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Abstract. With the development of electric vehicles in the last years, the 
number of electric chargepoints are expanding rapidly. Accordingly, the 
aggregated load demand from different electric chargepoints is increasing 
significantly. Due to the unpredictability of charging behaviour, it is difficult 
to build white-box models to analyse the patterns and to predict the load 
profiles, which is essential for other tasks such as demand side management. 
Thus, in this work, four different models based on machine learning and 
deep learning algorithms namely Random Forest (RF), Support Vector 
Regression (SVR), Gated Recurrent Unit (GRU) and Long Short-Term 
Memory (LSTM) are applied to a massive real-world open dataset from the 
UK, published in 2018, to compare the forecast performance of each 
algorithm with the modified persistence model as the baseline. The raw data 
are first pre-processed to generate the aggregated load demand by hour and 
then used for training and forecasting with a predictive horizon of 72 hours. 
The results are compared by using two common descriptive statistics, i.e., 
normalized Root-Mean-Square Error (nRMSE) and Mean Absolute 
Percentage Error (MAPE). In comparison we find that the GRU generates 
the lowest prediction error with 5.12% MAPE and 8.24% nRMSE in January 
2017 and the modified persistence model generates the overall lowest 
prediction error with 2.88% MAPE and 3.76% nRMSE in July 2017. 

1 Introduction 
The rapid development of electric vehicle and the corresponding deployment of chargers will 
have an increasing impact on energy demand and interaction with existing grids [1,2]. 
However, due to the uncoordinated deployment of charging stations [3] and the system 
fluctuations regarding charging behaviors [4], the charging environment is dynamic [5]. This 
makes the use of traditional modeling methods such as white-box models difficult for an 
accurate analysis and forecast [6], which is essential for operational decision making such as 
demand side management. For instance, the results of short-term load forecasting can help 
utilities to optimize generation and to ensure grid stability in the short term.  
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Recently, many researchers have investigated in the machine learning- and deep learning-
based models for time series data analysis and forecasting [7-10] and highlighted the 
advantages of some algorithms such as LSTM [11,12]. The aggregated load demand can also 
be pre-processed as time series data. Therefore, it’s possible to build and train different 
models based on these machine learning and deep learning algorithms. 

The present work contributes to comparing four different models based on machine 
learning (RF, SVR) and deep learning (GRU, LSTM) algorithms in aggregated load demand 
analysis and forecast with the modified persistence model as the baseline. Another important 
goal is to test the capabilities of these algorithms by utilizing the selected dataset. These 
models are built and trained on the massive real-world open dataset from the UK, published 
in 2018 [13], which contains more than 3 million raw data points covering the whole country. 
This dataset is found to be useful in other research topics such as the performance analysis 
of battery-assisted charging [14] and demand response [15]. In the present work, these raw 
data are pre-processed into time series data by hour at first. Then the first 744 hours in January, 
April, July and October respectively are used as training set with cross-validation for model 
training and the next 72 hours of data are reserved for test. By utilizing the descriptive 
statistics, i.e., nRMSE and MAPE, the results of different models are compared, and the 
performances are evaluated. 

The remainder of the paper is divided into four parts: Section 2 presents related work in 
load demand research of electric chargepoints with machine learning algorithms. The raw 
data and the results of the preprocessing are described in Section 3. In Section 4, a brief 
description of each algorithm used for training and forecasting is given. Section 5 presents, 
analyses and discusses the predicted aggregated load demand with different models. Finally, 
the main conclusions of this work are highlighted in Section 6. 

2 Related Work 
Based on the type of approach, the related work can be generally divided into two categories.  
The first category focuses on one specific algorithm and then optimizes the algorithm or 
compares with other approaches. For instance, a fast-charging power demand analysis and 
forecast based on LSTM is introduced in [3] and briefly compared with other RNN to 
highlight the slight advantages of LSTM in the fast-charging scenario. In [11], the authors 
use genetic algorithms (GA) to optimize a LSTM model for short to medium term aggregate 
load forecasting and briefly compare with other machine learning approaches to show the 
better performance of the proposed approach. In [16], an optimized AC (Ant Colony) 
algorithm is proposed and has shown outstanding performance in accuracy and 
computational efficiency when simulating EV charging load profiles. In [17] three different 
Transformer training strategies are compared with other models such as LSTM, MLP (Multi-
layer Perceptron) to discuss the advantages and disadvantages of different models with 
different training strategies for load forecasting.  

Another category focuses on the differences between various datasets by utilizing several 
algorithms. In [18], four different machine learning approaches are applied to two datasets to 
explore the differences regarding customer privacy when forecasting charging load. Similarly, 
in [19] two different machine learning algorithms are applied to a total preprocessed dataset 
which consists of multiple sources of data for predicting charging station utilization. In [20] 
the authors propose a deep transfer learning method named as DTr-CNN to tackle the 
problem with missing labeled training data for time series prediction in some actual situations. 
Through the experiments across different datasets, the effectiveness of the method is proven 
compared to other algorithms. 

Based on the related work, we summarize that the comparative analysis results of 
different machine learning and deep learning approaches is greatly impacted by different 
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datasets. