even if this can require corrections of the
actual reaction rates (for example, see [141]).

2.7.4.1 Detailed network models and global models

Detailed network models and global models are typically used to describe devolatilisation.

Detailed network models have been developed for coal pyrolysis (FG-DVC [295], Flash-
chain [225, 226, 227, 228, 229, 230, 235], CPD [107]) or for biomass and torrefied biomass
(bioFlashchain [231, 232, 233, 234], bio-CPD [30], bio-FG DVC [52], FG-BioMass [145]).
These models account for the influence of the solid char matrix and predict both devolatili-
sation kinetics and products using the chemical composition and the conversion conditions
(temperature history and operating pressure).
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Global devolatilisation models are based on pseudo-chemical equations and have been
developed and applied numerous times for single-particle and multiphase simulations of
combustion or gasification processes (for example, see [121, 214]). Various models exist
including the single first-order reaction Arrhenius law model, the multi-reaction Arrhenius
law model, the Kobayashi model [153], the single-reaction distributed activation energy
model [19], the multi-reaction distributed activation energy model [321], the Yamamoto
model [342], the Biagini and Tognotti model [31] and the Richards and Fletcher model (a
modified Kobayashi model) [257]. For example, the reaction rate of a single first-order
reaction Arrhenius law model (SFORALM) RSFORALM is given by

RSFORALM = k0 exp
(
− Ea

RTpart

)
(mpart −mpart,min,dev) , (2.213)

and the reaction rate of a modified Yamamoto model (MYM) RMYM is defined by

RMYM =
3∑
i=1

CiX
i−1
dev,part k0 exp

(
− Ea

RTpart

)
(mpart −mpart,min,dev) , (2.214)

where k0 is the pre-exponential factor, Ea is the molar activation energy and C1, C2 and
C3 are coefficients.
The global models can be calibrated using data from experimental measurements or detailed
network simulations (for example, see [120, 173, 224, 257, 322]). However, uncertainties
in the approximations can be significant if a wide range of temperature or heating rate
conditions needs to be considered. Then, global models with a large number of parameters
such as the multi-reaction distributed activation energy model or the Richards and Fletcher
model are superior to other models (see [257]).

Coal, petroleum coke, biomass and torrefied biomass differ in chemical properties from
pyrolysed wood char. Thus, detailed network models cannot be adopted to derive reliable
devolatilisation kinetics and products for wood chars. Therefore, global devolatilisation
kinetics and products were obtained in this work either from previous works or from
experiments.

2.7.4.2 Previous studies and HVIGasTech kinetics

Previous experimental studies on devolatilisation experiments with biomass [27, 35, 37,
51, 84, 95, 109, 111, 140, 142, 145, 221, 222, 240, 241, 242, 288, 291, 303, 305, 310, 312,
317, 318, 339, 344, 346, 349] applied thermogravimetric analysers, drop-tube reactors, wire
mesh reactors, fluidised bed reactors and entrained flow reactors. However, while most of
these studies analysed raw biomasses, only the studies of Branca and Di Blasi [35] and of
Stösser [303] investigated the devolatilisation of wood char.
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Branca and Di Blasi [35] performed thermogravimetric analyses with beech, chestnut,
Douglas fir, redwood and pine chars in air up to 873K (i. e. at combustion conditions)
and developed multi-reaction Arrhenius law models. Stösser [303] carried out drop-tube
reactor experiments with the fir char HK02, which contains significantly more volatiles
than the beech wood chars HK01, HK06 or HK07 (see Section 2.7.1), and proposed a
single first-order reaction Arrhenius law model.

2.7.4.3 New HVIGasTech kinetics, comparisons and conclusions

The kinetics of Branca and Di Blasi [35] and of Stösser [303] can be adopted with major
uncertainties only [68]. Therefore, in the frame of an experimental and numerical collabora-
tion [68, 276, 279], new devolatilisation experiments with the wood char HK06 were carried
out in the DTR at Engler-Bunte-Insitute, Fuel Technology. Contrary to the preceding
work [303], the DTR experiments were combined with CFD simulations in order to reflect
the strongly changing gas conditions and the initial particle size distribution and to develop
devolatilisation kinetics based on a single first-order reaction Arrhenius law model and
a modified Yamamoto model [68]. While the experimental and numerical methods and
the results are reported in detail elsewhere [68], the parameters and the coefficients of
determination R2 for the single first-order reaction Arrhenius law model and the modified
Yamamoto model are reproduced alongside the parameters for the devolatilisation kinetics
of Stoesser [303] in Table 2.12.

Table 2.12: Parameters for the devolatilisation kinetics of Stösser [303] based on a single first-order reaction
Arrhenius law model (SFORALM) and of Dammann et al. [68] based on a single first-order
reaction Arrhenius law model (SFORALM) or a modified Yamamoto model (MYM), coefficients
of determination R2 and ranges of relative deviations (RD) between balanced and simulated
particle devolatilisation conversions Xdev,part for various DTR experiments [68].

Model k0

1/s
Ea

J/mol C1 C2 C3 R2 RD
%

SFORALM [303] 6400 72000 − − − − +13.5 . . .+ 76.6
SFORALM [68] 266 48232 − − − 0.891 −30.2 . . .+ 10.9
MYM [68] 4511 64724 1.010 −10.623 9.065 0.939 −11.2 . . .+ 10.4

For the DTR experiments [68], the simulated devolatilisation conversions based on the
devolatilisation kinetics of Dammann et al. [68] and Stösser [303] are compared with the
balanced devolatilisation conversions in Fig. 2.18. The ranges of relative deviations are
given in Table 2.12. The particle devolatilisation conversion in the DTR experiments can
be well described using both devolatilisation kinetics of Dammann et al. [68] while the
devolatilisation kinetics of Stösser [303] provide higher particle devolatilisation conver-
sions Xdev,part and are thus characterised by higher reaction rates. This is also evident from
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the comparison in Fig. 2.19. The predicted particle devolatilisation conversions Xdev,part

at a constant heating rate of 104 K/s or at a constant temperature of 1673.15 K demon-
strate that the complete conversion is achieved faster using the devolatilisation kinetics
of Stösser [303] than using the devolatilisation kinetics of Dammann et al. [68]. However,
the rates based on the devolatilisation kinetics of Stösser [303] are not significantly faster
(see the predictions using the devolatilisation kinetics of Dammann et al. [68] with pre-
exponential factors increased by a factor of 10 in Fig. 2.19).
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Figure 2.18: Mean particle devolatilisation conversions Xdev,part simulated for various DTR experiments [68]
using the single first-order reaction Arrhenius law model of Stoesser [303], the single first-order
reaction Arrhenius law model of Dammann et al. [68] and the modified Yamamoto model of
Dammann et al. [68] in comparison with balanced devolatilisation conversions Xdev,bal of various
DTR experiments [68].

Furthermore, at low temperatures and short residence times, the predictions based on the
single first-order reaction Arrhenius law model of Dammann et al. [68] strongly deviate
from the predictions based on the modified Yamamoto model in absence of experimental
data for these conditions [68]. Eventually, the single first-order reaction Arrhenius law
model of Dammann et al. [68] was applied for the CFD simulations in this work.
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Figure 2.19: Simulated particle devolatilisation conversions Xdev,part at a constant heating rate of 104 K/s
(left) and at a constant temperature of 1673.15K (right) based on the devolatilisation kinetics of
Stösser [303] and Dammann et al. [68]. Kinetics were applied with the original or with modified
pre-exponential factors (increased by a factor of 10).

2.7.4.4 Heat and mass transfer

The particle mass transfer rate Rm,part, the particle energy transfer rate RE,part and the
specific enthalpy of transition ∆trsĤ are given by

Rm,part ≡ Rm,part,dev = RSFORALM , (2.215)

RE,part = Rm,part ∆devĤ
−◦ , (2.216)

∆trsĤ = ∆devĤ
−◦ , (2.217)

where ∆devĤ
−◦ is the measured specific standard enthalpy of devolatilisation. In contract

to previous works (for example, see [331]), the energy release during devolatilisation was
not neglected and described complying with the energy balance. The specific standard
enthalpy of devolatilisation ∆devĤ

−◦ is defined by

∆devĤ
−◦ = ∆cĤ

−◦
vol −

1
Mvol

∑
i

xi,vol ∆cH
−◦
i,ref , (2.218)

where ∆cĤ
−◦
vol is the specific standard combustion enthalpy of the volatiles,Mvol is the molar

mass of the volatiles and ∆cH
−◦
i,ref is the molar standard combustion enthalpy of species i

at the reference temperature Tref. Assuming that the combustibles can be described using
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the physical properties of graphite, the specific standard combustion enthalpy of the
volatiles ∆cĤ

−◦
vol is given by

∆cĤ
−◦
vol = 1

wvol,solid

(
∆cĤ

−◦
solid −∆cĤ

−◦
C(gr),refwcomb,solid

)
, (2.219)

where ∆cĤ
−◦
solid is the (experimental) specific standard combustion enthalpy of wood char

and ∆cĤ
−◦
C(gr),ref is the specific standard combustion enthalpy of graphite at the reference

temperature Tref.
Values for the specific standard combustion enthalpy of the wood char ∆cĤ

−◦
solid, the specific

standard combustion enthalpy of the volatiles ∆cĤ
−◦
vol and the specific standard enthalpy

of devolatilisation ∆devĤ
−◦ are given for the wood chars HK01 (EF simple) and HK07 (EF

simple) in Table 2.13. Approximately 20% of the combustion enthalpy of wood char is
released during devolatilisation under the model assumptions chosen in this work.

Table 2.13: Specific standard combustion enthalpies ∆cĤ−◦
solid of wood chars HK01 (EF simple) and HK07

(EF simple) based on heating value analyses [94] and corresponding specific standard combustion
enthalpies of the volatiles ∆cĤ−◦

vol and specific standard enthalpies of devolatilisation ∆devĤ−◦

based on calculations.

Wood char ∆cĤ
−◦
solid

kJ/kg
∆cĤ

−◦
vol

kJ/kg
∆devĤ

−◦

kJ/kg

HK01 (EF simple) −31153 −28730 −6168
HK07 (EF simple) −28400 −34859 −12325

2.7.4.5 Volatiles compositions

The devolatilisation products are oxygenated and nitrogenated hydrocarbons which typ-
ically decompose or react with oxygen or water vapour to methane, carbon monoxide,
carbon dioxide, hydrogen, water vapour and nitrogen in accordance with the elemental bal-
ance. Such assumptions were used, for example, by Kumar and Ghoniem [162], Vascellari
et al. [322] and Halama and Spliethoff [117]. Ma and Zitney [181] also accounted for
benzene, hydrogen sulfide, carbonyl sulfide and hydrogen chloride. However, the methods
to determine the volatiles composition have rather seldom been reported in detail in
previous studies. For example, Watanabe and Otaka [331] and Ku et al. [159] used not
further specified equilibrium calculations. More detailed approaches were suggested, for
example, by Marklund et al. [191, 192, 193] for black liquor decomposition and by Syamlal
and Bissett [307], Nakod [219] and Kumar and Paul [163, 164] for coal decomposition [68].
The compositions of the devolatilisation products were derived in this work using equilib-
rium calculations (see Section 2.7.1) and are given in Table 2.14.
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Table 2.14: Volatiles compositions in mass fractions wvol based on equilibrium calculations at 1473.15K and
based on measurements and reactive plug-flow reactor simulations combined with numerical
optimisation [68].

i wi,vol

Equilibrium calculation results
Estimates [68]

HK01 (EF simple) HK07 (EF simple)

CH4 0.001713 0.001673 0-0.02
CO 0.862164 0.865036 0.75-0.81
CO2 0.000394 0.000400 0-0.06
H2 0.114523 0.112589 0.14-0.15
H2O 0.000736 0.000734 0
N2 0.020470 0.019568 0.02

The equilibrium compositions of the volatiles are characterised by high contents of carbon
monoxide and hydrogen and low contents of methane and carbon dioxide. Table 2.14
also lists estimated ranges for the mass fractions of the devolatilisation products, that
were determined (i) using the dry gas species concentrations measured in the DTR ex-
periments and (ii) using one-dimensional reactive plug-flow reactor simulations with the
GRI mechanism (version 3.0) [294] (see [68]). Accordingly, the equilibrium concentrations
are in a reasonable agreement with the estimated concentrations but may underestimate
the concentrations of methane and carbon dioxide. Thus, an estimated composition may
provide better predictions. However, in view of the methodological uncertainties [68], the
estimates were not applied in this work.

2.7.5 Heterogeneous gasification

Heterogeneous gasification describes the conversion of the solid char matrix with gaseous
reactants. Several sub-processes are involved including (i) the diffusion of the gaseous
reactants from the bulk through the boundary layer and the pores to the surface, (ii) the
adsorption of the gaseous reactants at active sites of the solid char matrix, (iii) the reaction
of the gaseous reactants with the solid matrix, (iv) the desorption of the gaseous products
from the active sites of the solid matrix and (v) the diffusion of the gaseous products
through the pores and boundary layer back into the bulk (see [188]). The reaction rates
are influenced by graphitisation, ash dispersion, morphology, pore diffusion, film diffusion
and the reactants (for example, see [188, 277]). Possible reactants in slurry entrained flow
gasification processes are carbon dioxide, hydrogen, water vapour and oxygen. However,
since reactions with both hydrogen and oxygen are relatively unlikely due to low reaction
rates and flame stoichiometry, respectively, [303], reactions with carbon dioxide and water
vapour only were accounted for in this work. Both reactions can either be described
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using detailed reaction mechanisms [32, 130, 143, 168, 201] or global approaches for the
Boudouard reaction

C + CO2 −−⇀↽−− 2 CO (2.220)

and the water-gas reaction

C + H2O −−⇀↽−− CO + 2 H2 . (2.221)

2.7.5.1 Reaction regimes

Char conversion can be divided into three regimes (see Fig. 2.20): regime I, which is
controlled by adsorption, reaction and desorption; regime II, which is controlled by diffusion
through the pores; regime III, which is controlled by diffusion through the film layer.
Kinetics are usually determined for the intrinsic regime (regime I), while kinetics for the
pore diffusion regime (regime II) and the film diffusion regime (regime III) are investigated
less frequently since the experimental apparatus strongly affects pore and film diffusion;
only elaborative drop-tube reactor experiments are typically appropriate to derive kinetics
for the regimes II and III.
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Figure 2.20: Kinetic regimes for the heterogeneous gasification of porous carbonaceous particles [276, 303].
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2 Model fundamentals

Reaction rates in regime I are usually described either using the power-law model
(PLM)

Ri,PLM,I = k0,i exp
(
−Ea,i

RT

)
p̃ni
i (2.222)

or the Langmuir-Hinshelwood model (LHM)

Ri,LHM,I = k1,i p̃i
1 +Ki p̃i

, (2.223)

where

p̃i =
(
pi,gas,s
bar

)
, (2.224)

Ki = k1,i

k3,i
, (2.225)

k1,i = k0,1,i exp
(
−Ea,1,i

RT

)
, (2.226)

k3,i = k0,3,i exp
(
−Ea,3,i

RT

)
. (2.227)

Here, k0,i, k0,1,i and k0,3,i are the pre-exponential factors of reaction i, Ea,i, Ea,1,i and Ea,3,i

are the molar activation energies of reaction i, ni is the reaction order of reaction i and
pi,gas,s is the partial pressure of species i at the particle surface. Since the diffusion time
scale through the particle boundary layer is much smaller than the reaction time scale, the
pressure of species i at the particle surface pi,gas,s can be approximated with the partial
pressure of species i in the bulk pi,gas = xi,gas pgas.

Reaction rates in regime II are generally determined using the intrinsic reaction rates
and effectiveness factors according to

Ri,j,II = ηi,j Ri,j,I , (2.228)

where j = PLM,LHM and [127]

ηi,j = fi,j
Φi,j

(
1

tanh (3 Φi,j)
− 1

3 Φi,j

)
(2.229)

is the effectiveness factor, Φi,j is the Thiele modulus [311] and fi,j is a correction func-
tion [127], each for reaction i and model j. The latter is given by [127]

fi,j =
1 +

√
1/2

1
2 Φ2

i,j
+ 2 Φ2

i,j

1/2 (1−nobs,i,j)2

, (2.230)
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2.7 Wood char conversion

where [127]

nobs,i,j =


1

1 +Ki p̃i
, if j = LHM

ni , if j = PLM
. (2.231)

The Thiele modulus for reaction i and the power-law model Φi,PLM is defined by [127]

Φi,PLM = dpart
6

√√√√(ni + 1) k1 p̃
ni
i

2Deff

ρC

MC

RTpart
pi,gas,s

, (2.232)

and the Thiele modulus for reaction i and the Langmuir-Hinshelwood model Φi,LHM is
given by [127]

Φi,LHM =



dpart
6

√√√√ k1 p̃i
2Di,eff

ρC

MC

RTpart
pgas

Ki p̃i
1 +Ki p̃i

1√
Ki p̃i − ln (1 +Ki p̃i)

,

if Ki p̃i > 0

dpart
6

√√√√ k1 p̃i
Di,eff

ρC

MC

RTpart
pgas

, else

, (2.233)

where Di,eff is the effective diffusion coefficient for reaction i, ρC is the density of carbon
and MC is the molar mass of carbon.
The effective diffusion coefficient for reaction i is given by

Di,eff = εpart
τpart

(
1

Di,gas,eff
+ 1
Di,K

)−1

, (2.234)

where εpart is the particle porosity, τpart is the particle tortuosity, Di,gas,eff is the effective
gas diffusion coefficient of species i and Di,K is the Knudsen diffusion coefficient of species i.
The latter is determined by

Di,K = dpore,part,i
3

√√√√8RTpart
πMi

, (2.235)

where dpore,part,i is the mean particle pore diameter for reaction i.
The density of carbon ρC is defined by [207]

ρC = wC,solid
1

ρsolid,eff
− wash,solid

ρash

, (2.236)

where wC,solid is the carbon mass fraction and wash,solid is the ash mass fraction, each during
heterogeneous gasification, and ρash is the density of ash.
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2 Model fundamentals

In addition to the intrinsic reaction parameters, the particle porosity εpart, the particle
tortuosity τpart and the mean particle pore diameters dpore,part,CO2

and dpore,part,H2O can be
assumed as model parameters and are typically determined from the observed reaction
rates in combination with assumptions and density or porosity measurements.

Reaction rates in regime III are derived from the reaction rates in regime II using the
partial pressures at the particle surface, i. e. the partial pressure of each species i at the
particle surface pi,gas,s is determined using the mass transfer rate rate due to film diffusion

km,iAs,partMC

(
xi,gas pgas
RTgas

− xi,gas,s pgas
RTpart,s

)
(2.237)

and the mass transfer rate due to intrinsic reaction and pore diffusion. Here, km,i is the
mass transfer coefficient of species i defined by

km,i = Shi,filmDi,gas,film

dpart
, (2.238)

where Shi,film is the Sherwood number for species i at film condition and Di,gas,film is the
gas diffusion coefficient of species i at film condition.

