Correction to: On the two-dimensional Boussinesq equations with temperaturedependent thermal and viscosity diffusions in general Sobolev spaces

Zihui He and Xian Liao(0)

Correction to: Z. Angew. Math. Phys. (2022) 73:16
https://doi.org/10.1007/s00033-021-01650-3
We make the following corrections:

1. We remove the endpoint results concerning the propagation of the initial regularities $\left(\theta_{0}, u_{0}\right) \in$ $H^{2}\left(\mathbb{R}^{2}\right) \times\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}$ resp. $H^{1}\left(\mathbb{R}^{2}\right) \times\left(H^{2}\left(\mathbb{R}^{2}\right)\right)^{2}$ by the two dimensional viscous Boussinesq flow in [1, Theorem 1.2], which correspond to the two endpoints (2,0) resp. (1,2) in [1, Figure 1]. See the grey points in Fig. 1 below for the corrected admissible regularity exponent set $\left\{\left(s_{\theta}, s_{u}\right) \in\right.$ $\left.[1, \infty) \times[0, \infty) \mid s_{u}-1 \leqslant s_{\theta} \leqslant s_{u}+2\right\} \backslash\{(2,0),(1,2)\}$.
We remove the two corresponding estimates $[1,(1.18)$ and (1.20)] and their proofs in $[1$, Subsection 2.3.2 and Subsection 2.3.3] for the two endpoint cases.
2. We correct the proof of the uniqueness result in [1, Theorem 1.2] under the initial data assumption $\left(\theta_{0}, u_{0}\right) \in H^{1}\left(\mathbb{R}^{2}\right) \times\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}$, which corresponds to the endpoint $(1,0)$ in Fig. 1.
We remove the second paragraph concerning the optimality of the uniqueness result in [1, Remark 1.3]. We correct $\nu \in(s-1,1) \subset(-1,1)$ into $\nu \in(\max \{0, s-1\}, 1)$ in $[1,(2.34)]$.

The proofs of the results for the three endpoint regularity cases $\left(s_{\theta}, s_{u}\right)=(2,0)$, or $(1,2)$, or $(1,0)$ stated in [1, Theorem 1.2] were wrong due to the failure of the embedding $L^{1}\left(\mathbb{R}^{2}\right) \nrightarrow H^{-1}\left(\mathbb{R}^{2}\right)$. We sketch the corrected proofs below, using the same notations as well as the numbering of equations as in [1].

1. Since we remove the two endpoints $(2,0)$ and $(1,2)$ in Fig. 1, that is, the two (technical) inequalities in $[1,(1.18)$ and (1.20)]:

- H^{2}-Estimate for θ, if $u \in L_{\text {loc }}^{\infty}\left([0, \infty) ;\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}\right) \cap L_{\text {loc }}^{2}\left([0, \infty) ;\left(H^{1}\left(\mathbb{R}^{2}\right)\right)^{2}\right)$;
- H^{2}-Estimate for u, if $\theta \in L_{\text {loc }}^{\infty}\left([0, \infty) ; H^{1}\left(\mathbb{R}^{2}\right)\right) \cap L_{\text {loc }}^{2}\left([0, \infty) ; H^{2}\left(\mathbb{R}^{2}\right)\right)$,
we have to show
- H^{2}-Estimate for θ, if $u \in L_{\text {loc }}^{\infty}\left([0, \infty) ;\left(H^{0}+\left(\mathbb{R}^{2}\right)\right)^{2}\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ;\left(H^{1+}\left(\mathbb{R}^{2}\right)\right)^{2}\right)$;
- H^{2}-Estimate for u, if $\theta \in L_{\text {loc }}^{\infty}\left([0, \infty) ; H^{1+}\left(\mathbb{R}^{2}\right)\right) \cap L_{\text {loc }}^{2}\left([0, \infty) ; H^{2+}\left(\mathbb{R}^{2}\right)\right)$,
such that the vertical line $\left\{\left(2, s_{u}\right) \mid s_{u} \in(0,2]\right\}$ and the horizontal line $\left\{\left(s_{\theta}, 2\right) \mid s_{\theta} \in(1,2]\right\}$ are included in the admissible regularity exponent set.

