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Abstract

Carbon nanotubes (CNTs) are a unique and versatile platform for nanoelectromechanical systems

(NEMS) due to their one-dimensional structure alongside a lowmass density and large Young’s modulus.

This pushes their mechanical bending mode resonance frequencies in the range of hundreds of MHz,

which is an experimentally well accessible regime and energetically comparable to the thermal energy

at cryogenic temperatures. Combining their electrically tunable conduction behaviour and the large

mechanical quality factor, they are suited for high sensitivity experiments acting e.g. as a mass sen-

sor or a host for a qubit. However, their integration into complex circuits remains a challenge up to date.

In this work, we realised ultra-clean suspended CNTs that are locally tunable via multiple gate

electrodes by sophisticated nanofabrication, where the CNT is integrated into a priorly fabricated

metal-circuit in the last fabrication step. This is done either by chemical vapour deposition of the

CNT on-chip or with a stamping process depositing a CNT grown on a separate chip onto the metal

electrodes using a nano-assembly technique. The electric potential along the CNT can be modified

precisely using local gates, allowing to induce up to three quantum dots in series. The coupling of

these quantum dots with mechanical modes enables the realisation of complex experimental schemes

making use of the adjustable electron-phonon interaction.

Besides the realisation of spin and charge qubits, mechanical qubits or phononic ground state cooling

have been proposed in this type of device. Additionally, they are suitable platforms for spin-state

read-out of a single-molecule magnet (SMM). SMMs can be imagined as a nanoscale magnet consisting

of a single spin embedded in an organic ligand shell. They can behave as spin-qudits and the CNT

could offer a controllable qudit readout using electronic transport measurements, based on magnetic

flux-coupling or spin-phonon coupling.
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Kurzzusammenfassung

Kohlenstoffnanoröhren (CNT) sind durch ihren eindimensionalen Aufbau sowie ihre geringe Dichte

bei gleichzeitig hohem Elastizitätsmodul eine einzigartige, vielseitig anwendbare Plattform für na-

noelektromechanische System (NEMS). Die strukturellen Eigenschaften sorgen für eine Frequenz

der mechanischen Schwingungen im Bereich von einigen hundert MHz, was sie experimentell gut

kontrollierbar macht und energetisch ähnlich zur thermischen Energie bei kryogenen Temperaturen.

Die Kombination aus hoher Güte der mechanischen Schwingung und Verstimmbarkeit der Elek-

tronenergielevel mittels elektrischer Felder macht CNTs zu einem geeigneten System für hochpräzise

Messungen beispielsweise als Sensor oder Qubitplattform. Ein nach wie vor großes Problem bleibt

jedoch ihre Integration in komplexere Schaltkreise.

In dieser Arbeit haben wir durch sorgfältig entwickelte Nanofabrikationsprozesse sehr saubere und frei

hängende CNTs hergestellt, die durch lokale Gates elektrisch steuerbar sind. Die CNTs wurden dabei

als letzter Schritt in zuvor gefertigte Nano-Schaltkreise integriert, entweder durch Gasphasenabschei-

dung direkt auf den Elektroden oder durch eine Stempeltechnik bei der die CNT auf einem separaten

Chip gewachsen wurde und in einem Nanomontageprozess auf den Schaltkreis übertragen wird. Die

lokalen Gate Elektroden erlauben eine präzise Modifikation des elektrischen Potentials und dadurch

die Erzeugung von bis zu drei Quantenpunkten in Reihenschaltung in der CNT. Die Kopplung dieser

Quantenpunkte and die mechanischen Schwingungsmoden eröffnet die Möglichkeit der Kontrolle der

Elektron-Phonon Wechselwirkung in der CNT.

Die frei hängenden CNTs sind zusätzlich geeignete Plattformen für die Auslese des Spin-Zustandes

eines Einzelmolekülmagnetens (SMM) durch Spin-Phonon-Kopplung. SMMs können einen Spin-Qudit

formen und die CNT eröffnet die Möglichkeit einer kontrollierten Auslese durch Messungen der

elektrischen Leifähigkeit.

iii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Kurzzusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction to carbon nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Structure and mechanical properties of carbon nanotubes . . . . . . . . . . . 5

2.1.2 Electronic properties of carbon nanotubes . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Carbon nanotube - metal interface . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Single and double quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Closed quantum dot regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Intermediate quantum dot regime . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Open quantum dot regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Double quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Quantum dots and qubits in carbon nanotubes . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Spin-orbit and valley effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Charge and spin qubits in carbon nanotubes . . . . . . . . . . . . . . . . . . . 25

2.4 Carbon nanotubes as nanomechanical resonators . . . . . . . . . . . . . . . . . . . . 29

2.4.1 General aspects of nanoelectromechanical systems . . . . . . . . . . . . . . . 29

2.4.2 Description as classical damped harmonic oscillator . . . . . . . . . . . . . . 30

2.4.3 Mechanics of a doubly clamped beam . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.4 Duffing oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.5 Introduction to carbon nanotubes as a mechanical resonator . . . . . . . . . . 36

2.4.6 Detection of transversal mechanical resonances in carbon nanotubes . . . . . 37

2.4.7 Electron tunnelling induced modifications of mechanical bending modes . . . 40

2.4.8 Longitudinal stretching modes in carbon nanotubes . . . . . . . . . . . . . . 45

2.5 Introduction to single-molecule magnets . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.1 General introduction into single-molecule magnets . . . . . . . . . . . . . . . 48