2.7.5.2 Previous studies and HVIGasTech kinetics

Numerous global heterogeneous gasification kinetics have been developed for coal (see [132])
and biomass (see [72]). However, the kinetics could not be adopted in this work since
(i) the kinetics are mainly intrinsic kinetics, whereas kinetics for the pore diffusion regime
at low-partial pressure and high-temperature conditions are required for the conditions
focussed in this work, and (ii) the reaction rates of the intrinsic kinetics already vary
several orders of magnitude due to differences in fuel and char properties and in the
experimental apparatus [277].
In order to incorporate appropriate kinetics for the Boudouard reaction and the water-gas
reaction, experimental studies [155, 156, 275, 277, 303] have been carried out in the frame
of HVIGasTech [124]. The first studies [155, 156, 275, 303] focussed on the fir chars HK02
and HK02-1600 while the most recent study of Schneider et al. [277] investigated the
beech wood chars HK06-1400-200 and HK06-1600-200. The kinetics developed so far are
summarised in Tables I.5-I.7.
Two kinetics sets were developed by Kreitzberg et al. [156] using fluidised bed reactor
(FBR) experiments with the wood char HK02 at regime I and regime II conditions. The
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2.7 Wood char conversion

kinetics were obtained assuming constant values2 for the density of carbon ρC, the particle
pore diameters dpore,part,CO2

and dpore,part,H2O, the particle porosity εpart and the particle
tortuosity τpart; the values are given in Table I.7. Two further kinetics sets were established
by Schneider et al. [277] using pressurised single-particle reactor (pSPR) experiments with
the wood char HK06-1400-200 at high-pressure regime I conditions.
The kinetics sets of Kreitzberg et al. [156] and Schneider et al. [277] rely on the power-law
model or the Langmuir-Hinshelwood model and on the uniform reaction model fURM as
dimensionless surface model. The uniform reaction model fURM is defined by

fURM (X) = (1−X) (2.239)

and was superior to the shrinking core model fSCM [340, 341] or the random pore
model fRPM [28, 29] in the approximation of the experimental reaction rates [156].

2.7.5.3 Heat and mass transfer

The particle mass transfer rate Rm,part, the particle energy transfer rate RE,part and the
specific enthalpy of transition ∆trsĤ during heterogeneous gasification are given for the
kinetics of Kreitzberg et al. [156] and Schneider et al. [277] by

Rm,part ≡ Rm,part,het =
∑

i=CO2,H2O
Rm,part,i , (2.240)

RE,part = 0 , (2.241)

∆trsĤ = 1
Rm,part

∑
i=CO2,H2O

Rm,part,i ∆rĤ
−◦
i,ref , (2.242)

where

Rm,part,i = Ri,j,II fURM (Xhet,part) (mpart,min,dev −mpart,het,min,het) (2.243)

is the particle mass transfer rate for reaction i and model j and ∆rĤ
−◦
i,ref is the specific

standard enthalpy of reaction of reaction i at the reference temperature Tref. The latter is
defined for the Boudouard reaction by

∆rĤ
−◦
CO2,ref = 1

MC

(
2H−◦CO,ref −H

−◦
CO2,ref

)
(2.244)

and for the water-gas reaction by

∆rĤ
−◦
H2O,ref = 1

MC

(
H
−◦
CO,ref −H

−◦
H2O,ref

)
, (2.245)

2The values were adopted in this work for all calculations except for the comparisons in Figs. 2.21
and 2.22.
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where H−◦CO,ref is the molar standard enthalpy of carbon monoxide, H−◦CO2,ref is the molar
standard enthalpy of carbon dioxide and H

−◦
H2O,ref is the molar standard enthalpy of

water vapour, each at the reference temperature Tref. Thus, carbon used in Eqs. (2.220)
and (2.221) is assumed to be graphite corresponding to the assumptions in Sections 2.7.1
and 2.7.4.

2.7.5.4 Comparisons and conclusions

The kinetics of Kreitzberg et al. [156] have two deficiencies. Firstly, the reaction rates
are affected by response control at regime II conditions (for example, see [300]) and do
not actually reflect regime II conditions. Secondly, the kinetics were developed for the
fir char HK02 which is characterised by different graphitisation, ash dispersion or pore
structures in comparison with the beech wood chars HK01 and HK07. In contrast, the
kinetics of Schneider et al. [277] were developed for beech wood char. However, to apply the
kinetics at low-partial-pressure and high-temperature conditions, assumptions are needed
for the particle porosity εpart, the particle tortuosity τpart and the mean particle pore
diameters dpore,part,CO2

and dpore,part,H2O. Therefore, previous HVIGasTech studies have
not established yet appropriate heterogeneous gasification kinetics for beech wood char at
atmospheric entrained flow gasification conditions. However, in absence of appropriate
alternatives, the kinetics sets of Kreitzberg et al. [156] and Schneider et al. [277] were
examined in this work.
The particle gasification conversions Xhet,part and the effectiveness factors η based on
the kinetics are compared (i) for constant gas conditions and for various particle pore
diameters dpore,part in Fig. 2.21 and (ii) for constant gas conditions and for various initial
particle diameters dpart,0 in Fig. 2.22. Accordingly, faster particle gasification conver-
sion Xhet,part can be expected for smaller initial particle diameters dpart,0 and larger particle
pore diameters dpore,part. The progress of the particle gasification conversion Xhet,part thus
shifts as expected but strongly differs for each kinetics set. The deviations are due to
both effectiveness factors and intrinsic reaction rates. Furthermore, Figs. 2.21 and 2.22
show that the reaction rate of the water-gas reaction is typically higher than the rate
of the Boudouard reaction and that the kinetics of Kreitzberg et al. [156] based on the
Langmuir-Hinshelwood model typically provide the highest reaction rates.

Eventually, the kinetics of Kreitzberg et al. [156] based on the Langmuir-Hinshelwood
model were chosen for the CFD simulations in this work (i) since these kinetics were
calibrated to a certain extent at pore diffusion conditions (see Section 2.7.3.8) and (ii) since
Langmuir-Hinshelwood models are slightly superior to power-law models concerning ex-
trapolation. However, further experimental research is needed to validate the existing
wood char kinetics at high-temperature conditions (see Chapter 5).
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Figure 2.21: Simulated particle gasification conversions Xhet,part and effectiveness factors η at constant gas
condition and various constant particle pore diameters dpore,part based on the heterogeneous
gasification kinetics of Kreitzberg et al. [156] and Schneider et al. [277]: only the Boudouard
reaction (top), only the water-gas reaction (centre) and Boudouard reaction and water-gas
reaction (bottom).
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Figure 2.22: Simulated particle gasification conversions Xhet,part and effectiveness factors η at constant gas
condition and various constant particle diameters dpart based on the heterogeneous gasification
kinetics of Kreitzberg et al. [156] and Schneider et al. [277]: only the Boudouard reaction (top),
only the water-gas reaction (centre) and Boudouard reaction and water-gas reaction (bottom).
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This chapter summarises the simulation and evaluation methods applied for the CFD sim-
ulations of the REGA experiments. The set-ups of the CFD simulations including the
sub-models and solver settings are presented in Section 3.1. The experimental and numer-
ical data used for comparison with the CFD predictions are introduced in Sections 3.2
and 3.3. The approaches to determine recirculation strengths, recirculation lengths, relative
deviations, absolute relative deviations, cumulative mass flow rates and solid conversions
are described in Sections 3.4, 3.5, 3.6 and 3.7.

3.1 Settings

The overall models for the atmospheric entrained flow gasification of ethylene glycol and
of mixtures of ethylene glycol and wood char were compiled using the models presented
in Chapter 2 and implemented using the software ANSYS Fluent [17] and user-defined
functions (DEFINE macros). The main sub-models of the baseline overall models are
summarised in Table 3.1. The reaction mechanism of the baseline overall models was thus
either the DLR2017/RM mechanism or the HVI1 mechanism. The DLR2017/RM mecha-
nism was applied to predict reasonable flame temperatures, whereas the HVI1 mechanism
was used to enable fast computing times and fair comparisons with previous numerical
predictions [63, 64, 187] that were obtained using the HVI1 mechanism only. In this sense,
previous assumptions for the wall boundary conditions including wall temperature Twall,
wall thermal conductivity λwall and wall emissivity εwall have also not been modified (see
Sections 2.2.3.3 and 2.5.4); minor changes are left for future works.
The DEFINE macros used in this work are given in Table 3.2. Compared to preced-
ing works [63, 64, 187] (see Section 1.5), the implementations have been improved
and extended. For example, the macro DEFINE_WSGGM_ABS_COEFF has been
proven erroneous for non-grey gases and was therefore replaced by the macro DE-
FINE_GRAY_BAND_ABS_COEFF.
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3.1 Settings

Table 3.2: User-defined functions used for the CFD simulations.

Property Macro

Miscellaneous DEFINE_ADJUST
Method to supply infiltrated air and purge
nitrogen

DEFINE_ON_DEMAND and DE-
FINE_SOURCE

Particle vapour pressure DEFINE_DPM_PROPERTY
Particle density DEFINE_DPM_PROPERTY
Particle heat capacity and enthalpy DEFINE_DPM_PROPERTY
Particle diffusion coefficient DEFINE_DPM_PROPERTY
Particle emissivity DEFINE_DPM_PROPERTY
Miscellaneous DEFINE_DPM_SCALAR_UPDATE
Miscellaneous DEFINE_DPM_OUTPUT
Particle vaporisation DEFINE_ON_DEMAND and DE-

FINE_DPM_HEAT_MASS
Particle decomposition DEFINE_DPM_HEAT_MASS
Particle time step DEFINE_DPM_TIMESTEP
Miscellaneous DEFINE_DPM_SCALAR_UPDATE
Particle source DEFINE_DPM_SOURCE
Particle devolatilisation DEFINE_DPM_LAW
Particle surface reaction DEFINE_DPM_LAW
Particle surface reaction rates DEFINE_PR_RATE
Scattering phase function DEFINE_SCAT_PHASE_FUNC
Grey-gas absorption coefficient based on
WSGG model and mean beam length
model

DEFINE_WSGGM_ABS_COEFF

Non-grey-gas absorption coefficients based
on WSGG model

DEFINE_GRAY_BAND_ABS_COEFF

Non-grey-gas weight factors based on
WSGG model

DEFINE_EMISSIVITY_WEIGH-
TING_FACTOR

Furthermore, new two-dimensional axis-symmetrical unstructured meshes with approxi-
mately 2 · 105 cells were generated using ANSYS Meshing [18] for the numerical solution
of the gas transport equations with the finite volume method. Compared to the preceding
works [63, 64, 187], the number of cells was significantly increased inside and outside
the flame to close the elemental and energy balances (see Section 1.5). The SIMPLEC
algorithm [79] was used for the coupling of gas pressure and gas velocity while spatial
discretisations were incorporated using the schemes given in Table 3.3. Multi-grid methods
and linear equation solvers were applied using the default settings in ANSYS Fluent [17]
while under-relaxation was used corresponding to Table 3.4. Specifically, slight under-
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3 Simulation and evaluation methods

relaxation was applied for the species balance and energy equations in order to improve
the numerical stability of some CFD simulations.

Table 3.3: Spatial discretisation schemes used for the CFD simulations.

Equation Scheme

Pressure PRESTO!
Momentum Second-order upwind
Energy Second-order upwind
Species balance Second-order upwind
Turbulent kinetic energy First-order upwind
Turbulent dissipation rate First-order upwind
Radiation intensity First-order upwind

Table 3.4: Under-relaxation factors used for the CFD simulations.

Equation Under-relaxation factor

Pressure 0.2
Momentum 0.5
Density 1
Body forces 1
Energy 0.98 or 1
Species 0.98 or 1
Turbulent kinetic energy 0.7
Turbulent dissipation rate (standard k-ε model) 0.7
Turbulent dissipation rate (SST k-ω model) 0.8
Turbulent viscosity 1
Radiation intensity 1

3.2 Experimental data for comparison

The experimental data of Fleck et al. [63, 64, 98, 99, 100, 113, 114] from REGA experiments
with ethylene glycol and from REGA experiments with mixtures of ethylene glycol and
wood char (see Tables 1.1, B.1, B.2 and B.3) is used for the validation of the numerical
predictions. The data originates from both intrusive and laser-based measurements and
includes radial profiles of gas temperatures and dry gas species volume fractions (CH4, CO,
CO2, H2) at two nozzle distances (300mm and 680mm), axial droplet velocities, OH-LIF
images and particle carbon conversions. Most of the data is tabulated in Section D.2. The
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3.3 Numerical data for comparison

methods that were applied to obtain this data are briefly described in Section A.2, while
detailed information can be found elsewhere [98, 100, 114].

3.3 Numerical data for comparison

The numerical predictions of the preceding works [63, 64, 187] are used for comparison
with the numerical results obtained in this work. However, it should be emphasised (i) that
previous overall models differ from each other and from the models used in this work
and (ii) that previous inlet boundary conditions are not entirely consistent with the inlet
boundary conditions applied in this work1. For example, this work typically applied the
DLR2017/RM mechanism and a film factor ffilm = 1/3 while the preceding works [63, 64,
187] used the HVI1 mechanism and a film factor ffilm = 1.

3.4 Recirculation strengths and lengths

Recirculation strengths and lengths were calculated using different approaches compared
to the preceding work [187]. The recirculation strength was determined as the gas mass
flow rate through an annular reactor cross-section. The inner radius of this cross-section
was defined by the centre of the two-dimensional cross-sectional recirculation zone with the
maximum streamline function value. The recirculation length was calculated as minimum
nozzle distance to the reactor cross-section with exclusively positive axial gas velocities.

3.5 Relative deviations

Relative deviations were used to compare the predicted and measured profiles of gas
temperature and gas species concentrations. The relative deviations RDT, RDCH4

, RDCO,
RDCO2

and RDH2
are defined by

RDT = 1∑
i i

∑
i

Tgas|CFD,i − Tgas|TB,i

Tgas|TB,i
, (3.1)

RDCH4
= 1∑

i i

∑
i

rCH4,dry gas
∣∣∣
CFD,i

− rCH4,dry gas
∣∣∣
ABB,i

rCH4,dry gas
∣∣∣
ABB,i

, (3.2)

1The focus of the preceding works [63, 187] was on the REGA experiment TUC3 V479 which differs from
the REGA experiment TUC3 V786 in the amount of infiltrated air (see Tables 1.1, B.1, B.2 and B.3).
In this work, CFD simulations of both REGA experiments were performed to obtain quantitative
comparisons. The results shown in Figs. J.1 and J.2 demonstrate only minor differences in the far-flame
predictions. Therefore, CFD predictions are focussed on the REGA experiment TUC3 V786 in this
work.
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3 Simulation and evaluation methods

RDCO = 1∑
i i

∑
i

rCO,dry gas|CFD,i − rCO,dry gas|ABB,i

rCO,dry gas|ABB,i
, (3.3)

RDCO2
= 1∑

i i

∑
i

rCO2,dry gas
∣∣∣
CFD,i

− rCO2,dry gas
∣∣∣
ABB,i

rCO2,dry gas
∣∣∣
ABB,i

, (3.4)

RDH2
= 1∑

i i

∑
i

rH2,dry gas
∣∣∣
CFD,i

− rH2,dry gas
∣∣∣
ABB,i

rH2,dry gas
∣∣∣
ABB,i

, (3.5)

where CFD refers to the CFD results, TB refers to the measurements of temperatures using
double-bead type B thermocouples, ABB refers to the measurements of dry gas species
volume fractions using standard gas analysers, Tgas is the gas temperature, rCH4,dry gas is
the dry gas species volume fraction of methane, rCO,dry gas is the dry gas species volume
fraction of carbon monoxide, rCO2,dry gas is the dry gas species volume fraction of carbon
dioxide and rH2,dry gas is the dry gas species volume fraction of hydrogen. Furthermore,
absolute relative deviations ARD were determined using the relative deviations RDT,
RDCO, RDCO2

and RDH2
and are defined by

ARD = 1
4
(
|RDT|+ |RDCO|+

∣∣∣RDCO2

∣∣∣+ ∣∣∣RDH2

∣∣∣) . (3.6)

The relative deviation RDCH4
is not accounted for in Eq. (3.6) as it is typically significantly

larger that the other relative deviations and thereby affects the meaningfulness of the
absolute relative deviation ARD.

3.6 Cumulative mass flow rates

Cumulative mass flow rates of vaporised ethylene glycol CMRC2H6O2
were determined as

function of the nozzle distance using integration of the source terms of ethylene glycol.
The cumulative mass flow rate of vaporised ethylene glycol CMRC2H6O2

is given by

CMRC2H6O2
(z) =

∫
A
Sw,part,C2H6O2

dV , (3.7)

where A is the set of all cell volumes with (centroid) nozzle distances 0 ≤ z′ ≤ z.

3.7 Solid conversions

Simulated solid devolatilisation conversions Xdev,solid, simulated solid gasification con-
versions Xhet,solid and simulated solid carbon conversions XC,solid were determined by
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3.7 Solid conversions

Xdev,solid =
∑
i∈I Ṅpart,i (mpart,min,vap −mpart,dev)∑

i∈I Ṅpart,i (mpart,min,vap −mpart,min,dev)
, (3.8)

Xhet,solid =
∑
i∈I Ṅpart,i (mpart,min,dev −mpart,het)∑

i∈I Ṅpart,i (mpart,min,dev −mpart,min,het)
, (3.9)

XC,solid =
∑
i∈I Ṅpart,i (mC,solid,0 −mC,solid)∑

i∈I Ṅpart,imC,solid,0
, (3.10)

where mpart,dev and mpart,het are auxiliary particle masses, I is the set of all parcels with
wvol,solid,0 ≥ 0 entering a gas cell and mC,solid,0 is the initial carbon mass of the solid phase
and mC,solid is the carbon mass in the solid phase. The auxiliary particle masses mpart,dev

and mpart,het are given by

mpart,dev = min (mpart,min,vap, max (mpart,mpart,min,dev)) , (3.11)

mpart,het = min (mpart,min,dev, max (mpart,mpart,min,het)) . (3.12)

For comparison with balanced data, simulated solid devolatilisation conversions Xdev,solid,
simulated solid gasification conversions Xhet,solid and simulated solid carbon conver-
sions XC,solid at the reactor axis and a nozzle distance of 680mm are required. However,
the simulated data along the reactor axis strongly scatters due to the particle dispersion
model. Therefore, face-averaged values at the nozzle distance of 680mm were determined
using a cross-section with a radius of 20mm.
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4 Results

This chapter presents the results of the CFD simulations of the REGA experiments with
ethylene glycol (TUC3 V786, TUC5 V1105 and TUC5 V1374) and the REGA exper-
iments with mixtures of ethylene glycol and wood char (TUC5 GHKS10 V1071 and
TUC5 GHKS30 V1284). The preceding works [63, 64, 101, 102, 187] already provided com-
parisons of far-flame predictions of gas temperatures and gas species concentrations with
experimental observations. Furthermore, predictions of reaction, recirculation and vapori-
sation zones were extensively discussed for the REGA experiments TUC3 V479 [187] and
TUC3 V786 [101, 102]. However, flame predictions are strongly affected by inlet conditions,
injection properties, turbulence-chemistry interactions and homogeneous reaction kinetics.
Furthermore, previous CFD simulations of the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284 were affected by elemental imbalances [64] or were based
on assumed wood char kinetics [101, 102]. Therefore, new baseline CFD simulations
were carried out for both the REGA experiments with ethylene glycol and the REGA
experiments with mixtures of ethylene glycol and wood char. Subsequently, sensitivity
analyses were performed considering the impact of the homogeneous reaction kinetics, the
vaporisation model, the turbulence model, the thermal gas radiation property model, the
inlet conditions, the injection properties and the wood char kinetics.
Sections 4.1, 4.2, 4.3 and 4.4 focus on the flame shapes, the recirculation zones, the droplet
dispersions and the droplet velocities of the baseline predictions. Sections 4.5 and 4.6
describe the effects of various homogeneous reaction kinetics and of the mass transfer of
ethylene glycol into the gas phase. Then, Sections 4.7 and 4.8 show the sensitivities of
the turbulence model and the thermal gas radiation property model. Finally, Sections 4.9
and 4.10 demonstrate the effects of the injection properties and the wood char kinetics.