More precisely, if $u \in L_{\mathrm{loc}}^{\infty}\left([0, \infty) ;\left(H^{\varepsilon}\left(\mathbb{R}^{2}\right)\right)^{2}\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ;\left(H^{1+\varepsilon}\left(\mathbb{R}^{2}\right)\right)^{2}\right)$ for some $\varepsilon \in(0,1)$, then we have (instead of $[1,(1.18)]$)

$$
\begin{align*}
& \|\theta\|_{L_{T}^{\infty} H_{x}^{2}}^{2}+\|\nabla \theta\|_{L_{T}^{2} H_{x}^{2}}^{2} \leqslant C\left(\kappa_{*},\|a\|_{C^{2}}, \kappa^{*}\right)\left\|\theta_{0}\right\|_{H^{2}}^{2}\left(1+\left\|\nabla \theta_{0}\right\|_{L^{2}}^{2}\right) \\
& \quad \times \exp \left(C\left(\kappa_{*}, \varepsilon,\|a\|_{\text {Lip }}\right)\left(\|u\|_{L_{T}^{2} H_{x}^{1+\varepsilon}}^{2}+\|u\|_{L_{T}^{4} L_{x}^{4}}^{4}+\|\nabla \theta\|_{L_{T}^{4} L_{x}^{4}}^{4}\right)\right), \tag{1.18}
\end{align*}
$$

[^0]

Fig. 1. Admissible regularity exponents
which follows from the same argument as in [1, Subsection 2.3.2], but with the following inequality (instead of [1, the inequality at the top of Page 16])

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|\nabla \Delta \eta \cdot \nabla u \cdot \nabla \eta| d x & \leqslant \frac{\kappa^{*}}{4}\|\nabla \Delta \eta\|_{L_{x}^{2}}^{2}+C\left(\kappa^{*}\right)\|\nabla u \cdot \nabla \eta\|_{L_{x}^{2}}^{2} \\
& \leqslant \frac{\kappa^{*}}{4}\|\nabla \Delta \eta\|_{L_{x}^{2}}^{2}+C\left(\kappa^{*}\right)\|\nabla u\|_{L_{x}^{1-\varepsilon}}^{2}\|\nabla \eta\|_{L_{x}^{\frac{2}{x}}}^{2} \\
& \leqslant \frac{\kappa^{*}}{4}\|\nabla \Delta \eta\|_{L_{x}^{2}}^{2}+C\left(\kappa^{*}, \varepsilon\right)\|\nabla u\|_{H_{x}^{e}}^{2}\|\nabla \eta\|_{H_{x}^{1}}^{2} .
\end{aligned}
$$

Similarly, we have (instead of $[1,(1.20)])$

$$
\begin{align*}
& \|u\|_{L_{T}^{\infty} H_{x}^{2}}^{2}+\|\nabla u\|_{L_{T}^{2} H_{x}^{2}}^{2} \leqslant\left(\|u\|_{L_{T}^{\infty} H_{x}^{1}}^{2}+\|\nabla u\|_{L_{T}^{2} H_{x}^{1}}^{2}\right) \\
& \quad+C\left(\left\|\Delta u_{0}\right\|_{L_{x}^{2}}^{2}+\|u\|_{L_{T}^{\infty} H_{x}^{1} \cap L_{T}^{2} \dot{H}_{x}^{2}}^{2}\left(\|u\|_{L_{T}^{\infty} H_{x}^{1} \cap L_{T}^{2} \dot{H}_{x}^{2}}^{2}+\|\nabla \theta\|_{L_{T}^{2} H_{x}^{1+\varepsilon}}^{2}\right)\right. \tag{1.20}\\
& \left.\quad+\|\Delta \theta\|_{L_{T}^{2} L_{x}^{2}}\|\Delta u\|_{L_{T}^{2} L_{x}^{2}}\right) \times \exp \left(C\left(\|(u, \nabla \theta)\|_{L_{T}^{4} L_{x}^{4}}^{4}+\left\|\nabla^{2} \theta\right\|_{L_{T}^{2} H_{x}^{\varepsilon}}^{2}\right)\right) .
\end{align*}
$$