2.5.2 TbPc2 as a model single-molecule magnet . . . . . . . . . . . . . . . . . . . . 49

2.5.3 Readout of single molecule magnets with a carbon nanotube . . . . . . . . . . 54

v



Contents

3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Circuit designs and fabrication scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Layout of the metal-circuit for ’top-growth’ procedure . . . . . . . . . . . . . 59

3.1.2 Layout of the metal-circuit for the ’stamping’ technique . . . . . . . . . . . . 62

3.2 Nanofabrication techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Photo- and e-beam-lithography . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Metal-evaporation and thin-film growth . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Atomic layer deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Integrating carbon nanotubes into metal circuits . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Carbon nanotube growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Top-growth procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Room-temperature characterisation of top-growth devices . . . . . . . . . . . 78

3.3.4 The stamping technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Single-molecule magnet deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Cryogenic experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Modified Sionludi cryostat for fast sample exchange . . . . . . . . . . . . . . . . . . . 91

4.1.1 Top-load system for quick sample exchange . . . . . . . . . . . . . . . . . . . 93

4.1.2 3D-vector magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Sample holder, cabling and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Dc-cabling of the measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Rf-cabling of the measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Electronic setup for cryogenic measurements . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.1 Measurement software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Electronic equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.3 RLC-tank circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Carbon nanotube growth optimisation for the top-growth process . . . . . . . . . . . 107

5.2 Stamping devices with molybdenum-topped electrodes . . . . . . . . . . . . . . . . . 109

5.3 Transport measurements on top-growth multi-gate carbon nanotube devices . . . . . 112

5.3.1 Room-temperature characterisation . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 Single quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.3 Double quantum dots in top-growth NEMS . . . . . . . . . . . . . . . . . . . 118

5.3.4 Nanoelectromechanics in top-growth suspended carbon nanotubes . . . . . . 121

5.4 Transport measurements on stamped multi-gate carbon nanotube devices . . . . . . 126

5.4.1 Measurements on single quantum dot . . . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Double Quantum dots in stamped NEMS . . . . . . . . . . . . . . . . . . . . . 132

5.4.3 Nanoelectromechanics in stamped carbon nanotubes . . . . . . . . . . . . . . 136

6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

vi



Contents

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

vii





1 Introduction

For decades, the semicondutcor industries' solution to ever increasing customer demands has been

the miniaturisation of functional components. This gave rise to incredible technological advances in

particular in silicon CMOS (complementary metal-oxide-semiconductor) fabrication following the

self-ful�lling prophecy of 'Moore's law', which predicted a doubling of the transistor density every

two years. However, this approach reaches its fundamental limits, when quantum e�ects, like leakage

tunnelling currents, start to a�ect the device performance. Therefore, new technologies are needed,

that possess an intrinsic advantage over classical electronics.

The advent of quantum computing as a concept working with completely di�erent rules than a classical

computer induced a paradigm shift and demanded a rethinking of how to perform computing. While

classical computing is based on bits with two states, quantum computing is based on quantum bits

(qubits) that are a superposition of two quantum states. Making use of this superposition, entanglement

and interference phenomena quantum computers are theorised to require exponentially less compu-

tation steps than a classical computer for speci�c application cases. This opened the �eld for other

technologies, since the physical nature of a qubit is not �xed. Qubits have been realised in industrially

nanofabricated superconducting circuits [1], quantum dots in two-dimensional electron gases [2] or

one-dimensional nanotubes [3, 4], a single spin in a molecule [5], optically active defects [6], trapped

ions [7] and more. The di�erent qubit designs all come with their own set of bene�ts and drawbacks

considering scalability, tunability and �delity. To give an example, several trapped ions are all identical

which makes them somewhat easy to manipulate at the cost of low tunability, as the ions are identical

and the number of di�erent ions is limited. On the opposite end of the size spectrum are arti�cial

atoms e.g. superconducting circuits. By means of nanofabrication superconducting circuits can be

altered easily between di�erent generations, but, due to their macroscopic size and large tunability,

each superconducting circuits will have its own distinct set of parameters.

One system providing a potential trade-o� of large tunability and large reproducibility are single-

molecule magnets (SMMs). Single-molecule magnets feature a single giant spin typically originating

from transition metals surrounded by an organic ligand shell with a strong anisotropy. The possibility

of chemical synthesis allows for millions of identical molecules with electronic and binding properties

tunable by chemical engineering of the central atom and the surrounding ligand shell. This chemical

synthetisation of gives rise to the production of millions of identical qubits, widely tunable between

generations. A frequently studied SMM is terbium (bis)phthalocyaninato (TbPc2), where the central

terbium ion in the crystal �eld is responsible for the giant spin. The terbium nuclear-spin states feature

extremely long lifetimes up to years [8] and coherence times at cryogenic temperatures, due to their

strong decoupling from the environment as they interact via the giant spin which in itself is well
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1 Introduction

protected by the organic ligands. However, the small size of a molecule and the strong decoupling

come at the price of a signi�cant challenge in terms of integration into other systems and spin state

readout. In previous experiments, amongst others, a spin-transistor [9, 10], a spin-valve [11�13] or

coupling to a mechanical motion of a carbon nanotube nanoelectromechanical systems (CNT NEMS)

[14�16] have been achieved in order to readout the (nuclear-) spin state. The multilevel nuclear system

allowed the realisation of a quantum digit (qudit) and the application of the Grover algorithm has been

demonstrated [17].