4.1 Flame shapes

The gas temperature distributions obtained in this work and the preceding works [63,
64, 187] are compared for the REGA experiment TUC3 V479/V786 in Fig. 4.1 and for
the REGA experiment TUC5 V1105 in Fig. 4.2. First of all, it needs to be recalled (see
Section 2.2.4.3) that OH-LIF measurements [113, 114] have indicated a V-shaped flame for
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the REGA experiments TUC3 V479 and TUC3 V786 and a W-shaped flame for the REGA
experiment TUC5 V1105. Such flames were reproduced in this work, whereas W-shaped
flames were predicted in the preceding works [63, 64, 187]. Thus, the new approach for
the inlet conditions and injection properties considerably improved the mathematical
description of the flame zone.

TUC3 V786 (HVI1, 2022)

TUC3 V479 (HVI1, 2018)

250 515 780 1045 1310 1575 1840 2105 2370 2635 2900

Gas temperature / K

Figure 4.1: Predicted gas temperature distributions. TUC3 V479 (HVI1, 2018): results for the REGA experi-
ment TUC3 V479 obtained using the HVI1 mechanism in the preceding work [187]; TUC3 V786
(HVI1, 2022): results for the REGA experiment TUC3 V786 obtained using the HVI1 mechanism
in this work.

TUC5 V1105 (HVI1, 2022)

TUC5 V1105 (HVI1, 2018)

300 610 920 1230 1540 1850 2160 2470 2780 3090 3400

Gas temperature / K

Figure 4.2: Predicted gas temperature distributions. TUC5 V1105 (HVI1, 2018): results for the REGA experi-
ment TUC5 V1105 obtained using the HVI1 mechanism in the preceding work [63]; TUC5 V1105
(HVI1, 2022): results for the REGA experiment TUC5 V1105 obtained using the HVI1 mechanism
in this work.

Furthermore, in the near-axis region, the improved inlet conditions and injection properties
reduced the impact of the endothermic vaporisation and decomposition processes (see
Section 2.2.4.3) and prevented strong changes of flame temperatures and concentrations
compared to the preceding works [63, 187]. However, the predicted cold core zones in the
near-axis region are still significantly longer than observed in OH-LIF measurements [113,
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4.2 Recirculation zones

114] and LES predictions of the REGA experiment TUC3 [88, 89]. Thus, the mixing of
gasification medium and recirculating gas is slower in the RANS based simulations using
the common turbulence and turbulence-chemistry interaction approaches. Compared to
the preceding works [63, 187], the cold zones are slightly longer due to the missing angle
of attack. Future works may improve the mathematical description of the turbulence and
turbulence-chemistry interaction approaches.
The maximum gas temperatures are given in Table 4.1. Similar maximum gas temperature
were accordingly obtained in this work and the preceding works [63, 187]. Thus, the
strong changes of the inlet conditions and the injection properties only slightly affected the
predictions. The maximum gas temperatures have rather been determined by the rates of
the gas phase reactions (see Section 4.5).

Table 4.1: Predicted maximum gas temperatures Tgas,max for the REGA experiments TUC3 V479, TUC3 V786
and TUC5 V1105: comparison of results from the preceding works [63, 187] and this work. Compared
to the preceding work [187], deviating data is given for the REGA experiment TUC3 V479 due to
the use of different evaluation methods.

REGA experiment
Tgas,max /K

Previous work This work

TUC3 V479 2853 2815
TUC3 V786 − 2786
TUC5 V1105 3355 3305

4.2 Recirculation zones

The changes of the inlet conditions were accompanied by changes of the supply of in-
filtrated air and purge nitrogen. In the preceding works [63, 187], infiltrated air and
purge nitrogen were fed through the inner duct of the external mixing nozzle leading to
increased gas and droplet velocities in the near-nozzle region. The impact of the changes
on the recirculation zones is shown in Table 4.2 and in Figs. 4.3 and 4.4. For the REGA
experiment TUC3 V479, both the strength and the length of the recirculation zone are
reduced by approximately 10% when less gas is fed through the nozzle. For the REGA
experiment TUC5 V1105, the strength of the recirculation zone has changed similarly
despite less air infiltration and no supply of purge nitrogen, whereas the length of the
recirculation zone has slightly increased. Furthermore, the new method for the supply of
infiltrated air and purge nitrogen did not decrease the numerical stability or increased the
computing time and is therefore recommended for future works.
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Table 4.2: Predicted strengths and lengths of the recirculation zones for the REGA experiments TUC3 V479,
TUC3 V786 and TUC5 V1105: comparison of results from the preceding works [63, 187] and this
work. Compared to the preceding work [187], deviating data is given for the REGA experiment
TUC3 V479 due to the use of different evaluation methods.

REGA experiment
Strength / kg/h Length /mm

Previous work This work Previous work This work

TUC3 V479 91 81 841 791
TUC3 V786 − 81 − 787
TUC5 V1105 95 79 772 797

TUC3 V786 (HVI1, 2022)

TUC3 V479 (HVI1, 2018)

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Stream function / kg/s

Figure 4.3: Predicted stream function distributions. TUC3 V479 (HVI1, 2018): results for the REGA experi-
ment TUC3 V479 obtained using the HVI1 mechanism in the preceding work [187]; TUC3 V786
(HVI1, 2022): results for the REGA experiment TUC3 V786 obtained using the HVI1 mechanism
in this work.

TUC5 V1105 (HVI1, 2022)

TUC5 V1105 (HVI1, 2018)

0 2 4 6 8 10 12 14 16 18 20

Stream function / kg/s

Figure 4.4: Predicted stream function distributions. TUC5 V1105 (HVI1, 2018): results for the REGA experi-
ment TUC5 V1105 obtained using the HVI1 mechanism in the preceding work [63]; TUC5 V1105
(HVI1, 2022): results for the REGA experiment TUC5 V1105 obtained using the HVI1 mechanism
in this work.
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4.3 Droplet dispersions

The impact of the injection properties and the film factor ffilm on the droplet dispersion
is shown for the REGA experiment TUC3 V479/V786 in Figs. 4.5 and 4.7 and for the
REGA experiment TUC5 V1105 in Figs. 4.6 and 4.8. The droplet dispersion accordingly
narrows if the physical properties in the vaporisation model are determined using the gas
condition (ffilm = 1) instead of the film condition (ffilm = 1/3) (see Figs. 4.7 and 4.8).
Furthermore, the droplet dispersion reflects the spray angle at nozzle exit, specified by the
initial droplet velocities, if the gas enters the domain through a cylindrical nozzle instead
of an external mixing nozzle (see Figs. 4.5-4.8 and Section 2.2.4.3). Thus, inlet conditions,
injection properties and film factor ffilm strongly determine the droplet dispersion.

TUC3 V786 (HVI1, 2022)

TUC3 V479 (HVI1, 2018)

10−17 10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1 101 103

Droplet concentration
/

kg
m3

Figure 4.5: Predicted droplet concentration distributions. TUC3 V479 (HVI1, 2018): results for the REGA
experiment TUC3 V479 obtained using the HVI1 mechanism and a film factor ffilm = 1 in the
preceding work [187]; TUC3 V786 (HVI1, 2022): results for the REGA experiment TUC3 V786
obtained using the HVI1 mechanism and a film factor ffilm = 1 in this work.

TUC5 V1105 (HVI1, 2022)

TUC5 V1105 (HVI1, 2018)

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 102

Droplet concentration
/

kg
m3

Figure 4.6: Predicted droplet concentration distributions. TUC5 V1105 (HVI1, 2018): results for the REGA
experiment TUC5 V1105 obtained using the HVI1 mechanism and a film factor ffilm = 1 in the
preceding work [63]; TUC5 V1105 (HVI1, 2022): results for the REGA experiment TUC5 V1105
obtained using the HVI1 mechanism and a film factor ffilm = 1 in this work.
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TUC3 V786 (HVI1, 2022)

TUC3 V479 (HVI1, 2018)
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Figure 4.7: Predicted droplet concentration distributions. TUC3 V479 (HVI1, 2018): results for the REGA
experiment TUC3 V479 obtained using the HVI1 mechanism and a film factor ffilm = 1 in the
preceding work [187]; TUC3 V786 (HVI1, 2022): results for the REGA experiment TUC3 V786
obtained using the HVI1 mechanism and a film factor ffilm = 1/3 in this work.

TUC5 V1105 (HVI1, 2022)

TUC5 V1105 (HVI1, 2018)
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Figure 4.8: Predicted droplet concentration distributions. TUC5 V1105 (HVI1, 2018): results for the REGA
experiment TUC5 V1105 obtained using the HVI1 mechanism and a film factor ffilm = 1 in the
preceding work [187]; TUC5 V1105 (HVI1, 2022): results for the REGA experiment TUC5 V1105
obtained using the HVI1 mechanism and a film factor ffilm = 1/3 in this work.

In anemometry measurements, the droplet detection rates significantly reduce at larger
nozzle distances [99]. This suggest that a film factor ffilm = 1 should be preferred over a film
factor ffilm = 1/3. However, the LES results for the REGA experiment TUC3 that were
obtained using the 1/3 rule have shown that the vaporisation of ethylene glycol droplets
mainly occurs in the centred area [88, 89] due to the strong instantaneous fluctuations in
the flame zone. Furthermore, even the latest studies on vaporisation of single droplets (for
example, see [301]) have indicated that the 1/3 rule is appropriate for simplified vaporisation
predictions. Therefore, this work applied the 1/3 rule in the baseline CFD simulations and
accepted that the simplified models for turbulence, turbulence dispersion and turbulence-
chemistry interaction shift the vaporisation of the ethylene glycol droplets downwards, i. e.
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away from the nozzle. Future large eddy simulations combined with the volume-of-fluid
method or improved measurement devices may reduce this knowledge gap.

4.4 Droplet velocities

The predicted axial droplet velocities near the axis are compared with axial droplet ve-
locities that were obtained using LDA measurements [98, 99] for the REGA experiment
TUC3 V786 in Fig. 4.9 and for the REGA experiment TUC5 V1105 in Fig. 4.10. The
predicted axial droplet velocities are accordingly in sufficient to good agreement with the
measured values.
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Figure 4.9: Measured axial droplet velocities, predicted axial droplet velocities and predicted axial gas velocities
for the REGA experiment TUC3 V786.
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Figure 4.10: Measured axial droplet velocities, predicted axial droplet velocities and predicted axial gas
velocities for the REGA experiment TUC5 V1105.
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4.5 Homogeneous reaction kinetics

The results presented in Sections 4.1 and 4.2 were generated using the HVI1 mechanism.
Additionally, the eJL mechanism, the eJL/A mechanism, the DLR2017/RK mechanism
and the DLR2017/RM mechanism were applied in this work (see Section 2.3.1). The
predicted gas temperature distributions are shown in Figs. 4.11-4.18. The maximum gas
temperatures are listed in Table 4.3. As expected, the DLR2017/RM mechanism and
the DLR2017/RK mechanism provide quite similar flame temperatures and lower flame
temperatures than the HVI1 mechanism and the eJL mechanism. The flame temperatures
based on the eJL/A mechanism are also significantly lower than flame temperatures based
on the HVI1 mechanism or the eJL mechanism. This demonstrates the impact of single
reaction rates in global reaction mechanisms.

TUC3 V786 (HVI1)

TUC3 V786 (DLR2017/RM)

300 550 800 1050 1300 1550 1800 2050 2300 2550 2800

Gas temperature / K

Figure 4.11: Predicted gas temperature distributions. TUC3 V786 (HVI1): results for the REGA experiment
TUC3 V786 obtained using the HVI1 mechanism; TUC3 V786 (DLR2017/RM): results for the
REGA experiment TUC3 V786 obtained using the DLR2017/RM mechanism.

TUC5 V1105 (HVI1)

TUC5 V1105 (DLR2017/RM)

300 605 910 1215 1520 1825 2130 2435 2740 3045 3350

Gas temperature / K

Figure 4.12: Predicted gas temperature distributions. TUC5 V1105 (HVI1): results for the REGA experiment
TUC5 V1105 obtained using the HVI1 mechanism; TUC5 V1105 (DLR2017/RM): results for the
REGA experiment TUC5 V1105 obtained using the DLR2017/RM mechanism.
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TUC3 V786 (eJL)

TUC3 V786 (DLR2017/RM)

300 550 800 1050 1300 1550 1800 2050 2300 2550 2800

Gas temperature / K

Figure 4.13: Predicted gas temperature distributions. TUC3 V786 (DLR2017/RM): results for the REGA
experiment TUC3 V786 obtained using the DLR2017/RM mechanism; TUC3 V786 (eJL): results
for the REGA experiment TUC3 V786 obtained using the eJL mechanism.

TUC5 V1105 (eJL)

TUC5 V1105 (DLR2017/RM)

300 595 890 1185 1480 1775 2070 2365 2660 2955 3250

Gas temperature / K

Figure 4.14: Predicted gas temperature distributions. TUC5 V1105 (DLR2017/RM): results for the REGA
experiment TUC5 V1105 obtained using the DLR2017/RM mechanism; TUC5 V1105 (eJL):
results for the REGA experiment TUC5 V1105 obtained using the eJL mechanism.

TUC3 V786 (eJL/A)

TUC3 V786 (DLR2017/RM)

300 520 740 960 1180 1400 1620 1840 2060 2280 2500

Gas temperature / K

Figure 4.15: Predicted gas temperature distributions. TUC3 V786 (DLR2017/RM): results for the REGA
experiment TUC3 V786 obtained using the DLR2017/RM mechanism; TUC3 V786 (eJL/A):
results for the REGA experiment TUC3 V786 obtained using the eJL/A mechanism.

123



4 Results

TUC5 V1105 (eJL/A)

TUC5 V1105 (DLR2017/RM)
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Figure 4.16: Predicted gas temperature distributions. TUC5 V1105 (DLR2017/RM): results for the REGA
experiment TUC5 V1105 obtained using the DLR2017/RM mechanism; TUC5 V1105 (eJL/A):
results for the REGA experiment TUC5 V1105 obtained using the eJL/A mechanism.

TUC3 V786 (DLR2017/RK)

TUC3 V786 (DLR2017/RM)
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Figure 4.17: Predicted gas temperature distributions. TUC3 V786 (DLR2017/RM): results for the REGA ex-
periment TUC3 V786 obtained using the DLR2017/RM mechanism; TUC3 V786 (DLR2017/RK):
results for the REGA experiment TUC3 V786 obtained using the DLR2017/RK mechanism.

TUC5 V1105 (DLR2017/RK)

TUC5 V1105 (DLR2017/RM)
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Figure 4.18: Predicted gas temperature distributions. TUC5 V1105 (DLR2017/RM): results for the
REGA experiment TUC5 V1105 obtained using the DLR2017/RM mechanism; TUC5 V1105
(DLR2017/RK): results for the REGA experiment TUC5 V1105 obtained using the
DLR2017/RK mechanism.

124



4.5 Homogeneous reaction kinetics

Furthermore, all reaction mechanisms have provided V-shaped flames for the REGA
experiment TUC3 V786 and W-shaped flames for the REGA experiment TUC5 V1105.
This demonstrates that the flame shape is less affected by the reaction mechanism while it
is primarily determined by the injection properties, the turbulence-chemistry interaction
and the droplet dispersion.

Table 4.3: Predicted maximum gas temperatures for the REGA experiments TUC3 V786 and TUC5 V1105:
comparison of results based on various reaction mechanisms.

Reaction mechanism
Tgas,max /K

REGA TUC3 V786 REGA TUC5 V1105

HVI1 2786 3305
DLR2017/RM 2458 2604
eJL 2791 3207
eJL/A 2449 2642
DLR2017/RK 2462 2654

The predicted profiles of gas temperature and dry gas species concentrations at nozzle
distances of 300mm and at 680mm are shown in Figs. 4.19-4.26 and are typically in good
agreement with the measured profiles for carbon monoxide, carbon dioxide and hydrogen,
while larger deviations are found for methane at both nozzle distances. This is also evident
from the relative deviations given in Tables 4.4-4.7. The dry gas species concentrations of
methane are typically underpredicted by the eJL mechanism and the eJL/A mechanism
and significantly overpredicted by the HVI1 mechanism, the DLR2017/RM mechanism
and the DLR2017/RK mechanism. Larger deviations are also found for carbon monoxide,
carbon dioxide and hydrogen in the near-axis region at the nozzle distance of 300mm due
to effects of the mass transfer of ethylene glycol into the gas phase (see Section 4.6) and,
in the case of global reaction mechanisms, due to simplified decomposition kinetics.

Table 4.4: Relative deviations RDT, RDCH4
, RDCO, RDCO2

and RDH2
concerning the profiles of gas temperature

and dry gas species volume fractions and absolute relative deviations ARD at the nozzle distance
of 300mm for the REGA experiment TUC3 V786.

Reaction mechanism RDT

%
RDCH4

%
RDCO

%
RDCO2

%
RDH2

%
ARD

%
HVI1 12.91 509.52 −5.73 7.94 −22.49 12.27
DLR2017/RM 12.44 132.86 −0.47 2.83 −21.74 9.37
eJL 12.04 −78.78 2.46 0.47 −17.69 8.17
eJL/A 10.37 −100 2.45 3.79 −15.66 8.07
DLR2017/RK 12.04 99.52 1.60 0.47 −18.23 8.09
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Table 4.5: Relative deviations RDT, RDCH4
, RDCO, RDCO2

and RDH2
concerning the profiles of gas temperature

and dry gas species volume fractions and absolute relative deviations ARD at the nozzle distance
of 680mm for the REGA experiment TUC3 V786.

Reaction mechanism RDT

%
RDCH4

%
RDCO

%
RDCO2

%
RDH2

%
ARD

%
HVI1 5.51 1271.70 −1.56 1.20 −9.06 4.33
DLR2017/RM 5.49 834.14 1.31 −1.73 −7.32 3.96
eJL 4.87 101.12 4.29 −5.02 −1.27 3.86
eJL/A 4.59 −100.00 5.29 −7.63 1.13 4.66
DLR2017/RK 4.94 776.19 2.95 4.18 −3.39 3.86

Table 4.6: Relative deviations RDT, RDCH4
, RDCO, RDCO2

and RDH2
concerning the profiles of gas temperature

and dry gas species volume fractions and absolute relative deviations ARD at the nozzle distance
of 300mm for the REGA experiment TUC5 V1105.

Reaction mechanism RDT

%
RDCH4

%
RDCO

%
RDCO2

%
RDH2

%
ARD

%
HVI1 4.92 142.43 0.09 6.50 −10.70 5.55
DLR2017/RM 1.76 99.15 1.90 5.21 −12.51 6.28
eJL 4.00 −79.67 5.03 −3.05 −3.84 3.98
eJL/A 4.28 −100.00 4.97 −4.00 −4.01 4.31
DLR2017/RK 5.49 116.31 6.76 −16.17 3.38 7.02

Table 4.7: Relative deviations RDT, RDCH4
, RDCO, RDCO2

and RDH2
concerning the profiles of gas temperature

and dry gas species volume fractions and absolute relative deviations ARD at the nozzle distance
of 680mm for the REGA experiment TUC5 V1105.