where the constant C depends on $\mu_{*}, \varepsilon,\|b\|_{C^{2}},\|\theta\|_{L_{T}^{\infty} H_{x}^{1+\varepsilon}},\|\nabla \theta\|_{L_{T}^{2} H_{x}^{1}}$.
We remark here that in general we can not show $\nabla \Delta \eta \cdot \nabla u \cdot \nabla \eta \in L_{\text {loc }}^{1} L_{x}^{1}$ if $(\eta, u) \in L_{\text {loc }}^{\infty}\left(H_{x}^{2} \times\right.$ $\left.\left(L_{x}^{2}\right)^{2}\right) \cap L_{\text {loc }}^{2}\left(H_{x}^{3} \times\left(H_{x}^{1}\right)^{2}\right)$ because of the failure of the Sobolev embedding $H^{1}\left(\mathbb{R}^{2}\right) \nprec L^{\infty}\left(\mathbb{R}^{2}\right)$.
2. We now correct the proof of the uniqueness result with initial data $\left(\theta_{0}, u_{0}\right) \in H^{1}\left(\mathbb{R}^{2}\right) \times\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}$ given in [1, Section 2.2]. We are going to show $H^{1+\delta} \times H^{\delta}, \delta \in(-1,0)$-Estimates (instead of $H^{1} \times L^{2}$ Estimates in [1]) for the difference $(\dot{\theta}, \dot{u})$ of two weak solutions $\left(\theta_{1}, u_{1}\right)$ and $\left(\theta_{2}, u_{2}\right)$ satisfying

$$
\begin{aligned}
& \theta_{1}, \theta_{2} \in C\left([0, \infty) ; H^{1}\left(\mathbb{R}^{2}\right)\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; H^{2}\left(\mathbb{R}^{2}\right)\right), \\
& u_{1}, u_{2} \in C\left([0, \infty) ;\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ;\left(H^{1}\left(\mathbb{R}^{2}\right)\right)^{2}\right),
\end{aligned}
$$

following the arguments in [1, Subsection 2.3.1].
More precisely, we first observe that by virtue of the estimates in $[1,(1.13)$ and (1.14)],

$$
\begin{aligned}
B(t) & :=1+\left\|\left(\nabla u_{1}, \nabla u_{2}\right)\right\|_{L_{x}^{2}}^{2}+\left\|\left(u_{1}, u_{2}, \nabla \eta_{1}, \nabla \eta_{2}\right)\right\|_{H_{x}^{\frac{1}{2}}}^{4}+\left\|\left(\nabla \eta_{1}, \nabla \eta_{2}\right)\right\|_{H_{x}^{1}}^{2} \\
& \in L_{\mathrm{loc}}^{1}([0, \infty)),
\end{aligned}
$$

where $\eta=A(\theta):=\int_{0}^{\theta} a(\alpha) d \alpha$ is the function introduced in [1, (2.10)]. Following the arguments in the proof of [1, Lemma 2.2, Subsection 2.3.1], we derive the $H^{\delta+1} \times H^{\delta}$-Estimates for $(\dot{\eta}, \dot{u})$ which satisfies the equations in $[1,(2.19)]$, in the following three steps:
Step 1. We use the commutator estimate in $[1,(2.28)]$ for $\delta \in(-1,0)$ and $j \geqslant-1$

$$
\begin{aligned}
& \left\|\left[u_{1}, \Delta_{j}\right] \nabla \dot{\eta}\right\|_{L_{x}^{2}} \leqslant C l_{j} 2^{-j \delta}\left\|\nabla u_{1}\right\|_{L_{x}^{2}}\|\nabla \dot{\eta}\|_{H_{x}^{\delta}}, \\
& \left\|\left[\kappa_{1}, \Delta_{j}\right] \Delta \dot{\eta}\right\|_{L_{x}^{2}} \leqslant C l_{j} 2^{-j \delta}\left\|\nabla \kappa_{1}\right\|_{H_{x}^{\frac{1}{x}}}\|\Delta \dot{\eta}\|_{H_{x}^{\delta-\frac{1}{2}}},
\end{aligned}
$$

with $\left(l_{j}\right)_{j \geqslant-1} \in \ell^{1}$, and the product estimates

$$
\begin{aligned}
\left\|\dot{\kappa} \Delta \eta_{2}\right\|_{L_{T}^{2} H_{x}^{\delta}}^{2} & \lesssim \int_{0}^{T}\|\dot{\kappa}\|_{H_{x}^{\delta+1}}^{2}\left\|\Delta \eta_{2}\right\|_{L_{x}^{2}}^{2} \mathrm{dt} \\
\left\|\dot{u} \cdot \nabla \eta_{2}\right\|_{L_{T}^{2} H_{x}^{\delta}}^{2} & \lesssim \int_{0}^{T}\left(\|\dot{u}\|_{H_{x}^{\delta}}^{2}\left\|\nabla \eta_{2}\right\|_{H_{x}^{1}}^{2}+\|\nabla \dot{u}\|_{H_{x}^{\delta-\frac{1}{2}}}^{2}\left\|\nabla \eta_{2}\right\|_{H_{x}^{\frac{1}{2}}}^{2}\right) \mathrm{dt} .
\end{aligned}
$$