This thesis aims to continue the work on spin-phonon coupling using CNT NEMS as a clean and

versatile platform. A CNT in itself is an interesting nanoscale object based on its one-dimensionality,

exceptional mechanical properties and electronic tunability rendering them well suited for NEMS-

applications. CNTs have been used in many experiments such as (spin) qubits [18], ultra-high quality

factor mechanical resonances [19], formation of a Wigner-crystal [20], Franck-Kondon blockade [21]

and more.

CNTs can be produced in a lab without the need of high-end equipment by using chemical vapour

deposition [22]. Over the years, di�erent ways of integrating CNTs into metal circuits have been

realised. The metal circuit can be patterned around the CNT lying �at on a surface and the contact is

done by depositing a conductive material on top of a CNT segment [23, 24]. Similarly, the CNT can be

grown on top of the metal circuit by locally depositing catalyst nanoparticles at the positions where

CNTs are supposed to be integrated [25, 26]. A di�erent approach comprises the growth on a separate

chip and transferring the CNT as a last step with an assembly system onto the metal circuit fabricated

prior to the assembly [27]. Each technique has its bene�ts and drawbacks in terms of cleanliness,

contact resistance and versatility discussed in a later chapter, but for this work only the latter two

approaches were used since the CNT will not be contaminated by solvents or resist this way. By

suitable nanofabrication processes, a CNT suspended above several local gates able to tune the electric

potential along the CNT has been realised. The integration was possible via direct growth or transfer.

The coupling of two nanoscale objects, a CNT and an SMM, still is a signi�cant challenge. In the past,

solutions containing SMMs were dropcasted on chips hosting CNTs. While this proved to be successful

[14], the cost was an exposure of the CNT to the solvent inevitably contaminating the CNT with other

hydrocarbons as well. To provide a cleaner method of depositing SMMs, in this work an evaporation

system was remodelled in order to couple thermally evaporated SMMs to a CNT without the need of

additional solvents therefore keeping the CNT clean.

The readout of the molecular spin state using the CNT can be based on a spin-valve e�ect [11] a�ecting

electric transport by a magnetoresistive e�ect, magnetic-�ux coupling in a dc-SQUID (superconducting

quantum interference device) with the CNT as the superconducting weak link [24, 28] or a coupling to

the mechanical modes of the CNT [14]. Spin relaxation processes require a conservation of angular

momentum which forces the creation or annihilation of a phonon, which have a discrete energy

spectrum in the case of CNT NEMS, resulting in selective relaxation dynamics [16] for an SMM grafted

on a CNT. In case of a magnetic �eld that is not parallel to the easy axis of the SMM, the interaction

with the magnetic moment forces a torque on the CNT that induces additional strain which shifts the

mechanical resonance frequency. Mechanical resonances in a small NEMS often follow the behaviour

2



of a bifurcating Du�ng-oscillator [29] which can cause huge signal jumps for small variations. This

way, a binary readout can be realised, which was the aim of this work. However, the coupling between

the molecular spin and electronic transport or the mechanical modes could not be realised and the

focus shifted to the study of the, in itself, interesting system of a CNT NEMS.

In chapter 2, an introduction into the physics of CNTs in context of quantum dots and nanomechanics

is provided. The chapter concludes with a description of SMMs and how the coupling to CNTs could

be realised. Following this, in chapter 3 an overview of the fabrication processes as well as necessary

trade-o�s for the di�erent sample types produced and measured are given. The section also contains

parts on the room-temperature selection and annealing of devices to improve the interface quality.

Besides room-temperature measurements, experiments were also performed at cryogenic temperatures

in a setup that is presented in chapter 4. The data acquired at cryogenic temperatures, studying

mechanical resonance modes as well as single and double quantum dots, is shown and discussed in

chapter 5. The last chapter 6 provides a summary of the achievements and encountered problems of

this thesis and gives an outlook on the future evolution of this experiment.
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2 Theoretical background

This section is dedicated to the theory behind the physical phenomena observed in the experiments

shown in chapter 5. Since this thesis mainly evolves around the work with carbon nanotubes, their

structure, mechanical and electronical properties are introduced �rst. Afterwards, a section on quantum

dots in general and quantum dots in carbon nanotubes in speci�c explains the second big aspect of this

thesis. Since we used suspended carbon nanotubes, the third subsection is dedicated to the description

of their mechanical resonance modes and their interplay with electronic transport. The chapter is

concluded by an introducing part on single-molecule magnets and how we wanted to integrate them.

2.1 Introduction to carbon nanotubes

2.1.1 Structure and mechanical properties of carbon nanotubes

A carbon nanotube (CNT) is one of the possible allotropes of elemental carbon. In its natural form

carbon consists of 99 %12C which features no nuclear spin. The electronic structure of carbon reads

[He]2B22?2 and carbon thus has four valence electrons. Due to its ability to form stable hybridised

orbitals, a small zoo of di�erent con�gurations is possible. In this hybridisation the2Band up to

three2?-orbitals combine and take a tetragonal (B?3), trigonal (B?2) or linear (B?) shape by forming

f -bonds. WhileB?3-hybridised carbon (e.g. diamond) already �nds use in technical applications due

to its hardness and optical properties,B?2-hybridised carbon only received some attention with the

discovery of fullerenes in the 1980s [30], carbon nanotubes in 1991 [31] and culminated in the discovery

of graphene in 2004 [32]. Graphene is formed by a monolayer ofB?2-hybridised carbon forming a

honeycomb-lattice, while the?I orbitals are arranged out of plane, and form ac-binding between

them. The lattice can be described by the two lattice vectors01 and02 (see �gure 2.1) and thus a vector
®� with