Reaction mechanism RDT

%
RDCH4

%
RDCO

%
RDCO2

%
RDH2

%
ARD

%
HVI1 0.45 156.45 0.56 0.86 −5.70 1.89
DLR2017/RM 0.34 154.72 0.95 0.30 −6.17 1.94
eJL −0.90 −62.79 2.88 −6.63 3.66 3.52
eJL/A −1.41 −99.89 3.41 −8.77 5.79 4.84
DLR2017/RK −3.83 158.79 5.44 −21.19 9.32 9.94

Based on the absolute relative deviations in Tables 4.4-4.7, the best predictions are
provided by the eJL/A mechanism, closely followed by the DLR2017/RM mechanism, the
eJL mechanism, the HVI1 mechanism and the DLR2017/RK mechanism. Thus, under
the same test conditions, both reduced and global reaction mechanisms provide accurate
far-flame predictions for the gasification of ethylene glycol. However, due to the use of
radicals, reduced mechanisms predict more reasonable flame temperatures than global
mechanisms.
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4.5 Homogeneous reaction kinetics
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Figure 4.19: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; HVI1: results obtained using the HVI1 mechanism.
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Figure 4.20: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; HVI1: results obtained using the HVI1 mechanism.
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Figure 4.21: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; eJL: results obtained using the eJL mechanism.
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Figure 4.22: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; eJL: results obtained using the eJL mechanism.
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Figure 4.23: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; eJL/A: results obtained using the eJL/A mechanism.
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Figure 4.24: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. DLR2017/RM: results obtained
using the DLR2017/RM mechanism; eJL/A: results obtained using the eJL/A mechanism.
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Figure 4.25: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA experi-
ment TUC3 V786 in comparison with measured profiles. DLR2017/RM: results obtained using the
DLR2017/RM mechanism; DLR2017/RK: results obtained using the DLR2017/RK mechanism.
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Figure 4.26: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA experi-
ment TUC5 V1105 in comparison with measured profiles. DLR2017/RM: results obtained using
the DLR2017/RM mechanism; DLR2017/RK: results obtained using the DLR2017/RK mecha-
nism.
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4.6 Vaporisation

The rates of the gas phase reactions are determined by solving the concentrations and
energy equations for the fine structures in which the gas is well mixed at molecular level (see
Section 2.4). However, solving these equations required different computing times in the
CFD simulations due to different stiffnesses of the various reaction mechanisms. This was
also true when the numerical integration was applied with the in-situ-adaptive-tabulation
(ISAT) algorithm. In order to provide a fair quantitative comparison of the computing times,
100 additional flow iterations were performed for the REGA experiments TUC3 V786 and
TUC5 V1105 after already achieving final numerical results. The CFD simulations were car-
ried out using direct integration and 48 computing nodes. The normalised computing times
are given in Table 4.8 and confirm the qualitative impression. CFD simulations with the
HVI1 mechanism are characterised by the lowest computing times while CFD simulations
using the DLR2017/RK mechanism and the DLR2017/RM mechanism already require
more resources. The DLR2017/RK mechanism outperforms the DLR2017/RM mechanism
in this comparison, whereas CFD simulations with the ISAT algorithm were faster when
applying the DLR2017/RM mechanism. This is certainly related to the number of species.
24 species are accounted for in the DLR2017/RM mechanism while 43 species are used
in the DLR2017/RK mechanism. CFD simulations using the eJL mechanism and the
eJL/A mechanism are finally characterised by very high computing times due to high
stiffness, which was not observed in the preceding work [187] using coarser meshes. In
summary, the HVI1 mechanism and the DLR2017/RM mechanism are recommended for
future works. The HVI1 mechanism should be used for first CFD simulations while the
DLR2017/RM mechanism should be applied to obtain reasonable flame predictions of gas
temperature and gas species concentrations.

Table 4.8: Normalised computing times for the CFD simulations of the REGA experiments TUC3 V786
and TUC5 V1105: comparison of results for various reaction mechanisms.

Reaction mechanism
Normalised computing time

REGA TUC3 V786 REGA TUC5 V1105

HVI1 1 1
DLR2017/RM 8.0 8.6
eJL 22.9 18.7
eJL/A 14.0 13.8
DLR2017/RK 3.5 7

4.6 Vaporisation

The predicted profiles in the near-axis region have been in worse agreement with the
measured profiles compared to the preceding works [63, 64, 187]. However, this work and
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4 Results

the preceding works [63, 64, 187] relied on different assumptions for the film factor ffilm,
which particularly determines the mass transfer of ethylene glycol into the gas phase. The
impact of the film factor is demonstrated in Figs. 4.27-4.30, accounting for either the
HVI1 mechanism or the DLR2017/RM mechanism. The deviations between measured and
predicted profiles of gas temperature and gas species concentrations are accordingly smaller
using a film factor ffilm = 1 than using a film factor ffilm = 1/3. Thus, the mass transfer
of ethylene glycol into the gas phase is faster in the experiments than in RANS based
simulations with a film factor ffilm = 1/3. This is likely due to longer droplet residence
times in the flame region and a better mixing of ethylene glycol, recirculating gas and
gasification medium. In contrast to the film factor, the reaction mechanism only slightly
affects the vaporisation behaviour, where the impact is larger for lower film factors.
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Figure 4.27: Predicted cumulative mass flow rates of vaporised ethylene glycol for the REGA experiment
TUC3 V786: comparison of results based on various reaction mechanisms and film factors.
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Figure 4.28: Predicted cumulative mass flow rates of vaporised ethylene glycol for the REGA experiment
TUC5 V1105: comparison of results based on various reaction mechanisms and film factors.
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4.6 Vaporisation
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Figure 4.29: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. ffilm = 1/3: results obtained using
the DLR2017/RM mechanism and the 1/3 rule for the film condition; ffilm = 1: results obtained
using the DLR2017/RM mechanism and the gas condition for the film condition.
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Figure 4.30: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. ffilm = 1/3: results obtained
using the DLR2017/RM mechanism and the 1/3 rule for the film condition; ffilm = 1: results
obtained using the DLR2017/RM mechanism and the gas condition for the film condition.
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4.7 Turbulence

The impact of the turbulence model was already analysed in the preceding work [187].
Similar predictions of gas temperature and dry gas species concentrations were obtained
using various turbulence models due to similar predictions of turbulent kinetic energy k
and turbulent dissipation rate ε [187]. However, the inlet conditions were significantly
changed in this work. Therefore, the sensitivity analysis was repeated accounting for
the standard k-ε model and the SST k-ω model. The results are shown in Figs. 4.31
and 4.32 and in Table 4.9. Thus, the standard k-ε model and the SST k-ω model provided
almost identical predictions of gas temperature and dry gas species concentrations, while
predictions of recirculation strength and length strongly differ. This confirms previous
conclusions [187].

Table 4.9: Predicted strengths and lengths of the recirculation zones for the REGA experiments TUC3 V479,
TUC3 V786 and TUC5 V1105: comparison of results based on various turbulence models.

REGA experiment
Strength / kg/h Length /mm

k-ε model SST k-ω model k-ε model SST k-ω model

TUC3 V479 76 81 824 789
TUC3 V786 76 81 824 787
TUC5 V1105 74 79 836 795

4.8 Thermal gas radiation properties

The impact of the thermal gas radiation model was already examined in the preceding
work [187]. However, non-grey-gas absorption coefficients were incorporated using the
macro DEFINE_WSGGM_ABS_COEFF that is restricted for WSGG models combined
with mean beam length model (see Section 3.1). Therefore, the sensitivity analysis was
repeated using improved implementations. The results are shown in Figs. 4.33-4.36 and
in Table 4.10. Thus, the grey-gas model and the non-grey-gas model provided almost
identical predictions of dry gas species concentrations and total heat flow rate and similar
predictions of gas temperature and radiation heat flow rate. When using the WSGG model,
the gas temperatures are mainly higher, while less heat is removed through thermal radi-
ation in the upper reactor part. In comparison with previous results [187], the deviations
between predictions using grey-gas model and non-grey-gas model remain small as the
high wall temperatures minimise the impact of the thermal gas radiation property model.
Furthermore, the radiation heat fluxes shown in Figs. 4.35 and 4.36 strongly changed
below 300mm as they were interfered by the supply of infiltrated air and purge nitrogen.
However, the total heat fluxes changed less due to the high wall temperatures.
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Figure 4.31: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. SST k-ω model: results obtained
using the DLR2017/RM mechanism and the SST k-ω model; standard k-ε model: results
obtained using the DLR2017/RM mechanism and the standard k-ε model.
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Figure 4.32: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. SST k-ω model: results obtained
using the DLR2017/RM mechanism and the SST k-ω model; standard k-ε model: results
obtained using the DLR2017/RM mechanism and the standard k-ε model.
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Figure 4.33: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC3 V786 in comparison with measured profiles. GG model: results obtained using
the DLR2017/RM mechanism and the grey-gas model; WSGG model: results obtained using the
DLR2017/RM mechanism and the weighted-sum-of-grey-gas model.
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Figure 4.34: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. GG model: results obtained
using the DLR2017/RM mechanism and the grey-gas model; WSGG model: results obtained
using the DLR2017/RM mechanism and the weighted-sum-of-grey-gas model.
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4.8 Thermal gas radiation properties
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Figure 4.35: Predicted gas temperatures and heat fluxes at wall for the REGA experiment TUC3 V786:
comparison of results based on various thermal gas radiation property models and various reaction
mechanisms.
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Figure 4.36: Predicted gas temperatures and heat fluxes at wall for the REGA experiment TUC5 V1105:
comparison of results based on various thermal gas radiation property models and various reaction
mechanisms.

Table 4.10: Predicted total and radiation heat flow rates at wall for the REGA experiments TUC3 V786
and TUC5 V1105: comparison of results based on various thermal gas radiation property models.
The data was obtained using the DLR2017/RM mechanism.

REGA experiment
Total heat flow rate / kW Radiation heat flow rate / kW

GG model WSGG model GG model WSGG model

TUC3 V786 −11.36 −11.52 −9.39 −8.67
TUC5 V1105 −6.30 −6.32 −5.36 −4.82
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4 Results

4.9 Inlet conditions and injection properties

The ATMO experiments TUC5 D2.1 and TUC5 D1.1 were performed using different
experimental conditions compared to the ATMO experiments TUC3 D1 and TUC5 D2 (see
Section 2.2.4.2). It was thus interesting to describe the REGA experiment TUC5 V1105
and the REGA experiment TUC5 V1374 using inlet conditions and injection properties
based on the ATMO experiment TUC5 D2.1 and the ATMO experiment TUC5 D1.1,
respectively.
For the REGA experiment TUC5 V1105, the results based on the adapted model are
compared with the baseline results in Figs. 4.37 and 4.38. Thus, the inlet conditions
and injection properties based on the ATMO experiments TUC5 D2.1 changed the flame
shape from W-shaped to V-shaped but had less impact on the far-flame predictions of gas
temperature and dry gas species concentrations.
For the REGA experiment TUC5 V1374, the predicted gas temperature distribution is
shown in Fig. 4.39. The injection properties based on the ATMO experiment TUC5 D1.1
thus provided a W-shaped flame which is not in agreement with the OH-LIF measurement
results [113, 114] indicating a V-shaped flame.
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Figure 4.37: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 V1105 in comparison with measured profiles. ATMO TUC5 D2: results
obtained using the DLR2017/RM mechanism and the injection properties based on the ATMO
experiment TUC5 D2; ATMO TUC5 D2.1: results obtained using the DLR2017/RM mechanism
and the injection properties based on the ATMO experiment TUC5 D2.1.
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TUC5 V1105 (ATMO TUC5 D2.1)

TUC5 V1105 (ATMO TUC5 D2)
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Gas temperature / K

Figure 4.38: Predicted gas temperature distributions. TUC5 V1105 (ATMO TUC5 D2): results obtained
for the REGA experiment TUC5 V1105 using the DLR2017/RM mechanism and the injection
properties based on the ATMO experiment TUC5 D2; TUC5 V1105 (ATMO TUC5 D2.1): results
obtained for the REGA experiment TUC5 V1105 using the DLR2017/RM mechanism and the
injection properties based on the ATMO experiment TUC5 D2.1.
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Figure 4.39: Predicted gas temperature distributions. TUC5 V1105 (ATMO TUC5 D2): results for the
REGA experiment TUC5 V1105 obtained using the DLR2017/RM mechanism and the injection
properties based on the ATMO experiment TUC5 D2; TUC5 V1374 (ATMO TUC5 D1.1): results
for the REGA experiment TUC5 V1374 obtained using the DLR2017/RM mechanism and the
injection properties based on the ATMO experiment TUC5 D1.1.

In summary, the injection properties based on the ATMO experiments TUC3 D1 and
TUC5 D2 provided more reasonable flame shapes than the injection properties based on
the ATMO experiments TUC5 D2.1 and TUC5 D1.1. Therefore, the injection properties
based on the ATMO experiment TUC5 D2.1 and TUC5 D1.1 cannot be recommended
for future works. Furthermore, the numerical results show that injection properties for
RANS based simulations should be derived from appropriate experimental data and
may be verified using different approaches such as large eddy simulations combined with
the volume-of-fluid method. Through improved approaches for the injections properties,
subsequent works [114] were eventually able to provide superior numerical results for the
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REGA experiments TUC5 V1105 and TUC5 V1374 using data from the ATMO experiment
TUC5 D2.1 and the ATMO experiment TUC5 D1.1, respectively.

4.10 Wood char kinetics

Appropriate inlet conditions and injection properties are essential for accurate predictions
of gas temperatures, gas species concentrations and droplet velocities in the flame region
(see Sections 4.1, 4.4 and 4.9). Since such inlet conditions and injection properties have
been derived in this work for the atmospheric entrained flow gasification of ethylene glycol
only, the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 have not
been focussed in Sections 4.1-4.9. Furthermore, adjustments of devolatilisation kinetics,
heterogeneous gasification kinetics and morphology changes are computationally time-
consuming. Therefore, CFD simulations of the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284 were performed only to investigate the impact of the devolatil-
isation and heterogeneous gasification kinetics on the predictions of gas temperature,
gas species concentrations and wood char conversion, while using the SST k-ω model as
turbulence model, the HVI1 mechanism as reaction mechanism and the grey-gas model
as thermal gas radiation property model. The cases that were studied in this work are
summarised in Table 4.11.

Table 4.11: CFD simulations of the REGA experiments TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284.

REGA experiment Case Rm,part,dev Rm,part,het

TUC5 GHKS10 V1071 S1 × 1 × 1
S2 × 2 × 1
S4 × 1 × 2
S5 × 2 × 2

TUC5 GHKS30 V1284 S1 × 1 × 1
S2 × 2 × 1
S3 × 5 × 1
S4 × 1 × 2
S5 × 2 × 2
S6 × 5 × 2
S7 × 1 × 10
S8 × 2 × 10
S9 × 5 × 10
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4.10 Wood char kinetics

The reaction rates during devolatilisation Rm,part,dev based on the Arrhenius law model of
Dammann et al. [68] and the reaction rates of the Boudouard reaction and the water gas
reaction Rm,part,het based on the Langmuir-Hinshelwood models (regime II) of Kreitzberg
et al. [156] were thus adapted using factors of 1, 2, 5 and 10 in various combinations.
The predicted baseline profiles are compared with the measured profiles in Figs. 4.40
and 4.41. The predictions of gas temperature and dry gas species concentrations are
accordingly in good to excellent agreement with the measured data for both REGA
experiments. Excellent agreement between the predicted and measured profiles is found at
680mm for the REGA experiment TUC5 GHKS10 V1071, whereas larger deviations are
observed at 300mm in the near-axis region for both REGA experiments. This is likely
due to slower mass transfer of ethylene glycol into the gas phase (see Section 4.6). Larger
deviations are also found between predicted and measured gas temperature profiles at
680mm for the REGA experiment TUC5 GHKS30 V1284. This indicates erroneous flame
predictions. Furthermore, Figs. 4.40 and 4.41 demonstrate that the deviations between the
measured and predicted profiles have only been slightly reduced assuming devolatilisation
rates increased by a factor of 2. Similarly, Figs. 4.42 and 4.43 show that heterogeneous
gasification rates increased by a factor of 2 combined with the baseline devolatilisation
rates or devolatilisation rates increased by a factor of 2 have only marginally changed the
predictions of gas temperature and dry gas species volume fractions. Even devolatilisation
rates increased by a factor of 5 combined with heterogeneous gasification rates increased by
a factor of 10 or strong changes of the volatiles compositions or the particle diameter have
only some impact on the predictions for the REGA experiment TUC5 GHKS30 V1284. As
shown in Fig. 4.44, the gas temperatures can decrease due to higher conversion while the
dry gas species volume fractions hardly change. Thus, the predictions of gas temperature
and dry gas species volume fractions for the atmospheric entrained flow gasification of
mixtures with wood char contents of up to 30% are more strongly determined by the
conversion of ethylene glycol than by the conversion of wood char. Within certain limits,
the accuracy of the devolatilisation kinetics and the heterogeneous gasification kinetics is
not decisive for the predictions of gas temperature and gas species concentrations. This is
also clear from the gas temperature distributions shown in Figs. 4.45 and 4.46.

For further analysis of the wood char conversion and for comparison with the balanced
carbon conversions XC,solid (see Section 2.7.3.2), simulated solid devolatilisation conver-
sions Xdev,solid, simulated solid gasification conversions Xhet,solid and simulated solid carbon
conversions XC,solid were calculated at the nozzle distance of 680mm. The averaged data
is given in Table 4.12. First of all, this data demonstrates that the solid conversions
typically increase with both increasing devolatilisation rates and increasing heterogeneous
gasification rates (apart from stochastic fluctuations and endothermic temperature effects).
Furthermore, for the REGA experiment TUC5 GHKS10 V1071, the averaged solid de-
volatilisation conversionXdev,solid is 85%, the averaged solid gasification conversionXhet,solid
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is 70% and the averaged solid carbon conversion XC,solid is 72% if the devolatilisation and
heterogeneous gasification rates are described by the baseline kinetics. The averaged solid
carbon conversions can be increased up to 80% when both the devolatilisation rates and the
heterogeneous gasification rates are increased by a factor of 2. In contrast, for the REGA
experiment TUC5 GHKS30 V1284, the averaged solid devolatilisation conversion Xdev,solid

is 67%, the averaged solid gasification conversion Xhet,solid is 48% and the averaged solid
carbon conversion XC,solid is 50% if the devolatilisation and heterogeneous gasification
rates are described by the baseline kinetics. Thus, the predicted solid conversions are
lower for the REGA experiment TUC5 GHKS30 V1284 than for the REGA experiment
TUC5 GHKS10 V1071. This is likely due to the larger particle sizes assumed for the
CFD simulations of the REGA experiment TUC5 GHKS30 V1284 (see Fig. 2.14).
The predicted solid carbon conversion XC,solid at 680mm for the REGA experiment
TUC5 GHKS30 V1284 is also significantly below the experimental estimates of 71%
and 77% (see Table 2.10). Even if the devolatilisation rates are increased by a factor
of 2 and the heterogeneous gasification rates are increased by a factor of 10, the averaged
solid carbon conversion XC,solid only increases to 70%. Since a factor of 2 likely exceeds
the uncertainty factor of the devolatilisation kinetics of Dammann et al. [68] and a factor
of 10 is likely an appropriate upper uncertainty bound for the heterogeneous gasification
kinetics of Kreitzberg et al. [156], other effects have caused the erroneous prediction of
the solid carbon conversion XC,solid for the REGA experiment TUC5 GHKS30 V1284.

Table 4.12: Predicted solid devolatilisation conversions Xdev,solid, predicted solid gasification conver-
sions Xhet,solid and predicted solid carbon conversions XC,solid for the REGA experiments
TUC5 GHKS10 V1071 and TUC5 GHKS30 V1284 at a nozzle distance of 680mm and near axis.

