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Abstract

The digital transformation of the healthcare sector has gained momentum in recent
years, as illustrated by the introduction of electronic health record (EHR) systems
and digital infrastructures that allow the exchange of data between all stakeholders in
the healthcare domain. In Germany, insured individuals will soon have the option to
voluntarily donate their data stored in the nationwide EHR system for medical research
purposes. While the secondary use of real-world medical data holds great potential,
such as by monitoring long-term outcomes related to specific treatments, it also raises
significant privacy concerns, as health data require strict protection due to the risk of
stigmatization or discrimination if misused.

For this reason, various privacy-enhancing technologies (PETs) have been proposed
in the literature. One such PET is differential privacy (DP), which bounds the pri-
vacy impact of data analyses by injecting carefully calibrated noise. Moreover, with
recent advances in machine learning, the generation of synthetic data using generative
adversarial networks (GANs) has gained attention as a privacy-preserving technique.
Additionally, federated learning (FL) allows the training of machine learning models
in a decentralized manner. Combining DP, synthetic data generation (SDG), and FL
enables the collaborative generation of synthetic data that provide both strong privacy
guarantees and value for research, while at the same time the training data do not have
to be shared with a central entity.

In this master’s thesis, we propose a novel approach called DP-Fed-CTGAN for
generating synthetic tabular data utilizing FL under rigorous DP guarantees. Compared
to existing approaches, DP-Fed-CTGAN aims to minimize the amount of information
that clients have to share about their local training datasets during the FL procedure.
We evaluate the performance of our open-source implementation of DP-Fed-CTGAN in
terms of various utility and fidelity metrics, considering both medical and commonly
used machine learning datasets. The results demonstrate that DP-Fed-CTGAN not only
achieves comparable utility and improved fidelity compared to the centralized setting
represented by DP-CTGAN, but can also help to increase patient acceptance of a data
donation and to facilitate adherence to data protection legislation.
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Zusammenfassung
Die digitale Transformation des Gesundheitswesens hat in den letzten Jahren an

Dynamik gewonnen, wie die Einführung von Electronic Health Record (EHR)-Systemen
und digitalen Infrastrukturen zum Datenaustausch zwischen allen Akteuren im Gesund-
heitssektor zeigt. In Deutschland werden Versicherte demnächst die Möglichkeit haben,
die in ihrer elektronischen Patientenakte gespeicherten Daten freiwillig für medizinische
Forschungszwecke zu spenden. Die Sekundärnutzung medizinischer Real-World-Daten
birgt zwar ein großes Potenzial, etwa bei der Überwachung von Langzeitergebnissen
im Zusammenhang mit bestimmten Behandlungen, wirft aber auch erhebliche Be-
denken hinsichtlich des Schutzes der Privatsphäre auf, da Gesundheitsdaten aufgrund
des Risikos von Stigmatisierung oder Diskriminierung infolge einer missbräuchlichen
Nutzung besonders schützenswert sind.

Aus diesem Grund wurden in der Literatur verschiedene Privacy-Enhancing Tech-
nologies (PETs) vorgestellt. So ermöglicht beispielsweise Differential Privacy (DP), die
Auswirkungen von Datenanalysen auf die Privatsphäre durch Einfügen von sorgfältig
kalibriertem Rauschen zu begrenzen. Mit den jüngsten Fortschritten im Bereich des
maschinellen Lernens hat die Generierung synthetischer Daten (SDG) mithilfe von
Generative Adversarial Networks (GANs) als Verfahren zum Schutz der Privatsphäre an
Aufmerksamkeit gewonnen. Des Weiteren erlaubt Federated Learning (FL) das dezen-
trale Training von Machine-Learning-Modellen. Durch die Kombination von DP, SDG
und FL können synthetische Daten kollaborativ erzeugt werden, die sowohl starke Daten-
schutzgarantien als auch einen Mehrwert für die Forschung bieten, während gleichzeitig
die Trainingsdaten nicht mit einer zentralen Instanz geteilt werden müssen.

In dieser Masterarbeit wird ein neuartiger Ansatz namens DP-Fed-CTGAN zur
Erzeugung synthetischer tabellarischer Daten vorgestellt, der auf FL beruht und strikte
DP-Garantien erfüllt. Verglichen mit bestehenden Ansätzen zielt DP-Fed-CTGAN
darauf ab, die Menge an Informationen zu minimieren, die Clients während des FL-
Verfahrens über ihre lokalen Trainingsdatensätze preisgeben müssen. Die Performanz
der Open-Source-Implementierung von DP-Fed-CTGAN wird anhand gängiger Metriken
evaluiert, wobei sowohl medizinische als auch häufig verwendete Machine-Learning-
Datensätze betrachtet werden. Die Ergebnisse zeigen, dass DP-Fed-CTGAN nicht
nur einen vergleichbaren Nutzen und eine verbesserte Realitätsnähe im Vergleich zum
zentralen Ansatz von DP-CTGAN erreicht, sondern auch dazu beitragen kann, die
Akzeptanz der Patienten für eine Datenspende zu erhöhen und die Einhaltung der
Datenschutzgesetze zu erleichtern.
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1 Introduction

Digitalization is revolutionizing various sectors, and healthcare is no exception. In recent
years, there has been significant progress in the digital transformation of healthcare
systems worldwide. One notable example is the rollout of the so-called Elektronische
Patientenakte (ePA) in 2021, which serves as an electronic health record (EHR) system
for all patients covered by statutory health insurance in Germany. Building on this
digital infrastructure connecting healthcare providers, insurers, and patients, beginning
in 2023 insured individuals will be able to voluntarily donate their data stored in the
ePA to the Health Data Lab at the Federal Institute for Drugs and Medical Devices
(BfArM) for medical research purposes. However, the implementation details and legal
aspects of this data donation scenario are still under discussion [ISH22].

While the prospect of a large data repository and thus the secondary use of real-world
medical data promises enormous improvements for the treatment of diseases through
the use of big data and machine learning techniques, it also raises significant privacy
concerns. Health data are particularly in need of safeguarding, as misuse, for instance
as a result of a cyber-attack can lead to stigmatization or discrimination of the affected
individuals. For this reason, the processing of data concerning health is prohibited under
the General Data Protection Regulation (GDPR) in the European Union unless there is
an applicable exemption such as an informed consent or a transformation of the data
in such a way that the individuals behind the data can no longer be identified [SK20;
Mul19].

The latter can be achieved using a variety of privacy-enhancing technologies (PETs),
which offer mechanisms to protect privacy while enabling meaningful analyses of the data.
Anonymization-based approaches were widely employed to prevent the re-identification
of individuals represented by the data, but proved to be vulnerable to background
knowledge attacks. As a result, a mathematical measure called differential privacy
(DP) was proposed in the computer science literature to quantify the privacy impact of
algorithms analyzing the data. Mechanisms that satisfy the definition of DP usually
add noise to the function being computed to ensure that the result is independent of
the presence of a particular individual in the dataset [Fun+10].
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However, with recent advances in machine learning, synthetic data generation (SDG),
which was originally referred to as data augmentation to artificially expand the size of
training datasets, has come into the focus of privacy research. Here, the objective is
to generate synthetic data that do not allow any conclusions to be drawn about the
individuals whose data were used during training, but at the same time have statistical
properties that are as similar as possible to serve as a valuable asset for research.
Generative adversarial networks (GANs) emerged as a powerful approach for generating
synthetic data, where two neural networks, the generator and the discriminator, compete
against each other in a zero-sum game [Goo+14]. With conditional tabular GAN
(CTGAN), there is also a variant specifically designed for tabular data to avoid problems
such as vanishing gradients and mode collapse arising from the characteristics of tabular
data. Additionally, GANs can take into account the concept of DP in order to counter
membership inference attacks and provide provable privacy guarantees by injecting noise
to the gradients during training [Ros+20].

Another PET, federated learning (FL), allows the training of machine learning models
in a decentralized fashion. For this, each client trains a model on its local training dataset
and sends only the model parameters to a server, which sends them in aggregated form
back to the clients [McM+17a]. Nevertheless, the exchange of model parameters can
still compromise privacy. This is due to the fact that neural networks tend to memorize
training data which can be later restored with a model inversion attack. Consequently,
FL is often used together with DP [ZLH19].

In the scenario of a medical data donation, FL offers the possibility that various
medical institutions participate in the training of a global CTGAN model, with a trusted
third party such as the Health Data Lab handling the aggregation of the parameter
updates. Thus, the patient data from each facility are solely used for local training and
do not have to be shared with a central entity. This not only helps to mitigate privacy
and security concerns, but is also beneficial in the case where individual facilities have
insufficient data to train a CTGAN model with satisfactory data generation capability.
By incorporating DP, it is ultimately possible to generate synthetic data that have
significant value for research while providing mathematically provable privacy guarantees.
Therefore, we investigate the potential of combining DP, SDG, and FL as an approach
for a privacy-friendly medical data donation in this thesis.

1.1 Contribution

While the differentially private generation of synthetic data using FL has been inves-
tigated in the literature for images, the applicability for tabular data as often found
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in the healthcare domain is still largely an open question. Previous works building on
the CTGAN architecture such as FDP-CTGAN [FDK22] and HT-Fed-GAN [Dua+22]
were insufficiently evaluated or, in the case of Fed-TGAN [Zha+21], do not provide DP
guarantees.

Therefore, in this master’s thesis, we propose a novel method called DP-Fed-CTGAN
for generating synthetic tabular data using FL under strict DP guarantees. In contrast
to existing techniques, the main design principle of DP-Fed-CTGAN is to minimize the
amount of information that clients have to disclose about their local datasets to the
server, thus adhering to the aim of FL and reducing the risk of privacy breaches. For
the implementation, we consider state-of-the-art frameworks for DP, SDG, and FL.

Furthermore, we thoroughly evaluate the performance of DP-Fed-CTGAN by means of
various utility and fidelity metrics both for the scenario of a privacy-preserving medical
data donation and for commonly used machine learning datasets. In addition, we assess
the effects of FL compared to the centralized setting as well as the impact of the number
of clients. We also examine the influence of the privacy budget on the quality of the
generated data.

1.2 Outline

This thesis is structured as follows: In Chapter 2, we summarize legal requirements for
the processing of health data and discuss the fundamental concepts of DP, SDG, and FL.
In Chapter 3, we survey related work. Chapter 4 introduces our approach in detail and
presents the most important aspects of the corresponding implementation. In Chapter 5,
we present a comprehensive evaluation of DP-Fed-CTGAN, considering various metrics
and scenarios. Finally, we conclude with Chapter 6 and provide recommendations for
future work.
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2 Foundations

All health data that accumulates in the course of a patient’s treatment in the healthcare
sector or is recorded by the insured person themselves, for example with a smartwatch,
are collected digitally in a so-called electronic health record (EHR). Commonly, EHR
data are divided into two categories: structured and unstructured data. The former
can only take a certain set of numeric or categorical values. Exemplary health data
that belong to this category are laboratory results, vital signs, diagnosis codes or billing
data. In contrast, unstructured data, such as images or free-text clinical notes, are not
represented in a standardized way, even though there are efforts to store as much data
as possible in a uniform format [Sar+22].

In the context of this work, only structured health data are considered. Thus, an
EHR system can be thought of as a collection of tabular datasets. A tabular dataset D

consists of n records with m attributes. Such an EHR system can be implemented
both via a central database and with decentralized data storage, such as using the
smartphones of the patients.

In order to allow interoperability and thus a smooth exchange of information between
all stakeholders in the healthcare domain, the use of standardized syntax and semantics is
of particular importance for structured data. At the level of syntax, the message formats
and interfaces of the organization Health Level Seven International (HL7) prevail, while
Systemized Nomenclature of Medicine - Clinical Terms (SNOMED CT) is generally used
to achieve uniform semantics [Sar+22].

Compared to paper-based records, EHR systems offer tremendous benefits. First, they
support physicians in decision-making by consolidating all relevant information, which
may also come from other healthcare providers, in one central location. They also make
it easier to track the medical history of a patient and allow new medical personnel to
quickly assess the condition. Furthermore, real-world clinical data represent a valuable
asset for secondary use by researchers, promising in turn improved treatment of patients
in the future [SK20].

At the same time, health data are particularly in need of safeguarding, as misuse such
as the publication of therapy session notes in the wake of the cyberattack on Vastaamo,
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Finland’s largest psychotherapy provider, can lead to stigmatization and even blackmail
of the affected individuals [Ink21].

Therefore, we will first briefly present several important legal regulations affecting the
processing of health data in Section 2.1. Subsequently in Section 2.2, with differential
privacy (DP), synthetic data generation (SDG) and federated learning (FL), privacy-
enhancing technologies (PETs) will be introduced, which will form the basis for developing
a legally compliant and privacy-friendly donation of medical data.

2.1 Regulations Concerning the Processing of Health Data

As early as the 4th century B.C., medical confidentiality and thus the careful handling of
health information was enshrined in the Hippocratic Oath. In the United States today,
the regulations of the Health Insurance Portability and Accountability Act (HIPAA),
enacted in 1996, govern the collection, storage, and sharing of electronic protected health
information (ePHI) by physicians, hospitals, and insurers. In this context, the term ePHI
includes all data that can be directly linked to an individual. The HIPAA Security Rule
requires covered entities to implement administrative, physical, and technical safeguards
to ensure the confidentiality, integrity, and availability of ePHI [Dro+17; Mul19; SK20].
According to § 164.514 of the HIPAA Privacy Rule, the so-called Safe Harbor method
can be applied to de-identify records and then share them at will, which has led to a
multi-billion dollar market centered around the monetization of EHR data. This involves
removing only 18 specific features from ePHI, including name, social security number,
and dates that relate to an individual [Dro+17; MP21].

In contrast, with the General Data Protection Regulation (GDPR), there is compre-
hensive data protection legislation in place in the European Union. Article 9 (1) GDPR
states that data concerning health are one of the special categories of personal data
whose processing is prohibited unless there is an applicable exemption, such as processing
by a person bound by professional secrecy, an informed consent of the concerned subject
or for research purposes after transformation of the data in such a way as to preclude
the identification of the underlying individuals. On the other hand, the GDPR does
not apply when working with anonymized data, as these are not personal data [Mul19;
Sch+21].

In Germany, the Health Data Lab at the Federal Institute for Drugs and Medical
Devices (BfArM) is concerned with enabling the secondary use of health data from persons
covered by statutory health insurance in accordance with the German Code of Social Law
Book V (SGB V), §§ 303a to 303f. So far, this only includes billing data, but starting
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in 2023 with § 363 SGB V, it will also be possible for insured individuals to voluntarily
donate data stored in the national EHR system, called Elektronische Patientenakte
(ePA), for research purposes [ISH22]. However, the concrete implementation is still vague
at the time of writing, and some aspects regarding data protection are still controversial.
One reason for this is that, although the data are transmitted pseudonymized to the
Health Data Lab, there are no clear requirements in § 10 Data Transparency Regulation
(DaTraV) for the anonymization methods that are used in the course of the data release
to authorized users.

2.2 Privacy-Enhancing Technologies

To minimize the risk of re-identification and to comply with the various privacy laws, a
multitude of privacy-enhancing technologies (PETs) have been proposed in the computer
science literature in recent years. PETs rely on techniques such as encryption, decen-
tralization or the distortion of (aggregated) data using privacy models, which always
involve a trade-off between privacy protection and data utility. Privacy models seek to
mitigate threats related to the various attribute types of tabular data that are described
below [Zig+20; Sch+21]:

Explicit Identifiers: Attributes like name, mailing address, and social security number
which directly identify an individual [Fun+10].

Quasi-Identifiers: A combination of attributes that, possibly using external information,
allows re-identification. For instance, Sweeney [Swe02] succeeded in unambiguously
identifying then-governor William Weld in a “de-identified” medical dataset from
the Massachusetts Group Insurance Commission by linking it to a voter list via
shared quasi-identifying attributes, specifically date of birth, ZIP code, and gender.
There are many other prominent cases of such re-identification attacks, such as
those described in [NS08] and [RHM19], which is why HIPAA’s Safe Harbor
method seems questionable.

Sensitive Attributes: Attributes that the corresponding individual does not want to be
associated with, e.g., diagnosis code or salary [Zig+20].

Data evaluation can generally take place in two different settings, for which different
categories of privacy models are applicable. In the first setting, privacy-preserving data
publishing (PPDP), the data custodian publishes a sanitized version of the dataset,
which the researcher can use to perform arbitrary analyses. With privacy-preserving
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data mining (PPDM), on the other hand, the data remains under the control of the
data custodian and the researcher can only submit queries over an interface [Fun+10;
Vim+12].

For many years, the research field of privacy models was dominated by the category
of syntactic definitions that impose specific syntactic constraints on the anonymized
dataset and are intended only for PPDP. An important approach among them is
k-anonymity, where first all explicit identifiers are removed and then the dataset is
transformed by generalization and suppression so that for each record there are k − 1
others with matching quasi-identifier [Swe02]. However, the k-anonymity property
provides insufficient protection for sensitive attributes in some circumstances, for example,
if all k records within the group have the same value for the sensitive attribute. To
address these issues, further privacy models called ℓ-diversity [Mac+07], t-closeness
[LLV07], and δ-presence [NAC07] were proposed, each of which has its own strengths and
weaknesses. Finally, with DP, a privacy model belonging to the semantic category was
introduced and gained widespread interest as it protects by definition against attackers
with arbitrary background knowledge [Fun+10].

2.2.1 Differential Privacy

In 2006, Dwork [Dwo06] presented the notion of differential privacy (DP), which is
applicable to both PPDP and PPDM. In this publication, she first showed that a
desideratum formulated by Dalenius [Dal77] in 1977, namely that an attacker with
access to a database cannot learn anything about a contained individual that could
not be learned without access, is impossible to achieve. Therefore, with DP, Dwork
suggested a novel technique that offers a relative privacy guarantee instead of an absolute
one [Vim+12]. DP is not just a theoretical construct, as it is deployed in practice by
Apple [DPT17] and Google [EPK14], among others, for privacy-friendly analysis of user
data.

2.2.1.1 Classical Definition

According to the definition of DP, the result of an analysis should change only slightly
when a record is added to or removed from the dataset. Thus, the worst-case privacy
loss for any individual is bounded regardless of their presence in the dataset, which can
be formalized as follows [Fun+10; Zig+20]:

Definition 2.1 (ε-Differential Privacy) Let D be the universe of all datasets. A
randomized mechanism M : D 7→ T gives ε-differential privacy, if for all datasets
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D1, D2 ∈ D differing on at most one record, and all S ⊆ T the following holds [MT07;
DR13]:

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S].

A mechanism M satisfying this definition can be constructed by perturbing the
true result of the function f : D 7→ Rd computed by the mechanism through the
addition of carefully calibrated noise drawn from a probability distribution, meaning
such a mechanism is non-deterministic. The privacy parameter ε controls the factor eε

corresponding to the enforced upper bound on the difference of the probabilities to
obtain the same specific output with two neighboring datasets, thus it quantifies the
privacy loss. With a small value for ε, the allowed deviation of the probabilities is lower,
leading to better privacy but also a higher amount of noise is needed affecting utility.
Unfortunately, the choice of the rather abstract parameter ε for a particular use case
is not trivial. The most common values found in the literature range from 0.01 to 10
[Dwo+06; DE13].

Before providing an example of such a mechanism, we must first introduce a measure,
Ln-sensitivity, which determines the amount of noise that is required. This sensitivity
describes the maximum change of the output caused by a single record. For example, the
sensitivity of a counting query would be one. The greater the sensitivity of a function,
the more noise must be added to the true result of the function [Dwo06; DR13]:

Definition 2.2 (Ln-Sensitivity) Given two datasets D1, D2 ∈ D differing on at most
one record, the Ln-sensitivity of a function f : D 7→ Rd is defined as [Dwo06]:

∆nf = max
D1,D2

∥f(D1)− f(D2)∥n ,

where ∥ · ∥n denotes the Ln-norm.