®� = =®01 ¸ < ®02 (2.1)

using=•< 2 Z as chirality indices can connect any two points on the lattice. The two lattice vectors01

and02 have a length of 1.42 Å with an angleUof 60°between them. A pictorial way of looking at a

CNT is to imagine it as a rolled up sheet of graphene (�gure 2.1) where the chirality vector®� describes

the rolling direction and therefore the symmetry. Knowing the chirality vector an expression for the

CNT diameter, assuming a perfect circular cross-section, can be derived:

3 =
j ®� j
c

=
0
c

p
=2 ¸ < 2 ¸ =<” (2.2)

This is true for a small diameter CNT. In case of a larger diameter, the CNT tends to �atten [33]. If

the chirality vector aligns with either one of the lattice vectors, the CNT possesses a so calledzig-zag
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2 Theoretical background

symmetry. If the chirality vector has an angle ofU•2 to one of the lattice vectors, the CNT possesses

an armchairsymmetry. These symmetries can also be expressed in terms of the chirality indices=•<

where azig-zagsymmetry has= < 0, < = 0 and an armchair symmetry= = < . All other linear

combinations of=•< are called chiral nanotubes.

Similarly to the well known unique mechanical properties of diamond, graphene and carbon nanotubes

Figure 2.1:Schematic representation of a graphene lattice and the imaginary rolling pattern

of a CNT. If a graphene lattice was to be cut along the yellow vector®) and then rolled

following vector ®� a chiral carbon nanotube with the index tuple¹=•<º, and in this case

speci�cally (4,1), would be formed. The vectors®�• ®) are forming the unit cell. If the rolling

was occurring along speci�c symmetry axes with either= = < or < = 0 < = the resulting

nanotube is called armchair or zig-zag type.

feature a remarkably high mechanical strength. A measure to express mechanical strength is Young's

modulus. given by the ratio of tensile or compressive stressf to the linear deformationY. For in-

plane strain, carbon nanotubes and graphene possess a Young's modulus of about1TPa[34] which

is among the highest of any material known so far. However, carbon nanotubes are far softer in

radial direction with a Young's modulus below60GPathat is decreasing for an increasing tube radius

[35]. The reason behind this high in-plane strength can be found in the high stabilityf -bonds of the

hybridisedB?2 orbitals. Since carbon nanotubes also have a low density, mechanical resonances will

have a comparably high resonance frequency in the hundreds of MHz range for bending modes or

tens of GHz for stretching modes, which makes them readily accessible and combinable with common

rf-techniques rendering them a very interesting material for nanoelectromechanical systems (NEMS).

2.1.2 Electronic properties of carbon nanotubes

When describing the electronic properties of carbon nanotubes, it is instrumental to describe the prop-

erties of graphene and then look at the occurring deviations due to the curvature and the constraints to
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2.1 Introduction to carbon nanotubes

one dimension. As mentioned, the hybridised electrons are located inf -bonds forming the hexagonal

lattice but they do not partake in electronic transport. The electronic transport is dominated by the

delocalisedc- andc � -orbitals formed by the out-of plane oriented?I -orbitals. Thec- andc � -orbitals

give rise to the valence and conduction band. Following tight-binding calculations performed for

graphite, the energy dispersion was found to be [36, 37]

� � ¹®: º = � C
q

3¸ 5¹®: º � C05¹®: º (2.3)

5¹®: º = 2 cos
�p

3: ~0
�

¸ 4 cos
� p

3
2

: ~0
�

cos
�
3
2
: G0

�
(2.4)

with CandC0 being the hopping energies to the nearest and next-nearest neighbours in the sublattice,

respectively. Plus and minus correspond to thec � andc band while: G, : ~ are the components in

: -space. From the formula alone it is expected that the dispersion is symmetric around zero in case

of C0 = 0. In case ofC0 < 0 electron-hole symmetry is broken and the conduction and valence band

become asymmetric [36]. A plot of the resulting band structure with hopping parameters is shown in

�gure 2.2. The hexagonal lattice structure still determines the symmetry in the band structure resulting

Figure 2.2:Band structure of graphene according to eq. (2.4). The upper and lower bands are

touching at the six Dirac points. In their vicinity linear dispersion can be observed.

in six pairs of cones facing each other and forming a hexagon. The points in the band diagram where

the cones are touching are calledDirac points. Neighbouring Dirac points cannot be connected by

using reciprocal lattice vectors and are thus two di�erent sites labelled and 0. This results in two

distinguishable electronic states calledvalley-states. Since the cones are touching at the Dirac points,

graphene possesses no bandgap and the Fermi energy� F is right between the cones and crossing the

touching point. Upon expansion of eq.(2.4) around a Dirac point using ®: = ® ¸ ®@in the limit of

j®@j � j ® j a linear dispersion can be observed [37]:

� ¹®@º = � \ EFj®@j ¸ O

 �
�
�
�
®@
 

�
�
�
�

2
!

(2.5)
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2 Theoretical background

with ®@as the momentum relative to the K-point and the Fermi velocityEF given byEF = 3C0•2 ' 106<B� 1.