REGA experiment Case Xdev,solid

%
Xhet,solid

%
XC,solid

%
TUC5 GHKS10 V1071 S1 ≈ 85.4 ≈ 70.1 ≈ 71.8

S2 ≈ 91.7 ≈ 78.0 ≈ 79.5
S4 ≈ 83.1 ≈ 64.4 ≈ 66.4
S5 ≈ 90.2 ≈ 77.9 ≈ 79.3

TUC5 GHKS30 V1284 S1 ≈ 66.7 ≈ 47.5 ≈ 50.0
S2 ≈ 76.5 ≈ 56.0 ≈ 58.6
S3 ≈ 83.9 ≈ 57.6 ≈ 61.1
S4 ≈ 69.9 ≈ 52.4 ≈ 54.6
S5 ≈ 74.0 ≈ 55.5 ≈ 57.9
S6 ≈ 83.3 ≈ 59.5 ≈ 62.6
S7 ≈ 68.2 ≈ 51.8 ≈ 54.0
S8 ≈ 78.1 ≈ 69.2 ≈ 70.3
S9 ≈ 84.1 ≈ 64.4 ≈ 67.0
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Figure 4.40: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 GHKS10 V1071 in comparison with measured profiles. S1: baseline results;
S2: results obtained using devolatilisation rates increased by a factor of 2.
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Figure 4.41: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 GHKS30 V1284 in comparison with measured profiles. S1: baseline results;
S2: results obtained using devolatilisation rates increased by a factor of 2.
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Figure 4.42: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 GHKS10 V1071 in comparison with measured profiles. S4: results obtained
using heterogeneous gasification rates increased by a factor of 2; S5: results obtained using
devolatilisation rates and heterogeneous gasification rates increased both by a factor of 2.
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Figure 4.43: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 GHKS30 V1284 in comparison with measured profiles. S4: results obtained
using heterogeneous gasification rates increased by a factor of 2; S5: results obtained using
devolatilisation rates and heterogeneous gasification rates increased both by a factor of 2.
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Figure 4.44: Predicted profiles of gas temperature and dry gas species volume fractions for the REGA
experiment TUC5 GHKS30 V1284 in comparison with measured profiles. S1: baseline results;
S9: results obtained using devolatilisation rates increased by a factor of 5 and heterogeneous
gasification rates increased by a factor of 10.

Table 4.13: Balanced solid gasification conversions Xhet,solid of particles collected in the REGA experi-
ment TUC5 GHKS30 V1284 corresponding to the balanced solid carbon conversions XC,solid
given in Table 2.10.

Sample
Xhet,solid / %

Ca tracer method Mg tracer method balancing method

Particles sucked at 680mm 73.8 66.6 76.7
Particles sucked at exit 87.4 85.5 83.2

Specifically, too large wood char particles (as fragmentation due to atomisation and
devolatilisation was neglected) and too short residence times of wood char particles in
the flame region could have led to a lower solid devolatilisation conversion Xdev,solid and
a lower solid carbon conversion XC,solid. This observation is confirmed by the balanced
solid gasification conversions Xhet,solid that are given in Table 4.13 and were derived from
the balanced carbon conversions XC,solid assuming balanced solid devolatilisation con-
versions Xdev,solid = 1 and using the model equations described in Section 2.7.1. The
balanced solid gasification conversions Xhet,solid of 66-77% are already close to the predicted
gasification conversions Xhet,solid when using heterogeneous gasification rates increased by
a factor of 10. Thus, the predicted solid devolatilisation conversions Xdev,solid could be too
low.
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Furthermore, the predicted gas temperature distributions are shown for the REGA experi-
ment TUC5 GHKS10 V1071 in Fig. 4.45 and for the REGA experiment TUC5 GHKS30
V1284 in Fig. 4.46. The flames are thus characterised by irregular, stretched V-shapes
with quite high temperatures. In contrast, OH-LIF measurements indicated W-shapes for
the REGA experiments TUC5 V1105 and TUC5 GHKS30 V1284 [113, 114] and are also
expected by analogy for the REGA experiment TUC5 GHKS10 V1071. Therefore, the
injection properties combined with the turbulence-chemistry interaction model and the
HVI1 mechanism are likely inappropriate for the REGA experiments TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284.

TUC5 GHKS10 V1071 (S2)

TUC5 GHKS10 V1071 (S1)

300 620 940 1260 1580 1900 2220 2540 2860 3180 3500

Gas temperature / K

Figure 4.45: Predicted gas temperature distributions. TUC5 GHKS10 V1071 (S1): baseline results for the
REGA experiment TUC5 GHKS10 V1071; TUC5 GHKS10 V1071 (S2): results for the REGA
experiment TUC5 GHKS10 V1071 obtained using devolatilisation rates increased by a factor of 2.
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Figure 4.46: Predicted gas temperature distributions. TUC5 GHKS30 V1284 (S1): baseline results for the
REGA experiment TUC5 GHKS30 V1284; TUC5 GHKS30 V1284 (S2): results for the REGA
experiment TUC5 GHKS30 V1284 obtained using devolatilisation rates increased by a factor of 2.
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5 Conclusions

This thesis has been focussed on the numerical modelling and simulation of the atmospheric
entrained flow gasification of ethylene glycol and of mixtures of ethylene glycol and wood
char. Firstly, sub-models used for RANS based simulations of atmospheric entrained
flow gasification experiments have been described in Chapter 2. Specifically, improved
approaches have been presented for the inlet conditions and the injection properties (see
Section 2.2.4.4), the supply of infiltrated air and purge nitrogen (see Section 2.2.3.3)
and the devolatilisation kinetics (see Section 2.7.4.3). Subsequently, the simulation and
evaluation methods have been introduced in Chapter 3. In comparison with preceding
works [63, 64, 187], improved implementations and meshes were used to close the elemental
and energy balances (see Section 3.1). Finally, the numerical results have been presented
and compared with experimental flame shape observations [113, 114], experimental axial
droplet velocities [99, 100] and experimental radial profiles of gas temperature and dry gas
species concentrations [63, 64, 98, 99, 100] in Chapter 4. The conclusions based on the
comparisons and on further analysis of the numerical results are summarised below.

Sections 2.2.4.4, 4.1 and 4.9 The inlet conditions and the injection properties are de-
cisive for accurate flame predictions of atmospheric entrained flow gasification
experiments using RANS based simulations. In comparison with preceding works [63,
64, 187], the flame shapes have been well described for the gasification of ethylene
glycol due to appropriate injection properties derived from spray data of atomisa-
tion experiments with ethylene glycol. Furthermore, injection properties based on
deviating data or deviating methods already altered the flame shape predictions.
Injection properties are thus very sensitive for such RANS based simulations. For
the gasification of mixtures of ethylene glycol and wood char, adequate injection
properties have not been generated in this work as atomisation experiments with
ethylene glycol and wood char have been restricted by safety requirements.

Sections 2.2.3.3, 4.2, 4.8 and 4.9 The infiltrated air and the purge nitrogen were sup-
plied using source terms in the lateral wall boundary layer, whereas preceding
works [63, 101, 102, 187] supplied the infiltrated air and the purge nitrogen through
the nozzle. With the new approach, the uncertainties in the predictions of the
recirculation strength and length can be reduced without decreasing the numerical
stability. However, the predictions of the convection and radiation wall heat fluxes
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have been interfered at high flow rates of infiltrated air and purge nitrogen, while
the prediction of the total heat flux changed less due to the high wall temperatures.

Sections 4.5 and 4.6 The improved inlet conditions and injection properties slightly
changed the far-flame predictions of gas temperature and dry gas species concen-
trations for the gasification of ethylene glycol compared to the preceding works [63,
64, 187]. The far-flame predictions at nozzle distances of 300mm and 680mm were
in good agreement with the experimental results. Larger deviations were found in
the near-axis region at 300mm as a result of a too slow mass transfer of ethylene
glycol into the gas phase. Compared to the experiments and previous large eddy
simulations, the RANS based simulations using the common turbulence, turbulence
dispersion, turbulence-chemistry interaction models predicted shorter droplet resi-
dence times in the flame region and a significantly weaker mixing of ethylene glycol,
recirculating gas and gasification medium.

Section 4.7 The modified inlet conditions and injection properties did not change the
sensitivity of the turbulence model on the overall model predictions. Similar to the
preceding works [63, 187], the predictions of gas velocity, recirculation strength and
recirculation length clearly changed when using the standard k-ε model instead of
the SST k-ω model, while the far-flame predictions of gas temperature and dry gas
species concentrations were slightly affected only.

Sections 4.3 and 4.6 The revised implementations for the vaporisation model signifi-
cantly changed the mass transfer of ethylene glycol into the gas phase. Specifically,
the application of the 1/3 rule for the film factor shifted the mass transfer of ethylene
glycol into the gas phase to positions with larger nozzle distances compared to the
preceding works [63, 187].

Sections 3.1 and 4.8 The corrected implementations for the weighted-sum-of-grey-gas
model provided numerical results that can confirm previous conclusions concerning
the impact of the thermal gas radiation property model. Similar to the preceding
work [187], the gas and wall temperatures and the wall radiation heat fluxes were only
slightly changed when using a customised weighted-sum-of-grey-gas model instead
of a customised grey-gas model for the gasification of ethylene glycol.

Section 4.5 Three global reaction mechanisms (HVI1, eJL and eJL/A) and two reduced
reaction mechanisms (DLR2017/RK and DLR2017/RM) for ethylene glycol were
tested using the same numerical set-ups, as different entrained flow gasification
models and different solvers were applied in the preceding works [63, 101, 102,
187]. The HVI1 mechanism ensured accurate far-flame predictions of dry gas
species concentrations at low stiffness and is therefore recommended for preliminary
simulations. In contrast, the eJL mechanism and the eJL/A mechanism are not
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recommended for future simulations as both mechanisms are characterised by high
stiffness. Instead, the DLR2017/RM mechanism should be incorporated since it
guarantees reasonable flame and accurate far-flame predictions and is significantly
superior to the eJL mechanism and the eJL/A mechanism with respect to computing
time and to the DLR2017/RK mechanism with respect to accuracy.

Section 2.7.4.3 The reaction rates of the devolatilisation kinetics developed for beech
wood char are lower than the reaction rates of previous devolatilisation kinetics for
fir char [303]. This indicates that customised devolatilisation kinetics should be
derived for each wood char to reflect deviating devolatilisation behaviour due to
different chemical and physical properties.

Section 4.10 The far-flame predictions of gas temperature and dry gas species concen-
trations at nozzle distances of 300mm and 680mm for the gasification of mixtures
of ethylene glycol and wood char were in good to excellent agreement with the
experimental results. While the preceding works were challenged by elemental im-
balances [63, 64] or relied on estimated kinetics [101, 102], this work developed
a model for the atmospheric gasification of mixtures of ethylene glycol and wood
char using particle size distributions, devolatilisation kinetics and heterogeneous
gasification kinetics based on experiments. However, the model provided clearly
lower predictions for the solid carbon conversion at the nozzle distance of 680mm
compared to the experimental results. This cannot be explained even by significantly
increased reaction rates for both devolatilisation and heterogeneous gasification.
Therefore, other effects have caused the erroneous predictions. Higher solid carbon
conversions can be expected when the wood char particles break up due to both
atomisation and devolatilisation and stay longer in the flame region. Furthermore,
both the devolatilisation and heterogeneous gasification kinetics only slightly affected
the far-flame predictions of gas temperature and dry gas species concentrations
at nozzle distances of 300mm and 680mm. Accurate far-flame predictions for the
atmospheric gasification of mixtures with wood char contents of up to 30% are thus
possible within certain uncertainty limits of the wood char kinetics.

Thus, the improved inlet conditions and injection properties have provided superior flame
shape predictions of the gasification experiments with ethylene glycol. Furthermore, the
new devolatilisation kinetics combined with heterogeneous gasification kinetics developed
in parallel works [156] have been appropriate for far-flame predictions of gasification
experiments with mixtures of ethylene glycol and wood char. However, the accuracy of
some other models was not sufficient in this work. Specifically, the adopted common
models for turbulent mixing and turbulent dispersion led to erroneous predictions of fuel
conversion. Furthermore, the incomplete experimental basis for the injection properties
was detrimental for appropriate flame shape predictions of the gasification experiments
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with mixtures of ethylene glycol and wood char. In summary, RANS based models for the
atmospheric entrained flow gasification of surrogate fuels were developed and validated for
the far-flame region but may be revised in future studies to improve the mathematical
description of the flame region.

Future experimental research should focus on atmospheric atomisation experiments with
mixtures of ethylene glycol and wood char and on atmospheric drop-tube reactor experi-
ments with wood char:

1. The atomisation experiments should provide data for the droplet size, droplet velocity
and droplet composition distributions.

2. The atmospheric drop-tube reactor experiments with wood char should provide data
to improve or validate the heterogeneous gasification kinetics at high-temperature
conditions.

Future numerical research should focus on both large eddy simulations and RANS based
simulations:

1. Large eddy simulations combined with the volume-of-fluid method should be applied
to previous and future atomisation experiments for model validation and verification
of the experimental and numerical findings.

2. Large eddy simulations combined with the DLR2017/RM mechanism and the volume-
of-fluid method should be applied to the gasification experiments with ethylene glycol.
Infiltrated air and purge nitrogen should be provided as source terms in the near
boundary layer. However, to reduce the impact on the lateral wall radiation heat
flux, the source terms may be defined at the top wall instead of the lateral wall.

3. RANS based simulations of the gasification experiments with mixtures of ethylene
glycol and wood char should be continued as soon as spray experiments or large
eddy simulations can provide appropriate data for the injection properties. Then,
the wood char kinetics compiled in this work can be tested further. If the numerical
results are in good agreement with the experimental results, large eddy simulations
should be applied to the gasification experiments with mixtures of ethylene glycol
and wood char.
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A Plant descriptions

This chapters provides additional information on the bioliq EFG plant in Section A.1 as
well as detailed information on the REGA plant in Section A.2, on the ATMO plant in
Section A.3 and on the DTR plant in Section A.4.

A.1 bioliq entrained flow gasifier (bioliq EFG)

Table A.1: Characteristic plant properties of the bioliq EFG reactor [87]

Quantity Value

Operating pressure 40/80 bar
Fuel slurry and natural gas
Thermal input of slurry 3.5-4.5MW
Thermal input of natural gas 0-1MW
Gasifier temperature 1300-2000K
Adiabatic temperature 1900-2550K
Residence time 10-15 s
Gas-to-liquid ratio 1-1.8
Stoichiometric ratio 0.45-0.63
Cold gas efficiency 53-72%
Slurry mass flow rate 650-900 kg/h
Synthesis gas mass flow rate 1200-1800 kg/h
Slag mass flow rate 30-90 kg/h

Table A.2: Characteristic properties of slurries applied in the bioliq EFG reactor [87].

Quantity Value

Lower heating value 14-22MJ/kg
Solid content < 30%
Ash content 3-10%
Particle sizes up to 1mm, usually < 100µm
Viscosity up to 1 Pa at 70 ◦C
Pre-heat temperature 40-120 ◦C
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Figure A.1: Sketch of the bioliq EFG plant [87].

Table A.3: Characteristic properties of synthesis gas produced in the bioliq EFG reactor [87].

Quantity Value

H2 volume fraction 26-34%
CO volume fraction 27-39%
CO2 volume fraction 14-28%
CH4 volume fraction < 0.1%
N2 volume fraction 12-15%
H2/CO volume fraction ratio 0.75-1.1
Lower heating value 5.5-8.5MJ/kg
H2S and COS volume fraction 50-100mg/m3 (STP)
HCl volume fraction 0-300mg/m3 (STP)
NH3 and HCN volume fraction 200-2000mg/m3 (STP)
Tar concentration 0-20000mg/m3 (STP)
Particle concentration 103-105mg/m3 (STP)

Table A.4: Characteristic properties of slags discharged from the bioliq EFG reactor [87].

Quantity Value

Si mass fraction 20-32%
K mass fraction 10-25%
Ca mass fraction 5-10%
Mg mass fraction 1-2%
P mass fraction 0.7-1.6%
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A.2 Atmospheric research entrained flow gasifier (REGA)

The atmospheric research entrained flow gasifier (REGA) is used for atmospheric gasifica-
tion experiments with surrogate and technical fuels and is shown in Figs. A.2 and A.3.
The plant consists of five major parts: the fuel and gasification medium supply, the reactor
with measurement equipment, the synthesis gas cooler, the quench and the flare for the
combustion of the exhaust gas [98].

Cooler

Filter

Electric
heating

Quench

Flare
Fuel tank

Reactor

Cooler

Filter

Gas analyser

Gasification medium

Slag collector

Flue

Figure A.2: Sketch of the REGA plant [98].

In the fuel and gasification medium supply, the fuel can be heated up to a temperature
of 80 ◦C ensuring the pumpability while the dry air can be enriched with oxygen; the
oxygen content in volume fraction is limited to 70% for safety reasons [98]. Furthermore,
nitrogen is provided for purging of the reactor and for purging of the sight glasses which
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are used for laser-based measurements. The mass flow rate of the fuel stream is adjusted
using a Coriolis mass flow controller while the volume flow rates of the gas streams are
determined by thermal flow controllers based on hot wire anemometry [98]. Table A.6
summarises the measurement ranges and the measurement accuracies.

Table A.5: Characteristic plant properties of the REGA reactor [98].

Quantity Value

Operating pressure atmospheric
Synthesis gas temperature up to 1600 ◦C
Wall temperature up to 1195 ◦C
Thermal heating power up to 60 kW
Synthesis gas volume flow rates up to 80m3/h

Table A.6: Measurement ranges and measurement accuracies for the flow rates at the REGA plant [98].

Stream Measurement range Measurement accuracy

Fuel 0-20 kg/h ± 0.04 kg/h
Air 0-20m3/h (STP) ± 0.04m3/h (STP)
O2 0-20m3/h (STP) ± 0.04m3/h (STP)
N2 0-4.2m3/h (STP) ± 0.004m3/h (STP)

The reactor consists of a cylindrical ceramic tube with multiple lateral ports and of a
vertically movable top [136]. This enables measurements at a large continuous range
of nozzle distances [136]. The insulated tube has got an inner diameter of 280 mm and
a length of 2772 mm (see Fig. C.3) and can be heated up to a maximum temperature
of 1195 ◦C using three lateral electric heating zones [136]. The heat loss of the gasifier is
consequently minimised enabling near-adiabatic operating conditions [136]. The top is
insulated and has a round opening for the burner nozzle [136]. The nozzle configuration can
be adapted with respect to dimension, angle of attack and fluid arrangement. The reactor
operates under slightly sub-atmospheric pressure for safety reasons and for minimising air
infiltration. The mean gas residence times are approximately 1-10 s [98, 136].

In addition to laser-based measurements, intrusive measurements are carried out:

• Gas temperatures are measured using ceramic shielded type S thermocouples at fixed
axial positions and using type B double bead thermocouples with bead diameters
of 300 µm and 1500 µm at variable positions. Temperatures of the bead thermocouples
are corrected by accounting for radiation and assuming a wall temperature of
1200 ◦C [96, 98].

• Gas species concentrations are determined at outlet and at variable positions. For this
purpose, gas samples are extracted from the reactor using cooled steel probes with a
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ceramic tip, then quenched by thermal oil at 80 ◦C and filtered [98]. After further
cooling to 3 ◦C, gas sub-samples are analysed based on standard measurement prin-
ciples (ABB) and micro gas chromatography (Agilent Technologies 490 Micro GC);
concentrations of CH4, CO, CO2, H2, O2 and N2 are determined as dry volume
fractions [98, 99, 100]. In addition, the concentration of organic carbon is measured
as (wet) mass concentration [98]. In order to reduce measurement uncertainties
including uncertainties due to cross sensitivities of CO and CO2 in NDIR sensors,
the gas analysers are calibrated using reference gases with compositions comparable
to synthesis gas [98, 99, 100]. Table A.7 lists the measurement principles applied
and the measurement ranges (in volume fractions). Standard measurement methods
(ABB) are usually applied for the major species and are affected by relative maximum
uncertainties of ± 2% [98, 99, 100].

Table A.7: Measurement principles and measurement ranges (in volume fractions) for gas species
concentrations at the REGA plant [98].