Among the many mechanisms for DP, the Laplace mechanism is among the most
widely employed. Therefore, let us recall the probability density function (PDF) of the
Laplace distribution with scale σ at location µ:

Lap(x | µ, σ) = 1
2σ

e− |x−µ|
σ .

The Laplace mechanism simply computes the function f and adds random noise to each
coordinate of the result, which is drawn from the zero-centered Laplace distribution
using the L1-sensitivity divided by ε as scale parameter. A larger ε will result in a
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narrower spread of the distribution, so that the true output is very likely to be only
marginally distorted [Zig+20].

Definition 2.3 (Laplace Mechanism) Given a function f : D 7→ Rd, the Laplace
mechanism ML preserving ε-differential privacy is defined as [DR13]:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where the Yi are random variables drawn i.i.d. from Lap(0, ∆1f/ε).

2.2.1.2 Theorems and Relaxed Notions

However, there are situations for which the previously discussed definition of ε-DP would
be too strict. Therefore, a relaxed variant was proposed with (ε, δ)-DP, where with
probability 1− δ the original definition is fulfilled. This implies that with probability δ

no privacy guarantee is given by the mechanism, so only values that are negligible in
the number of records should be chosen for δ, i.e., δ ≪ 1

|D| for D ∈ D [DE13; Zig+20].

Definition 2.4 ((ε, δ)-Differential Privacy) Let D be the universe of all datasets.
A randomized mechanism M : D 7→ T gives (ε, δ)-differential privacy, if for all datasets
D1, D2 ∈ D differing on at most one record, and all S ⊆ T the following holds [DR13;
DE13]:

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] + δ.

In practice, the Gaussian mechanism is commonly used to achieve (ε, δ)-DP, where
Gaussian noise scaled according to the L2-sensitivity is added:

Definition 2.5 (Gaussian Mechanism) Given a function f : D 7→ Rd, the Gaus-
sian mechanism MG preserving (ε, δ)-differential privacy for any ε < 1 and σ ≥
∆2f
√

2 log(1.25/δ)
ε is defined as [Aba+16; Mir17]:

MG(x, f(·), ε) = f(x) + (Y1, . . . , Yd),

where the Yi are random variables drawn i.i.d. from N (0, σ2).

Two key strengths of DP stem from the post-processing and composition theorems,
which are simultaneously essential for incorporating DP into machine learning algorithms.
For proofs of these theorems we refer the interested reader to the monograph by Dwork
and Roth [DR13]. First, the post-processing theorem states that any post-processing
applied to the output of a differentially private mechanism does not compromise privacy
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protection, which includes noise reduction techniques and attacks based on auxiliary
information.

Theorem 2.6 (Post-Processing) Let M : D 7→ T denote a (ε, δ)-differentially pri-
vate mechanism. Let g : T 7→ V denote an arbitrary post-processing function. Then
g ◦M : D 7→ T is (ε, δ)-differentially private [DR13].

The parallel composition theorem addresses the scenario where (possibly different)
mechanisms are applied to disjoint subsets of the dataset:

Theorem 2.7 (Parallel Composition) Let Mi denote a (εi, δi)-differentially pri-
vate mechanism for i ∈ {1, . . . , k}. Let Xi be disjoint subsets of the dataset D,
i ∈ {1, . . . , k}. Then the parallel composition of the mechanisms Mi(Xi) provides
(maxi∈{1,...,k} εi, maxi∈{1,...,k} δi)-differential privacy [McS09].

Since it would not be particularly useful to be limited to performing only one analysis
per dataset, we now introduce the basic composition theorem regarding the sequential
application of differentially private mechanisms:

Theorem 2.8 (Basic Composition) Let Mi be a (εi, δi)-differentially private mech-
anism for i ∈ {1, . . . , k}. Then the sequential composition of the mechanismsMi satisfies
at least (∑k

i=1 εi,
∑k

i=1 δi)-differential privacy [DR13; KOV17].

For this reason, the parameter ε is often referred to as the privacy budget, which,
after being allocated by the data custodian, can be split among several analyses by
the researcher [MT07; DE13]. However, the bounds imposed by the basic composition
theorem are much too loose for the iterative application of a given (ε, δ)-differentially
private mechanism, as it is characteristic for the use of DP in deep learning algorithms,
which will be discussed in the following sections of this thesis. In fact, at the cost of a
slightly larger δ, a privacy cost ε orders of magnitude smaller can already be achieved,
which is formalized in the advanced composition theorem [KOV17; JE19]:

Theorem 2.9 (Advanced Composition) For all ε, δ̃ > 0, and δ ≥ 0, the class of
(ε, δ)-differentially private mechanisms satisfies (ε̃, kδ + δ̃)-differential privacy under
k-fold sequential composition for [KOV17]:

ε̃ = ε
√

2k log(1/δ̃) + kε(eε − 1).

At the moment, there is a whole line of research known under the term privacy
accounting, which aims to find and prove an even lower and more accurate privacy
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budget when composing differentially private mechanisms. The starting point is the
Rényi divergence, a generalization of the Kullback-Leibler divergence (KLD), in order to
quantify the difference between the probability distributions from the classical definition
of DP [JE19]:

Definition 2.10 (Rényi Divergence) Let P and Q be probability distributions over
T . For α > 1, the Rényi divergence of order α between P and Q is defined as [Mir17]:

Dα(P ∥ Q) = 1
α− 1 log

(
E

x∼Q

[(
P (x)
Q(x)

)α])
.

Two further relaxed variants of DP, zero-concentrated differential privacy (zCDP)
[BS16] and Rényi differential privacy (RDP)[Mir17], are based on the Rényi divergence.
Only the latter, which bounds the divergence of the probability distributions when
applying the privacy mechanism to both datasets, will be introduced in the following:

Definition 2.11 (Rényi Differential Privacy) A randomized mechanism M : D 7→
T gives (α, ε)-Rényi differential privacy, if for all datasets D1, D2 ∈ D differing on at
most one record, the following holds [Mir17]:

Dα(M(D1) ∥ M(D2)) ≤ ε.

In this case M also satisfies (ε + log(1/δ)
α−1 , δ)-differential privacy for any 0 < δ < 1.

With the help of RDP, it is now possible to obtain substantially tighter bounds on the
true privacy costs for the sequential composition of differentially private mechanisms.
Here, the informal idea is to use the equivalents of the already described mechanisms in
the RDP world, keep track of the privacy budget during composition via the theorem
presented below, and then convert the guarantees in terms of (ε, δ)-DP using the
previously stated formula, since RDP is not as descriptive as (ε, δ)-DP is [JE19; Aso+21].

Theorem 2.12 (Composition with RDP) The class of (α, ε)-Rényi differentially
private mechanisms satisfies (α, εk)-Rényi differential privacy under k-fold sequential
composition [Aso+21].

Figure 2.1 visualizes the effect of each composition theorem for the same amount
of noise added in each iteration. It can be seen that with repeated application of the
Gaussian mechanism with noise σ = 100 at ∆2 = 1 and fixed δ = 10−6, considerably
different results for the accumulated privacy budget ε are achieved. The sequential
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Figure 2.1: Impact of different composition theorems on the privacy budget [NA21].

composition under RDP clearly outperforms the other theorems when the mechanism is
used many times. For the RDP composition Corollary 3 of [Mir17] was applied, which
depicts that the Gaussian mechanism satisfies

(
α, (α/2σ2)

)
-RDP for a given σ if the

L2-sensitivity equals one. In the conversion from RDP to DP α = 20 was chosen, in
practice a range of values would be tested until the lowest ε was found. It should also
be noted that the total δ for RDP is independent of the number of iterations, while
for basic and advanced composition it grows linearly with the number of iterations.
Thus, for the same amount of noise, a privacy compromise is much less likely with RDP
[NA21].

2.2.2 Synthetic Data Generation

Synthetic data are artificially created to resemble real data as accurately as possible
in terms of their statistical properties. At the same time, the approach of synthetic
data generation (SDG) promises to protect the privacy of individuals better than the
PETs presented so far, since the real data are only needed for the generation process
and the synthetic data, as the name suggests, are not supposed to be attributable to
any real human. Nonetheless, we will discuss that synthetically generated data are not
free of privacy threats, but these can be addressed by combining SDG with other PETs
[Fun+10; SOT22; Her+23].
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While SDG can in principle be applied to all data formats, in this work we limit the
scope to tabular data, for which the general idea of this approach can be formalized
as follows: For a given dataset D with n entries of different individuals, the first task
is to capture the information contained in the data, such as the distribution of the
m attributes or the correlation between them, in some type of model (e.g., statistical
or neural network model). Subsequently, the model is used to generate a synthetic
dataset D̃ [DI21].

Two areas of application have emerged for SDG. On one hand, this includes the
so-called data augmentation in the context of deep neural network training. Such
networks often require huge amounts of training data, which are only available at great
expense or not at all. To solve this problem, additional samples can be generated that
differ in some way from the previous ones. In the case of images, this can be achieved
by rotating or cropping them, for example [Jor+22; Her+23]. The second and for this
thesis crucial use case is the aforementioned privacy-friendly release of synthetic data in
place of real-world data, which was already proposed by Rubin [Rub93] in 1993.

In the remainder of this section, we will first discuss desirable properties of algorithms
designed to generate synthetic data. Subsequently, traditional techniques that do not rely
on deep learning will be briefly presented. Given the tremendous advances in machine
learning in recent years, deep neural networks, most notably generative adversarial
networks (GANs), now dominate SDG research and practice. GANs will form the main
part of the elaborations since this work investigates their applicability for tabular data
in conjunction with FL and DP.

2.2.2.1 Desiderata

Ideally, a synthetic data generator should fulfill the following properties, which, however,
are partly in conflict with each other:

Utility: The utility of synthetic data derives from their suitability for downstream tasks
and analyses for which they were generated. Since synthetic data are often used
for machine learning tasks such as classification, the utility for this purpose can be
assessed by comparing the performance of models trained on the real and synthetic
data, respectively [Xin+22b].

Fidelity: Here, the objective is that the synthetic data mimic real data as closely as
possible, which is independent of a specific application. One aspect is syntactic
conformity, so that, for instance, generated ZIP codes do not suddenly contain
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letters. The second factor is statistical similarity, which can be assessed by
comparing the distributions of attributes and relations between them [Jor+22;
Her+23].

Efficiency: The runtime of the synthetic data generator should scale in a reasonable
manner with the number of entries to be produced as well as with the number of
attributes [Jor+22].

Privacy: If the synthesized data are too similar to the real data, this can compromise
privacy, as illustrated by two types of attacks on synthetic datasets:

• Membership Inference: With membership inference, an attacker who has
access to the synthetic data tries to determine whether a particular subject
is present in the training dataset that the generator received as input. If
the attacker succeeds in doing so, this is particularly problematic if the mere
presence in the real dataset is stigmatizing for an individual [Xin+22b].

• Attribute Inference: In the context of attribute inference, the attacker can
access non-sensitive attributes of the real data as well as the generated dataset.
Based on this, the attacker now tries to predict the sensitive attribute values
of the training dataset [Xin+22b; Her+23].

That synthetic data, like all PETs, also suffer from a trade-off between utility (or
fidelity) and privacy, is underscored by a recent publication from Stadler, Oprisanu,
and Troncoso [SOT22]. The authors show that state-of-the-art generative models,
as introduced later, inadequately protect outliers against membership inference
attacks, and that the privacy gain for outliers achieved by publishing synthetic
data in place of real data is relatively small. This makes bold claims by emerging
startups in this field, namely that synthetic data offer perfect privacy protection
by themselves without a combination with other PETs, questionable. To counter
the aforementioned threats and provide formal provable privacy guarantees, DP
is often incorporated into the training process of the models later used for data
generation, as elaborated in Section 2.2.3.

Although utility and fidelity are often related, it should be noted that in some
situations an unchanged high utility of the data for a particular task can be achieved
while reducing the fidelity in return for better efficiency or privacy [Jor+22].
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2.2.2.2 Non-deep Learning Techniques

A majority of data generators that do not rely on deep learning belong to the category
of approaches based on statistical modeling. Such algorithms capture the distributions
of the attributes directly in a model, subsequently new entries can be synthesized by
sampling from the distributions [Xin+22b]. Bayesian networks, which are graphical
models of joint probability distributions, are an important representative of this category.
A Bayesian network is a directed acyclic graph where the attributes correspond to the
nodes and dependencies between the attributes are represented by edges. Each node
is assigned a conditional probability distribution that maps each possible value of the
attribute to a probability depending on the values of the parent nodes [YGP09; FV22].

The learning process of such a network consists of two steps: First, the graph structure
suitable for the real data is learned, then the parameters are learned in the form of the
conditional distributions. Synthetic data can now be generated by initially sampling
values from the unconditional distributions of the start nodes, i.e., those that have no
incoming edges. Thereafter, from the conditional probability distributions of the child
nodes a value is drawn given the parent node value. This process is repeated until all
attribute values are determined [Kau+20]. With PrivBayes as proposed in [Zha+14],
there also exists a variant that provides DP guarantees by using noisy versions of the
conditional distributions.

Simulation-based algorithms are the second type of techniques that do not involve
deep learning. Such mechanisms only work for a specific domain and require expert
knowledge in that area [Xin+22b]. For example, Synthea1 is a popular open-source tool
for the synthetic generation of patients and associated EHRs, which relies exclusively on
publicly available health statistics and state machines for disease progression [Wal+17].

2.2.2.3 Variational Autoencoders

While the idea of deep learning, i.e., the use of neural networks with multiple layers, is not
new, and LeCun et al. [LeC+89] trained a deep neural network using backpropagation
as early as 1989, it took until the beginning of the last decade for deep learning to
revolutionize the field of machine learning following advances in algorithms and the
availability of increasingly faster graphics processing units (GPUs). Deep generative
models, most notably variational autoencoders (VAEs) and generative adversarial net-
works (GANs), dominate both research and practice in the field of SDG ever since as

1 https://github.com/synthetichealth/synthea (visited on 01/17/2023)

https://github.com/synthetichealth/synthea


2.2 Privacy-Enhancing Technologies 17

well, as they often capture patterns in the data more accurately and thus provide better
results [FV22; Xin+22b].

What VAEs have in common with vanilla autoencoders is that they consist of an
encoder and decoder network. For an input datapoint x, the probabilistic encoder qϕ(z|x)
outputs a distribution (usually a Gaussian) over the low-dimensional representations in
latent space. The probabilistic decoder pθ(x|z) in turn outputs, for a latent representation
as input sampled from the distribution of the encoder, the parameters of a probability
distribution over the data. For a single datapoint, the following loss function can be
obtained, which is also known as the negative of the evidence lower bound (ELBO)
[KW13; Cin+21]:

L(x(i), θ, ϕ) = −Eqϕ(z|x(i))

[
log pθ(x(i)|z)

]
+ DKL(qϕ(z|x(i)) ∥ pθ(z)).

The first term corresponds to the expected reconstruction error of the datapoint with
respect to the distribution of the latent representations from the encoder, while the
second term acts as a regularizer that minimizes the difference between the distribution
of the encoder and the prior distribution over the latent variables (generally N (0, I)) in
terms of the KLD. Once the VAE was trained by optimizing the loss with respect to
the parameters ϕ of the encoder and θ of the decoder using gradient descent, synthetic
data can be generated by sampling the latent variable z from N (0, I) and applying the
decoder [KW13; WZH17].

2.2.2.4 Generative Adversarial Networks (GANs)

The second type of deep generative models are GANs, which were proposed by Goodfellow
et al. [Goo+14] in 2014. Unlike VAEs, they do not explicitly estimate the distribution
of the data in the form of parameters, but can generate data directly via a stochastic
procedure [ML16]. GANs usually outperform VAEs and Yann LeCun, Turing Award
winner for his contributions to the field of deep learning, described them as “the most
interesting idea in the last 10 years in machine learning” [Gui+21]. Beyond that, GANs
also are infamously known as the main technique for creating deepfakes [Ngu+19].

A GAN consists of two neural networks, the generator G and the discriminator D,
which compete with each other in a zero-sum game. The generator tries to generate
samples that match the real data distribution as closely as possible, while the discrimi-
nator tries to discriminate the generated samples from real samples from the training
dataset as precisely as possible [Gui+21; FV22]. A frequently cited analogy is that
G corresponds to a counterfeiter who would like to avoid detection of their created
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counterfeit money as much as possible, while D in the role of the police would like to
detect the fake money [Goo+14].

zin
pz(z)

Latent Noise
G xfake

xreal
pdata(x)

D Fake or Real?

Maximize Error

Minimize Error

Figure 2.2: Architecture of GANs.

More formally, the generator network G learns to map noise zin drawn at random
from a prior probability distribution pz(z) in latent space (usually a multivariate normal
distribution) to generated samples G(z) in data space. The discriminator D is a binary
classifier trained with synthesized datapoints and datapoints from the original dataset
and outputs a scalar D(x) between zero and one for a sample x, which indicates the
probability that x is a datapoint from the real training dataset [Pan+19; FV22]. To
classify the samples as accurately as possible, D tries to maximize the negative binary
cross-entropy (BCE) loss between the predicted label and the actual label (real/fake),
i.e., Ld = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log(1−D(G(z)))]. In contrast, G is trained
to minimize Lg = Ez∼pz(z) [log(1−D(G(z)))] in order to fool the discriminator as
effectively as possible [Pan+19; Gui+21]. The architecture of a GAN and the adversarial
objectives are illustrated in Figure 2.2.

We can express the interaction between G and D as the following minimax optimization
problem V (D, G), where a saddle point of the loss function of the discriminator (which
corresponds to the Nash equilibrium from a game theory perspective) is to be reached
[Goo+14; Pan+19]:

min
G

max
D

V (D, G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log(1−D(G(z)))] .

Since G and D are neural networks, their respective model parameters θg and θd are
optimized during training using stochastic gradient ascent (SGA) and stochastic gradient
descent (SGD), respectively. The simplest procedure for training GANs is detailed in
Algorithm 2.1. In each iteration, the parameters of the discriminator are updated first,
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Algorithm 2.1: Training algorithm of vanilla GANs [Goo+14].
Input: Number of training iterations T , number of discriminator update steps U ,

learning rate η, mini-batch size m
Output: Parameters θg and θd of generator G and discriminator D

1 foreach t ∈ {1, . . . , T} do
2 foreach u ∈ {1, . . . , U} do
3 sample a mini-batch {z(1), . . . , z(m)} from noise prior pz(z);
4 sample a mini-batch {x(1), . . . , x(m)} from real data distribution pdata(x);
5 θd ← θd + η∇θd

1
m

∑m
i=1

[
log D(x(i)) + log(1−D(G(z(i))))

]
; ▷ Update

parameters θd of discriminator by SGA
6 end
7 sample a mini-batch

{
z(1), . . . , z(m)

}
from noise prior pz(z);

8 θg ← θg − η∇θg
1
m

∑m
i=1 log(1−D(G(z(i)))); ▷ Update parameters θg of

generator by SGD
9 end

while the parameters of the generator are fixed. This can optionally be done several
times in a row until finally the model of the generator is updated [Cre+18].

Let pg denote the distribution of samples obtained from G. Goodfellow et al. [Goo+14]
showed that the globally optimal solution of the minimax game is reached when pg =
pdata(x). They also proved that Algorithm 2.1 will converge to this solution if the neural
networks have sufficient capacity and in each iteration the discriminator is optimal for a
given generator G, meaning

D∗
G(x) = pdata(x)

pdata(x) + pg(x) = 1
2 .

Unfortunately, during the training of vanilla GANs, as they were just introduced,
some difficulties can arise, of which we will summarize the most common ones in the
following:

Mode Collapse: The problem of mode collapse occurs when, as a consequence of poor
generalization, the generator produces only very similar samples or, in the worst
case, always the same sample, which maximally fool the discriminator. In such a
situation, the training may get stuck in an impasse and the generator can only
synthesize a severely limited set of distinct datapoints [Goo+14; SC21].