The resulting Fermi velocity is rather unusual as it does not depend on either momentum or energy

[36].

As previously mentioned, a CNT can be imagined as a rolled up sheet of graphene. While a sheet of

graphene can be described as a two-dimensional (2D)-crystal of in�nite size in two-dimensions, a CNT

possesses a one-dimensional (1D)-symmetry and thus deviations are to be expected. The transition

from 2D to 1D is done with the so calledzone-folding approximationby introducing periodic boundary

conditions for the radial component: ? which is oriented orthogonal to the nanotube symmetry axis.

This results in a quantisation in the direction of the chirality vector®� . The values of: ? are given by

®: ®� = c3: ? = 2c; (2.6)

with an integer;. For su�ciently long nanotubes there is no quantisation along the tube axis®) , i.e.: k

is not quantised, and electrons can move freely in this direction. This results in a modi�cation of the

band structure around the Dirac cones and eq. (2.5) can now be written as

� D¹: ? • : kº = � \ EF

q
: 2

? ¸ : 2
k” (2.7)

The quantisation of: ? results in the creation of one sub-band per: ? -vector (�gure 2.3). If at least one

of the sub-bands crosses a Dirac point, the CNT is considered to be metallic. If none is crossing, it

is considered to be semiconducting due to the emerging bandgap. It was found that this can also be

expressed in terms of the chiral indices [38]=•<: A CNT is metallic if2= ¸ < = 3; where; is again

an integer. This condition is always ful�lled for armchair nanotubes with= = < and they are thus

considered to be metallic. For zig-zag nanotubes (< = 0) this condition is only ful�lled for = = 3? and

thus the majority is considered semiconducting. However, these arguments assume no in�uence of the

curvature which can shift the Dirac cones and deviations are observed when taking the latter into

account [39]. It was found that the bandgap scales with the diameter of the nanotube and approximately

follows � � gap = 0”7
3 eV with the diameter3 in nm for small diameter nanotubes and a proportionality

of / 1
32 for larger diameters [40]. As a result, even many supposedly metallic nanotubes feature small

bandgaps and are callednarrow-gapnanotubes. Besides curvature, it was found that mechanical strain,

e.g. induced by an atomic-force-microscopy- (AFM)-tip, can modify the bandgap [41].

This resulting bandgap allows for many applications in analogy to frequently used semiconductor

techniques in contrast to graphene which does not have a bandgap and thus complicates applications

such as transistors. With this bandgap, however, and due to the tunability of electronic states in the

CNT, electric charges can be spatially con�ned which will be discussed in section 2.2 where quantum

dots are introduced.

The (electric) conductance of a one-dimensional conductor can be expressed as the sum of all conduction

channels that each contribute one quantum of conductance� 0 = 242

� : � = #� 0) in the case of#

conduction channels with perfect transmission) = 1 [43]. In reality, of course, some channels will be

partially suppressed. In case of a scattering free CNT (i.e. its length! is smaller than the electron mean

free path;) the intrinsic resistance has a lower limit of' = 1
2� 0

� 6”5k
 . The factor 2 is a result of the

two di�erent valley states, the two possible spin states are already considered in the de�nition of� 0.
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2.1 Introduction to carbon nanotubes

Figure 2.3:Schematic representation of the consequences of the zone-folding approximation.

a) The periodic boundary conditions result in a Brillouin zone in the shape of a line. In the

case of a metallic nanotube the resulting lines touch at least one Dirac point and the result

is analogous to graphene zero-bandgap.b) If the perpendicular component: ? is �nite, as

for this exemplary chiral nanotube, no Dirac point is crossed and a bandgap of energy� gap

emerges. Figure adapted from [42].
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2 Theoretical background

In real CNT devices, however, scattering as well as an interface resistance' C between the CNT and

the contacting material will result in an increased resistance [44]:

' �
�

442 ¸
�

442

!
;<

¸ 2' C” (2.8)

Typically, the contact resistance' C is non-negligible and is often even the dominating contribution to

the overall resistance. The next section is dedicated to this arising resistance in the form ofSchottky

barriersand how they can be understood as well as reduced.

2.1.3 Carbon nanotube - metal interface

The resistance between a carbon nanotube and a metal contact is sensitive to a few contributing factors.

Generally a good electric contact occurs if there is a large orbital overlap between metal and carbon

nanotube and energy levels are easily accessible. It is obvious that surface contaminations that form

an intermediate layer between the CNT and the metal deteriorate the contact quality and, if not for

some lucky chance, increase the contact resistance. This was observed for early devices where the

nanotubes have been dispersed on pre-patterned contacts [45, 46]. The surface contaminations as

well as the loose attachment resulted in a contact resistance of about1M
 . Materials that have a

high work function (e.g. gold, platinum) have been chosen for the contacting laye that match the high

work function of CNTs (� 4”8eV[47]). A mismatch in the work function and the e�ect of Fermi-level

pinning can result in the formation of Schottky barriers (�gure 2.4), where an energy barrier occurs at

the interface between a (semiconducting) nanotube and a metal.

In case of carbon nanotubes this barrier decays over a few nm [48] due to the point-like geometry of

the contact and acts as a tunnelling barrier with a tunnelling rate depending on the temperature. The

observable I-V characteristics of such a contact resemble a diode.

