KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty Quantification with Deep Ensembles for 6D Object Pose Estimation

Wursthorn, Kira 1; Hillemann, Markus ORCID iD icon 1; Ulrich, Markus ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

The estimation of 6D object poses is a fundamental task in many computer vision applications. Particularly, in high risk scenarios such as human-robot interaction, industrial inspection, and automation, reliable pose estimates are crucial. In the last years, increasingly accurate and robust deep-learning-based approaches for 6D object pose estimation have been proposed. Many top-performing methods are not end-to-end trainable but consist of multiple stages. In the context of deep uncertainty quantification, deep ensembles are considered as state of the art since they have been proven to produce well-calibrated and robust uncertainty estimates. However, deep ensembles can only be applied to methods that can be trained end-to-end. In this work, we propose a method to quantify the uncertainty of multi-stage 6D object pose estimation approaches with deep ensembles. For the implementation, we choose SurfEmb as representative, since it is one of the top-performing 6D object pose estimation approaches in the BOP Challenge 2022. We apply established metrics and concepts for deep uncertainty quantification to evaluate the results. Furthermore, we propose a novel uncertainty calibration score for regression tasks to quantify the quality of the estimated uncertainty.


Verlagsausgabe §
DOI: 10.5445/IR/1000172175
Veröffentlicht am 03.07.2024
Originalveröffentlichung
DOI: 10.5194/isprs-annals-X-2-2024-223-2024
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 2194-9050
KITopen-ID: 1000172175
Erschienen in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Verlag Copernicus Publications
Band X-2-2024
Seiten 223–230
Bemerkung zur Veröffentlichung ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, Las Vegas, 11th–14th June 2024
Vorab online veröffentlicht am 10.06.2024
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page