Vanishing Gradient: GANs are also not spared from the vanishing gradient problem
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that is common when training deep neural networks with backpropagation. If the
samples generated by G are very unrealistic in the beginning and D can easily
differentiate them from real samples, D(G(z)) can be almost zero. In such a
case, log(1−D(G(z))) may be very small, so the gradient may contain too little
information for the model of G to improve [Cre+18; SC21].

Instability: Gradient-based methods have only limited suitability for finding the Nash
equilibrium of a minimax game, which is why poor convergence may occur due to
oscillating parameters [SC21; FV22].

2.2.2.5 Variants of GANs

In the literature, a multitude of different variants of GANs were presented that address
specific training challenges or are optimized for particular use cases. Subsequently, we
outline a selection of GAN variants which we consider to be relevant for the scope of
this thesis. For further variants, we refer interested readers to the survey articles by
Saxena and Cao [SC21] and Figueira and Vaz [FV22].

Wasserstein GAN (WGAN): In their publication, Arjovsky, Chintala, and Bottou
[ACB17] first theoretically investigated the applicability of different statistical
divergences, namely the KLD, the Jensen-Shannon distance (JSD), and the
Wasserstein-1 distance (WD), which is also known as earth mover’s distance
(EMD), for gradient-based learning of distributions. They concluded that the
EMD is the most suitable for this purpose because, unlike the other distances, it
is continuous everywhere and differentiable almost everywhere. Mathematically, it
can be shown that for an optimal discriminator, the generator of a vanilla GAN
minimizes the JSD between pdata and pg. Therefore, the authors proposed WGAN,
where the generator instead tries to minimize the EMD [Goo+14; SC21]. With the
help of the Kantorovich-Rubinstein duality, a computationally efficient objective
function can finally be derived:

min
G

max
D∈D

V (D, G) = Ex∼pdata(x) [D(x)]− Ez∼pz(z) [D(G(z))] ,

where D (now called critic) is an element of the set of 1-Lipschitz functions D.
With this approach mode collapse and vanishing gradients can be avoided [ACB17;
Gul+17].

Medical GAN (medGAN): Vanilla GANs face difficulties when generating discrete data
because the gradients during training are zero almost everywhere [BLC19]. In
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order to synthesize discrete variables representing medical events such as diagnoses
or medications, Choi et al. [Cho+17] introduced medGAN, which inserts a decoder
of a pre-trained autoencoder between the generator and the discriminator. This
decoder converts the continuous output of the generator into a discrete sample. The
autoencoder is trained with the real data and can be viewed as an additional pre-
trained hidden layer in the generator during actual GAN training. Additionally,
the authors use mini-batch averaging, i.e., the average of the samples in the
mini-batch is passed to the discriminator to prevent mode collapse.

Conditional GAN (cGAN): Vanilla GANs, after being trained with a labeled dataset,
do not provide a way to generate synthetic datapoints of a certain class, since
the latent space cannot be interpreted and thus it is not known from which range
in the latent space to sample from in order to obtain data of a particular class
[FV22]. For example, in a medical use case, one might be interested in synthesizing
patients who do and do not suffer from a specific disease, and then identifying
differences in features to infer possible risk factors.

For this reason, Mirza and Osindero [MO14] proposed the cGAN architecture,
in which the generator and discriminator are given an additional conditional
variable c as input, which can be used to provide additional information to the
models during training or subsequently to select the class of the samples to be
generated. This results in the following objective function [Pan+19]:

min
G

max
D

V (D, G) = Ex∼pdata(x) [log D(x|c)] + Ez∼pz(z) [log(1−D(G(z|c)))] .

Conditional Tabular GAN (CTGAN): With CTGAN, Xu et al. [Xu+19] introduced an
architecture that is based on a further improved variant of WGAN, but makes
additional adjustments to address the characteristics of tabular data. For example,
attributes with continuous values are often not Gaussian distributed, which can
cause the gradients to vanish when the common min-max normalization is used.
Furthermore, continuous columns often have multiple modes, of which not all are
captured by the model, especially in the case of vanilla GANs. In addition, the
values (or categories represented by them) of discrete columns are often imbalanced,
which causes mode collapse or inadequate learning of minority classes [Xu20; FV22].
The authors employ the following techniques to overcome these issues:

• Mode-specific Normalization: To represent continuous attributes, the
authors developed a mode-specific normalization that first estimates the
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number of modes using a variational Gaussian mixture (VGM) model. Then,
each value is represented by a one-hot vector that specifies the mode and a
scalar that indicates the value within the mode [Xu+19].

• Conditional Generator: In order for CTGAN to better cope with imbal-
anced discrete columns, a conditional generator like in the cGAN architecture
is used. For this, the conditional vector c represents the categories for all
discrete columns in one-hot encoded form. Furthermore, a technique called
training-by-sampling is used that allows the generator to learn the condi-
tional distribution of the real data. Here, a discrete column is first chosen at
random. Then a random value is drawn based on a probability mass function
(PMF), where the probability mass for each category of the selected column
corresponds to the logarithm of the frequency. Finally, this condition is
expressed as a conditional vector and used as input for the generator [FV22].

2.2.3 Differentially Private Deep Learning

As mentioned earlier, even with synthetic data, there are threats to the privacy of
individuals in the training dataset. However, for neural networks in general, there is also
the risk that a model overfits on certain training data and stores them unintentionally
so that they can be restored with a model inversion attack as shown in [FJR15]. For
this reason, DP is increasingly being incorporated into the training process to provide
mathematically rigorous privacy guarantees. In this regard, one can integrate DP
into machine learning algorithms in three ways. With objective perturbation, the
first possibility is to add noise to the objective function J(θ), which is optimized by
the algorithm. Second, one can add noise to the gradient ∇θJ(θ) in each iteration,
which is called gradient perturbation. Finally, noise can also be added to θ∗, the
output of the algorithm, using output perturbation [JE19]. In the following, we present
differentially private stochastic gradient descent (DP-SGD) and private aggregation of
teacher ensembles (PATE), the two most widely employed mechanisms for differentially
private training of deep neural networks, as well as their application in GANs.

2.2.3.1 Differentially Private Stochastic Gradient Descent

When training neural networks, the loss function is often minimized using mini-batch
stochastic gradient descent (SGD) by iteratively approximating the gradient based on
the samples in the mini-batch, to then update the parameters of the model by taking a
step in the opposite direction of the gradient. Abadi et al. [Aba+16] proposed DP-SGD,
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a differentially private version of SGD based on gradient perturbation with Gaussian
noise shown in Algorithm 2.2.

Algorithm 2.2: DP-SGD [Aba+16].
Input: Samples {x(1), . . . , x(N)}, loss function L(θ) = 1

N

∑N
i=1 L(θ, x(i)), number

of training iterations T , learning rate ηt, mini-batch size m, gradient
norm bound C, noise scale σ

Output: Parameters θT and privacy cost (ε, δ) using moments accountant
1 initialize θ0 randomly;
2 foreach t ∈ {1, . . . , T} do
3 Bt ← (sample a mini-batch {x(1), . . . , x(m)} randomly);
4 foreach x(i) ∈ Bt do
5 gt(x(i))← ∇θt−1L(θt−1, x(i)); ▷ Compute gradient

6 ĝt ← gt(x(i))/ max
(
1, ∥gt(x(i))∥2

C

)
; ▷ Clip gradient

7 end
8 ḡt ← 1

m

(∑m
i=1 ĝt(x(i)) +N (0, σ2C2I)

)
; ▷ Add noise

9 θt ← θt−1 − ηtḡt; ▷ Descent
10 end

What remains unchanged compared to conventional mini-batch SGD is that in each
training step first the gradient of the loss function with respect to the weights is computed
for each sample in the mini-batch. As already introduced in Definition 2.5, for the
Gaussian mechanism the amount of noise depends on the L2-sensitivity of the function
being computed. Since the maximum change to the gradient in terms of the L2-norm
by changing a single sample is neither known in advance nor even computable, the
authors use gradient clipping in DP-SGD to ensure that the L2-norm is bounded by
the parameter C. In detail, the gradient vector g is scaled to be of norm C if its norm
exceeds the clipping threshold C. It should be noted that gradient clipping is part
of other deep learning algorithms regardless of privacy reasons [CWH20]. With that,
Gaussian noise can be added to the average of the gradients, thus masking the influence
of each sample. Lastly, with the actual descent, the update of the model parameters is
performed.

The moments accountant of DP-SGD, whose theoretical foundation is the composition
of RDP as presented in Theorem 2.12, accumulates the privacy cost during the training
process. For a given sampling probability q = m

N and σ = 1
ε

√
2 log 1.25

δ , Abadi et al.
prove that Algorithm 2.2 is (O(qε

√
T ), δ)-differentially private for a appropriately chosen

clipping threshold C [Aba+16].
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There are several approaches to combine the DP-SGD mechanism with the GAN
framework. Xie et al. [Xie+18] proposed DPGAN, which adapts DP-SGD for the training
procedure of WGANs. The authors clip the weights of the discriminator network to
fulfill the 1-Lipschitz condition and show that this simultaneously bounds the gradients
so that they do not have to be clipped additionally. By applying Theorem 2.6 it follows
that for a differentially private discriminator also the generator guarantees (ε, δ)-DP
[Fan20]. By contrast, DP-CTGAN, which is built on the CTGAN architecture, clips the
gradient and adds noise to it [Ros+20].

2.2.3.2 Private Aggregation of Teacher Ensembles

PATE is a type of ensemble learning proposed by Papernot et al. [Pap+17] that provides
privacy protection based on the fact that the training consists of two steps, where access
to the sensitive training data only occurs in the phase to which adversaries have no
access.
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Figure 2.3: Overview of PATE [Pap+17].

As shown in Figure 2.3, the first step is to train an ensemble of n classifiers, called
teachers, on disjoint subsets of the training dataset. For an unseen sample x, the
predictions of the teachers are aggregated by noisy majority vote so that the decision
cannot depend on a single teacher (which could leak private information about the
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training data of the teachers). Hence, PATE belongs to the category of differentially
private algorithms that use output perturbation [Pap+17; Asl+23]. Formally, we obtain
the following for the output of the aggregate teacher f(x), given nj(x) denotes the
number of teachers who output class j for input x [JYS19]:

f(x) = argmax
j

{
nj(x) + Lap

(
0,

1
ε

)}

However, it would not be a good idea to actually use f for inference, since with
more queries the noise has to be increased to get meaningful DP guarantees, so the
output would probably be useless in a real-world setting. For this reason, with the
student in the second phase, another model is trained, which is deployed as a proxy of
the teacher ensemble, so that the privacy loss is independent of the number of queries
performed by the end user. The student is trained on publicly available unlabeled
data, requesting the noisy labels of the aggregation mechanism for a part of the data.
Papernot et al. show via RDP accounting that the PATE mechanism for T label queries
satisfies (4Tε2 + 2ε

√
2T log 1

δ , δ)-DP even when the parameters of the student are public
[Pap+17]. In [Pap+18], an improved version is presented that achieves the same accuracy
with lower privacy costs using the Gaussian mechanism, but is not further discussed
here.
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Figure 2.4: Block diagram of PATE-GAN [JYS19].

PATE-GAN adapts the PATE framework for GANs by replacing the discriminator with
the PATE mechanism. Since the aggregated output of the teachers is not differentiable,
the student is used for backpropagation to the generator as also illustrated in Figure 2.4.
Each teacher is trained like the discriminator in a vanilla GAN, except that each teacher
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only sees a subset of the training dataset. Moreover, the student is trained only on
the outputs of the generator, because public data for training the student would be an
unrealistic assumption in the context of SDG. Also in this case, Theorem 2.6 yields
the DP guarantees of the generator since this model was trained exclusively with the
differentially private student [JYS19; Fan20].

2.2.4 Federated Learning

FL is an approach for privacy-preserving decentralized machine learning proposed by
McMahan et al. [McM+17a] that addresses two challenges. First, in many economic
sectors, data resides in isolated data islands, such as in the healthcare sector in individual
hospitals. Single data islands often do not permit the training of a machine learning
model with satisfactory accuracy due to limited data. On the other hand, data protection
regulations impose restrictions or even bans on collecting data and sharing them with
external parties. The idea of a FL system is therefore to allow K parties (or also referred
to as participants or clients) {P1, . . . , PK} to collaboratively train a model MFED with
their respective datasets {D1, . . . , DK}, without requiring any party Pk to share their
dataset Dk with another party. Furthermore, the accuracy of MFED should be as
close as possible to the accuracy of a conventional model MCON centrally trained with
D̃ = D1 ∪ . . . ∪DK [Yan+19].

In the following, we will first categorize FL systems based on typical building blocks,
then discuss an architecture in more detail that is relevant for the later implemented
method, and briefly present exemplary algorithms.

2.2.4.1 Taxonomy

FL systems are usually categorized according to the following four aspects:

Data Distribution: With respect to the distribution of sample and feature space across
the different parties, we can distinguish between horizontal, vertical, and hybrid
FL. The horizontal scenario is the most common, where the dataset of each party
has the same features, but there is little intersection in the sample space. In
this case, a global model can be obtained by aggregating the local models in a
privacy-preserving manner. In vertical FL, the parties have an overlapping sample
space but diverging feature spaces, i.e., the individuals behind the samples occur
in datasets of multiple parties, but each party holds different information. Thus,
an additional technique is needed here to align the samples belonging to the same
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individual. Last, hybrid FL refers to the case where the datasets differ in both
feature and sample space. There are special approaches for this setting, which are
subsumed under the term federated transfer learning [Yan+19; Li+21].

Privacy Mechanism: Although the local training datasets are not shared in FL, even
the parameter updates that are exchanged can compromise privacy, as it was
demonstrated for the sharing of gradients in [ZLH19]. One solution to this issue
is secure multi-party computation (MPC), which originates from cryptography
research. MPC allows the participants to jointly compute a function while the
inputs can remain private. This can be achieved by homomorphic encryption (HE)
schemes, where the parties encrypt their inputs and then certain mathematical
operations can be directly performed on the ciphertexts. However, MPC does not
protect the global model against the aforementioned model inversion attacks, and
MPC comes with a high computational overhead. Therefore, an alternative is to
inject differentially private noise in the learning process [Li+21; Kai+21]. In this
context, there are two different alternatives for DP guarantees, depending on the
step in which the noise is added:

• Record-level DP: With record-level DP, each party perturbs the parameters
locally, e.g., with DP-SGD, before the updates are sent to the server for
aggregation [Kai+21; NHC22].

• Client-level DP: In contrast, if the noise is added to the aggregated updates
by the server, one obtains client-level DP. To this end, the definition of DP
is adapted in such a way that the datasets D1 and D2 differ by all records of
a single participant, i.e., the influence of a participant on the final model is
bounded. A disadvantage of this variant is that it requires a higher degree
of trust in the server. Furthermore, important aspects of client-level DP are
not yet well understood, notably when the number of samples varies strongly
between participants [McM+17b; NHC22].

Unfortunately, the privacy properties of both alternatives can hardly be compared
with each other, although there is a theoretical possibility for conversion with
group privacy, which however is not practicable yet [NHC22].

Communication: A further distinction is possible with regard to the communication
architecture. In centralized communication, a server receives the updates of the
local models from the parties and aggregates them into a global model, which is
sent back to the parties. With a decentralized architecture, there is no need for a
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server, as the parties communicate directly among themselves. This setting is also
called peer-to-peer learning [Kai+21].

Scale of Federation: Under the aspect of the scale of the federation, a classification
into cross-silo and cross-device FL systems can be made. Cross-silo FL is charac-
terized by a relatively small number of parties (often corresponding to individual
organizations) that have relatively large datasets and significant computing power.
By contrast, in the cross-device scenario, the number of parties (which could be
edge devices, for example) is high, but each party has only limited data, limited
communication bandwidth, and low computing power. Here it is also assumed that
the participants are unreliable and thus may not contribute in every round, for
example because the battery is empty or the network connection was lost [Li+21].

2.2.4.2 Architecture of Horizontal Federated Learning
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Figure 2.5: Architecture of a horizontal FL system [Yan+19].

We now explain the architecture of a horizontal FL system in more detail, since this is also
the setting for the SDG method implemented later on. As can also be seen in Figure 2.5,
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in such a system K participants want to train a global model by exchanging information
through an honest-but-curious server [Yan+19]. In the first step, the latest model
parameters are sent to the participants selected for the current round. Subsequently,
these participants compute an update to the model for instance by performing SGD
on their local dataset. In the third step, the participants send the local updates to the
server, which aggregates them using one of the privacy-preserving mechanisms presented
earlier. Lastly, the server updates the global model using the result of the aggregation
step [Kai+21].

2.2.4.3 Algorithms

While there are hundreds of different algorithms in the literature for all imaginable
manifestations of FL systems, we want to present two simple algorithms hereafter, which,
however, can be adapted for most scenarios.

The baseline algorithm for training a model in the federated setting is federated SGD
(FedSGD). In step t, the server randomly selects a fraction C of all participants, where
the selected ones are denoted by the index set St. Now each participant Pk with k ∈ St

computes the average gradient gk of the loss function on the local dataset Dk with respect
to the current model parameters θt. At last, the server aggregates the gradients and
updates the parameters depending on the learning rate η, i.e., θt+1 ← θt−η

∑
k∈St

|Dk|
N gk,

where the weight is usually calculated by the number of samples of the participant |Dk|
relative to the total number of samples N . Hereafter begins the next round [McM+17a].

Federated averaging (FedAvg), which is shown in Algorithm 2.3, aims to reduce
the communication overhead by allowing each selected participant to execute multiple
gradient descent steps in each round. Two additional parameters are introduced for this
purpose: E determines the number of local epochs per round and m the mini-batch
size. It should be noted that with E = 1 and m = ∞ FedSGD is obtained. The
computations that are performed on each participant are highlighted in blue in the
pseudocode. Furthermore, one can simply replace the participant update step with
DP-SGD in order to provide privacy guarantees with the notion of DP [McM+17a;
Li+21].

However, FedAvg converges much slower than FedSGD on not independent and
identically distributed (non-IID) data, i.e., the distribution of the attributes or labels
varies greatly between the participants. This is because the larger the number of local
epochs, the more the local parameters will diverge in the case of heterogeneity in the
local distributions, and therefore the aggregated model will also deviate to a larger
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Algorithm 2.3: FedAvg [McM+17a].
Input: Number of participants K, number of federated rounds T , fraction of

participants per round C, number of local epochs E, learning rate η,
mini-batch size m

Output: Parameters θT of global model
1 initialize θ0 randomly;
2 foreach round t ∈ {1, . . . , T} do
3 sample subset St of max(C ·K, 1) participants randomly;
4 foreach participant k ∈ St in parallel do
5 initialize θk

t ← θt−1;
6 B ← (split Dk into mini-batches of size m);
7 foreach local epoch e ∈ {1, . . . , E} do
8 foreach mini-batch B ∈ B do
9 θk

t ← θk
t − η∇L(θk

t , B);
10 end
11 end
12 return θk

t to server;
13 end
14 θt ←

∑
k∈St

|Dk|
N θk

t ;
15 end

extent from the ideal model that would be obtained for IID data. FL thus requires a
trade-off between communication costs and convergence speed [Zhu+21; Kai+21].
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3 Related Work

After introducing the foundations for a deeper understanding of the subject area of this
thesis, we now discuss related work in the field of privacy-friendly SDG using FL. To this
end, the next section first summarizes the results of our literature review and highlights
the contributions of this work. Subsequently, open-source libraries and state-of-the-art
frameworks for DP, SDG, and FL are presented, as well as their applicability for the
method implemented in the next chapter and thus the scenario of a medical tabular
data donation is assessed.

3.1 Synthetic Data Generation Using Federated Learning

Figure 3.1: Architecture of MD-GAN [HMS19].