Species Measurement principle Measurement range

CH4 NDIR (ABB) 0-0.10
CO NDIR (ABB) 0-0.50
CO2 NDIR (ABB) 0-0.30
H2 Thermal conductivity (ABB) 0-0.50
O2 Paramagnetism (ABB) 0-0.15

CH4 µGC (Agilent Technologies) 0-10%
CO µGC (Agilent Technologies) 0-50%
CO2 µGC (Agilent Technologies) 0-30%
H2 µGC (Agilent Technologies) 0-50%

• Particles are extracted from the reactor using a ceramic suction probe and a high-
separation, high-temperature candle filter operating at a temperature of 300 ◦C and
a volume flow rate of 2 m3/h (STP) [99]. In order to obtain a sufficient amount of
particles, suction is carried out for up to 2 h [99].

• Droplet velocities and droplet diameters are determined using a two-dimensional
Phase-Doppler Anemometry (PDA) system operating in backward scattering mode
due to the limited optical access into the reactor and applying a lens with 1000 mm
focal length [98].

• OH-LIF images are determined using an image intensifier (LaVision IRO), using a
CMOS-camera (LaVision Imager M-Lite 2M) and using a bandpass filter (LaVision,
λ = 320 nm, FWHM = 40 nm) [114]. Images are recorded in 20mm steps with
500 images at each position and are subsequently averaged and corrected [114].
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E0

E1
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E3
Twall

Tgas, xi,gas,dry

Tgas

Tgas

Tgas

Tgas

Tgas, xi,gas,dry

Fuel

Synthesis gas

Nozzle

Gasification medium

Tgas

Twall

Twall

xi,gas,dry

Figure A.3: Sketch of the REGA reactor [98].

A.3 Atmospheric spray test rig (ATMO)

The atmospheric spray test rig (ATMO) is used for atmospheric atomisation experiments
and is shown in Fig. A.4. It is composed of four parts: the liquid and compressed air
supply, the atomiser mounted on a lance and positioned in an open surrounding, the
measurement equipment and a collecting tank.

Table A.8: Characteristic plant properties of the ATMO plant [265].

Quantity Value

Operating pressure atmospheric
Operating temperature 10-50 ◦C
Liquid mass flow rate 5-50 kg/h
Air mass flow rate 0-20 kg/h
Liquid viscosity 1-1000mPa s
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Figure A.4: Sketch of the ATMO plant [265].

The compressed air is provided from an internal network to the lance with a pressure up
to 5 bar while the liquid is transported from an atmospheric stirred tank to the lance using
an eccentric screw pump [265]. The tank can be heated up to a temperature of 80 ◦C in
order to enable the use of liquids with viscosities between 1mPa s and 1000mPa s [265].
Mass flow rates of liquid are determined by a Coriolis mass flow controller, and the
mass flow rates of air are measured by a volume flow controller based on the principle of
electromagnetic induction [265].
After atomisation and passing the measurement plane, the liquid enters the collecting
tank via a honeycomb structure [265]. The honeycomb structure straightens the flow and
avoids recirculation of droplets [265]. In the collecting tank, the liquid is separated from
the air using an impact plane [265].
In addition to two-dimensional Phase-Doppler Anemometry measurements for droplet
size and droplet velocity distributions, high-speed camera and shadow-sizer imaging are
carried out. All measurements are evaluated using the spray characterisation toolbox
SprayCat [265]. Detailed description of the measurement and evaluation techniques applied
can be found elsewhere [265].
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A.4 Drop-tube reactor (DTR)

The drop-tube reactor (DTR) is applied for atmospheric, high-temperature experiments
with solid fuels and is shown in Fig. A.5. It consists of the fuel and gas supply, the reactor,
the gas phase measurement unit and the particle extraction unit.

Cooler

Cooler

Cyclone

Flue

Housing

Electric
heating

Solid
dosage

testssfad

Ar

N2

Gas quench
N2

Dosing tube

Reaction tube
Heating tube

Reactor

Char collector

Cooler

Filter

Gas analyser

Filter

Pressure control

Figure A.5: Sketch of the DTR plant [279].

The reactor, which is based on a commercial oven (HTM Reetz LORA1700-70-30), consists
of an outer enclosure with insulation and heating and of three ceramic tubes made of
Al2O3 (see also Fig. C.4): a heating tube, a reaction tube and a dosing tube [68]. The
heating tube (length: 1800mm, inner diameter: 70.5mm, thickness: 6.25mm) is wrapped
with W-Mo heating coils [68]. The heating coils, flushed with Ar and combined with
a control system (HTM Reetz), provide three heating zones with lengths of 200mm,
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920mm and 200mm [68]. The upper heating zone is used for heating-up of both gas and
solid [68] up to maximum temperatures of 1650 ◦C for long-term operation and of 1700 ◦C
for short-term operation. The centre heating zone is assumed to be isothermal, and the
lower heating zone is used to reduce the heat loss at outlet [68]. The reaction tube (length:
2100mm, inner diameter: 20mm), thickness: 2.5mm) is positioned axially inside the
heating tube, while the dosing tube (length: 810mm, inner diameter: 4mm, thickness:
1mm) is inserted into the reaction tube in such a way that the lower end is located at the
beginning of the second heating zone [68]. At the upper end of the dosing tube, a powder
disperser (Schenck Process PureFeed DP-4) is mounted [68]. Solid particles filled in the
disperser are fed to a gas stream, that enters the dosing tube, using a speed-controlled scale
and a hopper [68]. Another gas stream enters the reactor through the annular gap between
the dosing and the working tube [68]. Both gas streams are controlled using pre-calibrated
mass flow controllers (Bronkhorst EL-Flow) [68]. The dosing stream contains Ar while
N2 or CO2 may be used for the annular gap stream [68]. The reactor is operated under
slightly super-atmospheric pressure [68]. The pressure is measured at the reaction tube
inlet and is controlled using two valves and a vacuum pump located after the particle
extraction unit [68].

Table A.9: Characteristic plant properties of the DTR plant [303].

Quantity Value

Operating pressure atmospheric
Gas temperature up to 1700 ◦C
N2 volume flow rates 0-40 l/min
CO2 volume flow rates 0-40 l/min
Ar volume flow rates 0-10 l/min
Solid mass flow rates 1-10 g/min
Residence times in isothermal zone ≈ 0.1-1 s
Solid particle diameters 3-200 µm

At the outlet of the reaction tube, gas samples are extracted from the gas stream and are
subsequently filtered, quenched and transferred to a micro gas chromatograph (Agilent
Technologies 490 Micro GC), which is calibrated using reference gases [68]. After the
sample extraction, the gas stream is quenched by a cooler and N2 and enters a cyclone
separator [68]. After separation of most of the particles, the remaining particles are
collected using a candle filter (HEPA) [68].
In addition to continuous gas species concentration measurements, single temperature
measurements using a type B thermocouple are performed at the outer surfaces of the
reaction tube and the dosing tube while temperature measurements inside the reactor are
carried out by introducing the type B thermocouple through the inlet of the reactor [68].
The latter measurements are used for the calibration of the heating zones [68].
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ṁ
fu
el

kg
/h

ṁ
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C Technical drawings

This chapter provides the simplified technical drawings for the CFD geometries. The
drawings of the nozzles are summarised in Section C.1 while the drawings of the reactors
are given in Section C.2.

C.1 Nozzles

In the ATMO and REGA experiments, four different twin fluid external mixing nozzles
were applied for atomisation: D1, D2, D1.1 and D2.1. The cross-sections of the lower
parts of the nozzles D1 and D2 are shown in Fig. C.1 while the cross-sections of the lower
parts of the nozzles D1.1 and D2.1 are depicted in Fig. C.2. All nozzles are characterised
by central ducts and first cylindrical and then concentric annuli. The continuous liquid or
slurry is typically fed trough the central ducts while the gas is supplied through the annuli.
The nozzle D1 was used in the ATMO experiment TUC3 D1 and in the REGA exper-
iments TUC3 V479 and TUC3 V786 while the nozzle D2 was applied in the ATMO
experiment TUC5 D2 and in the REGA experiments TUC5 V1105, TUC5 GHKS10 V1071
and TUC5 GHKS30 V1284. The nozzles D1.1 and D2.1 are modified versions of the
original nozzles and were used in the ATMO experiments TUC5 D1.1 and TUC5 D2.1
and in the REGA experiment V1374. The cross-sections of the nozzles D1 and D2 were
only accounted for in the preceding works [63, 64, 185, 186, 187].
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C Technical drawings
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Figure C.1: Cross-sections of nozzle D1 (left) and nozzle D2 (right) [98, 99]. Dimensions are given in mm.
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Figure C.2: Cross-sections of nozzle D1.1 (left) and nozzle D2.1 (right) [113]. Dimensions are given in mm.

C.2 Reactors

The cross-sections of the REGA reactor and the DTR reactor are shown in Fig. C.3 and
in Fig. C.4, respectively.
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Figure C.3: Cross-section of the REGA reactor. Dimensions are given in mm.
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Figure C.4: Cross-section of the DTR reactor. Dimensions are given in mm.
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D Experimental results

This chapter summarises some experimental results of the ATMO experiments and the
REGA experiments. Section D.1 provides the droplet diameter distributions of the ATMO
experiments TUC3 D1, TUC5 D2, TUC5 D2.1 and TUC5 D2.1 and the characteristic
values of the ATMO experiments TUC3 D1 and TUC5 D2. Section D.2 lists the data
from the REGA experiments.

D.1 ATMO experiments

The droplet diameter distributions of the ATMO experiments TUC3 D1, TUC5 D2,
TUC5 D2.1 and TUC5 D2.1 are depicted in Section D.1.1. The characteristic values of
the ATMO experiments TUC3 D1 and TUC5 D2 are shown in Section D.1.2.

D.1.1 Droplet diameter distributions
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Figure D.1: Number-based cumulative distributions Q0 and mass-based cumulative distributions Q3 of the
particle diameters at various radial positions based on the ATMO experiment TUC3 D1 [98, 137].
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Figure D.2: Number-based cumulative distributions Q0 and mass-based cumulative distributions Q3 of the
particle diameters at various radial positions based on the ATMO experiment TUC5 D2 [137].
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Figure D.3: Global number-based cumulative distributions Q0 and global mass-based cumulative distribu-
tions Q3 of the particle diameters based on the ATMO experiments TUC3 D1 and TUC5 D2 [98,
137]. Fits for the global number-based cumulative distributions Q0 were obtained using gamma
distribution while fits for the global mass-based cumulative distributions Q3 were determined
using Weibull distributions.
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Figure D.4: Number-based cumulative distributions Q0 and mass-based cumulative distributions Q3 of the
particle diameters at various axial positions based on the ATMO experiment TUC5 D2.1 [98, 137,
113].
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Figure D.5: Number-based cumulative distributions Q0 and mass-based cumulative distributions Q3 of the
particle diameters based on the ATMO experiments TUC3 D1, TUC5 D2, TUC5 D1.1, TUC5 D2.1
and TUC5 PO D2.1 [113].

171



D Experimental results

D.1.2 Characteristic values
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Figure D.6: Characteristic particle diameters dpart, characteristic axial particle velocities upart,ax, characteristic
radial particle velocities upart,rad, characteristic axial gas velocities ugas,ax and characteristic radial
gas velocities ugas,rad based on the ATMO experiment TUC3 D1 [98, 137]. Subscripts: 10,0:
number-based 10th percentile value; 10,3: mass-based 10th percentile value; 50,0: number-based
50th percentile value; 50,3: mass-based 50th percentile value; 90,0: number-based 90th percentile
value; 90,3: mass-based 90th percentile value; S: Sauter.
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Figure D.7: Characteristic particle diameters dpart, characteristic axial particle velocities upart,ax, characteristic
radial particle velocities upart,rad, characteristic axial gas velocities ugas,ax and characteristic radial
gas velocities ugas,rad based on the ATMO experiment TUC5 D2 [98, 137]. Subscripts: 10,0:
number-based 10th percentile value; 10,3: mass-based 10th percentile value; 50,0: number-based
50th percentile value; 50,3: mass-based 50th percentile value; 90,0: number-based 90th percentile
value; 90,3: mass-based 90th percentile value; S: Sauter.
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D.2 REGA experiments

The measured profiles of gas temperature, dry gas species volume fraction and axial
droplet velocity, used in Chapters 4 and J, are given in Tables D.1 and D.2. Note that the
undisturbed sections of the radial profiles of gas temperatures and dry gas species volume
fractions were mirrored for each experiment (see [98, 99, 100]).

Table D.1: Measured axial droplet velocities upart,ax from the REGA experiments [98, 99].

.

REGA experiment x1

mm
x2

mm
upart,ax

m/s

TUC3 V479 / TUC3 V786 30 0 66.8
40 0 70.1
50 0 73.8
60 0 75.0
70 0 76.4
80 0 77.0
90 0 77.3
100 0 72.8
125 0 71.8
150 0 72.1
190 0 71.9
210 0 70.3

TUC5 V1105 10 0 58.6
25 0 64.0
30 0 64.9
40 0 65.8
50 0 72.7
75 0 69.6
100 0 64.4
150 0 60.1
200 0 58.0
250 0 53.5
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E.1 Mathematical methods

The approximations described in Sections 2.2.4.4 and 2.2.4.5 were performed using cubic
smoothing spline interpolations, minimisation methods, bell-shaped functions and distri-
bution functions.
Cubic smoothing spline interpolations were applied using the csaps method of csaps [91]
with a smoothing factor of 0.02 while the minimisations were performed using the
least_squares method of SciPy [280, 327] based on the Trust Region Reflective method.
From various bell-shaped functions, only the generalised Gaussian probability density
(GGPD) function qGGPD and the generalised membership bell-shaped (GMBS) func-
tion qGMBS were eventually used in this work. The GGPD function qGGPD is given
by

qGGPD = a exp
−1

2

(
x− b
c

)2
 , (E.1)

where a = 1, b and c are the shape parameters. The GMBS function qGMBS is defined by

qGMBS = 1

1 +
∣∣∣x−b
c

∣∣∣2 |d| , (E.2)

where b, c and d are the shape parameters. Additionally, the GGPD function qGGPD and
the GMBS function qGMBS were combined using a weighting factor w. The combined
function qGGPD/GMBS is given by

qGGPD/GMBS = w qGGPD + (1− w) qGMBS . (E.3)

E.2 Gamma and Weibull distributions

Two distribution functions were applied for the droplet diameter approximations in
the preceding works [63, 64, 187], the gamma (γ) distribution and the Weibull (W)
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distribution. For the gamma distribution, the probability density function qγ and the
cumulative distribution function Qγ are defined by

qγ = 1
Γ (α)

(
dpart/µm

β

)α−1

exp
(
−dpart/µm

β

)
(E.4)

Qγ = 1
Γ (α) γ (α, dpart) , (E.5)

where α and β are the shape parameters of the gamma distribution, Γ (α) is the gamma
function and γ (α, dpart) is the lower incomplete gamma function.
For the Weibull distribution, the probability density function qW and the cumulative
distribution function QW are defined by

qW = k

λ

(
dpart/µm

λ

)k−1

exp
−(dpart/µm

λ

)k , (E.6)

QW = 1− exp
−(dpart/µm

λ

)k , (E.7)

where k and λ are the shape parameters of the Weibull distribution.

Table E.1: Shape parameters α and β for the gamma distributions used to approximate the number-based
droplet diameter distributions.

ATMO experiment α β

TUC3 D1 1.442 13.847
TUC5 D2 2.328 12.057
TUC5 D1.1 2.265 13.783
TUC5 D2.1 1.863 20.442

Table E.2: Shape parameters k and λ for the Weibull distributions used to approximate the mass-based droplet
diameter distributions.

ATMO experiment k λ

TUC3 D1 1.776 100.893
TUC5 D2 1.987 87.686
TUC5 D1.1 1.868 105.217
TUC5 D2.1 1.855 189.669
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Figure E.1: Normalised mass flux and velocity distributions based on the ATMO experiment TUC3 D1 and
applied to derive the injection properties for the CFD simulations of the REGA experiments
TUC3 V479 and TUC3 V786.
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Figure E.2: Normalised mass flux and velocity distributions based on the ATMO experiment TUC5 D2 and
applied to derive the injection properties for the CFD simulations of the REGA experiment
TUC5 V1105.
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Figure E.3: Normalised mass flux and velocity distributions based on the ATMO experiment TUC5 D2.1
and applied to derive the injection properties for the CFD simulations of the REGA experiment
TUC5 V1105.
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Figure E.4: Normalised mass flux and velocity distributions based on the ATMO experiment TUC5 D1.1
and applied to derive the injection properties for the CFD simulations of the REGA experiment
TUC5 V1374.
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Figure E.5: Injection distributions of the ethylene glycol droplets based on the ATMO experiment TUC3 D1
and used for the CFD simulations of the REGA experiment TUC3 V479.
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Figure E.6: Injection distributions of the ethylene glycol droplets based on the ATMO experiment TUC3 D1
and used for the CFD simulations of the REGA experiment TUC3 V786.
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Figure E.7: Injection distributions of the ethylene glycol droplets based on the ATMO experiment TUC5 D2
and used for the CFD simulations of the REGA experiment TUC5 V1105.
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Figure E.8: Injection distributions of the ethylene glycol droplets based on the ATMO experiment TUC5 D2.1
and used for the CFD simulations of the REGA experiment TUC5 V1105.
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Figure E.9: Injection distributions of the ethylene glycol droplets based on the ATMO experiment TUC5 D1.1
and used for the CFD simulations of the REGA experiment TUC5 V1374.
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Figure E.10: Injection distributions of the ethylene glycol droplets used for the CFD simulations of the REGA
experiment TUC5 GHKS10 V1071.
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Figure E.11: Injection distributions of the wood char particles used for the CFD simulations of the REGA
experiment TUC5 GHKS10 V1071.
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Figure E.12: Injection distributions of the ethylene glycol droplets used for the CFD simulations of the REGA
experiment TUC5 GHKS30 V1284.
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Figure E.13: Injection distributions of the wood char particles used for the CFD simulations of the REGA
experiment TUC5 GHKS30 V1284.
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This chapter provides the model equations for the physical properties of the gas phase,
the liquid phase and the solid phase. Firstly, the approaches for the molar masses, the
molar and specific standard enthalpies, the molar and specific standard entropies and
the Lennard-Jones diameters and energy parameters are presented in Sections F.1-F.4.
Subsequently, the physical properties of the gas phase, the liquid phase and the solid phase
are focussed in Sections F.5-F.7.

F.1 Molar masses

The molar masses M were mainly obtained from the thermodynamic data of the reaction
mechanisms and from the databases of NASA [196]. Furthermore, the molar mass of the
volatiles Mvol was calculated by

Mvol =
∑

k=CH4,CO,
CO2,H2,H2O,N2

xk,volMk , (F.1)

where xk,vol is the volatiles species mole fraction of species k and Mk is the molar mass of
species k.

F.2 Molar standard enthalpies and molar standard
entropies

The molar standard gas enthalpies at reference temperature H−◦gas,ref and the molar standard
gas entropies at reference temperature S−◦gas,ref were obtained from the thermodynamic
data of the reaction mechanisms and from the databases of NASA [196]. Furthermore,
the molar standard gas enthalpy of the volatiles at reference temperature H−◦vol,gas,ref and
the molar standard gas entropy of the volatiles at reference temperature S−◦vol,gas,ref were
determined by

H
−◦
vol,gas,ref =

∑
xk,volH

−◦
k,gas,ref where k = CH4, CO, CO2, H2, H2O , (F.2)
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S
−◦
vol,gas,ref =

∑
xk,vol S

−◦
k,gas,ref where k = CH4, CO, CO2, H2, H2O , (F.3)

where xk,vol is the volatiles species mole fraction of species k, Hk,gas,ref is the molar standard
gas enthalpy at reference temperature and Sk,gas,ref is the molar standard gas entropy of
species k at reference temperature.