When contacting a carbon nanotube from the side, charge injection into the CNT may only take place

by interaction with the?I orbitals. Due to the curvature, the overlap of individual?I -orbitals is reduced

on the outside of carbon nanotubes compared to the inside and an interaction is facilitated. Typically

nowadays, transition metals are being used to form the contact. Good wetting properties are desired

to increase the overall contact between metal and nanotube which is given for metals like titanium or

palladium while others such as aluminium or gold tend to form islands [48]. Even though titanium has

even better wetting properties than palladium (i.e. stronger binding) it is typically forming non-ohmic

contacts since charge is accumulating more strongly in the atomic layers of the titanium/carbon system

and the interlayer region is depopulated of charge carriers. In case of palladium, excess charge is

accumulated between the two layers [48].

The arguments given for side contacts hint that an increase of the contacting area will result in a

decrease of the contact resistance, which also was observed for di�erent metals [49]. Another way of

contacting the CNT, which is not requiring big overlaps of carbon nanotube and metal, is an edge-

contact where the dangling bonds at the end of a nanotube are covalently bonded to the contacting

material. While this is readily applied for graphene [50] the application for nanotubes is not that easy

due to the much smaller contacting area. Edge-contacts have been achieved by chemical binding to a

10



2.2 Single and double quantum dots

Figure 2.4:Schematic drawing of a Schottky barrier at a semiconductor-metal interface. Left:

An ohmic contact is shown where charge carriers can traverse freely since the Fermi energy

is within the carbon nanotube valence band. The inset shows the typical linearI-V-behaviour.

Right: the case with an emerging Schottky barrier is shown. The inset shows anI-V-curve

that features a barrier for low bias voltages that develops into an exponential increase.

Figure adapted from [48].

metal evaporated on top of the CNT [51] and indeed they show no dependence on the overlapping

length and ohmic behaviour.

2.2 Single and double quantum dots

A quantum dot (QD) is a, as the name implies, zero-dimensional system that can be created by con�ning

a system in three dimensions. This can be achieved in various systems like a two-dimensional electron

gas in a multistack-semiconductor (e.g. review [52]), a small metallic island, a single molecule magnet

[9] or inside a carbon nanotube (e.g. [20, 53] or review [42]), to name a few.

Due to this con�nement and the arising boundary conditions for the electron wave function, the

energy states of the quantum dot only take discrete values and quantum dots are often called arti�cial

atoms due to the similarities with electronic states in atoms. In the following, the terms electron and

charge carrier are used synonymously. In reality, however, quantum dots still have a �nite size that,

in case of a carbon nanotube, is described by the length! due to the one-dimensionality of a carbon

nanotube. This �nite size gives interference conditions and the energy spacing is given by� � = �EF
2!

[42]. In a carbon nanotube, the outer boundaries con�ning the charge carrier may occur naturally in

the form of defects or Schottky barriers but they can also be induced e.g. by tuning the electrostatic

environment.

A way to visualise and realise this is by contacting one end of the carbon nanotube with a metal

electrodesource, one end with a metal electrodedrain and position a third electrode (gate) in proximity

and capacitively coupled to the carbon nanotube. Assuming Schottky barriers at the metal-CNT

interface, the result is a spatially con�ned area in the CNT coupled via tunnelling barriers to the

electrodes. A schematic representation of the equivalent circuit is presented in �gure 2.5. For the

11



2 Theoretical background

Figure 2.5:Schematic equivalent circuit of a quantum dot coupled to two leads. The quantum

dot is coupled capacitively to source, drain and gate with the capacitances� s, � d and� g.

Charge carriers can hop onto the dot via tunnelling barriers with the tunnelling rate�B and

�3 .

description of this system the electrodes are assumed to be in�nitely large reservoirs of electrons

that are coupled to the quantum dot via a tunnelling barrier with the tunnelling rates�B and�3 . The

tunnelling rates represent the coupling between electrodes and quantum dot. They mainly depend on

the overlap of the electrode and dot wavefunctions where the latter can be tuned by applying a voltage

on the gate electrode. When con�ning electrons in a small area, the occurring physics are dominated

by discrete charge e�ects and an additional charging energy due to Coulomb repulsion needs to be

paid when adding an electron to the quantum dot. This charging energy� C can be expressed in terms

of the total capacitance� tot given by the sum of the device capacitances:� tot = � s ¸ � g ¸ � d. Where� s,

� g and� d represent the capacitance to the source, gate and drain electrode, respectively. The charging

energy is then� C = 42

� tot
for an electron of charge e.

Regimes of transport at low temperatures

The type of observable phenomena is governed by the di�erent energy scales arising from the tunnelling

barriers, the energy level spacing� � in the quantum dot, the thermal energy and the charging energy

� C:

ˆ Thermal energy : The thermal energy is given by: B) and describes the internal energy that

the system has available due to its temperature. Generally thermal energy leads to uncontrolled

excitations and a smearing of sharp features, e.g. in electronic transport. Therefore, for many

experiments on quantum dots the system is cooled down to cryogenic temperatures of� 30mK

which corresponds to an energy of� 2”6µeV, compared to� 25 meVat ambient temperatures.

ˆ Coupling : The coupling describes the interaction strength between the quantum dot and its

surroundings. It directly controls the tunnelling rate which describes the rate with which charge

carriers are exchanged between the source (�B) and drain (�3) electrodes and the quantum dot. In

12



2.2 Single and double quantum dots

general, they can vary and are determined by the electronic density of states and the wavefunction

overlap.