The MD-GAN architecture, which was introduced by Hardy, Merrer, and Sericola
[HMS19] in 2019, is the first that is specifically tailored for training GANs in a federated
setting, although it is intended for generating images. As shown in Figure 3.1, the
generator is trained on the central server, while the discriminators are distributed
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among the participants of the FL system. In each round, the generator first sends every
client two batches of generated samples. The first batch is used to train the respective
discriminator so that it discriminates the generated samples from the real local samples.
On the other hand, the second batch is used to compute the error feedback for the
generator using the judges of the discriminator. Subsequently, the feedback from the
discriminators is aggregated by averaging to update the parameters of the generator
with the Adam optimizer. To prevent the discriminators from overfitting on their local
dataset, the parameters are swapped among the discriminators after a specified number
of epochs. One advantage of this approach is that a central generator reduces the
computational cost for the clients. However, this is at the same time accompanied by
higher communication costs due to sending the generated samples to the clients, so that
the central generator eventually becomes a bottleneck if the number of clients is high.
The main drawback of MD-GAN is that the authors assume that the local datasets are
IID and no convergence guarantees can be obtained in the more realistic case of non-IID.

Given this, Yonetani et al. [Yon+19] proposed two adapted versions called forgiver-first
update (F2U) and forgiver-first aggregation (F2A) for the situation where the classes
such as different diseases are not identically distributed across the clients. The idea of
F2U is to update the generator for each generated sample using only the judgment of
the most forgiving discriminator, i.e., the discriminator who rated the sample as the
most real. While the authors prove that this approach yields an optimal generator in
terms of the class distribution, the convergence is rather slow since only a fraction of the
available information is used in each training iteration. For this reason, it is suggested
in the publication to use F2A in practice, and thus a weighted average of the judgments
of all discriminators, with the more forgiving ones being weighted more strongly using
an adaptable softmax function.

In order to provide provable privacy guarantees by means of DP against threats such
as unintended memorization also for the federated training of GANs, with DP-FedAvg-
GAN, Augenstein et al. [Aug+20] suggested a similar architecture to MD-GAN. In this
approach, both the generator and the discriminator are located on the server, and the
parameters of the discriminator are derived by training local discriminators on a subset
of clients and then averaging the parameter updates. In each round, Gaussian noise is
added to these aggregated parameters so that client-level DP is achieved.

To avoid the high communication overhead caused by distributing the generated
samples and reporting back the error feedback or parameter updates in the techniques
considered so far, the FedGAN architecture was introduced by Rasouli, Sun, and
Rajagopal [RSR20] as shown in Figure 3.2. Here, the clients each train a generator and
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Figure 3.2: Architecture of FedGAN [HMS19].

discriminator locally and synchronize the parameters after a fixed number of training
steps via an intermediary using FedAvg. Furthermore, the authors prove that the
FedGAN algorithm converges even for non-IID data. It should be noted that the clients
in return have a higher computational load in this scenario.

Li et al. [Li+22] proposed a variant, IFL-GAN, where only the parameters of the local
generators are aggregated by weighting the updates using the maximum mean discrep-
ancy between the local training data distribution and the generated data distribution
normalized with the softmax function. The authors demonstrate that this improves
convergence by preventing local models that have already reached the Nash equilibrium
from jumping out of it.

FeGAN [Gue+20], where each client also has its own generator and discriminator,
seeks to accelerate the convergence of FedGAN and mitigate common training issues
of GANs. The authors achieve the former by requiring each client to submit metadata
related to the local dataset, such as the number of classes and the number of samples
per class, to the server prior to the actual training. Then, the server uses this metadata
to calculate the KLD between the local dataset and the global data distribution and
applies the negative score to weight the client updates using the softmax function so that
clients with a large discrepancy have a smaller impact on the result of the aggregation.
Yet, preprocessing of the local datasets is required to extract the metadata, for example
using k-means clustering. To overcome the common problem of mode collapse when



34 3 Related Work

training GANs, FeGAN relies on balanced sampling, i.e., in each round, when selecting
the contributing clients, preference is given to those that have many samples or a similar
number of samples for each class. In addition, they do not limit the evaluation of FeGAN
to high-performance server hardware like the publications reviewed so far, but also
consider devices with limited memory or processing power that only slightly degrade
convergence. While the authors show that this approach actually allows them to learn
the data distribution better in less time than in the centralized case without FL or when
compared to MD-GAN, the sharing of metadata requires greater trust in the server.

Xin et al. [Xin+20] designed the private FL-GAN architecture, which was improved
in [Xin+22a] for non-IID data. After initialization on the server, the generator and
discriminator parameters are updated sequentially by each client to minimize the number
of accesses to each local dataset and thus information leakage. Furthermore, when
training the discriminator, Gaussian noise is added to the gradients, resulting in record-
level DP through Theorem 2.7. The authors thereby employ RDP accounting to keep
track of the privacy budget. In order to provide adequate results even in the situation of
non-IID, private FL-GAN relies on lifelong learning, i.e., the local dataset of each client
is augmented with samples obtained from the generator based on the parameters of the
previous client and an additional regularization term is introduced in the loss function
of the discriminator to ensure that the model does not “forget” the data distribution
of the previous client. It should be noted that this does not affect the DP guarantees
because of Theorem 2.6. Although this approach is communication efficient, the training
time is increased due to the sequential updates.

All approaches described so far use GAN variants that have been specifically optimized
for images, or have been applied and evaluated only on image datasets such as MNIST or
CIFAR-10. However, with the differentially private generation of (medical) tabular data
in a federated setting, which is the investigated use case of this thesis, specific challenges
already discussed in the last chapter arise such as even “faster” vanishing gradients and
difficulties with multimodal distributed continuous columns and imbalanced discrete
columns. To the best of our knowledge, this scenario has rarely been investigated in the
literature so far.

Fed-TGAN [Zha+21] trains a CTGAN model in a federated manner using local
generators and discriminators. Since CTGAN represents each column as a one-hot
vector and requires mode-specific normalization for continuous attributes, the clients
must agree on a uniform encoding. For this purpose, the clients send the frequencies of
the categories for discrete columns and the fitted VGM models for continuous attributes
to the server, which determines the encoding scheme from this information and sends it
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back to the clients. To improve convergence, a divergence matrix is calculated based
on the information shared with the server, which determines the weight for each client
depending on the columns when aggregating the local models. However, DP is not
integrated into the training process of Fed-TGAN. Further, the capabilities of the
generator are only evaluated for a fixed number of five clients and the authors have not
made the code publicly available.

An almost identical approach is taken in HT-Fed-GAN [Dua+22], where additionally
Gaussian noise is added to the aggregated parameters of the discriminator to satisfy
client-level DP. This variant is evaluated in the publication only for three clients with a
fixed ε = 0.5 and a questionably chosen δ = 9.8. Moreover, the associated code was not
published.

Fang, Dhami, and Kersting [FDK22] proposed FDP-CTGAN, a differentially private
version of CTGAN adapted for FL. In this architecture, Gaussian noise is injected to
the local gradients of the discriminators, so that record-level DP is guaranteed. The
performance of FDP-CTGAN is competitive with the centralized setting on multiple
medical datasets for fixed privacy parameters. Unfortunately, according to the imple-
mentation1 on GitHub, the authors train three clients on the same local dataset, which
contradicts the aim of FL.

In summary, it is evident that the considered use case requires a more detailed analysis
and, in particular, a comprehensive evaluation, such as the influence of the number of
participants and the impact of different privacy budgets, which will be addressed in the
following chapters of this thesis.

3.2 Frameworks for Privacy-Preserving Federated Synthetic
Data Generation

Before we move on to the implementation of our method for a privacy-friendly donation
of medical data using GANs, DP, and FL, we first discuss a selection of existing libraries
and frameworks that provide these PETs.

Opacus2 is a library introduced by Meta AI to integrate DP into PyTorch machine
learning pipelines with a vectorized implementation of DP-SGD for high performance.
The necessary adjustments can be accomplished with a few lines of code and Opacus
makes use of RDP accounting to keep track of the privacy budget spent so far. With

1 https://github.com/juliecious/CTGAN/blob/683a4d315ce5e05d7152e9d62ecc1a7d08f7df90/
fl/main.py#L50 (visited on 02/22/2023)

2 https://github.com/pytorch/opacus (visited on 02/23/2023)

https://github.com/juliecious/CTGAN/blob/683a4d315ce5e05d7152e9d62ecc1a7d08f7df90/fl/main.py#L50
https://github.com/juliecious/CTGAN/blob/683a4d315ce5e05d7152e9d62ecc1a7d08f7df90/fl/main.py#L50
https://github.com/pytorch/opacus
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TensorFlow Privacy3 a similar library is also available for TensorFlow that is developed
by Google. PyVacy4 is another alternative for PyTorch, but its runtime cannot compete
in benchmarks, as each sample is processed separately in a for-loop to compute the
per-sample gradient [You+21].

Furthermore, several open-source implementations of different synthetic data gener-
ators are available. The Synthetic Data Vault Project (SDV) provides CTGAN5 as a
PyTorch model. SmartNoise Synthesizers,6 which is maintained by Microsoft in collabo-
ration with Harvard University’s OpenDP Initiative, includes PyTorch implementations
of DP-CTGAN, PATE-CTGAN, and PATE-GAN.

Liu et al. [Liu+22] recently published a detailed benchmark for FL frameworks called
UniFed,7 which compares nine frameworks in 15 different scenarios. The authors conclude
that each framework has advantages and disadvantages in terms of supported models,
model performance, training time, communication efficiency, memory consumption, and
integration of PETs. A “Framework Selector” is provided on the project website to
assist in selecting the appropriate framework for a particular use case. TensorFlow
Federated8 is one of the evaluated frameworks, but at the time of writing does not
support deployment to multiple machines. The framework FATE,9 which is developed
by WeBank, is intended for industrial deployment in the cross-silo setting, for instance
within a Kubernetes cluster. However, in this work we intend to use a framework
that does not require a complex deployment and is also suited for edge devices with
low computing power. Flower,10 on the other hand, can be integrated into arbitrary
machine learning frameworks such as PyTorch, TensorFlow or scikit-learn. In addition
to the simulation of a FL system on a single machine, deployment to real nodes is
supported. Heterogeneous clients do not pose an obstacle, since this framework is
designed to be interoperable with different hardware and associated compute, memory,
and network resources, as well as programming languages. For example, there is an
software development kit (SDK) for iOS and Flower has also been successfully utilized
with NVIDIA Jetson or Raspberry Pi. Moreover, Flower enables efficient communication
between server and clients by using bi-directional gRPC Remote Procedure Calls (gRPC)
streams and thus binary serialization. In experiments, it was shown that Flower scales to

3 https://github.com/tensorflow/privacy (visited on 02/23/2023)
4 https://github.com/ChrisWaites/pyvacy (visited on 02/23/2023)
5 https://github.com/sdv-dev/CTGAN (visited on 02/24/2023)
6 https://github.com/opendp/smartnoise-sdk/tree/main/synth (visited on 02/24/2023)
7 https://unifedbenchmark.github.io (visited on 02/24/2023)
8 https://github.com/tensorflow/federated (visited on 02/24/2023)
9 https://github.com/FederatedAI/FATE (visited on 02/24/2023)

10 https://github.com/adap/flower (visited on 02/24/2023)

https://github.com/tensorflow/privacy
https://github.com/ChrisWaites/pyvacy
https://github.com/sdv-dev/CTGAN
https://github.com/opendp/smartnoise-sdk/tree/main/synth
https://unifedbenchmark.github.io
https://github.com/tensorflow/federated
https://github.com/FederatedAI/FATE
https://github.com/adap/flower
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15 million clients, 1000 of which were selected in each round for concurrently computing
the updates [Beu+20].
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4 Proposed Method: DP-Fed-CTGAN

In this chapter, we introduce our novel approach for generating synthetic tabular data
using FL under strict DP guarantees, which we call DP-Fed-CTGAN. In contrast to
existing techniques, the main design principle of DP-Fed-CTGAN is to minimize the
amount of data that clients have to disclose about their local datasets to the server,
thus adhering to the fundamental goal of FL and reducing the risk of privacy breaches.

First, in Section 4.1, we elaborate on the scenario of a medical data donation, which
constitutes the starting point for the development of our method as well as the later
evaluation. Moreover, we cover possible attacks that result from the federated setting and
explain the countermeasures that we have taken. The architecture of DP-Fed-CTGAN
and the steps needed to synthesize data are presented in Section 4.2. Furthermore, the
characteristics of the CTGAN model that were briefly mentioned in Section 2.2.2.5 are
discussed in greater detail. Finally, in Section 4.3 we address our implementation of
DP-Fed-CTGAN, limiting ourselves to the most important aspects.

4.1 Scenario and Threat Model

We made the design decisions of our approach considering the scenario of donating
highly vulnerable medical data to research. In such a setup, the clients of the FL system
presumably correspond to healthcare providers, while the server is likely operated by
a trusted third party such as the Health Data Lab of the BfArM in Germany. We
assume that the local datasets consist of tabular medical data that accrue during the
treatment of insured persons. With this in mind, as also will be described below, in
DP-Fed-CTGAN we have intentionally focused on minimizing the extent of information
that the clients have to share with the server, and not to handle the scenario of highly
non-IID distributed data especially well, since this would require the server to have
extra information about the local datasets in many steps.

For the underlying FL system, we assume that the server is honest-but-curious and the
participants are honest. This means that the server will not deviate from the algorithm
introduced below, but, for example, an employee of the organization operating the server



40 4 Proposed Method: DP-Fed-CTGAN

could try to misuse the information received from the clients to perform an attack that
would compromise the privacy of one of the individuals in the local training datasets.
We consider an attack to be successful if the adversary succeeds in re-identifying a data
donor or gains accurate statistical properties regarding the training data [BM21]. To
limit the amount of information that the attacker can learn about an individual from the
exchanged model parameters in the worst case, we employ record-level DP by perturbing
the local gradients before aggregation. At the same time, these DP guarantees apply to
the generator and its synthesized data with respect to inference and model inversion
attacks after training.

Combining three PETs for DP-Fed-CTGAN, namely DP, FL, and SDG, together
with further reducing data sharing compared to previous works such as Fed-TGAN and
HT-Fed-GAN, aims to gain the trust of the public, without which such a data donation
cannot succeed, in addition to simply meeting regulatory requirements. However, it
should be noted that the risk of a privacy breach can be further reduced, for example, by
using secure multi-party computation (MPC) in trusted execution environments (TEEs),
which we leave open for future work [Kai+21].

4.2 Architecture and Algorithms
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Figure 4.1: Simplified overview of the DP-Fed-CTGAN architecture for one client.

DP-Fed-CTGAN follows the horizontal FL scheme consisting of a central server with
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the global generator and discriminator and a set of clients that train local generators and
discriminators on their respective training dataset. Figure 4.1 illustrates the architecture
of our approach and shows the most important steps in the algorithm for generating
synthetic data on the server starting from the tabular training data of the client. First,
the training data are transformed into a numerical form that facilitates learning the
distributions of the column values. During this process, a different encoding is used
for continuous and discrete columns. In each federated round, real and fake data
are first sampled in order to update the parameters of the discriminator. Afterwards
the parameters of the generator are updated. As can be seen in Figure 4.1, the
CTGAN framework relies on the training-by-sampling mechanism, i.e., the generator
and discriminator additionally receive a conditional vector as input to avoid mode
collapse. At the end of each round, every client sends the parameters of the generator
and discriminator to the server, where they are aggregated and then returned to the
clients.

In the following, we elaborate on the privacy-preserving data encoding process in Sec-
tion 4.2.1, while Section 4.2.2 covers the actual federated training under DP. Section 4.2.3
addresses the generation of synthetic data in more detail.

4.2.1 Privacy-Preserving Data Encoding

Before the two neural networks in the form of the generator and the discriminator can
be trained, the training data must be represented in a suitable way. In the following, we
assume that the local training datasets {P1, . . . , PK} of the K participants consist of the
same Nc continuous columns {C1, . . . , CNc} and Nd discrete columns {D1, . . . ,DNd

}. We
can thus express a row of a dataset as rj = {c1,j , . . . , cNc,j , d1,j , . . . , dNd,j}. While discrete
columns can be transformed directly into one-hot encoded vectors {d1,j , . . . , dNd,j} whose
number of components is equal to the number of different categories of the respective
column, in CTGAN the so-called mode-specific normalization is performed for continuous
columns in order to cope with multimodal distributions of the values, which are often
not properly modeled by vanilla GANs. Furthermore, a classical min-max normalization
is generally unsuitable for continuous tabular attributes, since long-tailed distributions
with extreme outliers are often present, so that the majority of the values are mapped to
a very small range at the boundary of the interval [−1, 1]. This can cause the gradients
to vanish in this range, especially when using the Tanh activation function. We now
explain mode-specific normalization first for the centralized scenario [Bis06, pp. 474–486;
Xu20]:
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Figure 4.2: Example of a VGM model fitted to a continuous age distribution as part
of mode-specific normalization.

1. Fit a variational Gaussian mixture (VGM) model to each continuous column Ci

to estimate the number of modes M of the data. Let µk denote the mean,
Σk the variance of the k-th Gaussian mixture, and wk the weight of the k-th
component, then we obtain the probability density function (PDF) p(ci,j) =∑M

k=1 wkN (ci,j | µk, Σk) for the column values. In Figure 4.2, for example, the
VGM model finds three modes and the dashed PDF.

2. For each value ci,j of Ci, calculate the probabilities ρk = wkN (ci,j | µk, Σk) for
k ∈ {1, . . . , M} that ci,j comes from the mode associated with the k-th mixture
component.

3. For each ci,j , sample a mixture component using the previously calculated prob-
abilities ρ1, . . . , ρM . We can now represent ci,j by a one-hot encoded vector βi,j

indicating the selected mixture component l and thus the mode, and a scalar
αi,j = ci,j−µl

4
√

Σl
specifying the value within the mode by normalization with the mean

and standard deviation of the component. For instance, in Figure 4.2 the second
mode is most likely chosen for age of 50, so βi,j would be [0, 1, 0] and αi,j = ci,j−µ2

4
√

Σ2
.

With this, we can represent a row by concatenating the continuous and discrete columns:

rj = α1,j ⊕ β1,j ⊕ . . .⊕ αNc,j ⊕ βNc,j ⊕ d1,j ⊕ . . .⊕ dNd,j .

In the case of a FL architecture, the same value could be represented differently on
different clients in the context of mode-specific normalization, since the distribution of
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Figure 4.3: Data encoding process of DP-Fed-CTGAN.

the values of continuous attributes usually varies between clients. For discrete columns,
not all categories possibly occur on every client, so the length of the one-hot vectors
could be inconsistent. However, the clients must agree on a uniform encoding scheme so
that the aggregation of the generator and discriminator parameters can be performed
later. Figure 4.3 shows our proposed solution for a uniform encoding of the local training
datasets, which at the same time minimizes the sharing of information with the server
to protect the privacy of the individuals behind the data.

In the first step, the clients send a list of all distinct values to the server for discrete
columns as well as the local training dataset size. The procedure for continuous columns
is described in more detail in Algorithm 4.1. Every client fits a Gaussian mixture
model (GMM) to each continuous column (highlighted in blue), which can optionally be
refined in multiple rounds by using the average mixture parameters from Lines 16–20 as
initialization for the next round. For this purpose, we use GMMs instead of VGM models,
since they have a fixed number of components and are less computationally expensive,
while the inferred number of components for VGM models can vary between the clients.
Thus, the aggregation of the parameters on the server is simpler. Subsequently, in Lines
22–28, an amount of random samples equal to the size of the local training dataset are
drawn from the GMMs of the clients, to which a VGM model is fitted for mode-specific
normalization.

