KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of an implicit-explicit time discretization scheme for semilinear wave equations with application to multiscale problems

Eckhardt, Daniel 1; Hochbruck, Marlis 1; Verfürth, Barbara ORCID iD icon
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We present an implicit-explicit (IMEX) scheme for semilinear wave equations with strong damping. By treating the nonlinear, nonstiff term explicitly and the linear, stiff part implicitly, we obtain a method which is not only unconditionally stable but also highly efficient. Our main results are error bounds of the full discretization in space and time for the IMEX scheme combined with a general abstract space discretization. As an application, we consider the heterogeneous multiscale method for wave equations with highly oscillating coefficients in space for which we show spatial and temporal convergence rates by using the abstract result.


Volltext §
DOI: 10.5445/IR/1000172117
Veröffentlicht am 02.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000172117
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 24 S.
Serie CRC 1173 Preprint ; 2024/13
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Schlagwörter implicit–explicit time integration, IMEX, semilinear wave equation, heterogeneous multiscale method, error analysis, a-priori error bounds, semilinear evolution equations, operator
Nachgewiesen in Dimensions
arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page