F.3 Specific standard enthalpies and specific standard
entropies

The specific standard gas enthalpies at reference temperature Ĥ−◦gas,ref and the specific
standard gas entropies at reference temperature Ŝ−◦gas,ref were calculated from the molar
standard gas enthalpies at reference temperature H−◦gas,ref and the molar standard gas
entropies at reference temperature S−◦gas,ref. The specific standard gas enthalpy of species i
at reference temperature Ĥ−◦i,gas,ref and the specific standard gas entropy of species i at
reference temperature Ŝ−◦i,gas,ref is given by

Ĥ−◦i,gas,ref =
H
−◦
i,gas,ref

Mi

, (F.4)

Ŝ−◦i,gas,ref =
S
−◦
i,gas,ref

Mi

, (F.5)

where H−◦i,gas,ref is the molar standard gas enthalpy of species i at reference temperature, Mi

is the molar mass of species i and S−◦i,gas,ref is the molar standard gas entropy of species i
at reference temperature.

F.4 Lennard-Jones diameters and Lennard-Jones energy
parameters

The Lennard-Jones diameters σ and the Lennard-Jones energy parameters ε were obtained
from the transport data of the reaction mechanisms.

F.5 Gas phase

The physical properties of the gas phase include the molar mass Mgas, the density ρgas, the
dynamic viscosity ηgas, the thermal conductivity λgas, diffusion coefficients Dgas, the specific
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heat capacity Ĉp,gas, the specific physical enthalpy Ĥphys,gas and the specific entropy Ŝgas.
The model equations used in this work are given in Sections F.5.1-F.5.8.

F.5.1 Molar mass

The molar mass of the gas phase Mgas was determined by

Mgas =
∑
i

xi,gasMi =
(∑

i

wi,gas
Mi

)−1

, (F.6)

where xi,gas is the gas species mole fraction of species i, wi,gas is the gas species mass
fraction of species i and Mi is the molar mass of species i.

F.5.2 Density

The gas density ρgas was calculated by

ρgas = Mgas

V gas
, (F.7)

where Mgas is the molar mass of the gas phase and V gas is the molar gas volume. The
latter was determined using the incompressible ideal gas equation of state by

V gas = RTgas
pop

, (F.8)

where R is the molar gas constant, Tgas is the gas temperature and pop is the operating
pressure.

F.5.3 Dynamic viscosity

The dynamic gas viscosity ηgas was calculated using the Wilke mixing rule by [338]

ηgas =
∑
i

 ηi
1 + 1

xi,gas

∑
j
j 6=i

(xj,gas ϕi,j)

 , (F.9)

where

ϕi,j =

(
1 + (ηi,gas/ηj,gas)1/2 (Mj/Mi)1/4

)2√
8 (1 +Mi/Mj)

for i 6= j (F.10)
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and [16, 244]

ηi,gas = 2.669 · 10−6

√
Mi

g/mol
Tgas
K(

σi

Å

)2
Ωηi,gas

Pa s (F.11)

is the dynamic gas viscosity of species i. The collision integral for the dynamic gas viscosity
of species i is given by

Ωηi,gas = A

T̃Bi,gas
+ C

exp
(
D T̃i,gas

) + E

exp
(
F T̃i,gas

) , (F.12)

where

T̃i,gas = kB Tgas
εi

(F.13)

is a dimensionless temperature and A, B, C, D, E and F are coefficients, which are given
in Table F.1.

Table F.1: Coefficients A, B, C , D, E and F for the calculation of the collision integral for the dynamic gas
viscosity of species i Ωηi ,gas [244].

A B C D E F

1.161 45 0.148 74 0.524 87 0.773 20 2.161 78 2.437 87

F.5.4 Thermal conductivity

The thermal gas conductivity λgas was determined using the Wilke mixing rule by [338]

λgas =
∑
i

 λi,gas
1 + 1

xi,gas

∑
j
j 6=i

(xj,gas ϕi,j)

 (F.14)

where

ϕi,j =

(
1 + (ηi,gas/ηj,gas)1/2 (Mj/Mi)1/4

)2√
8 (1 +Mi/Mj)

for i 6= j (F.15)

and [16, 92, 93, 244]

λi,gas = 15
4
ηi,gasR

Mi

(
4
15

Ĉp,i.gasMi

R
+ 1

3

)
, (F.16)
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is the thermal gas conductivity of species i. Ĉp,i,gas is the specific gas heat capacity of
species i.

F.5.5 Diffusion coefficients

The gas diffusion in an ideal multi-component mixture at constant pressure is described
by the Stefan-Maxwell equation [306, 309]

cgas∇xi,gas = −
Nsp∑
j=1

xj,gas ̇n,i,gas − xi,gas ̇n,j,gas

Di,j,gas
, (F.17)

where cgas = pgas/
(
RTgas

)
is the molar gas concentration, ̇n,i,gas and ̇n,j,gas are molar

fluxes of species i and j in the gas phase, respectively, and Di,j,gas is the binary gas diffusion
coefficient of species i in species j. The molar flux of species i in the gas phase ̇n,i,gas is
described by [306, 309]

̇n,i,gas = cgas xi,gas (ui,gas − ugas) , (F.18)

where ui,gas is the gas velocity of species i and ugas is the gas velocity. By combining this
equation with

̇n,i,gas = −cgasDi,gas,eff∇xi,gas , (F.19)

the effective gas diffusion coefficient for species i Di,gas,eff is obtained as [306, 309]

Di,gas,eff =
cgas xi,gasui,gas − xi Nsp∑

j=1
cgas xj,gasuj,gas


cgas xi,gasui,gas Nsp∑

j=1
j 6=i

xj,gas
Di,j,gas

− xi
Nsp∑
j=1
j 6=i

cgas xj,gasuj,gas
Di,j,gas


−1

.
(F.20)

Assuming a stagnant mixture, further simplification leads to [306, 309]

Di,gas,eff = 1− xi,gas∑Nsp
j=1
j 6=i

xj,gas
Di,j

. (F.21)

This equation is valid for a stagnant mixture only but is typically used for all mixtures [306].
It is a compromise between assuming a constant gas diffusion coefficient for all species
and calculating the Fickian diffusion coefficients Fgas = (Fi,j,gas). In the latter case, the
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gas species mass flux of species i

Jm,i,gas = ρgaswi,gas ui,gas − wi,gas ṁgas (F.22)

is accounted for, and the Stefan-Maxwell equation is transformed to [306, 309]

ρgas∇xi,gas = −
Nsp∑
j=1
j 6=i

M2
gas

MiMj

1
Di,j,gas

(wj,gas ̇m,i,gas − wi,gas ̇m,j,gas) (F.23)

by employing the gas species mass fluxes ̇m,i,gas and ̇m,j,gas and substituting the gas
species mole fractions xi,gas and xj,gas on the right hand side by the gas species mass
fractions wi,gas and wj,gas. Due to the relationship

Jm,N ,gas = −
Nsp−1∑
j=1
j 6=i

Jm,i,gas (F.24)

between the gas species mass fluxes, further transformation of the right hand side leads
to [306, 309]

ρgas∇xi,gas = Li,i Jm,i,gas +
Nsp−1∑
j=1
j 6=i

Li,j Jm,j,gas , (F.25)

where L = (Li,j) is a matrix with the coefficients [306, 309]

Li,i = −

 wi,gasM
2
gas

MiMNsp Gi,Nsp

+
Nsp∑
j=1
j 6=i

wj,gasM
2
gas

Gi,jMiCMj

 , (F.26)

Li,j = −
wi,gasM

2
gas

Mi

(
1

Gi,jMj

− 1
Gi,Nsp MNsp

)
. (F.27)

As the species balance equation is typically written using the mass fraction gradient of
species i ∇wi,gas, the left hand side of the Stefan-Maxwell equation needs to be rearranged
by a transformation matrix [306, 309]

T = (Ti,j) = − (I xgas) (I wgas)−1P , (F.28)

where [306, 309]

Ti,j = − xi,gas
wi,gas

(
δi,j − wi,gas

(
Mgas

Mj

− M

MNsp

))

= −Mgas

Mi

(δi,j − xi,gas)− xi,gas
Mgas

MNsp

(F.29)
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and P is a further transformation matrix [306, 309]. By comparing the final transformed
Stefan-Maxwell equation [306, 309]

−ρgas T ∇wgas = L ̇m (F.30)

with the species balance equation, the relationship for the Fickian matrix is found as [306,
309]

Fgas = L−1 T . (F.31)

The binary gas diffusion coefficient of species i in species j Di,j,gas can be described by the
Chapman-Enskog equation. Assuming ideal gas behaviour, the equation is given by [244]

Di,j,gas = 3
16

(
4 π kB Tgas

Mi,j

)1/2
kB Tgas

pgas π σ2
i,j ΩDi,j,gas

fD , (F.32)

where

Mi,j = 2 MiMj

Mi +Mj

, (F.33)

σi,j = σi + σj
2 (F.34)

are the mean molar mass of species i and j and the mean Lennard-Jones diameter of
species i and j, respectively, fD is a correction term with values between 1.0 and 1.1 [244]
and ΩDi,j,gas is the collision integral for the gas diffusion of species i in species j. The latter
is defined by [244]

ΩDi,j,gas = A(
T̃i,j,gas

)B + C

exp
(
D T̃i,j,gas

) + E

exp
(
F T̃i,j,gas

) + G

exp
(
H T̃i,j,gas

) , (F.35)

where A, B, C, D, E, F , G and H are coefficients, which are given in Table F.2, and

T̃i,j,gas = kB Tgas
εi,j

(F.36)

is a dimensionless temperature [244] with εi,j = √εi εj as a mean Lennard-Jones energy
parameter of species i and j. Inserting the mathematical and physical constants and
adapting the units, the Chapman-Enskog equation is given by [244]

Di,j,gas = 2.663528769 · 10−7

(
Tgas
K

)3/2

(
p

bar

) (
Mi,j

g/mol

)1/2 (
σi,j

Å

)2
ΩΩDi,j,gas

m2

s . (F.37)
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Table F.2: Coefficients A, B, C , D, E , F , G and H for the calculation of the collision integral for the gas
diffusion coefficients of species i in species j ΩDi ,j,gas [244].

A B C D E F G H

1.060 36 0.156 10 0.193 00 0.476 35 1.035 87 1.529 96 1.764 74 3.894 11

F.5.6 Specific heat capacity

The specific gas heat capacity Ĉp,gas was calculated using the mass-weighted mixing rule
by

Ĉp,gas =
∑
i

wi,gas Ĉp,i,gas , (F.38)

where Ĉp,i,gas is the specific gas heat capacity of species i. The latter was determined by

Ĉp,i,gas =



5∑
j=1

C1,j,i

(
Tgas
K

)j−1 ( R

Mi

)
, Tmin,1,Cp,gas,i ≤ Tgas ≤ Tmax,1,Cp,gas,i

5∑
j=1

C2,j,i

(
Tgas
K

)j−1 ( R

Mi

)
, Tmin,2,Cp,gas,i ≤ Tgas ≤ Tmax,2,Cp,gas,i

, (F.39)

where C1,1,i, C1,2,i, C1,3,i, C1,4,i and C1,5,i as well as C2,1,i, C2,2,i, C2,3,i, C2,4,i and C2,5,i are
coefficients that were taken from the thermodynamic data of the reaction mechanisms, R
is the molar gas constant and Mi is the molar mass of species i.

F.5.7 Specific physical enthalpy

The specific physical gas enthalpy Ĥphys,gas was calculated using the mass-weighted mixing
rule by

Ĥphys,gas =
∑
i

wi,gas Ĥphys,i,gas =
∑
i

wi,gas
(
Ĥ−◦i,gas − Ĥ−◦i,gas,ref

)
, (F.40)

where Ĥphys,i,gas is the specific physical gas enthalpy of species i. The latter was obtained
by

Ĥphys,i,gas = Ĥ−◦i,gas − Ĥ−◦i,gas,ref , (F.41)
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where

Ĥ−◦i,gas =



 5∑
j=1

C1,j,i

j

(
Tgas
K

)j
+ C1,6,i

( R

Mi

)
,

Tmin,1,Cp,gas,i ≤ Tgas ≤ Tmax,1,Cp,gas,i 5∑
j=1

C2,j,i

j

(
Tgas
K

)j
+ C2,6,i

( R

Mi

)
,

Tmin,2,Cp,gas,i ≤ Tgas ≤ Tmax,2,Cp,gas,i

(F.42)

is the specific standard gas enthalpy of species i. C1,1,i, C1,2,i, C1,3,i, C1,4,i and C1,5,i

as well as C2,1,i, C2,2,i, C2,3,i, C2,4,i and C2,5,i are coefficients that were taken from the
thermodynamic data of the reaction mechanisms, R is the molar gas constant and Mi is
the molar mass of species i.

F.5.8 Specific entropy

The specific gas entropy Ŝgas is identical to the specific standard gas entropy Ŝ−◦gas when
assuming ideal gas behaviour and was calculated using the mass-weighted mixing rule by

Ŝgas = Ŝ−◦gas =
∑
i

wi,gas Ŝ
−◦
i,gas , (F.43)

where

Ŝi,gas =



C1,1,i ln
(
Tgas
K

)
+

5∑
j=2

C1,j,i

(
Tgas
K

)j−1
+ C1,7,i

( R

Mi

)
,

Tmin,1,Cp,gas,i ≤ Tgas ≤ Tmax,1,Cp,gas,iC2,1,i ln
(
Tgas
K

)
+

5∑
j=2

C2,j,i

(
Tgas
K

)j−1
+ C2,7,i

( R

Mi

)
,

Tmin,2,Cp,gas,i ≤ Tgas ≤ Tmax,2,Cp,gas,i

(F.44)

is the specific standard gas entropy of species i. C1,1,i, C1,2,i, C1,3,i, C1,4,i and C1,5,i

as well as C2,1,i, C2,2,i, C2,3,i, C2,4,i and C2,5,i are coefficients that were taken from the
thermodynamic data of the reaction mechanisms, R is the molar gas constant and Mi is
the molar mass of species i.
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F.6 Liquid phase

The physical properties of the liquid phase include the vapour pressure pvap, the specific
enthalpy of vaporisation ∆vapĤ, the density ρliq, the dynamic viscosity ηliq, the thermal
conductivity λliq, the specific heat capacity Ĉp,liq and the specific physical enthalpy Ĥphys,liq.
The model equations used in this work are given in Sections F.6.1-F.6.8.

F.6.1 Vapour pressure

The vapour pressure pvap was calculated using a Wagner equation by [325]

pvap = pc,C2H6O2
exp

(
Tc,C2H6O2

T

(
A T̃ +B T̃ 1.5 + C T̃ 2.5 +D T̃ 5

))
, (F.45)

where pc,C2H6O2
is the critical pressure of ethylene glycol, Tc,C2H6O2

is the critical temperature
of ethylene glycol, T̃ = 1−T/Tc,C2H6O2

is a dimensionless temperature and A, B, C and D
are coefficients that were taken from the databases of the VDI Wärmeatlas [325].

F.6.2 Specific enthalpy of vaporisation

The specific enthalpy of vaporisation ∆vapĤ was determined using a PPDS equation
by [325]

∆vapĤ = R

MC2H6O2

Tc,C2H6O2

(
A T̃ 1/3 +B T̃ 2/3 + C T̃ +D T̃ 2 + E T̃ 3

)
, (F.46)

where MC2H6O2
is the molar mass of ethylene glycol, Tc,C2H6O2

is the critical temperature
of ethylene glycol, T̃ = 1− T/Tc,C2H6O2

is a dimensionless temperature and A, B, C, D
and E are coefficients that were taken from the databases of the VDI Wärmeatlas [325].

F.6.3 Density

The liquid density ρliq was calculated using a PPDS equation by [325]

ρliq = ρc,C2H6O2
+
(
A T̃ 0.35 +B T̃ 2/3 + C T̃ +D T̃ 4/3

) kg
m3 , (F.47)

where ρc,C2H6O2
is the critical density of ethylene glycol, T̃ = 1− T/Tc,C2H6O2

is a dimen-
sionless temperature, Tc,C2H6O2

is the critical temperature of ethylene glycol and A, B, C
and D are coefficients that were taken from the databases of the VDI Wärmeatlas [325].
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F.6.4 Dynamic viscosity

The dynamic liquid viscosity ηliq was determined using a DIPPR equation by [22]

ηliq = exp
(
C1 + C2

(
K
T

)
+ C3 ln

(
T

K

)
+ C4

(
T

K

)C5
)

Pa s , (F.48)

where C1, C2, C3, C4 and C5 are coefficients that were taken from the databases of
ASPEN Properties [22]. The equation was applied between the temperatures Tmin,ηliq

and Tmax,ηliq , as defined by the databases of ASPEN Properties [22], whereas linear ex-
trapolation was used outside the temperatures Tmin,λliq and Tmax,λliq [22].

F.6.5 Thermal conductivity

The liquid thermal conductivity λliq was calculated using a DIPPR equation by [22]

λliq =
 5∑

j

Cj

(
T

K

)j−1
 W

m K (F.49)

where C1, C2, C3, C4 and C5 are coefficients that were taken from the databases of
ASPEN Properties [22]. The equation was applied between the temperatures Tmin,λliq

and Tmax,λliq , as defined by the databases of ASPEN Properties [22], whereas linear ex-
trapolation was used outside the temperatures Tmin,λliq and Tmax,λliq [22].

F.6.6 Vapour diffusion coefficient

The vapour diffusion coefficient Dvap is a simplified diffusion coefficient for vaporisation
simulations and was determined by (see Section F.5.5)

Dvap = DC2H6O2,gas,eff =
1− xC2H6O2,gas∑

i 6=C2H6O2

xi,gas
DC2H6O2,j,gas

(F.50)

where DC2H6O2,j,gas is the binary gas diffusion coefficient of ethylene glycol in species j
and was calculated using the adapted Chapman-Enskog equation. In contrast, Mancini
et al. [187] applied a polynomial to determine the vapour diffusion coefficient Dvap. The
polynomial was obtained from effective diffusion coefficients of ethylene glycol DC2H6O2,eff

at pre-scribed gas conditions and is given by
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Dvap = DC2H6O2,gas,eff =
(
−1.34316 · 10−5 + 5.27316 · 10−8

(
T

K

)
+7.26287 · 10−11

(
T

K

)2
− 8.73484 · 10−15

(
T

K

)3) m2

s .
(F.51)

F.6.7 Specific heat capacity

The specific liquid heat capacity Ĉp,liq was determined using a PPDS equation by [325]

Ĉp,liq = R

MC2H6O2

(
A T̃−1 +B + C T̃ +D T̃ 2 + E T̃ 3 + FT̃ 4

)
, (F.52)

whereMC2H6O2
is the molar mass of ethylene glycol, T̃ = 1−T/Tc,C2H6O2

is a dimensionless
temperature, Tc,C2H6O2

is the critical temperature of ethylene glycol and A, B, C, D, E
and F are coefficients that were taken from the databases of the VDI Wärmeatlas [325].

F.6.8 Specific physical enthalpy

The specific physical liquid enthalpy Ĥphys,liq was determined using the integral of the
PPDS equation by

Ĥphys,liq = − R

MC2H6O2

Tc,C2H6O2

A ln
(
T̃

T̃ref

)
+B

(
T̃ − T̃ref

)
+
C T̃ 2

i − T̃ 2
i,ref

2


+D

 T̃ 3
i − T̃ 3

i,ref

3

+ E

 T̃ 4
i − T̃ 4

i,ref

4

+ F

 T̃ 5
i − T̃ 5

i,ref

5

 , (F.53)

where MC2H6O2
is the molar mass of ethylene glycol, Tc,C2H6O2

is the critical temperature
of ethylene glycol, T̃ = 1 − T/Tc,C2H6O2

and T̃ref = 1 − Tref/Tc,C2H6O2
are dimensionless

temperatures, Tref is the reference temperature and A, B, C, D, E and F are coefficients
that were taken from the databases of the VDI Wärmeatlas [325].
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F.7 Solid phase

The physical properties of the solid phase include density ρsolid, specific heat capacity Ĉp,solid
and specific physical enthalpy Ĥphys,solid. The model equations used in this work are given
in Sections F.7.1-F.7.3.