In the second step of the data encoding process, the server also determines all distinct
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Algorithm 4.1: Federated VGM models.
Input: Number of participants K, maximum number of federated rounds T ,

local training dataset Pk of each participant, set of continuous columns
{C1, . . . , CNc}, number of mixture components n

Output: VGM model for each continuous column
1 models← ∅;
2 foreach column c ∈ {C1, . . . , CNc} do
3 foreach round t ∈ {1, . . . , T} do
4 foreach participant k ∈ {1, . . . , K} in parallel do
5 if t = 1 then
6 initialize GMMk using k-means;
7 else
8 initialize GMMk with µ1, . . . , µn, Σ1, . . . , Σn, w1, . . . , wn;
9 end

10 fit GMMk to Pk [c]; ▷ Fit GMM to column c of local dataset
11 µk

1, . . . , µk
n ← (means of GMMk in ascending order);

12 Σk
1, . . . , Σk

n ← (variances of GMMk sorted according to means);
13 wk

1 , . . . , wk
n ← (weights of GMMk sorted according to means);

14 end
15 if t ̸= T then
16 for 1 ≤ j ≤ n do
17 µj ← 1

K

∑K
k=1 µk

j ;
18 Σj ← 1

K

∑K
k=1 Σk

j ;
19 wj ← 1

K

∑K
k=1 wk

j ;
20 end
21 else
22 list← ∅;
23 foreach participant k ∈ {1, . . . , K} do
24 samples← (take |Pk| random samples from GMM with parameters

µk
1, . . . , µk

n, Σk
1,, . . . , Σk

n, wk
1 ,, . . . , wk

n);
25 extend list with samples;
26 end
27 modelc ← (fit VGM model to list);
28 append modelc to models;
29 end
30 end
31 end
32 return models;
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categories for discrete columns. Next, the parameters of the learned VGM models of
each continuous column as well as the list of all distinct categories for discrete columns
are sent to the clients. Eventually, the local training datasets are transformed into
a suitable representation for training using mode-specific normalization and one-hot
encoding as described above. It should be noted that this transformation can be easily
reversed.

4.2.2 Differentially Private Federated CTGAN Training
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Figure 4.4: Training process of DP-Fed-CTGAN.

As shown in Figure 4.4, the procedure of a federated training round can be divided
into four steps. First, each client trains the discriminator and generator on the local
training dataset in a differentially private manner by privatizing the gradients of the
discriminator as in DP-SGD. Afterwards, the clients send the local parameters to the
server, where they are aggregated by computing the weighted average. Finally, the
aggregated parameters are sent back to the clients, forming the starting point for the
parameter update in the next round.

We now discuss the client-side training process of DP-Fed-CTGAN in depth, as
depicted in Algorithm 4.2. First, in Line 1, the number of steps per local epoch is
calculated by dividing the local training dataset size by the batch size. At the beginning
of each epoch (Lines 2–5), we determine whether the privacy budget is already exhausted
by querying the RDP-based privacy accountant A and comparing the output to εtarget.
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If the budget does not allow any further training, the current parameters of the generator
and discriminator are returned. Otherwise, we proceed with the training by creating
a batch of so-called conditional vectors with the training-by-sampling mechanism in
Line 8, since CTGAN builds on the conditional GAN (cGAN) architecture.

Algorithm 4.2: Client-side training algorithm of DP-Fed-CTGAN.
Input: Current global parameters θg and θd of generator G and discriminator D,

local training dataset Pk of k-th participant, number of discrete columns
Nd in Pk, number of local epochs E, learning rate η, mini-batch size m,
gradient norm bound C, noise scale σ, privacy budget (εtarget, δtarget)

Output: Updated parameters θg and θd of differentially private generator and
discriminator

1 S ← max
(
1, |Pk|

m

)
; ▷ Number of steps per local epoch

2 foreach local epoch e ∈ {1, . . . , E} do
3 ε← (query RDP accountant A with δtarget);
4 if ε > εtarget then
5 return θg, θd; ▷ Privacy budget is consumed
6 foreach step s ∈ {1, . . . , S} do
7 for 1 ≤ j ≤ m do
8 create conditional vector condj with training-by-sampling;
9 zj ∼ N (0, I); ▷ Sample from noise prior

10 r̂j ← G(zj , condj); ▷ Generate fake data
11 rj ∼ Uniform(Pk | condj); ▷ Sample real data
12 end
13 Ld ← 1

m

∑m
i=1 BCE(D(r̂i, condi), 0) + 1

m

∑m
i=1 BCE(D(ri, condi), 1);

14 θd ← θd − η ·DPAdam(∇θd
Ld, C, σ);

15 for 1 ≤ j ≤ m do
16 create conditional vector condj with training-by-sampling;
17 zj ∼ N (0, I); ▷ Sample from noise prior
18 r̂j ← G(zj , condj); ▷ Generate fake data
19 end
20 Lg ← 1

m

∑m
i=1 BCE(D(r̂i, condi), 1);

21 θg ← θg − η ·Adam(∇θgLg);
22 end
23 end
24 return θg, θd;

These conditional vectors, which indicate the category of a particular discrete column,
are additionally given as input to the generator and discriminator to avoid mode collapse
for imbalanced categorical columns. In the following, we briefly explain the steps of
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training-by-sampling as presented in the CTGAN framework [Xu+19]:

1. For each discrete column Di with i ∈ {1, . . . , Nd}, create a zero-filled mask vector
mi =

[
m

(1)
i . . . m

(|Di|)
i

]
so that each component corresponds to a category in the

list of the |Di| possible categories received from the server.

2. Randomly select one of the discrete columns with equal probability, which we refer
to as Di∗ .

3. Calculate a PMF for the selected column Di∗ such that the probability mass of
each category is equal to the logarithm of its frequency.

4. Randomly choose a category k∗ based on the PMF just calculated and set the
k∗-th component of the i∗-th mask to one, i.e., m(k∗)

i∗ = 1.

5. Compute the conditional vector cond = m1 ⊕ . . . ⊕mi∗ ⊕ . . . ⊕mNd
. As an

example, suppose we have a table with two discrete columns containing the values
D1 = {A, B} and D2 = {C, D, E}, respectively. Assuming i∗ = 2 and k∗ = 1,
we would obtain the masks m1 = [0, 0] and m2 = [1, 0, 0], thus resulting in
cond = [0, 0, 1, 0, 0].

Compared to HT-Fed-GAN, we do not consider the global frequencies of the categories,
but rely on the local frequencies in the respective training dataset of the client. To com-
pute the global frequencies, the clients would have to communicate the local frequencies
to the server, which we believe would pose an unnecessary threat to the privacy of the
individuals in the underlying attacker model and would contradict the goal of FL to
minimize the amount of information that clients have to share about the local datasets.

Continuing with the for loop of Algorithm 4.2 (Lines 9–11), we draw random noise
from a multivariate normal distribution, which the generator receives along with the
conditional vector to synthesize fake data. Furthermore, we uniformly draw a sample
among the rows from the local dataset that satisfy the constraints of the corresponding
conditional vector condj . In Lines 13–14, we then compute the loss of the discriminator
as the average BCE loss between the label predicted by the discriminator and the actual
label for the batches of fake as well as real data. Unlike the original training algorithm of
CTGAN, no additional term enforcing the 1-Lipschitz condition of WGAN that penalizes
the norm of the gradient is added to the loss, since the per-sample gradients have to
be clipped anyway for the DP guarantees. To update the discriminator parameters,
we use a differentially private version of the Adam optimizer, i.e., the Adam algorithm
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introduced by Kingma and Ba [KB14] is adjusted to include per-sample gradient clipping
and the injection of noise to the average gradient.

Then another batch of fake data is generated and assessed by the discriminator,
leading to the generator’s loss (Lines 15–20). Updating the parameters of the generator
with Adam thereafter is also differentially private according to Theorem 2.6 without
adding noise (Line 21), since the output of the discriminator is differentially private and
the generator has no access to the real data. Moreover, to comply with DP, a penalty
term from the original CTGAN framework to prevent the violation of the conditional
vector is not included in the loss function of the generator. Lastly, the parameters of
the generator and discriminator are returned after the specified number of local epochs.

Algorithm 4.3: Server-side training algorithm of DP-Fed-CTGAN.
Input: Number of participants K, maximum number of federated rounds T ,

local training dataset size |Pk| of each participant
Output: Parameters θg of differentially private generator

1 initialize θg and θd;
2 foreach participant k ∈ {1, . . . , K} do

3 wk =
|Pk|∑K

j=1 |Pj |
4 end
5 foreach round t ∈ {1, . . . , T} do
6 foreach participant k ∈ {1, . . . , K} in parallel do
7 θk

g , θk
d ← (execute Algorithm 4.2 on participant k with current global

parameters θg and θd);
8 end
9 θg ←

∑K
k=1 wkθk

g ;
10 θd ←

∑K
k=1 wkθk

d ;
11 end
12 return θg;

On the other hand, as can be seen in Algorithm 4.3, the parameters of the generator
and discriminator are initialized on the server at the beginning. The weights of the
clients, which are later used to aggregate the parameters, are given by the local dataset
size in relation to the total number of samples (Lines 2–4). We decided against a
weighting scheme as in Fed-TGAN, which tries to compensate for a non-IID distribution
of the data across clients, since it requires the knowledge of the category frequencies by
the server. We will examine the cost of this approach in terms of utility and fidelity in
the evaluation. Next, starting with the current global parameters of the generator and
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discriminator, the updated parameters are retrieved from all clients in each round and
aggregated according to the weights previously calculated. When the desired number of
federated rounds are completed, the parameters of the generator are returned.

4.2.3 Generation of Synthetic Data
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Figure 4.5: Data generation process of DP-Fed-CTGAN.

Now that the training process is finished, the generation of synthetic data can be
performed as shown in Figure 4.5. Therefore, let us assume that we want to synthesize
n rows. In the first step, the server requests n·wk conditional vectors from client k, where
the wk are the weights calculated in Algorithm 4.3. This differentiates our algorithm
from previous works like Fed-TGAN and HT-Fed-GAN, because in these approaches
the server knows the frequencies of all categories and therefore the conditional vectors
can be constructed on the server. Our proposed solution is thus more privacy-friendly,
but faces higher communication costs.

After that, the clients create the desired number of conditional vectors using the
training-by-sampling method we explained earlier, but with the difference that the
PMF uses the actual frequencies of the values rather than their logarithm. Once the
server received the conditional vectors in the third step, synthetic rows can be generated
by feeding the generator with noise from a multivariate normal distribution and the
conditional vectors. Lastly, the encoding of the data is reversed.
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4.3 Implementation

Figure 4.6: Software components of DP-Fed-CTGAN.

Our implementation of DP-Fed-CTGAN is mainly based on the open-source frame-
works CTGAN from SDV, Opacus, and Flower, which were already outlined in Sec-
tion 3.2. Figure 4.6 illustrates the relationships between these software entities as a UML
component diagram. We begin with our customized CTGAN library, which provides
the functionality for the local training on the clients as well as generating synthetic
data on the server. First, we made the necessary adjustments to the original CTGAN
implementation for our privacy-preserving data encoding and the sampling of conditional
vectors in the federated setting. To ensure record-level DP, we integrated Opacus by
attaching a PrivacyEngine to the Adam optimizer of the discriminator. Regarding the
other required changes in the train method to achieve compatibility with Opacus, we
followed the DP-CTGAN implementation from SmartNoise. Since in this process the
loss functions were modified to match Algorithm 4.2, a Sigmoid activation is added as
the last layer of the discriminator, as shown in Figure 4.7.
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Figure 4.7: Structure of the discriminator in DP-Fed-CTGAN.

For completeness, the structure of the generator network is visualized in Figure 4.8,
where we would like to highlight the concatenative skip connections and the use of
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different activation functions in the output layer depending on the vector component.
Namely, for the scalar values α the Tanh activation is used, while for the one-hot vectors
β and d the tailor-made Gumbel softmax is used [JGP16].
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Figure 4.8: Structure of the generator in DP-Fed-CTGAN.

Building a FL system with Flower is as simple as implementing the NumPyClient
interface for the Flower Clients and specifying a Strategy object for the Flower Server
that allows customization of the learning process. Once the Flower Server and the
Flower Clients are started, the library handles the communication between them and
invokes the appropriate functions at the right time. The functionality of a NumPyClient
is implemented in the three methods get_parameters, set_parameters, and fit. In
our case, the fit method receives the aggregated parameters from the server and
executes the set_parameters function to update the local generator and discriminator,
after which the local training is performed by calling the train method of CTGAN.
Ultimately, through fit the get_parameters function is called and the model updates
are sent to the server.

In comparison, there are two important methods in the Strategy class for our setting.
configure_fit selects the clients that will participate in the upcoming round, which
in our case are all connected clients. Before the first round, this method also retrieves
the information needed for the data encoding (see Section 4.2.1) and transmits the final
encoding scheme to the clients. To this end, we use the so-called Flower Criteria, because
at the time of writing there is no other way for retrieving information from the clients
prior to the actual training. On the other hand, the aggregation of the parameters
that the server receives by calling fit on each client is implemented in aggregate_fit.
The aggregated parameters of the local generators are also assigned to the server-side
generator. After the federated training is completed, this generator allows to synthesize
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data as described in Section 4.2.3, whereby the required conditional vectors are also
retrieved from the clients via a Flower Criterion.
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5 Evaluation

In this chapter, we perform a comprehensive evaluation of DP-Fed-CTGAN. After
detailing the experimental setup in Section 5.1, we provide the results of our experiments
in Section 5.2. Ultimately, in Section 5.3, we will summarize the key findings, but
also address the limitations of our approach and suggest possible directions for future
research. All source code arising from the implementation of our method as well as all
Juypter notebooks from the evaluation are available in a GitLab repository.1

5.1 Experimental Setup

The following section first introduces the metrics we selected to benchmark DP-Fed-
CTGAN as well as the datasets that served as the basis for our experiments. Next, we
outline the baselines that enable a comparison of the performance of our method and
discuss the hyperparameters we used. Last, we present the execution environment for
the experiments.

5.1.1 Metrics

In the literature, the quality of the generated synthetic data is usually assessed in the
dimensions of utility and fidelity. Utility refers to the performance of using synthetic
data in place of real data for a given downstream task, with the primary use case being
classification algorithms. In contrast, for fidelity, we examine whether the synthesizers
preserve the statistical properties of the data.

5.1.1.1 Utility

To assess the utility of synthetic data, the general idea is to compare the two tech-
niques, train on real, test on real (TRTR) and train on synthetic, test on real (TSTR),
by means of common classification metrics. For this, we use the framework shown
in Figure 5.1, which was originally proposed in [EHR17]. Here, the real dataset is

1 https://gitlab.com/leitmori/DP-Fed-CTGAN (visited on 06/15/2023)

https://gitlab.com/leitmori/DP-Fed-CTGAN
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Figure 5.1: Framework for the utility evaluation.

first divided into a training dataset and a test dataset, for which the ratio 80/20
is usually employed. Subsequently, various classifiers are trained on the training
dataset. We used the following algorithms from the scikit-learn library, leaving the
default settings for the most part: (i) KNeighborsClassifier with n_neighbors=10,
(ii) MLPClassifier with hidden_layer_sizes=(100,), (iii) RandomForestClassifier
with n_estimators=100, and (iv) AdaBoostClassifier with n_estimators=50. Fur-
thermore, the synthesizer to be evaluated is also trained with the training dataset and a
synthetic dataset with the same number of records is generated. Subsequently, the same
classifiers are trained on the synthetic dataset. Finally, the classifiers can be evaluated
on the test data and their performance can be compared using classification metrics.

The starting point for the classification metrics is the so-called confusion matrix as
shown in Figure 5.2, which allows a structured representation of the decisions of a
classifier. For this purpose, a distinction is made between four options. A true positive
(TP) is a correctly as positive classified sample, while a true negative (TN) is a sample
correctly predicted as negative. Moreover, a sample incorrectly labeled as positive is a
false positive (FP) and a sample erroneously classified as negative is a false negative
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Figure 5.2: Confusion matrix.

(FN). With these quantities, we can define the accuracy as follows [LKA16]:

Accuracy = TP + TN

TP + TN + FP + FN
.

However, an evaluation of a classifier based on accuracy alone can be misleading in
the case of class imbalance. In addition, the accuracy score reveals little about the
ability of a model to discriminate between positive and negative samples. We therefore
consider two more metrics with area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC), for which we must first
define the quantities true positive rate (TPR), false positive rate (FPR), and precision
that can be derived from the confusion matrix [Tha20]:

TPR / Recall = TP

TP + FN
, FPR = FP

FP + TN
, Precision = TP

TP + FP
.

To construct the ROC curve, for different decision thresholds the corresponding FPR is
plotted along the x-axis and the TPR is plotted along the y-axis. For the AUROC metric,
which corresponds to the probability that a randomly chosen positive sample is assigned
a higher score by the model than a randomly chosen negative sample, the area under
the ROC curve is calculated [Bra97; LKA16]. In the case of highly imbalanced classes,
AUPRC is an insightful metric as it corresponds to the area under the precision-recall
curve, which illustrates the trade-off between precision and recall for varying decision
thresholds [Tha20].

5.1.1.2 Fidelity

To examine the fidelity, usually the differences between the distributions of the attribute
values and between the relationships of the attributes are considered. We compute the
distance from the probability distributions of the discrete attributes of the training
dataset to the distributions of the corresponding attributes in the synthetic dataset
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using the Jensen-Shannon distance (JSD) as follows [Her+23]:

JSD(P, Q) =

√
DKL(P ∥M) + DKL(Q ∥M)

2 ,

where M = 1
2(P + Q) and DKL is the Kullback-Leibler divergence (KLD). Next, we

calculate the average of the distances of all categorical columns and obtain a metric
between zero and one, where a lower value corresponds to a higher similarity of the
distributions. For continuous attributes, we resort to the Wasserstein-1 distance (WD),
which is also known as earth mover’s distance (EMD), since the KLD can be ill-defined
if the probability distributions of the real and synthetic attribute values do not overlap
[ACB17; Zha+21]:

WD(P, Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [∥x− y∥] ,

where Π(P, Q) denotes the set of all joint distributions γ(x, y) whose marginals are P

and Q. Illustratively, the WD indicates the minimum cost to transform the distribution
P into the distribution Q by transporting probability mass. To enable a meaningful
aggregation of the distances of all continuous columns into one score, we first perform a
min-max normalization for each attribute of the training dataset and apply the same
transformation to the synthetic dataset.

We further assess the ability of the synthesizers to learn the relations between each
pair of attributes. On the one hand, we use Cramér’s V, which is a measure of association
between categorical variables based on the χ2 (chi-squared) test. On the other hand, we
analyze the dependencies between continuous attributes with the Pearson correlation
coefficient [Her+23].

5.1.2 Datasets

For our experiments described below, we selected three datasets commonly used for
generating synthetic data from the University of California, Irvine (UCI) Machine
Learning Repository and three real-world medical datasets from Kaggle. All datasets
contain both continuous and discrete attributes. Two datasets, Covertype and Obesity,
are multiclass classification problems. Table 5.1 gives an overview of the properties of
the datasets, which we now present in more detail:

Adult: The 48842 records of the Adult dataset were extracted from the 1994 US Census
database. The task is to predict for each individual, based on 14 features such as
age, education, and hours of work per week, whether they have an annual income
greater than $50,000 [BK96].
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Bank Marketing: This dataset contains information about a marketing campaign of a
Portuguese bank. The objective of the classification task is to predict whether the
customer has opened a term deposit [MCR14].

Covertype: The Covertype dataset contains U.S. Forest Service (USFS) observations
such as elevation, aspect, slope, hillshade, soil type, and one of seven possible
forest cover types for 581012 30-by-30 meter cells in the Roosevelt National Forest
[Bla98].

Cardiovascular Disease: The Cardiovascular Disease dataset2 from Kaggle contains
70000 patients with 11 features such as age, weight, and blood pressure in order
to predict whether they suffer from a cardiovascular disease.

Diabetes: The Pima Indians Diabetes Database,3 originally from the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK), consists of 764 diagnostic
measurements for predicting whether or not a patient has diabetes.

Obesity: The Obesity dataset4 originates from a paper that addresses the estimation of
obesity levels based on eating habits and physical condition, specifically the task
of assigning one of seven obesity levels to the 2111 individuals.

Dataset
Number of Rows Number of Attributes

Target Variable
Training Testing Continuous Discrete

Adult 32561 16281 6 9 income
Bank Marketing 36168 9043 6 11 y
Covertype 464809 116203 10 45 Cover_Type
Cardiovascular Disease 56000 14000 5 7 cardio
Diabetes 614 154 7 2 Outcome
Obesity 1688 423 8 9 NObeyesdad

Table 5.1: Properties of the datasets used for the experiments.