By use of interpolation inequalities, Gagliardo-Nirenberg's inequalities, Young's inequalities and Hölder's inequalities, we derive

$$
\begin{aligned}
& \|\dot{\eta}\|_{L_{T}^{\infty} H_{x}^{\delta+1}}^{2}+\|\nabla \dot{\eta}\|_{L_{T}^{2} H_{x}^{\delta+1}}^{2} \leqslant C\left(\delta, \kappa_{*},\|a\|_{C^{2}},\left\|\left(\theta_{1}, \theta_{2}\right)\right\|_{L_{T}^{\infty} H_{x}^{1}}\right) \\
& \quad \times \int_{0}^{T}\left(\|\dot{u}\|_{H_{x}^{\delta}}^{2}+\|\dot{\eta}\|_{H_{x}^{\delta+1}}^{2}\right) B(t) \mathrm{dt}+\frac{1}{2} \int_{0}^{T}\|\nabla \dot{u}\|_{H_{x}^{\delta}}^{2} \mathrm{dt} .
\end{aligned}
$$

Step 2. Similarly as Step 1, we derive the following estimate

$$
\begin{aligned}
& \|\dot{u}\|_{L_{T}^{\infty} H_{x}^{\delta}}^{2}+\|\nabla \dot{u}\|_{L_{T}^{2} H_{x}^{\delta}}^{2} \\
& \quad \leqslant C\left(\delta, \mu_{*},\|b\|_{C^{2}},\left\|\left(\theta_{1}, \theta_{2}\right)\right\|_{L_{T}^{\infty} H_{x}^{1}}\right) \int_{0}^{T}\left(\|\dot{r}\|_{H_{x}^{\delta+1}}^{2}+\|\dot{u}\|_{H_{x}^{\delta}}^{2}\right) B(t) \mathrm{dt} .
\end{aligned}
$$

Step 3. We sum the above two estimates up, to derive

$$
\begin{aligned}
& \|\dot{\eta}\|_{L_{T}^{\infty} H_{x}^{\delta+1}}^{2}+\|\nabla \dot{\eta}\|_{L_{T}^{2} H_{x}^{\delta+1}}^{2}+\|\dot{u}\|_{L_{T}^{\infty} H_{x}^{\delta}}^{2}+\|\nabla \dot{u}\|_{L_{T}^{2} H_{x}^{\delta}}^{2} \\
& \quad \leqslant C\left(\delta, \kappa_{*}, \mu_{*},\|(a, b)\|_{C^{2}},\left\|\left(\theta_{1}, \theta_{2}\right)\right\|_{L_{T}^{\infty} H_{x}^{1}}\right) \int_{0}^{T}\left(\|\dot{\eta}\|_{H_{x}^{\delta+1}}^{2}+\|\dot{u}\|_{H_{x}^{\delta}}^{2}\right) B(t) \mathrm{dt} .
\end{aligned}
$$

Finally, the Gronwall's inequality implies $\dot{\eta}=0$ and $\dot{u}=0$. The uniqueness result follows.
We remark here that by virtue of the definition of $B(t)$ we do not expect the uniqueness result below the regularity assumption $\left(\theta_{0}, u_{0}\right) \in H^{1}\left(\mathbb{R}^{2}\right) \times\left(L^{2}\left(\mathbb{R}^{2}\right)\right)^{2}$, which is critical by view of the Navier-Stokes-type equation for u and the temperature-dependent diffusion coefficients.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] He, Z., Liao, X.: On the two-dimensional Boussinesq equations with temperature-dependent thermal and viscosity diffusions in general Sobolev spaces. Z. Angew. Math. Phys. 73, Paper No. 16, 25 (2022)

Zihui He and Xian Liao
Institute of Analysis
Karlsruhe Institute of Technology
Englerstraße 2
76131 Karlsruhe
Germany
e-mail: xian.liao@kit.edu
Zihui He
e-mail: zihui.he@kit.edu

[^0]: The original article can be found online at https://doi.org/10.1007/s00033-021-01650-3.