ˆ Charging energy : The charging energy� C determines the energy it takes to add an additional

charge carrier into the quantum dot due to Coulomb repulsion and depends on the total capacitance

of the dot. Typically, the energy scale is in the order of meV.

ˆ Energy level spacing : The energy level spacing� � describes the energy di�erence between

individual energy levels in the quantum dot and arises from interference conditions due to the

spatial constraint. Here, the energy scale is typically in the order of few meV.

In order to observe clear and clean quantum transport e�ects it is bene�cial to reduce the system

temperature and thereby prevent thermal �uctuations from disturbing the quantum e�ects. This can

be achieved if the thermal energy is much smaller than the other energy scales involved:

: B) � � �• � C•\ � ” (2.9)

The other major factor competing with the internal energy scales of the quantum dot are the tunnelling

rates, or generally the coupling� . The energy\ � expresses a �nite line broadening of the levels in

the dot as result of the coupling of the discrete spectrum in the dot with the continuous spectrum of

the leads. Depending on the ratio of coupling to charging energy, generally three di�erent transport

regimes are distinguished:

ˆ Closed quantum dot regime : \ � � � C

Here, discrete charging e�ects dominate the transport and features like Coulomb blockade or a

single-electron transistor emerge.

ˆ Intermediate quantum dot : \ � � � C

Here, charging e�ects and cotunnelling processes matter. Commonly observable features are higher

order tunnelling processes.

ˆ Open quantum dot : \ � � � C

Here, interference e�ects are dominating the transport behaviour. The dot behaves as a quantum

analogon to Fabry-Pérot-interference.

Since the coupling� is directly depending on the height of the tunnelling barrier, the contact quality

between the quantum dot and the leads can already determine the regime of transport. In the following,

the di�erent transport regimes as well as some of the occurring phenomena will be discussed.

2.2.1 Closed quantum dot regime

In the closed quantum dot regime the transport behaviour is predominantly determined by discrete

charging e�ects due to a weak coupling to the leads. Typically, charge carriers pass the dot one by

one in a sequential tunnelling process and the charge state of the quantum dot is well-de�ned since

the level-spacing inside the dot is larger than the coupling and the thermal energy prohibiting the
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2 Theoretical background

population of energetically higher levels. After a charge carrier enters the quantum dot the additional

Coulomb repulsion blocks other charge carriers from entering the quantum dot, until the �rst charge

carrier left the dot. This regime of conductance is therefore called Coulomb blockade.

A rather simple yet widely useful model to describe electronic transport in the Coulomb blockade

regime is theconstant interaction model(CIM). In order to apply this model, two assumptions need

to be made. First, all electrostatic interactions need to be describable by a total capacitance� � and

second, the energy level spacing in the quantum dot may not depend on the number of charge carriers

in the dot but must remain constant. The amount of total energy* gained or lost when an additional

charge carriers enters the quantum dot is called the chemical potential` . It is de�ned by

` ¹# º = * ¹# º � * ¹# � 1º• (2.10)

which describes the total energy di�erence between# � 1 and# charge carriers inside the dot. The

total energy for an occupation with# charge carriers can be calculated [54] as

* ¹# º =

�
Us� s+sd � Ud� d+sd � � g+g � #4

� 2

2� �
¸

#Õ

8=1

� 8 (2.11)

with +sd being the voltage applied between the two leads,U8 the relative voltage drop at either tunnelling

barrier,� 8 the individual capacitances as de�ned before and� 8 the single particle energies depending on

the con�nement. For the understanding of the system, it is helpful to keep in mind that the di�erence

in chemical potential between two occupation numbers# and# � 1, i.e. the addition energy� add [54],

is given by the sum of charging energy and level spacing:

� add = ` ¹# º � ` ¹# � 1º = � C ¸ � � ¹# º• (2.12)

where� � can even vanish in the case of degenerate levels.

In this transport regime, electrons may only traverse the dot if the levels in the dot are within the

window between the chemical potential of source` s and drain` d, ` s � ` d = �j 4j+sd, created by the

voltage+sd applied between source and drain electrode, i.e.` s � ` ¹# º � ` d for any # . A simpli�ed

cartoon showing this process is shown in �gure 2.6. The energy range for which transport is possible

is called bias window. For this description it is generally assumed that there are available �lled states

in the source electrode and available empty states in the drain electrode.

If the condition` s � ` ¹# º � ` d is not ful�lled the number of electrons within the dot remains �xed

and no current will �ow. This e�ect is called Coulomb blockade. The blockade can either be lifted by

increasing the bias window (increasing+sd) or by tuning the energy levels with a gate voltage+g, see

�gure 2.6. If an additional level in the dot becomes available, an electron may hop into and later out of

the dot, thereby opening the level again for the next electron to follow the same steps. This process is

called single-electron tunnelling and the resulting current mainly depends on the tunnelling rates.