5.1.3 Baselines and Hyperparameters

We compare our proposed method, DP-Fed-CTGAN, with three state-of-the-art GAN-
based tabular data synthesizers that were already introduced in Chapter 3. Since the

2 https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset (visited on
05/19/2023)

3 https://www.kaggle.com/datasets/uciml/pima- indians- diabetes- database (visited on
05/19/2023)

4 https://www.kaggle.com/datasets/ankurbajaj9/obesity-levels (visited on 05/22/2023)

https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/ankurbajaj9/obesity-levels
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majority of previous approaches in the federated setting do not provide DP guarantees
or have only been evaluated with debatable privacy parameters, we also consider a
version of our synthetic data generator without DP in the experiments, which we call
Fed-CTGAN. In the following, we briefly summarize the selected hyperparameters of
the baseline synthesizers with the exception of the batch size and the number of epochs,
for which we determined appropriate values for each dataset that can be found in the
Jupyter notebooks in the GitLab repository:

CTGAN: For the non-private centralized CTGAN implementation from SDV, we chose
the default values for all hyperparameters.

DP-CTGAN: This differentially private version of CTGAN from the SmartNoise Syn-
thesizers project, like our approach, uses Opacus for gradient perturbation and
privacy accounting. The number of training epochs is determined by the privacy
budget (ε, δ) as well as the noise scale σ. Table 5.2 shows the privacy configuration
we picked for each dataset, while we kept the default values for the remaining
hyperparameters.

Fed-TGAN: Since the authors did not publish the code of their technique, we re-
implemented Fed-TGAN according to the details stated in the paper [Zha+21].
Apart from the missing integration of DP, the main difference to our approach is
that the clients have to provide the server with the frequencies of the individual
categories of each discrete column. Therefore, the server can create the conditional
vectors needed for synthesizing records itself and does not need to retrieve them
from the clients. Furthermore, the authors use this information when aggregating
the model parameters of the clients, while in our approach the weights for the
aggregation depend only on the respective local dataset sizes.

Dataset ε δ σ of DP-CTGAN σ of DP-Fed-CTGAN

Adult 3 1e-5 2 2
Bank Marketing 3 1e-5 2 2
Covertype 3 1e-6 1 2
Cardiovascular Disease 3 1e-5 2 2
Diabetes 3 1e-3 2 2
Obesity 3 1e-4 3 3

Table 5.2: Configuration of Opacus for DP-CTGAN and DP-Fed-CTGAN.
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Since tuning all the hyperparameters of (DP-)Fed-CTGAN would not have been
possible in a reasonable amount of time with the computational resources at our
disposal, we only experimented with minor changes starting from default values of
CTGAN. The most important hyperparameters that we finally used for the evaluation
are listed in Table 5.3. Again, we refer to the Jupyter notebooks for the batch size and
the number of FL rounds, while the configuration of Opacus for the different datasets
can be seen in Table 5.2.

Step Hyperparameter Fed-CTGAN DP-Fed-CTGAN

Encoding Mixture components 10 10
GMM rounds (Algorithm 4.1) 5 5

Training

Learning rate of generator 2e-4 2e-4
Learning rate of discriminator 2e-4 2e-4
Weight decay of generator 1e-5 1e-5
Weight decay of discriminator 1e-5 1e-5
Betas of Adam 0.5, 0.9 0.5, 0.9
PAC size [Lin+17] 10 1
Discriminator updates per generator update 3 1
Local epochs per federated round 3 3

Table 5.3: Key hyperparameters of Fed-CTGAN and DP-Fed-CTGAN.

5.1.4 Experimental Environment

Given that there were a total of 764 synthetic datasets to be generated for the evaluation,
we split the experiments between two testbeds. Our main machine running CentOS 7
and Python 3.10.11 was equipped with two Intel Xeon 4210 2.2 GHz CPUs, eight

Library Version

Flower 1.3.0
PyTorch 1.13.1
Opacus 0.14.0
scikit-learn 1.2.2
pandas 1.5.3
NumPy 1.24.3
SciPy 1.10.1
CTGAN 0.7.3
SmartNoise Synthesizers 0.3.7

Table 5.4: Version numbers of the main libraries.
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NVIDIA GeForce RTX 2080 Ti GPUs, and 144 GiB of RAM. In addition, we deployed a
Google Cloud virtual machine (VM) running Debian 11 and Python 3.10.10 with eight
vCPUs (Intel Xeon 2.3 GHz), an NVIDIA Tesla P100 GPU, and 30 GiB of RAM. The
exact same versions of the required Python libraries were installed on both testbeds, of
which we list the most important ones in Table 5.4.

5.2 Results

Below, we first present the evaluation results in terms of the utility of the synthetic data.
Next, we analyze how realistic the output of the different synthesizers is by means of the
fidelity metrics already introduced. To determine whether our approach of minimizing
the amount of information that clients have to share about their local records has a
negative impact on performance, we also consider the scenario of non-IID distributed
data between the clients. Additionally, we investigate the influence of the privacy budget
and the number of clients on utility and fidelity. We conducted five runs for each
experiment to achieve more robust results, distributing the data randomly among the
clients in the federated setting for each run. Unless otherwise specified, we used three
clients and ε = 3 as the privacy budget for the differentially private synthesizers.

5.2.1 Utility

We begin by examining the utility of the data generated by different synthesizers in
terms of the accuracy of the trained classifiers. Figure 5.3 visualizes the results for
all datasets, with the four different classifiers k-nearest neighbors (k-NN), multilayer
perceptron (MLP), random forest, and AdaBoost plotted along the x-axis and the
accuracy along the y-axis. For comparison, the average accuracy scores of TRTR are
shown as a dashed gray line for each classifier. It should be noted that our primary
concern is to analyze the differences between TSTR and TRTR, rather than the values
themselves.

For the Adult dataset in Figure 5.3a, the loss in utility is smallest for the non-private
federated methods (Fed-TGAN and Fed-CTGAN) and is essentially negligible. In the
case of random forest, the upper whisker of Fed-TGAN is even above the average of the
accuracy for the real dataset. As expected from the perturbation of the gradients during
training, the two differentially private methods (DP-CTGAN and DP-Fed-CTGAN)
have a lower utility and show a similar performance for all classifiers. The median
accuracy of CTGAN, and thus the centralized scenario without privacy guarantees, falls
between the two groups.
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Figure 5.3: Comparison of accuracy scores for different classifiers and SDG methods
for each dataset.
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Unlike the other datasets, the Bank Marketing dataset has a significant class imbalance,
with about 88 percent of the samples belonging to the negative class. For this reason, as
seen in Figure 5.3b, there are only minor differences in accuracy between the individual
synthesizers, since the classifiers learn mostly the negative classes. However, it is evident
that CTGAN consistently achieves the lowest median accuracy and also has the largest
variabilities. The results for AUROC and AUPRC discussed later permit a better utility
assessment for this dataset.

The multiclass classification problem of the Covertype dataset in Figure 5.3c results
in a substantial decline in accuracy in the case of TSTR, except for AdaBoost. Similar
to Figure 5.3a, the non-private federated methods achieve the highest accuracy, with
Fed-TGAN performing slightly better than Fed-CTGAN. DP-CTGAN follows with
only a small offset, while the disparity with DP-Fed-CTGAN and especially CTGAN
is higher. Excluding AdaBoost, the median accuracy of CTGAN is clearly below the
median of DP-Fed-CTGAN.

A grouping of accuracy values between non-private and differentially private syn-
thesizers can also be observed for the Cardiovascular Disease dataset in Figure 5.3d.
The use of synthetic data here comes at almost no cost in terms of utility for CTGAN,
Fed-TGAN, and Fed-CTGAN. But even for the differentially private GANs, the loss of
accuracy is less than 10 percent in the majority of the runs, although the variability is
larger. Furthermore, the median score of our method is continuously above DP-CTGAN.

We observe similar results for the Diabetes dataset in Figure 5.3e. Here, the whiskers
of the non-private synthesizers for several classifiers are higher than the corresponding
average accuracy when using the real data. DP-CTGAN and DP-Fed-CTGAN score
comparably with the exception of AdaBoost, where the median accuracy of DP-Fed-
CTGAN is lower than with DP-CTGAN.

For the Obesity dataset in Figure 5.3f, all synthesizers exhibit a sharp drop in accuracy
as in Figure 5.3c, since the task for this dataset is also a multiclass classification problem.
The difference between TSTR and TRTR is relatively small only for AdaBoost. CTGAN,
DP-CTGAN, and DP-Fed-CTGAN perform very similarly in this case, but they are
again outperformed by the non-private federated methods.

All these phenomena appear in a similar form with the AUROC scores presented
in Table 5.5, where only the mean value of all classifiers is reported for each dataset
and synthesizer. Fed-TGAN and Fed-CTGAN achieve the highest values, while the
synthesizers with DP guarantees yield lower scores and are therefore not as capable at
discriminating between the classes. The results also show that our approach performs
slightly better than DP-CTGAN on four of the six datasets, and is only outperformed
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Dataset Real Data CTGAN DP-CTGAN Fed-TGAN Fed-CTGAN DP-Fed-CTGAN

Adult 0.8775 0.8279 0.7210 0.8529 0.8486 0.7526
Bank Marketing 0.9080 0.6933 0.5454 0.7484 0.7198 0.5285
Covertype 0.8863 0.6454 0.7172 0.7831 0.7611 0.6921
Cardiovascular Disease 0.7872 0.7599 0.6803 0.7543 0.7584 0.6983
Diabetes 0.8378 0.7969 0.4780 0.8068 0.7904 0.5142
Obesity 0.9293 0.5131 0.5034 0.6036 0.6096 0.5188

Table 5.5: Average AUROC scores for each dataset and SDG method.

on Bank Marketing and Covertype. The data generated with DP-CTGAN for the
Diabetes dataset even lead to an average AUROC score that is inferior to the one of a
random guess classifier. This could be due to the fact that the class distributions of the
datasets generated by DP-CTGAN differ significantly from the class distribution of the
training dataset. The strength of the AUROC metric is particularly apparent for Bank
Marketing, where it is difficult to judge the various synthesizers based on the accuracy.
For such heavily imbalanced datasets, evaluating utility with the AUPRC scores from
Table 5.6 is even more informative, as this metric completely ignores the TNs. However,
for balanced datasets, the AUPRC values are often too pessimistic.

Dataset Real Data CTGAN DP-CTGAN Fed-TGAN Fed-CTGAN DP-Fed-CTGAN

Adult 0.6945 0.5881 0.4403 0.6341 0.6261 0.4567
Bank Marketing 0.5629 0.2542 0.1511 0.3225 0.3010 0.1398
Covertype 0.8397 0.4846 0.5611 0.6306 0.6028 0.5335
Cardiovascular Disease 0.7633 0.7323 0.6600 0.7334 0.7386 0.6840
Diabetes 0.7289 0.6683 0.3664 0.6946 0.6723 0.3945
Obesity 0.7811 0.1757 0.1669 0.2264 0.2326 0.1763

Table 5.6: Average AUPRC scores for each dataset and SDG method.

5.2.2 Fidelity

With regard to fidelity, we first analyze how precisely the different synthesizers capture
the distributions of the values of discrete and continuous columns, respectively. The
average JSD between the distributions of the discrete attribute values of the real dataset
and the generated datasets are reported in Table 5.7 for all methods. As already seen
with the utility, the non-private federated GANs perform best. The distances are so
similar that no obvious advantage for Fed-TGAN or Fed-CTGAN can be determined.
With the exception of the Covertype dataset, CTGAN follows this group, while the
statistical distances of the methods with DP guarantees are noticeably higher. This loss
in fidelity is to be expected because of the addition of random noise on the gradients with
each update of the model parameters. In the case of the Covertype dataset, DP-CTGAN



64 5 Evaluation

and DP-Fed-CTGAN achieve a higher fidelity than CTGAN for discrete attributes.
Furthermore, the JSD scores of DP-Fed-CTGAN are lower than those of DP-CTGAN
for five of the six datasets.

Dataset CTGAN DP-CTGAN Fed-TGAN Fed-CTGAN DP-Fed-CTGAN

Adult 0.1128 0.3229 0.0537 0.0540 0.3038
Bank Marketing 0.0855 0.2959 0.0448 0.0462 0.2639
Covertype 0.0515 0.0481 0.0223 0.0198 0.0290
Cardiovascular Disease 0.0828 0.0837 0.0511 0.0557 0.1133
Diabetes 0.1528 0.4026 0.0728 0.0765 0.2371
Obesity 0.0877 0.3362 0.0686 0.0549 0.2947

Table 5.7: Average JSD of discrete columns for each dataset and SDG method.

For continuous columns, a similar pattern emerges with respect to the WD metric
listed in Table 5.8. The distances for Fed-TGAN and Fed-CTGAN are significantly
smaller than in the centralized setting with CTGAN, which is outperformed by DP-Fed-
CTGAN only for Covertype. In addition, DP-Fed-CTGAN yields a higher fidelity than
DP-CTGAN with the exception of the Diabetes dataset.

Dataset CTGAN DP-CTGAN Fed-TGAN Fed-CTGAN DP-Fed-CTGAN

Adult 0.0170 0.0962 0.0095 0.0140 0.0509
Bank Marketing 0.0094 0.0489 0.0062 0.0063 0.0262
Covertype 0.0262 0.0416 0.0115 0.0118 0.0182
Cardiovascular Disease 0.0087 0.0284 0.0046 0.0049 0.0253
Diabetes 0.0492 0.1829 0.0412 0.0257 0.2352
Obesity 0.1025 0.2505 0.0731 0.0573 0.2442

Table 5.8: Average WD of continuous columns for each dataset and SDG method.

Next, we examine the extent to which the different SDG methods preserve dependencies
between the columns that exist in the training dataset. For this purpose, as shown
in Figure 5.4, we visualize Cramér’s V as a measure of association for each pair of
discrete attributes. We selected the Adult dataset as an example and refer to the Juypter
notebooks in the GitLab repository for the remaining datasets. Based on the associations
between the variables in the real dataset plotted in Figure 5.4a, we observe the smallest
deviations for Fed-TGAN, Fed-CTGAN, and DP-Fed-CTGAN. With CTGAN, the
deviations from the real dataset are somewhat larger, while the data generated with
DP-CTGAN loses most of the relations between the variables. This of course also has a
significant impact on the utility of the synthetic data depending on the downstream
task.

Figure 5.5, on the other hand, compares the average Pearson correlation between
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Figure 5.4: Comparison of the average Cramér’s V association for discrete columns of
the Adult dataset.
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(c) DP-CTGAN
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(d) Fed-TGAN
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(e) Fed-CTGAN
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(f) DP-Fed-CTGAN

Figure 5.5: Comparison of the average Pearson correlation for continuous columns of
the Adult dataset.
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all continuous columns. The lowest deviations from the correlation coefficients of the
real dataset are achieved by Fed-TGAN and Fed-CTGAN. For DP-Fed-CTGAN, the
correlations are predominantly weaker compared to the real data, while the correlations
between the attributes increase noticeably for CTGAN. In contrast, for DP-CTGAN
originally uncorrelated attributes are positively correlated, while in the real data posi-
tively correlated attributes are uncorrelated or even weakly negatively correlated in the
synthetic datasets.

5.2.3 Performance for Non-IID Data

Given that our approach, in contrast to Fed-TGAN, intentionally avoids reporting the
local frequencies of all discrete column values to the server, we now investigate in more
detail whether this leads to sacrifices in terms of utility or fidelity. On the one hand,
the absence of this information has the consequence that the conditional vectors have
to be retrieved from the clients and cannot be generated on the server. Nevertheless,
this should not have any other implications besides a slightly higher duration for each
FL round due to additional requests over the network. On the other hand, the source
for potential drawbacks of our method is that Fed-TGAN takes the frequencies of the
categories of each client into account when determining the weights that are needed to
aggregate the model parameters of the clients on the server, while in DP-Fed-CTGAN
the weights are determined only by the local dataset sizes. The authors consider their
“similarity aware weighting strategy” to be particularly beneficial in the scenario of
non-IID distributed data across the clients [Zha+21].

To determine the impact of the weighting strategies for the unfavorable non-IID
scenario, we selected the Cardiovascular Disease dataset and assigned all samples of the
negative class, which account for 50 percent of the dataset, to one client and partitioned
the positive samples between the two remaining clients. Table 5.9 shows the results
of this experiment. Since a direct comparison between synthesizers with and without
DP guarantees does not permit a fair assessment, we will focus on Fed-TGAN and
Fed-CTGAN. First, we see that both synthesizers have significantly worse utility and
fidelity than in our previous scenario, where we randomly distributed the same amount
of samples among the clients. However, it can also be clearly observed that Fed-CTGAN
consistently performs better in terms of utility metrics as well as in the dimension of
fidelity. Moreover, DP-Fed-CTGAN achieves a marginally better fidelity than in the
previous analyses and a lower WD than Fed-TGAN, while the utility decreases. Thus,
we can conclude that incorporating the frequencies of the categories into the weight
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Metric Fed-TGAN Fed-CTGAN DP-Fed-CTGAN

Accuracy 0.4992 0.5077 0.5098
AUROC 0.5529 0.6014 0.5322
AUPRC 0.5440 0.5861 0.5315
JSD 0.1315 0.0720 0.0905
WD 0.0067 0.0060 0.0125

Table 5.9: Average utility and fidelity metrics for the Cardiovascular Disease dataset
in the non-IID scenario.

calculation actually leads to a worse performance, at least for this dataset, while at the
same time our approach reduces the attack surface as described in Section 4.1.

5.2.4 Performance Under Varying Privacy Budget

In this experiment, we evaluate the utility and fidelity of DP-Fed-CTGAN for different
values of the privacy parameter ε. Since for larger ε values each record is allowed to
have a larger impact on the model parameters and thus less noise needs to be added
in the training process, we also anticipate a better quality of the synthetic data with
increasing privacy budget.
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Figure 5.6: Influence of the privacy budget on the utility of DP-Fed-CTGAN for the
Adult and Cardiovascular Disease datasets.

Figure 5.6 shows the effect of the privacy budget on the utility using the Adult and
Cardiovascular Disease datasets as an example. We scaled ε logarithmically between the
values 0.1 and 10 that are often found in the literature. It can be observed in Figure 5.6a
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that the AUROC and AUPRC scores remain constantly low up to an ε ≈ 2 and then
show a large improvement. Subsequently, there is a slight upward trend, albeit with
fluctuations. The accuracy improves only marginally with increasing privacy budget,
but the variability decreases. For the Cardiovascular Disease dataset in Figure 5.6b, the
rapid utility improvement occurs for ε ≈ 0.6. Here, this also applies to the accuracy
scores.

Figure 5.7 illustrates the results for the fidelity. For the Adult dataset in Figure 5.7a,
the JSD and WD decrease up to ε ≈ 2. For larger values, there is no real improvement
and outliers with worse scores are more frequent. The relations between the attributes,
for which the plots can only be found in the corresponding Jupyter notebook due to
space constraints, are captured much better by DP-Fed-CTGAN starting at ε ≈ 2 and
change only slightly thereafter. For the Cardiovascular Disease dataset in Figure 5.7b,
the distances decrease significantly up to ε ≈ 0.6, after which there is only a slight
improvement up to ε ≈ 2. However, the ability of DP-Fed-CTGAN to learn the relations
between the columns improves significantly between 0.6 and 2.
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Figure 5.7: Influence of the privacy budget on the fidelity of DP-Fed-CTGAN for the
Adult and Cardiovascular Disease datasets.