F.7.1 Density

The (true) solid density ρsolid (which should not be confused with the effective solid
density ρsolid,eff) can be estimated for coking coals using the model of Merrick et al. [203]
and for coals and coal chars using the models of IGT [21, 131]. The model of Merrick et
al. [203] is based on previous works of Franklin, van Krevelen, and Ergun and numerous
measured densities of hard coals, semi-cokes and cokes. It is assumed that (i) the solid
volume can be determined using the atomic volumes of carbon, hydrogen, oxygen, nitrogen
and sulphur and (ii) the density of pure carbon can be described using the density of
graphite. The (true) solid density ρsolid is given by [203]

ρsolid =
(

1− wash,solid

ρsolid,daf
+ wash,solid

ρash

)−1

, (F.54)

where [203]

ρsolid,daf = 103

 ∑
j=C,H,O,N,S

γj
wj,solid,daf

Mj/ (kg/mol)

−1
kg
m3 , (F.55)

is the (true) solid (daf) density and ρash is the ash density. The coefficients γC, γH, γO, γN

and γS were determined using linear regression and are reproduced in Table F.3.

Table F.3: Coefficients γC, γH, γO, γN and γS for the calculation of the solid density ρsolid using the model of
Merrick et al. [203].

j
γj

kg/m3

C 0.00530
H 0.00577
O 0.00346
N 0.06690
S 0.03840

The models of IGT [21, 131] are similar to the model of Merrick et al. [203] and are based
on measured densities of coals, cokes, coking coals, chars and graphite. The model of IGT
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for coals is applicable for coals with a wide range of hydrogen contents and is based on
the equations [21]

ρsolid,daf = 1000
A

kg
m3 , (F.56)

ρsolid,d = 1000 ρsolid,daf

B + C
, (F.57)

where

A = C1 + C2 (wH,solid,d · 100) + C3 (wH,solid,d ·D) + C4 (wH,solid,d · 100)3 , (F.58)

B = ρsolid,daf (0.42wash,solid,d − 0.15wS,solid,d) , (F.59)

C = (1− 1.13wash,solid,d − 0.5475wS,solid,d) (F.60)

with the coefficients C1, C2, C3 and C4 given in Table F.4 and with

D = 100 · wH,solid,d − 0.013wash,solid,d + 0.020wS,solid,d

1− 1.130wash,solid,d − 0.475wS,solid,d
. (F.61)

The model of IGT for coal chars should be used for carbonised coking coals and is based
on the equations [21]

ρsolid,daf = 1000∑4
i=1Ci (wH,solid,daf · 100)i−1

kg
m3 , (F.62)

ρsolid,d = ρash ρsolid,daf

wash,solid,d ρsolid,daf + (1− wash,solid,d) ρash
. (F.63)

Table F.4: Coefficients C1, C2, C3 and C4 for the calculation of the solid density ρsolid using the models of
IGT [21].

i C i

1 4.397 · 10−1

2 1.223 · 10−1

3 −1.715 · 10−2

4 1.077 · 10−3

The solid densities ρsolid during the devolatilisation simulated using the three models
are compared in Fig. F.1, assuming a constant heating rate of 104 K

s (left) or a constant
temperature of 1673.15 K (right). The (true) solid density ρsolid accordingly changes
during devolatilisation although a temperature dependence is not assumed in the three
density models. This is due to changes of the composition and can also be observed
during heterogeneous gasification. Furthermore, the models provide significant deviating
predictions at low particle devolatilisation conversions.
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Figure F.1: Comparison of simulated solid densities ρsolid during devolatilisation at a constant heating rate
of 104 K/s (left) or at a constant temperature of 1673.15K (right) based on various models.
Devolatilisation is based on the single first-order reaction Arrhenius law model of Dammann et
al [68].

F.7.2 Specific heat capacity

The specific solid heat capacity Ĉp,solid can be determined, for example, by the models of
Kirov [152] and Merrick et al. [202]. The model of Kirov [152] is given by [152]

Ĉp,solid =



wH2O,char Ĉp,H2O + wcomb,char Ĉp,comb + wash,charĈp,ash

+ 0.1
(
1− wH2O,char − wash,char

)
Ĉp,vol,1

+ (wvol,char,daf − 0.1)
(
1− wH2O,char − wash,char

)
Ĉp,vol,2 ,

if wvol,char,daf > 0.1
wH2O,char Ĉp,H2O + wcomb,char Ĉp,comb + wvol,char Ĉp,vol,2

+ wash,charĈp,ash , else

(F.64)

where [152]

Ĉp,H2O = 4184 J
kg K , (F.65)

Ĉp,comb =
(
1.65 · 10−1 + 6.8 · 10−4T̃ − 4.2 · 10−7 T̃ 2

)
4184 J

kg K , (F.66)

Ĉp,vol,1 =
(
7.1 · 10−1 + 6.1 · 10−4 T̃

)
4184 J

kg K , (F.67)

Ĉp,vol,2 =
(
3.95 · 10−1 + 8.1 · 10−4 T̃

)
4184 J

kg K , (F.68)

Ĉp,ash =
(
1.8 · 10−1 + 1.4 · 10−4 T̃

)
4184 J

kg K , (F.69)

209



F Physical properties

T̃ = T

K − 273.15 . (F.70)

The model of Merrick et al. [202] has both a theoretical and an empirical basis and is
defined by [202]

Ĉp,solid =wH2O,solid Ĉp,H2O +
(
1− wH2O,solid − wash,solid

)
Ĉp,solid,daf

+ wash,solid Ĉp,ash ,
(F.71)

where [202]

Ĉp,H2O = 4187 J
kg K , (F.72)

Ĉp,solid,daf = R

Msolid,daf

(
g
(
TE,1
T

)
+ 2 g

(
TE,2
T

))
, (F.73)

Ĉp,ash =
(

754 + 0.586
(
T

K − 273.15
)) J

kg K . (F.74)

TE,1 = 380 K and TE,2 = 1800 K are Einstein temperatures [202], while g is an auxiliary
function and is given by [202]

g (z) = exp (z)
((exp (z)− 1) /z)2 . (F.75)
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Figure F.2: Comparison of simulated specific solid heat capacities Ĉp,solid during devolatilisation at a constant
heating rate of 104 K/s (left) or at a constant temperature of 1673.15K (right) based on various
models. Devolatilisation is based on the single first-order reaction Arrhenius law model of
Dammann et al [68].
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F.7 Solid phase

The specific solid heat capacities Ĉp,solid during the devolatilisation simulated using both
models are compared in Fig. F.2, assuming a constant heating rate of 104 K

s (left) or a
constant temperature of 1673.15 K (right). The predictions based on the model of Merrick
et al. accordingly provide reasonable results at elevated temperatures, while the predictions
based on the model of Kirov are erroneous at such conditions.

F.7.3 Specific physical enthalpy

The specific physical solid enthalpy Ĥphys,solid based on the model of Merrick et al. [202] is
given by

Ĥphys,solid =wH2O,solid Ĥphys,H2O +
(
1− wH2O,solid − wash,solid

)
Ĥphys,solid,daf

+ wash,solid Ĥphys,ash ,
(F.76)

where

Ĉp,H2O = 4187 (T − Tref)
J

kg K , (F.77)

Ĉp,solid,daf = R

Msolid,daf

(
TE,1 g

(
TE,1
T

, TE,1
Tref

)
+ 2TE,2 g

(
TE,2
T

, TE,2
Tref

))
, (F.78)

Ĉp,ash =
(

754 (T − Tref) + 0.586
((

T

K − 273.15
)
−
(
Tref
K − 273.15

)2))

· J
kg K .

(F.79)

TE,1 = 380 K and TE,2 = 1800 K are Einstein temperatures, while g is an auxiliary function
and is given by [202]

g (z, zref) = 1
exp (z)− 1 −

1
exp (zref)− 1 . (F.80)
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G Reaction mechanisms

G.1 The WD mechanism

Table G.1: Chemical equations of the reaction mechanism of Westbrook and Dryer [333].

r Chemical equation of reaction r

R1 CH4 + 3
2 O2 −−→ CO + 2 H2O

R2 CO + 1
2 O2 −−→ CO2

R3 CO2 −−→ CO + 1
2 O2

Table G.2: Parameters of the reaction mechanism of Westbrook and Dryer [333].

r
k0,r

1/s
Ea,r

108 cal/kmol br Concentrations product for reaction r

R1 1.59 · 1013 m1.5

kmol0.5 47.8 0 [CH4]0.7 [O2]0.8

R2 3.98 · 1014 m2.25

kmol0.75 40.7 0 [CO] [O2]0.25 [H2O]0.5

R3 5.00 · 108 40.7 0 [CO2]

G.2 The JL mechanism

Table G.3: Chemical equations of the reaction mechanism of Jones and Lindstedt [144].

r Chemical equation of reaction r

R1 CH4 + O2 −−→ CO + 2 H2

R2 CH4 + H2O −−→ CO + 3 H2

R3 H2 + 1
2 O2 + 0 H2O −−⇀↽−− H2O

R4 CO + H2O −−⇀↽−− CO2 + H2

Table G.4: Parameters of the reaction mechanism of Jones and Lindstedt [144].

r
k0,r

1/s
Ea,r

108 cal/kmol br Concentrations product for reaction r

R1 7.82 · 1013 m2.25

kmol0.75 30 0 [CH4]0.5 [O2]1.25

R2 0.30 · 1012 m3

kmol 30 0 [CH4] [H2O]
R3 4.45 · 1018 m2.25

kmol0.75 40 -1 [H2]0.5 [O2]2.25 [H2O]−1

R4 2.75 · 1012 m3

kmol 20 0 [CO] [H2O]
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G Reaction mechanisms

G.3 The JL/A mechanism

Table G.5: Chemical equations of the alternative reaction mechanism of Jones and Lindstedt [144].

r Chemical equation of reaction r

R1 CH4 + O2 −−→ CO + 2 H2

R2 CH4 + H2O −−→ CO + 3 H2

R3 H2 + 1
2 O2 + 0 H2O −−⇀↽−− H2O

R4 CO + H2O −−⇀↽−− CO2 + H2

Table G.6: Parameters of the alternative reaction mechanism of Jones and Lindstedt [144].

r
k0,r

1/s
Ea,r

108 cal/kmol br Concentration product for reaction r

R1 7.82 · 1013 m2.25

kmol0.75 30 0 [CH4]0.5 [O2]1.25

R2 0.30 · 1012 m3

kmol 30 0 [CH4] [H2O]
R3 1.21 · 1018 m2.25

kmol0.75 40 -1 [H2]0.25 [O2]1.5

R4 2.75 · 1012 m3

kmol 20 0 [CO] [H2O]

G.4 The HVI1 mechanism

Table G.7: Chemical equations of the first reaction mechanism of HVIGasTech for the gasification of ethylene
glycol [187].

r Chemical equation of reaction r

R1 4 C2H6O2 −−→ 9 H2 + 7 CO + H2O + CH4

R2 CO + 1
2 O2 + H2O −−→ CO2 + H2O

R3 CH4 + H2O −−⇀↽−− CO + 3 H2

R4 CH4 + 1
2 O2 −−→ CO + 2 H2

R5 CO + H2O −−⇀↽−− CO2 + H2

R6 H2 + 1
2 O2 −−→ H2O

Table G.8: Parameters of the first reaction mechanism of HVIGasTech for the gasification of ethylene gly-
col [187].

r
k0,r

1/s
Ea,r

108 J/kmol br Concentrations product for reaction r

R1 9.31 · 1013 2.684 0 [C2H6O2]
R2 3.1623 · 1011 m6

kmol3 1.256 0 [CO] [O2] [H2O]
R3 1.7 · 1010 m1.5

kmol0.5 2.300 0 [CH4] [H2O]
R4 1.5811 · 1014 2.512 0 [CH4] [O2]0.5

R5 8.5 · 109 2.040 0 [CO] [H2O]
R6 2.8464 · 1014 m1.5

kmol0.5 2.592 0 [H2] [O2]0.5
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G.5 The eJL mechanism

G.5 The eJL mechanism

Table G.9: Chemical equations of the extended reaction mechanism of Jones and Lindstedt for the gasification
of ethylene glycol [187].

r Chemical equation of reaction r

R1 4 C2H6O2 −−→ CH4 + 7 CO + 9 H2 + H2O
R2 C2H6O2 + O2 −−→ 2 CO + 2 H2O + H2

R3 CH4 + H2O −−→ CO + 3 H2

R4 CH4 + 1
2 O2 −−→ CO + 2 H2

R5 CO + H2O −−⇀↽−− CO2 + H2

R6 2 H2 + O2 + 0 H2O −−⇀↽−− 2 H2O

Table G.10: Parameters of the extended reaction mechanism of Jones and Lindstedt for the gasification of
ethylene glycol [187].

r
k0,r

1/s
Ea,r

108 J/kmol br Concentrations product for reaction r

R1 9.31 · 1013 2.684 0 [C2H6O2]
R2 4.4 · 1011 m2.25

kmol0.75 1.256 0 [C2H6O2]0.5 [O2]1.25

R3 3 · 108 m3

kmol 1.256 0 [CH4] [H2O]
R4 4.4 · 1011 m2.25

kmol0.75 1.256 0 [CH4]0.5 [O2]1.25

R5 2.75 · 109 m3

kmol 0.8381 0 [CO] [H2O]
R6 2.5 · 1016 m2.25

kmol0.75 1.6747 -1 [H2]0.5 [O2]2.25 [H2O]−1

G.6 The eJL/A mechanism

Table G.11: Chemical equations of the alternative extended reaction mechanism of Jones and Lindstedt for
the gasification of ethylene glycol [187].

r Chemical equation of reaction r

R1 4 C2H6O2 −−→ CH4 + 7 CO + 9 H2 + H2O
R2 C2H6O2 + O2 −−→ 2 CO + 2 H2O + H2

R3 CH4 + H2O −−→ CO + 3 H2

R4 CH4 + 1
2 O2 −−→ CO + 2 H2

R5 CO + H2O −−⇀↽−− CO2 + H2

R6 H2 + 0.5 O2 −−⇀↽−− H2O
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G Reaction mechanisms

Table G.12: Parameters of the alternative extended reaction mechanism of Jones and Lindstedt for the
gasification of ethylene glycol [187].

r
k0,r

1/s
Ea,r

108 J/kmol br Exponents for reaction r

R1 9.31 · 1013 2.684 0 [C2H6O2]
R2 4.4 · 1011 m2.25

kmol0.75 1.256 0 [C2H6O2]0.5 [O2]1.25

R3 3 · 108 m3

kmol 1.256 0 [CH4] [H2O]
R4 4.4 · 1011 m2.25

kmol0.75 1.256 0 [CH4]0.5 [O2]1.25

R5 2.75 · 109 m3

kmol 0.8381 0 [CO] [H2O]
R6 6.8043 · 1015 m2.25

kmol0.75 1.6736 -1 [H2]0.25 [O2]1.5

G.7 The DLR2017/RK mechanism

Table G.13: Adapted chemical equations of the reduced DLR2017 mechanism of Kathrotia et al. for the
gasification of ethylene glycol [149].

r Chemical equation of reaction r

R58 HOCHCHO + M −−→ CHOCHO + H + M
R117 CH + H2O −−→ Th−CH2 + OH
R149 CH3 + M −−→ Th−CH2 + H + M
R150 CH3 + M −−→ CH + H2 + M
R198 CH2CO + M −−→ Th−CH2 + CO + M

G.8 The DLR2017/RM mechanism

Table G.14: Adapted chemical equations of the reduced DLR2017 mechanism of Methling et al. for the
gasification of ethylene glycol [204].

r Chemical equation of reaction r

R62 CH3 + M −−→ Th−CH2 + H + M
R80 CH2CO + M −−→ Th−CH2 + CO + M
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H Vaporisation simulation results

Single-droplet vaporisation simulations were also carried out (i) using a wavenumber
discretisation of 10 cm−1, (ii) using recalculation, (iii) using the tabulated values for the
emissivity (see Section 2.5.3) and (iv) using the previous polynomial approximation for the
film diffusion coefficient (see Section F.6.6). The results are shown in Figs. H.1, H.2 and H.3.
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Figure H.1: Simulated particle temperatures Tpart and simulated particle diameters dpart along the reactor
axis (top) and the reactor diagonal (bottom) based on the model of Sazhin et al. (SM) in
presence of thermal radiation. S1: w/o recalculation, ∆η = 25 cm−1; S2: w/o recalculation,
∆η = 10 cm−1; S3: w/ recalculation, ∆η = 25 cm−1; S4: w/ recalculation, ∆η = 10 cm−1.
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H Vaporisation simulation results
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Figure H.2: Simulated particle temperatures Tpart and simulated particle diameters dpart along the reactor
axis (top) and the reactor diagonal (bottom) based on the classical model (CM) and the model of
Abramzon and Sirignano (ASM) in presence of thermal radiation and with two different approaches
for the emissivity. S1: polynomial approximation; S3: tabulation.

Accordingly, a wavenumber discretisation of 10 cm−1 provides almost identical results
compared to a wavenumber discretisation of 25 cm−1 for predictions using the model of
Sazhin et al. [270]. Furthermore, small deviations for the vaporisation time can be found
when the particle temperature distribution is recalculated at each time step, the emissivity
is described using (more accurate) tabulated values or the film diffusion coefficient is
described following the preceding work [187]. Thus, single-droplet vaporisation simulations
with the model of Sazhin et al. [270] using a wavenumber discretisation of 25 cm−1 and
without recalculation provide sufficiently accurate predictions for ethylene glycol droplets,
and single-droplet vaporisation simulations can be performed using simplifications for the
emissivity and the film diffusion coefficient.
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Figure H.3: Simulated particle temperatures Tpart and simulated particle diameters dpart along the reactor
axis (top) and the reactor diagonal (bottom) based on the model of Abramzon and Sirignano (ASM)
and the model of Sazhin et al. (SM) in presence of thermal radiation and with two different
approaches for the vapour film diffusion coefficient. S1: effective Fickian diffusion; S2: polynomial
approximation.
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I.1 Chemical properties
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I.3 Heterogeneous gasification kinetics
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I Wood char properties

Table I.7: Parameters of heterogeneous gasification kinetics developed in the frame of HVIGasTech [124] for
regime II.

Kinetics ρC

kg/m3
dpore,part

nm εpart τpart Source

HK02-FBR-PLM-TK
CO2 680 3.9 0.691 3 [156]
H2O 680 4.8 0.691 3 [156]

HK02-FBR-LHM-TK
CO2 680 10.5 0.691 3 [156]
H2O 680 3.3 0.691 3 [156]

HK02-1600-FBR-PLM-TK
CO2 1496 16.0 0.262 3 [156]
H2O 1496 20.5 0.262 3 [156]
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J CFD simulation results
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Figure J.1: Predicted profiles of gas temperature and dry gas species volume fractions in comparison with
measured profiles. TUC3 V479: results for the REGA experiment TUC3 V479 obtained using the
DLR2017/RM mechanism; TUC3 V786: results for the REGA experiment TUC3 V786 obtained
using the DLR2017/RM mechanism.
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Figure J.2: Predicted profiles of gas temperature and dry gas species volume fractions using the DLR2017/RM
mechanism in comparison with measured profiles. TUC3 V479: results for the REGA experiment
TUC3 V479 obtained using the DLR2017/RM mechanism; TUC3 V786: results for the REGA
experiment TUC3 V786 obtained using the DLR2017/RM mechanism.
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