KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty-aware Cross-Entropy for Semantic Segmentation

Landgraf, Steven 1; Hillemann, Markus ORCID iD icon 1; Wursthorn, Kira 1; Ulrich, Markus ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep neural networks have shown exceptional performance in various tasks, but their lack of robustness, reliability, and tendency to be overconfident pose challenges for their deployment in safety-critical applications like autonomous driving. In this regard, quantifying the uncertainty inherent to a model’s prediction is a promising endeavour to address these shortcomings. In this work, we present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that incorporates dynamic predictive uncertainties into the training process by pixel-wise weighting of the well-known cross-entropy loss (CE). Through extensive experimentation, we demonstrate the superiority of U-CE over regular CE training on two benchmark datasets, Cityscapes and ACDC, using two common backbone architectures, ResNet-18 and ResNet-101. With U-CE, we manage to train models that not only improve their segmentation performance but also provide meaningful uncertainties after training. Consequently, we contribute to the development of more robust and reliable segmentation models, ultimately advancing the state-of-the-art in safety-critical applications and beyond.


Verlagsausgabe §
DOI: 10.5445/IR/1000172172
Veröffentlicht am 03.07.2024
Originalveröffentlichung
DOI: 10.5194/isprs-annals-X-2-2024-129-2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2194-9050
KITopen-ID: 1000172172
Erschienen in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Verlag Copernicus Publications
Band X-2-2024
Seiten 129–136
Bemerkung zur Veröffentlichung ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, Las Vegas, 11th–14th June 2024
Vorab online veröffentlicht am 10.06.2024
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page