5.2.5 Performance for Different Number of Clients

In the last experiment, we analyze the effects of increasing the number of clients, while the
total amount of training data available to all clients remains unchanged. This experiment
simulates a realistic setting where individual healthcare providers have limited patient
data. Understanding how the synthesizers perform under such constraints is essential
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for assessing their applicability in real-world settings.
Figure 5.8 shows the results in terms of AUROC and AUPRC scores for the Adult

and Cardiovascular Disease datasets. In Figure 5.8a we can observe that, as expected,
the utility decreases after a certain number of clients, since at some point insufficient
information is available for the GANs to learn the patterns in the data. With smaller
datasets, there is also the likelihood of increased variability in the data, so the local
models may have a poorer ability to generalize. It can be seen that this phenomenon
occurs earlier for DP-Fed-CTGAN than for the non-private SDG methods. This is most
likely due to the fact that for smaller datasets more noise has to be added during the
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(a) AUROC score for Adult
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(b) AUROC score for Cardiovascular Disease
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(c) AUPRC score for Adult
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(d) AUPRC score for Cardiovascular Disease

Figure 5.8: Comparison of the utility with varying number of clients for the Adult and
Cardiovascular Disease datasets.
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training process to obtain the same DP guarantees. In the case of the Cardiovascular
Disease dataset in Figure 5.8b, the utility decrease at 20 clients is smaller for Fed-TGAN
and Fed-CTGAN, while the decline for DP-Fed-CTGAN appears later here at 10 clients.
The AUPRC scores support our analyses.
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Figure 5.9: Comparison of the fidelity with varying number of clients for the Adult
and Cardiovascular Disease datasets.

Regarding the fidelity for the Adult dataset, Figure 5.9a shows a substantial increase
of the JSD for the non-private GANs starting from 10 clients. In contrast, for DP-
Fed-CTGAN there is initially a downward trend between two and five clients before
the JSD rises noticeably. The WD in Figure 5.9c exhibits the same behavior. For
the Cardiovascular Disease dataset in Figure 5.9b, an increase in JSD with growing
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number of clients can be observed only for DP-Fed-CTGAN. However, with respect to
the WD in Figure 5.9d, a decrease in fidelity from 10 clients onwards can be identified
for Fed-TGAN and Fed-CTGAN, while DP-Fed-CTGAN does not show a clear pattern.

5.3 Discussion

Even though the differentially private methods are unsurprisingly accompanied by an
overall loss in utility, we observe that DP-Fed-CTGAN can keep up with the centralized
setting represented by DP-CTGAN in the dimension of utility and even achieves a
higher AUROC score on four of the six datasets. Thus, we conclude that the use of
FL under the same DP guarantees does not incur additional costs in the form of a
lower utility. At the same time, the use of FL has significant benefits, especially in the
healthcare sector. First, individual medical facilities may have insufficient patient data
to train a GAN that generates synthetic data of satisfactory quality. On the other hand,
the local training datasets do not have to leave the individual facilities, which in the
context of a medical data donation can both increase patient acceptance and facilitate
adherence to internal compliance rules as well as privacy laws. Further, the results of
the utility evaluation show that the non-private federated methods, Fed-TGAN and
Fed-CTGAN, perform better than the centralized CTGAN. We hypothesize that FL
acts as a regularization and mitigates undesired effects that may arise during training
of GANs (see Section 2.2.2.4). Since there are also no significant differences between
Fed-TGAN and Fed-CTGAN, our approach of minimizing the amount of information
that clients have to share about their local training dataset does not seem to have a
negative impact on the utility.

With regard to fidelity, the overall picture is similar. However, the JSD and WD scores
of DP-Fed-CTGAN are even mostly lower than those of DP-CTGAN. DP-Fed-CTGAN
actually manages to preserve the relations between the columns better than CTGAN
for the most part.

In addition, the results for the non-IID scenario show that weighting the client updates
without the information about the frequencies of each category leads to no loss in utility
or fidelity, even under adverse conditions. In fact, our naive weighting procedure based
on the local dataset sizes outperforms the weighting scheme of Fed-TGAN, which takes
into account the differences in the distribution of the clients’ attribute values.

In terms of the privacy budget, it seems that for each dataset a value of the parameter ε

exists above which a saturation can be observed, i.e., no further improvement in utility
and fidelity is noticeable. Apart from the dataset size, possible factors influencing the
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threshold at which this saturation occurs are the number and type of the columns as
well as the class distribution. Therefore, we believe that a custom trade-off between
privacy, utility, and fidelity is necessary for each dataset.

Our investigation regarding the effects of scaling the number of clients for a constant
total number of samples suggests that a loss in utility and privacy occurs when the
amount of training data per client drops below a certain threshold. In the case of the
differentially private synthesizers, it must also be considered that a stronger gradient
perturbation is necessary for smaller datasets to guarantee a certain privacy level.

Although our evaluation demonstrated the general applicability of DP-Fed-CTGAN in
the scenario of a privacy-friendly medical data donation, it is important to acknowledge
the limitations of our approach and findings. First, for some datasets there are significant
differences in the utility achieved by the different classifiers, such that average scores are
potentially misleading. In a real-world setting, the classifier performing best would be
used with optimized hyperparameters. Additionally, we only considered three commonly
used machine learning datasets and three datasets from the healthcare domain, so
we cannot generalize our conclusions to datasets that have fundamentally different
characteristics. However, there are very few publicly available datasets containing
medical data, which hopefully will change in the future, also due to the use of synthetic
data generators. Furthermore, we changed the hyperparameters only slightly from the
default values of CTGAN, hence future work should investigate the performance with
systematic tuning of the hyperparameters, e.g., by using grid search. In addition, there
are other aspects that should be examined, such as the limits regarding the scalability
of our approach as more and more clients participate and the total number of training
samples increases. Continued research is also required on metrics that assist with the
trade-off between the dimensions of privacy, utility, and fidelity. While the fidelity
metrics used in the literature and also in this thesis permit a meaningful comparison
of different SDG methods, they do not sufficiently take into account the fact that a
very high fidelity is not necessarily desirable from a privacy perspective. Here, use
case-specific metrics could also be a solution, even if the design of such metrics is
time-consuming. Further weaknesses and areas for improvement can be identified by
evaluating DP-Fed-CTGAN in a real-world setting.
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6 Conclusion

To conclude this thesis, we summarize our approach and findings in Section 6.1 and
provide an outlook for future work in Section 6.2.

6.1 Summary

This master’s thesis addressed the challenge of leveraging FL for the generation of
synthetic tabular data in the context of a privacy-friendly medical data donation. To
achieve this, we proposed a novel approach called DP-Fed-CTGAN that provides DP
guarantees and minimizes the amount of information individual clients have to share
about their local training datasets during the FL process. We implemented DP-Fed-
CTGAN with state-of-the-art frameworks, more specifically the CTGAN architecture
for SDG, Flower for FL, and Opacus for incorporating DP.

We conducted a comprehensive evaluation of our open-source implementation of
DP-Fed-CTGAN using both medical and common machine learning datasets. For
this, we considered various utility and fidelity metrics to assess the quality of the
generated synthetic data. The results of our utility evaluation showed that DP-Fed-
CTGAN performs on par with the centralized setting represented by DP-CTGAN. In
the dimension of fidelity, DP-Fed-CTGAN mostly outperforms DP-CTGAN in terms of
statistical distances and even outperforms the non-private CTGAN for the most part in
preserving the relations between columns. By comparing a non-private version of our
approach with Fed-TGAN, we were also able to show that not reporting the frequencies
of the discrete column values for weighting the client updates has no drawbacks even in
the case of non-IID distributed data between the clients. We also investigated the impact
of the privacy budget and the number of clients on the performance of DP-Fed-CTGAN.
Our findings highlight the need for a custom trade-off between privacy, utility, and
fidelity for each dataset and indicate that a sufficient amount of training data per client
is crucial to avoid a reduction in utility and fidelity.

Considering the scenario of a medical data donation, we showed that DP-Fed-CTGAN
can generate synthetic data without a loss in utility or fidelity compared to the central-
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ized setting represented by DP-CTGAN, while not requiring participating facilities to
share local patient data as with DP-CTGAN. In summary, we demonstrated that the
combination of DP, FL, and SDG is a promising solution for generating high-quality
synthetic data with mathematically rigorous privacy guarantees for medical research
purposes that simultaneously mitigates privacy and security concerns when compared
to a central data repository.

6.2 Future Work

While this thesis has demonstrated the general applicability of DP-Fed-CTGAN for
the scenario of a privacy-preserving donation of medical data, the evaluation of the
performance in a real-world setting is still an open question. Future work should
also explore the effectiveness of DP-Fed-CTGAN in other domains, where privacy
concerns and legal requirements can be addressed by the use of FL for the generation of
differentially private synthetic data.

Moreover, protection against stronger threat models can be further enhanced by
incorporating MPC techniques. Specifically, with HE each client encrypts the model
parameters before sending them to the server. Then, the server performs the aggregation
directly on the encrypted client parameters without prior decryption. In addition, TEEs
can be utilized for both the local training on the clients and the server-side aggregation.
However, there are currently significant challenges when using TEEs due to limited
memory size and lack of access to GPUs.

Another area for future work is adapting our approach to hybrid FL, which is also
known as federated transfer learning. In this case, the local datasets not only differ
in sample space as in horizontal FL, but also in feature space. Hybrid FL aligns well
with the healthcare domain, as different healthcare providers not only treat different
patients, but also perform different examinations or often represent the examination
results non-uniformly.

Last, personal devices such as smartphones could serve as clients in the FL scheme.
Insured persons could thus decide for themselves which data from an EHR or readings
from a smartwatch are donated for research purposes, thereby empowering them to
actively contribute to medical advancements while maintaining control over their data.
For this vision to become reality, several aspects need to be investigated in future work.
On the one hand, there are significant limitations with personal devices, e.g., in terms of
computing power and available bandwidth. On the other hand, the federated training
of a CTGAN model with a large number of small and heterogeneous datasets may lead
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to poor convergence, especially when incorporating DP. Additionally, client-level DP is
a more suitable privacy guarantee than record-level DP for this setting, meaning the
worst-case privacy loss is bounded with respect to all samples of a single individual.





79

Bibliography

[Aba+16] Martin Abadi et al. “Deep Learning with Differential Privacy.” In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security - CCS ’16. ACM, Oct. 2016, pp. 308–318. doi:
10.1145/2976749.2978318.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Gen-
erative Adversarial Networks.” In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh.
Vol. 70. Proceedings of Machine Learning Research. PMLR, Aug. 2017,
pp. 214–223. url: https://proceedings.mlr.press/v70/arjovsky17a.
html.

[Asl+23] Aycan Aslan et al. “At What Price? Exploring the Potential and Challenges
of Differentially Private Machine Learning for Healthcare.” In: Proceedings
of the 56th Hawaii International Conference on System Sciences. 2023,
pp. 3277–3286. doi: 10125/103034.

[Aso+21] Shahab Asoodeh et al. “Three Variants of Differential Privacy: Lossless
Conversion and Applications.” In: IEEE Journal on Selected Areas in
Information Theory 2.1 (Mar. 2021), pp. 208–222. doi: 10.1109/jsait.
2021.3054692.

[Aug+20] Sean Augenstein et al. “Generative Models for Effective ML on Private,
Decentralized Datasets.” In: 8th International Conference on Learning
Representations (ICLR 2020). 2020. url: https://openreview.net/
forum?id=SJgaRA4FPH.

[Beu+20] Daniel J. Beutel et al. Flower: A Friendly Federated Learning Research
Framework. 2020. doi: 10.48550/ARXIV.2007.14390.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006, p. 758. isbn: 978-1-4939-3843-8.

[BK96] Barry Becker and Ronny Kohavi. Adult. 1996. doi: 10.24432/C5XW20.

https://doi.org/10.1145/2976749.2978318
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10125/103034
https://doi.org/10.1109/jsait.2021.3054692
https://doi.org/10.1109/jsait.2021.3054692
https://openreview.net/forum?id=SJgaRA4FPH
https://openreview.net/forum?id=SJgaRA4FPH
https://doi.org/10.48550/ARXIV.2007.14390
https://doi.org/10.24432/C5XW20


80 Bibliography

[Bla98] Jock Blackard. Covertype. 1998. doi: 10.24432/C50K5N.

[BLC19] Mrinal Kanti Baowaly, Chao-Lin Liu, and Kuan-Ta Chen. “Realistic
Data Synthesis Using Enhanced Generative Adversarial Networks.” In:
2019 IEEE Second International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE). IEEE, June 2019, pp. 289–292. doi:
10.1109/aike.2019.00057.

[BM21] Nader Bouacida and Prasant Mohapatra. “Vulnerabilities in Federated
Learning.” In: IEEE Access 9 (2021), pp. 63229–63249. doi: 10.1109/
access.2021.3075203.

[Bra97] Andrew P. Bradley. “The use of the area under the ROC curve in the
evaluation of machine learning algorithms.” In: Pattern Recognition 30.7
(July 1997), pp. 1145–1159. doi: 10.1016/s0031-3203(96)00142-2.

[BS16] Mark Bun and Thomas Steinke. Concentrated Differential Privacy: Sim-
plifications, Extensions, and Lower Bounds. 2016. doi: 10.48550/ARXIV.
1605.02065.

[Cho+17] Edward Choi et al. “Generating Multi-label Discrete Patient Records using
Generative Adversarial Networks.” In: Proceedings of the 2nd Machine
Learning for Healthcare Conference. Ed. by Finale Doshi-Velez et al. Vol. 68.
Proceedings of Machine Learning Research. PMLR, Aug. 2017, pp. 286–
305. url: https://proceedings.mlr.press/v68/choi17a.html.

[Cin+21] Lucas Pinheiro Cinelli et al. “Variational Autoencoder.” In: Variational
Methods for Machine Learning with Applications to Deep Networks. Springer
International Publishing, 2021, pp. 111–149. doi: 10.1007/978-3-030-
70679-1_5.

[Cre+18] Antonia Creswell et al. “Generative Adversarial Networks: An Overview.”
In: IEEE Signal Processing Magazine 35.1 (Jan. 2018), pp. 53–65. doi:
10.1109/msp.2017.2765202.

[CWH20] Xiangyi Chen, Steven Z. Wu, and Mingyi Hong. “Understanding Gradient
Clipping in Private SGD: A Geometric Perspective.” In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020. url: https://proceedings.neurips.cc/
paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf.

[Dal77] Tore Dalenius. “Towards a Methodology for Statistical Disclosure Control.”
In: Statistik Tidskrift 15 (1977), pp. 429–444.

https://doi.org/10.24432/C50K5N
https://doi.org/10.1109/aike.2019.00057
https://doi.org/10.1109/access.2021.3075203
https://doi.org/10.1109/access.2021.3075203
https://doi.org/10.1016/s0031-3203(96)00142-2
https://doi.org/10.48550/ARXIV.1605.02065
https://doi.org/10.48550/ARXIV.1605.02065
https://proceedings.mlr.press/v68/choi17a.html
https://doi.org/10.1007/978-3-030-70679-1_5
https://doi.org/10.1007/978-3-030-70679-1_5
https://doi.org/10.1109/msp.2017.2765202
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf


Bibliography 81

[DE13] Fida K. Dankar and Khaled El Emam. “Practicing Differential Privacy in
Health Care: A Review.” In: Transactions on Data Privacy 6.1 (Apr. 2013),
pp. 35–67. url: https://www.tdp.cat/issues11/tdp.a129a13.pdf.

[DI21] Fida K. Dankar and Mahmoud Ibrahim. “Fake It Till You Make It:
Guidelines for Effective Synthetic Data Generation.” In: Applied Sciences
11.5 (Feb. 2021), p. 2158. doi: 10.3390/app11052158.

[DPT17] Differential Privacy Team, Apple. Learning with Privacy at Scale. Dec.
2017. url: https://docs-assets.developer.apple.com/ml-researc
h/papers/learning-with-privacy-at-scale.pdf.

[DR13] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Dif-
ferential Privacy.” In: Foundations and Trends® in Theoretical Computer
Science 9.3-4 (2013), pp. 211–407. doi: 10.1561/0400000042.

[Dro+17] Brian C. Drolet et al. “Electronic Communication of Protected Health
Information: Privacy, Security, and HIPAA Compliance.” In: The Journal
of Hand Surgery 42.6 (June 2017), pp. 411–416. doi: 10.1016/j.jhsa.
2017.03.023.

[Dua+22] Shaoming Duan et al. “HT-Fed-GAN: Federated Generative Model for
Decentralized Tabular Data Synthesis.” In: Entropy 25.1 (Dec. 2022),
p. 88. doi: 10.3390/e25010088.

[Dwo+06] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data
Analysis.” In: Theory of Cryptography. Springer Berlin Heidelberg, 2006,
pp. 265–284. doi: 10.1007/11681878_14.

[Dwo06] Cynthia Dwork. “Differential Privacy.” In: Automata, Languages and
Programming. Springer Berlin Heidelberg, 2006, pp. 1–12. doi: 10.1007/
11787006_1.

[EHR17] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued
(Medical) Time Series Generation with Recurrent Conditional GANs. 2017.
doi: 10.48550/ARXIV.1706.02633.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Response.” In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’14. ACM, Nov. 2014, pp. 1054–1067.
doi: 10.1145/2660267.2660348.

https://www.tdp.cat/issues11/tdp.a129a13.pdf
https://doi.org/10.3390/app11052158
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://doi.org/10.1561/0400000042
https://doi.org/10.1016/j.jhsa.2017.03.023
https://doi.org/10.1016/j.jhsa.2017.03.023
https://doi.org/10.3390/e25010088
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.48550/ARXIV.1706.02633
https://doi.org/10.1145/2660267.2660348


82 Bibliography

[Fan20] Liyue Fan. “A Survey of Differentially Private Generative Adversarial
Networks.” In: The AAAI Workshop on Privacy-Preserving Artificial
Intelligence. 2020. url: https://webpages.charlotte.edu/lfan4/pdf/
PPAI20.pdf.

[FDK22] Mei Ling Fang, Devendra Singh Dhami, and Kristian Kersting. “DP-
CTGAN: Differentially Private Medical Data Generation Using CTGANs.”
In: Artificial Intelligence in Medicine. Springer International Publishing,
2022, pp. 178–188. doi: 10.1007/978-3-031-09342-5_17.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion
Attacks that Exploit Confidence Information and Basic Countermeasures.”
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS ’15. ACM, Oct. 2015, pp. 1322–1333.
doi: 10.1145/2810103.2813677.

[Fun+10] Benjamin C. M. Fung et al. “Privacy-Preserving Data Publishing: A
Survey of Recent Developments.” In: ACM Computing Surveys 42.4 (June
2010), 14:1–14:53. doi: 10.1145/1749603.1749605.

[FV22] Alvaro Figueira and Bruno Vaz. “Survey on Synthetic Data Generation,
Evaluation Methods and GANs.” In: Mathematics 10.15 (Aug. 2022),
p. 2733. doi: 10.3390/math10152733.

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets.” In: Advances in
Neural Information Processing Systems. Ed. by Z. Ghahramani et al.
Vol. 27. Curran Associates, Inc., 2014. url: https : / / proceedings .
neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
Paper.pdf.

[Gue+20] Rachid Guerraoui et al. “FeGAN: Scaling Distributed GANs.” In: Proceed-
ings of the 21st International Middleware Conference. ACM, Dec. 2020,
pp. 193–206. doi: 10.1145/3423211.3425688.

[Gui+21] Jie Gui et al. “A Review on Generative Adversarial Networks: Algorithms,
Theory, and Applications.” In: IEEE Transactions on Knowledge and
Data Engineering (2021). doi: 10.1109/tkde.2021.3130191.

[Gul+17] Ishaan Gulrajani et al. “Improved Training of Wasserstein GANs.” In:
Advances in Neural Information Processing Systems. Ed. by I. Guyon
et al. Vol. 30. Curran Associates, Inc., 2017. url: https://proceedings.

https://webpages.charlotte.edu/lfan4/pdf/PPAI20.pdf
https://webpages.charlotte.edu/lfan4/pdf/PPAI20.pdf
https://doi.org/10.1007/978-3-031-09342-5_17
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.3390/math10152733
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1145/3423211.3425688
https://doi.org/10.1109/tkde.2021.3130191
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf


Bibliography 83

neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-
Paper.pdf.