When measuring the current or conductance with a �xed bias voltage close to zero as a function

of the applied gate voltage periodic conductance peaks, so-called Coulomb peaks, can be observed

(�gure 2.7). Their width is determined by the linewidth of the involved levels, applied bias voltage and

thermal energy. Every peak corresponds to the situation in �gure 2.6b) and the large blocked areas to
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2.2 Single and double quantum dots

Figure 2.6:Scheme of energy levels and transport in a quantum dot. A source and drain electrode

are connected to a quantum dot via tunnelling barriers (black bars). Yellow arrows indicate

energetically favoured hopping.a) The electron may only hop into the dot but cannot leave

it towards the drain. The total number of electrons in the dot is �xed. This situation is called

Coulomb blockade.b) After applying a gate voltage+g, levels are aligned and transport is

possible.c) Applying a bias voltage+sd opens a window to enable transport, even without

an additional gate-voltage.

a situation as shown in �gure 2.6a). If now the bias voltage is also varied, the width of the peaks is

increasing. A common characterisation of quantum dot devices is a charge-stability diagram, where

the conductance is measured as a function of gate- and bias voltage. Since the peaks are broadening

the region of Coulomb blockade is shrinking. At some point, the peaks will overlap and there is no full

blocking region anymore. In the charge stability diagram, this occurs at the tip of a diamond shaped

area calledCoulomb diamond(�gure 2.7).

A charge stability diagram generally can give a good overview over the transport properties of the

device under test. Coulomb diamonds in particular can give insights into the energy scales involved.

Their height (zero-line to tip) is de�ned by the addition energy with� add = j4j+sd. Their width gives

information about the gate coupling, since the charging energy is still the same. The gate lever armU

de�nes a ratio between bias voltage and change of gate voltage� +g needed to achieve the same change

of available charge state which can be expressed asj4j+sd = Uj4j � +6. When looking at the slopes of

the Coulomb diamonds, additional information about the involved capacitances of source, drain and

gate can be gained. The �ank on the right side of a diamond peak (towards higher gate voltage) is

given by the ratio ofB� = � � 6•� B while the �ank on the left side is given byB̧ = � 6•¹ � 6 ¸ � 3º. This

allows for another de�nition of the gate lever armU = 1
( ¸ ¸ B�

.

In the closed quantum dot regime transitions and features are typically sharp since coupling between

di�erent systems is generally weak. This weak coupling also implies that most processes are single-

particle processes of lower order. This makes the closed quantum dot regime interesting for studies

where a high resolution is required, e.g. when energy level spectroscopy is performed or for mechanical

resonances with a high quality factor.
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2 Theoretical background

Figure 2.7:Schematic diagram of a charge-stability map. Plotted are the applied bias voltage+sd

over the applied gate voltage+g scaled with the elemental charge e. Areas in darker red

show Coulomb blockade and no conduction. This example shows spin-degeneracy and

therefore every other Coulomb diamond is larger (shell-�lling after two charge carriers).

The height of the diamonds is determined by the addition energy� add = � C ¸ � � , the width

by the product of addition energy and gate lever armU. From the slopes of the Coulomb

diamonds, the capacitive coupling can be determined.

2.2.2 Intermediate quantum dot regime

In the intermediate quantum dot regime we again assume the thermal energy: B) to be much smaller

than the coupling\ � and the addition energy. Now, however, coupling and electrostatic energies are

about the same size with an ordering given by\ � � � C Ÿ � � .

In this regime higher order tunnelling processes are non-negligible and the charge state is object of

quantum �uctuations. Due to Heisenberg's uncertainty principle classically forbidden energy states

are available for a time� •X� whereX� is the energy di�erence from the Fermi energy. Within this time

window an electron could, e.g. leave the dot, if another electron tunnels into the dot. The intermediate,

unoccupied state that classically is not possible is called virtual state. As a result of such a process,

e�ectively one electron has been transported through the dot. Since for this process tunnelling across

two barriers is involved, its amplitude scales with the inverse square of the tunnelling barrier height

(' C). There are several di�erent ways how such processes can manifest of which an elastic cotunnelling,

an inelastic cotunnelling and a spin-�ip tunnelling following [55] will be brie�y explained here.

In an elastic cotunnelling process an unoccupied energy level in the dot is brie�y occupied creating a

virtual state (see �gure 2.8A). If within this brief timeC �• � determined by the coupling, the electron

leaves this energy level towards the drain, one electron has been e�ectively transported. An analogous

process can occur if an electron temporarily tunnels from an occupied level in the dot to the drain. If

an electron from the source reoccupies the energy level in the dot during the lifetime of the virtual

state, again one electron has been transported. In comparison to previously described sequential

tunnelling processes the energy levels remain in their original state for most of the time, the amplitude

of transport is thus lower as for aligned energy levels (resonant transport).
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2.2 Single and double quantum dots

O�-resonant elastic cotunnelling

Inelastic cotunnelling

Spin-�ip cotunnelling

Figure 2.8:Compilation of di�erent cotunnelling mechanisms. A I-III: In an exemplary elastic

cotunnelling process a classically forbidden state` ¹= ¸ 1º is temporarily occupied within a

time given by Heisenberg uncertainty. From the temporarily occupied state, the electron

can tunnel to the drain. An equivalent process for the �lled state` ¹# º tunnelling to the

drain exists as well.B I-III: An exemplary inelastic cotunnelling process where a �lled dot

is temporarily emptied is shown. A second electron tunnels into the dot and occupies an

excited statè 0¹# º. This occurs if the excitation energy� exc matches4+sd. Relaxation can

happen via phonon or photon emission.C I-III: A spin-�ip cotunnelling or Kondo e�ect is

a special case of an elastic cotunnelling. For an odd number of electrons in the dot the spin

is 1/2. An antiferromagnetic exchange coupling can lead to a spin-�ip within the quantum

dot if the electron in the dot tunnels to the leads and the dot is re�lled with an electron of

opposite spin. How these e�ects can manifest in a charge stability diagram is presented

separately in �gure 2.9.
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