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We make the following corrections:

1. We remove the endpoint results concerning the propagation of the initial regularities (θ0, u0) ∈
H2(R2) × (L2(R2))2 resp. H1(R2) × (H2(R2))2 by the two dimensional viscous Boussinesq flow in
[1, Theorem 1.2], which correspond to the two endpoints (2, 0) resp. (1, 2) in [1, Figure 1]. See
the grey points in Fig. 1 below for the corrected admissible regularity exponent set {(sθ, su) ∈
[1,∞) × [0,∞) | su − 1 � sθ � su + 2}\{(2, 0), (1, 2)}.
We remove the two corresponding estimates [1, (1.18) and (1.20)] and their proofs in [1, Subsection
2.3.2 and Subsection 2.3.3] for the two endpoint cases.

2. We correct the proof of the uniqueness result in [1, Theorem 1.2] under the initial data assumption
(θ0, u0) ∈ H1(R2) × (L2(R2))2, which corresponds to the endpoint (1, 0) in Fig. 1.
We remove the second paragraph concerning the optimality of the uniqueness result in [1, Remark
1.3]. We correct ν ∈ (s − 1, 1) ⊂ (−1, 1) into ν ∈ (max{0, s − 1}, 1) in [1, (2.34)].

The proofs of the results for the three endpoint regularity cases (sθ, su) = (2, 0), or (1, 2), or (1, 0)
stated in [1, Theorem 1.2] were wrong due to the failure of the embedding L1(R2) �↪→ H−1(R2). We sketch
the corrected proofs below, using the same notations as well as the numbering of equations as in [1].

1. Since we remove the two endpoints (2, 0) and (1, 2) in Fig. 1, that is, the two (technical) inequalities
in [1, (1.18) and (1.20)]:

• H2-Estimate for θ, if u ∈ L∞
loc([0,∞); (L2(R2))2) ∩ L2

loc([0,∞); (H1(R2))2);
• H2-Estimate for u, if θ ∈ L∞

loc([0,∞);H1(R2)) ∩ L2
loc([0,∞);H2(R2)),

we have to show
• H2-Estimate for θ, if u ∈ L∞

loc([0,∞); (H0+(R2))2) ∩ L2
loc([0,∞); (H1+(R2))2);

• H2-Estimate for u, if θ ∈ L∞
loc([0,∞);H1+(R2)) ∩ L2

loc([0,∞);H2+(R2)),
such that the vertical line {(2, su) | su ∈ (0, 2]} and the horizontal line {(sθ, 2) | sθ ∈ (1, 2]} are
included in the admissible regularity exponent set.

More precisely, if u ∈ L∞
loc([0,∞); (Hε(R2))2) ∩ L2

loc([0,∞); (H1+ε(R2))2) for some ε ∈ (0, 1),
then we have (instead of [1, (1.18)])
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Fig. 1. Admissible regularity exponents

which follows from the same argument as in [1, Subsection 2.3.2], but with the following inequality
(instead of [1, the inequality at the top of Page 16])

∫
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Similarly, we have (instead of [1, (1.20)])
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((1.20)’)

where the constant C depends on μ∗, ε, ‖b‖C2 , ‖θ‖L∞
T H1+ε

x
, ‖∇θ‖L2

T H1
x
.

We remark here that in general we can not show ∇Δη · ∇u · ∇η ∈ L1
locL

1
x if (η, u) ∈ L∞
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2
x ×

(L2
x)2) ∩ L2
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3
x × (H1

x)2) because of the failure of the Sobolev embedding H1(R2) �↪→ L∞(R2).



ZAMP On the two-dimensional Boussinesq equations Page 3 of 4   129 

2. We now correct the proof of the uniqueness result with initial data (θ0, u0) ∈ H1(R2) × (L2(R2))2

given in [1, Section 2.2]. We are going to show H1+δ ×Hδ, δ ∈ (−1, 0)-Estimates (instead of H1×L2-
Estimates in [1]) for the difference (θ̇, u̇) of two weak solutions (θ1, u1) and (θ2, u2) satisfying

θ1, θ2 ∈ C([0,∞);H1(R2)) ∩ L2
loc([0,∞);H2(R2)),

u1, u2 ∈ C([0,∞); (L2(R2))2) ∩ L2
loc([0,∞); (H1(R2))2),

following the arguments in [1, Subsection 2.3.1].
More precisely, we first observe that by virtue of the estimates in [1, (1.13) and (1.14)],

B(t) := 1 + ‖(∇u1,∇u2)‖2L2
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where η = A(θ) :=
θ∫
0

a(α)dα is the function introduced in [1, (2.10)]. Following the arguments in

the proof of [1, Lemma 2.2, Subsection 2.3.1], we derive the Hδ+1 × Hδ-Estimates for (η̇, u̇) which
satisfies the equations in [1, (2.19)], in the following three steps:

Step 1. We use the commutator estimate in [1, (2.28)] for δ ∈ (−1, 0) and j � −1
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with (lj)j�−1 ∈ 
1, and the product estimates
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By use of interpolation inequalities, Gagliardo-Nirenberg’s inequalities, Young’s inequalities
and Hölder’s inequalities, we derive
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Step 2. Similarly as Step 1, we derive the following estimate
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Step 3. We sum the above two estimates up, to derive
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Finally, the Gronwall’s inequality implies η̇ = 0 and u̇ = 0. The uniqueness result follows.
We remark here that by virtue of the definition of B(t) we do not expect the uniqueness result

below the regularity assumption (θ0, u0) ∈ H1(R2) × (L2(R2))2, which is critical by view of the
Navier–Stokes-type equation for u and the temperature-dependent diffusion coefficients.
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