[Her+23] Mikel Hernadez et al. “Synthetic Tabular Data Evaluation in the Health
Domain Covering Resemblance, Utility, and Privacy Dimensions.” In:
Methods of Information in Medicine (Jan. 2023). doi: 10.1055/s-0042-
1760247.

[HMS19] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. “MD-GAN: Multi-
Discriminator Generative Adversarial Networks for Distributed Datasets.”
In: 2019 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, May 2019, pp. 866–877. doi: 10.1109/ipdps.2019.
00095.

[Ink21] Becky Inkster. Cybersecurity: A Critical Priority for Digital Mental Health.
Aug. 2021. doi: 10.31234/osf.io/p9u3g.

[ISH22] Peter Ihle, Katharina Schneider, and Steffen Heß. Das Forschungsdaten-
zentrum Gesundheit – Routinedaten der Gesetzlichen Krankenversicherung
für die Gesundheits- und Versorgungsforschung. 2022. doi: 10.30433/
GWA2022-32.

[JE19] Bargav Jayaraman and David Evans. “Evaluating Differentially Private
Machine Learning in Practice.” In: Proceedings of the 28th USENIX
Security Symposium. USENIX Association, Aug. 2019, pp. 1895–1912.
url: https://www.usenix.org/conference/usenixsecurity19/pres
entation/jayaraman.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization
with Gumbel-Softmax. 2016. doi: 10.48550/ARXIV.1611.01144.

[Jor+22] James Jordon et al. Synthetic Data - what, why and how? 2022. doi:
10.48550/ARXIV.2205.03257.

[JYS19] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. “PATE-GAN:
Generating Synthetic Data with Differential Privacy Guarantees.” In: 7th
International Conference on Learning Representations (ICLR 2019). 2019.
url: https://openreview.net/forum?id=S1zk9iRqF7.

[Kai+21] Peter Kairouz et al. “Advances and Open Problems in Federated Learning.”
In: Foundations and Trends® in Machine Learning 14.1–2 (2021), pp. 1–
210. doi: 10.1561/2200000083.

https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://doi.org/10.1055/s-0042-1760247
https://doi.org/10.1055/s-0042-1760247
https://doi.org/10.1109/ipdps.2019.00095
https://doi.org/10.1109/ipdps.2019.00095
https://doi.org/10.31234/osf.io/p9u3g
https://doi.org/10.30433/GWA2022-32
https://doi.org/10.30433/GWA2022-32
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://doi.org/10.48550/ARXIV.1611.01144
https://doi.org/10.48550/ARXIV.2205.03257
https://openreview.net/forum?id=S1zk9iRqF7
https://doi.org/10.1561/2200000083


84 Bibliography

[Kau+20] Dhamanpreet Kaur et al. “Application of Bayesian networks to generate
synthetic health data.” In: Journal of the American Medical Informatics
Association 28.4 (Dec. 2020), pp. 801–811. doi: 10.1093/jamia/ocaa303.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. doi: 10.48550/ARXIV.1412.6980.

[KOV17] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. “The Composition
Theorem for Differential Privacy.” In: IEEE Transactions on Information
Theory 63.6 (June 2017), pp. 4037–4049. doi: 10.1109/tit.2017.26855
05.

[KW13] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
2013. doi: 10.48550/ARXIV.1312.6114.

[LeC+89] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code
Recognition.” In: Neural Computation 1.4 (Dec. 1989), pp. 541–551. doi:
10.1162/neco.1989.1.4.541.

[Li+21] Qinbin Li et al. “A Survey on Federated Learning Systems: Vision, Hype
and Reality for Data Privacy and Protection.” In: IEEE Transactions
on Knowledge and Data Engineering (2021). doi: 10.1109/tkde.2021.
3124599.

[Li+22] Wei Li et al. “IFL-GAN: Improved Federated Learning Generative Adver-
sarial Network With Maximum Mean Discrepancy Model Aggregation.”
In: IEEE Transactions on Neural Networks and Learning Systems (2022),
pp. 1–14. doi: 10.1109/tnnls.2022.3167482.

[Lin+17] Zinan Lin et al. PacGAN: The power of two samples in generative adver-
sarial networks. 2017. doi: 10.48550/ARXIV.1712.04086.

[Liu+22] Xiaoyuan Liu et al. UniFed: A Benchmark for Federated Learning Frame-
works. 2022. doi: 10.48550/ARXIV.2207.10308.

[LKA16] Jake Lever, Martin Krzywinski, and Naomi Altman. “Classification evalu-
ation.” In: Nature Methods 13.8 (July 2016), pp. 603–604. doi: 10.1038/
nmeth.3945.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness:
Privacy Beyond k-Anonymity and ℓ-Diversity.” In: 2007 IEEE 23rd Inter-
national Conference on Data Engineering. IEEE, Apr. 2007, pp. 106–115.
doi: 10.1109/icde.2007.367856.

https://doi.org/10.1093/jamia/ocaa303
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/tit.2017.2685505
https://doi.org/10.1109/tit.2017.2685505
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/tnnls.2022.3167482
https://doi.org/10.48550/ARXIV.1712.04086
https://doi.org/10.48550/ARXIV.2207.10308
https://doi.org/10.1038/nmeth.3945
https://doi.org/10.1038/nmeth.3945
https://doi.org/10.1109/icde.2007.367856


Bibliography 85

[Mac+07] Ashwin Machanavajjhala et al. “ℓ-diversity: Privacy Beyond k-Anonymity.”
In: ACM Transactions on Knowledge Discovery from Data 1.1 (Mar. 2007),
p. 3. doi: 10.1145/1217299.1217302.

[McM+17a] H. Brendan McMahan et al. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” In: Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics. Ed. by Aarti
Singh and Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research.
PMLR, Apr. 2017, pp. 1273–1282. url: https://proceedings.mlr.
press/v54/mcmahan17a.html.

[McM+17b] H. Brendan McMahan et al. Learning Differentially Private Recurrent
Language Models. 2017. doi: 10.48550/ARXIV.1710.06963.

[MCR14] Sérgio Moro, Paulo Cortez, and Paulo Rita. Bank Marketing. 2014. doi:
10.24432/C5K306.

[McS09] Frank McSherry. “Privacy Integrated Queries: An Extensible Platform
for Privacy-Preserving Data Analysis.” In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data. ACM, June
2009, pp. 19–30. doi: 10.1145/1559845.1559850.

[Mir17] Ilya Mironov. “Rényi Differential Privacy.” In: 2017 IEEE 30th Computer
Security Foundations Symposium (CSF). IEEE, Aug. 2017, pp. 263–275.
doi: 10.1109/csf.2017.11.

[ML16] Shakir Mohamed and Balaji Lakshminarayanan. Learning in Implicit
Generative Models. 2016. doi: 10.48550/ARXIV.1610.03483.

[MO14] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial
Nets. 2014. doi: 10.48550/ARXIV.1411.1784.

[MP21] Kenneth D. Mandl and Eric D. Perakslis. “HIPAA and the Leak of
‘Deidentified’ EHR Data.” In: New England Journal of Medicine (June
2021). doi: 10.1056/nejmp2102616.

[MT07] Frank McSherry and Kunal Talwar. “Mechanism Design via Differential
Privacy.” In: 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’07). IEEE, Oct. 2007, pp. 94–103. doi: 10.1109/focs.
2007.66.

https://doi.org/10.1145/1217299.1217302
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.48550/ARXIV.1710.06963
https://doi.org/10.24432/C5K306
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1109/csf.2017.11
https://doi.org/10.48550/ARXIV.1610.03483
https://doi.org/10.48550/ARXIV.1411.1784
https://doi.org/10.1056/nejmp2102616
https://doi.org/10.1109/focs.2007.66
https://doi.org/10.1109/focs.2007.66


86 Bibliography

[Mul19] Trix Mulder. “Health Apps, their Privacy Policies and the GDPR.” In:
European Journal of Law and Technology 10.1 (June 2019). url: http:
//ejlt.org/index.php/ejlt/article/view/667.

[NA21] Joseph P. Near and Chiké Abuah. Programming Differential Privacy.
Vol. 1. 2021. url: https://uvm-plaid.github.io/programming-dp/.

[NAC07] Mehmet Ercan Nergiz, Maurizio Atzori, and Chris Clifton. “Hiding the
Presence of Individuals from Shared Databases.” In: Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data
- SIGMOD ’07. ACM Press, 2007, pp. 665–676. doi: 10.1145/1247480.
1247554.

[Ngu+19] Thanh Thi Nguyen et al. “Deep Learning for Deepfakes Creation and
Detection: A Survey.” In: (2019). doi: 10.48550/ARXIV.1909.11573.

[NHC22] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. “Local
and Central Differential Privacy for Robustness and Privacy in Federated
Learning.” In: 29th Annual Network and Distributed System Security
Symposium (NDSS). Internet Society, 2022. doi: 10.14722/ndss.2022.
23054.

[NS08] Arvind Narayanan and Vitaly Shmatikov. “Robust De-anonymization
of Large Sparse Datasets.” In: 2008 IEEE Symposium on Security and
Privacy (S&P ’08). IEEE, May 2008, pp. 111–125. doi: 10.1109/sp.
2008.33.

[Pan+19] Zhaoqing Pan et al. “Recent Progress on Generative Adversarial Networks
(GANs): A Survey.” In: IEEE Access 7 (2019), pp. 36322–36333. doi:
10.1109/access.2019.2905015.

[Pap+17] Nicolas Papernot et al. “Semi-supervised Knowledge Transfer for Deep
Learning from Private Training Data.” In: 5th International Conference on
Learning Representations (ICLR 2018). 2017. url: https://openreview.
net/forum?id=HkwoSDPgg.

[Pap+18] Nicolas Papernot et al. “Scalable Private Learning with PATE.” In: 6th
International Conference on Learning Representations (ICLR 2018). 2018.
url: https://openreview.net/forum?id=rkZB1XbRZ.

http://ejlt.org/index.php/ejlt/article/view/667
http://ejlt.org/index.php/ejlt/article/view/667
https://uvm-plaid.github.io/programming-dp/
https://doi.org/10.1145/1247480.1247554
https://doi.org/10.1145/1247480.1247554
https://doi.org/10.48550/ARXIV.1909.11573
https://doi.org/10.14722/ndss.2022.23054
https://doi.org/10.14722/ndss.2022.23054
https://doi.org/10.1109/sp.2008.33
https://doi.org/10.1109/sp.2008.33
https://doi.org/10.1109/access.2019.2905015
https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=rkZB1XbRZ


Bibliography 87

[RHM19] Luc Rocher, Julien M. Hendrickx, and Yves-Alexandre de Montjoye. “Es-
timating the success of re-identifications in incomplete datasets using
generative models.” In: Nature Communications 10.1 (July 2019). doi:
10.1038/s41467-019-10933-3.

[Ros+20] Lucas Rosenblatt et al. Differentially Private Synthetic Data: Applied
Evaluations and Enhancements. 2020. doi: 10.48550/ARXIV.2011.05537.

[RSR20] Mohammad Rasouli, Tao Sun, and Ram Rajagopal. FedGAN: Federated
Generative Adversarial Networks for Distributed Data. 2020. doi: 10.
48550/ARXIV.2006.07228.

[Rub93] Donald B. Rubin. “Statistical disclosure limitation.” In: Journal of Official
Statistics 9.2 (1993), pp. 461–468.

[Sar+22] Tabinda Sarwar et al. “The Secondary Use of Electronic Health Records for
Data Mining: Data Characteristics and Challenges.” In: ACM Computing
Surveys 55.2 (Jan. 2022), 33:1–33:40. doi: 10.1145/3490234.

[SC21] Divya Saxena and Jiannong Cao. “Generative Adversarial Networks
(GANs).” In: ACM Computing Surveys 54.3 (May 2021), 63:1–63:42.
doi: 10.1145/3446374.

[Sch+21] James Scheibner et al. “Revolutionizing Medical Data Sharing Using
Advanced Privacy-Enhancing Technologies: Technical, Legal, and Ethical
Synthesis.” In: Journal of Medical Internet Research 23.2 (Feb. 2021),
e25120. doi: 10.2196/25120.

[SK20] Shahid Munir Shah and Rizwan Ahmed Khan. “Secondary Use of Elec-
tronic Health Record: Opportunities and Challenges.” In: IEEE Access 8
(2020), pp. 136947–136965. doi: 10.1109/access.2020.3011099.

[SOT22] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. “Synthetic
Data – Anonymisation Groundhog Day.” In: Proceedings of the 31st
USENIX Security Symposium. USENIX Association, Aug. 2022, pp. 1451–
1468. url: https://www.usenix.org/conference/usenixsecurity22/
presentation/stadler.

[Swe02] Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy.” In:
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10.05 (Oct. 2002), pp. 557–570. doi: 10.1142/s02184885020016
48.

https://doi.org/10.1038/s41467-019-10933-3
https://doi.org/10.48550/ARXIV.2011.05537
https://doi.org/10.48550/ARXIV.2006.07228
https://doi.org/10.48550/ARXIV.2006.07228
https://doi.org/10.1145/3490234
https://doi.org/10.1145/3446374
https://doi.org/10.2196/25120
https://doi.org/10.1109/access.2020.3011099
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
https://doi.org/10.1142/s0218488502001648
https://doi.org/10.1142/s0218488502001648


88 Bibliography

[Tha20] Alaa Tharwat. “Classification assessment methods.” In: Applied Computing
and Informatics 17.1 (July 2020), pp. 168–192. doi: 10.1016/j.aci.2018.
08.003.

[Vim+12] Sabrina De Capitani di Vimercati et al. “Data Privacy: Definitions and
Techniques.” In: International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 20.06 (Dec. 2012), pp. 793–817. doi: 10.1142/
s0218488512400247.

[Wal+17] Jason Walonoski et al. “Synthea: An approach, method, and software
mechanism for generating synthetic patients and the synthetic electronic
health care record.” In: Journal of the American Medical Informatics
Association 25.3 (Aug. 2017), pp. 230–238. doi: 10.1093/jamia/ocx079.

[WZH17] Zhiqiang Wan, Yazhou Zhang, and Haibo He. “Variational Autoencoder
Based Synthetic Data Generation for Imbalanced Learning.” In: 2017
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
Nov. 2017. doi: 10.1109/ssci.2017.8285168.

[Xie+18] Liyang Xie et al. Differentially Private Generative Adversarial Network.
2018. doi: 10.48550/ARXIV.1802.06739.

[Xin+20] Bangzhou Xin et al. “Private FL-GAN: Differential Privacy Synthetic
Data Generation Based on Federated Learning.” In: ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, May 2020, pp. 2927–2931. doi: 10.1109/icassp40776.
2020.9054559.

[Xin+22a] Bangzhou Xin et al. “Federated synthetic data generation with differential
privacy.” In: Neurocomputing 468 (Jan. 2022), pp. 1–10. doi: 10.1016/j.
neucom.2021.10.027.

[Xin+22b] Xiaodan Xing et al. Non-Imaging Medical Data Synthesis for Trustworthy
AI: A Comprehensive Survey. 2022. doi: 10.48550/ARXIV.2209.09239.

[Xu+19] Lei Xu et al. “Modeling Tabular Data using Conditional GAN.” In:
Advances in Neural Information Processing Systems. Ed. by H. Wallach
et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.
neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-
Paper.pdf.

[Xu20] Lei Xu. “Synthesizing Tabular Data using Conditional GAN.” MA thesis.
Massachusetts Institute of Technology, 2020. doi: 1721.1/128349.

https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1142/s0218488512400247
https://doi.org/10.1142/s0218488512400247
https://doi.org/10.1093/jamia/ocx079
https://doi.org/10.1109/ssci.2017.8285168
https://doi.org/10.48550/ARXIV.1802.06739
https://doi.org/10.1109/icassp40776.2020.9054559
https://doi.org/10.1109/icassp40776.2020.9054559
https://doi.org/10.1016/j.neucom.2021.10.027
https://doi.org/10.1016/j.neucom.2021.10.027
https://doi.org/10.48550/ARXIV.2209.09239
https://proceedings.neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/254ed7d2de3b23ab10936522dd547b78-Paper.pdf
https://doi.org/1721.1/128349


Bibliography 89

[Yan+19] Qiang Yang et al. “Federated Machine Learning: Concept and Applica-
tions.” In: ACM Transactions on Intelligent Systems and Technology 10.2
(Jan. 2019), 12:1–12:19. doi: 10.1145/3298981.

[YGP09] Jim Young, Patrick Graham, and Richard Penny. “Using Bayesian Net-
works to Create Synthetic Data.” In: Journal of Official Statistics 25.4
(2009), pp. 549–567.

[Yon+19] Ryo Yonetani et al. Decentralized Learning of Generative Adversarial
Networks from Non-iid Data. 2019. doi: 10.48550/ARXIV.1905.09684.

[You+21] Ashkan Yousefpour et al. “Opacus: User-Friendly Differential Privacy
Library in PyTorch.” In: NeurIPS 2021 Workshop Privacy in Machine
Learning. 2021. url: https://openreview.net/forum?id=EopKEYBoI-.

[Zha+14] Jun Zhang et al. “PrivBayes: Private Data Release via Bayesian Networks.”
In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data - SIGMOD ’14. ACM, June 2014, pp. 1423–1434.
doi: 10.1145/2588555.2588573.

[Zha+21] Zilong Zhao et al. Fed-TGAN: Federated Learning Framework for Synthe-
sizing Tabular Data. 2021. doi: 10.48550/ARXIV.2108.07927.

[Zhu+21] Hangyu Zhu et al. “Federated learning on non-IID data: A survey.” In:
Neurocomputing 465 (Nov. 2021), pp. 371–390. doi: 10.1016/j.neucom.
2021.07.098.

[Zig+20] Athanasios Zigomitros et al. “A Survey on Privacy Properties for Data
Publishing of Relational Data.” In: IEEE Access 8 (2020), pp. 51071–
51099. doi: 10.1109/access.2020.2980235.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep Leakage from Gradients.”
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach
et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.
neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-
Paper.pdf.

https://doi.org/10.1145/3298981
https://doi.org/10.48550/ARXIV.1905.09684
https://openreview.net/forum?id=EopKEYBoI-
https://doi.org/10.1145/2588555.2588573
https://doi.org/10.48550/ARXIV.2108.07927
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1109/access.2020.2980235
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Foundations
	2.1 Regulations Concerning the Processing of Health Data
	2.2 Privacy-Enhancing Technologies
	2.2.1 Differential Privacy
	2.2.1.1 Classical Definition
	2.2.1.2 Theorems and Relaxed Notions

	2.2.2 Synthetic Data Generation
	2.2.2.1 Desiderata
	2.2.2.2 Non-deep Learning Techniques
	2.2.2.3 Variational Autoencoders
	2.2.2.4 Generative Adversarial Networks (GANs)
	2.2.2.5 Variants of GANs

	2.2.3 Differentially Private Deep Learning
	2.2.3.1 Differentially Private Stochastic Gradient Descent
	2.2.3.2 Private Aggregation of Teacher Ensembles

	2.2.4 Federated Learning
	2.2.4.1 Taxonomy
	2.2.4.2 Architecture of Horizontal Federated Learning
	2.2.4.3 Algorithms



	3 Related Work
	3.1 Synthetic Data Generation Using Federated Learning
	3.2 Frameworks for Privacy-Preserving Federated Synthetic Data Generation

	4 Proposed Method: DP-Fed-CTGAN
	4.1 Scenario and Threat Model
	4.2 Architecture and Algorithms
	4.2.1 Privacy-Preserving Data Encoding
	4.2.2 Differentially Private Federated CTGAN Training
	4.2.3 Generation of Synthetic Data

	4.3 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.1.1 Metrics
	5.1.1.1 Utility
	5.1.1.2 Fidelity

	5.1.2 Datasets
	5.1.3 Baselines and Hyperparameters
	5.1.4 Experimental Environment

	5.2 Results
	5.2.1 Utility
	5.2.2 Fidelity
	5.2.3 Performance for Non-IID Data
	5.2.4 Performance Under Varying Privacy Budget
	5.2.5 Performance for Different Number of Clients

	5.3 Discussion

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

