

TIME

Workpackage 2: Analysis of Parameters Influence on Tyre F&M Testing

Rolf Gnadler, Hans-Joachim Unrau, Martin Augustin

- Aims and contents of Workpackage 2
- Performed tests
- Results
 - Track surface
 - Temperature
 - Track curvature
 - Test device
- Summary

Aims and Contents of WP2

- Clarification of the different results in WP1
 - Deviations of cornering stiffness, aligning stiffness
 - Deviations of the maximum values, ...
- Investigation of parameters which influences tyre characteristics
 - Track surface
 - Ambient temperature, ...
- Quantitative indication about alteration of tyre characteristics caused by different test conditions
 - Identification of important influences
 - Evaluation of correction formulas, ...

Performed Tests (1)

Test Devices involved in WP2

Test Trailer University of Delft / TNO

Internal Drum S Test Device University of Karlsruhe

lr

S

S

Т

A

Performed Tests (2)

ertical force	50% ETRTO	80% ETRTO	130% ETRTO	
flation Pressure		2,3 bar	2,6 bar	
lip angle amplitude		2 deg	6 deg	10 deg
lip angle velocity		0,8 deg/s	2,0 deg/s	4,0 deg/s
elocity		60 km/h	100 km/h	
ack surface	Concrete	Asphalt rough	Asphalt smooth	Safety- Walk 80
mbient temperature	5°C	20°C	30°C	

Additionally the influence of drum curvature was investigated using results of workpackage 1

Selected results to the Influence of following parameters on tyre characteristics

152

- Track surface
- Temperature
- Drum curvature
- Test device

Influence of Track Surface (1)

Influence of Track Surface (2)

Influence of Track Surface (3)

- Maximum of lateral force
 - Differences on the investigated track surfaces up to 10 %
 - The influence of the track surface depends strongly on the tyre
- Cornering and aligning stiffness
 - Cornering and Aligning stiffness depend on the
 - texture depth
 - Cornering stiffness varies up to 13 %, aligning stiffness up to 21 %

Influence of Temperature (1)

Influence of Temperature (2)

Influence of Temperature (3)

Influence of Temperature (4)

- Maximum value of lateral force
 - Influence of the ambient temperature (5° C, 30° C) amounts to 5 %, related to 20° C
 - Influence of velocity and slip angle velocity amounts up to 6 %

Cornering stiffness

- Influence of the ambient temperature (5° C, 30° C) amounts up to 8 %, related to 20° C
 - Influence of velocity, slip angle amplitude and slip angle velocity amounts up to 8 %

Influence of Drum Curvature (1)

Additional Colloquium to the EAEC Congress, June/July 1999, Barcelona

Influence of Drum Curvature (2)

Additional Colloquium to the EAEC Congress, June/July 1999, Barcelona

Influence of Drum Curvature (3)

• In comparison with a flat track surface the cornering stiffness is

- on a external drum smaller

– on a internal drum bigger

- For a Ø 2.0 m drum the difference amounts to approximately 15 %
- The percentage influence of the curvature increases – with increasing tyre radius
 - with decreasing vertical load
- The influence of the drum curvature on the aligning stiffness is bigger but in tendency similar

Influence of the Test Device (1)

Cornering Stiffness Measured with the Test Trailer of Delft Referred to Results measured on Concrete in Karlsruhe

Influence of the Test Device (2)

- The measured tyre properties show
 - similar parameter influences but
 - partly with different sensitivity
- The best agreement between the two test benches was found on
 - smooth asphalt track for the test trailer and
 - concrete surface for the internal drum

- For a comparison of results measured on different test devices
 - the track surface and
 - the track curvature have to be considered
- Different measurement procedures cause – different tyre temperatures and
 - therefrom different tyre test results
- These boundary conditions have to be as identical as possible with real driving conditions on the road

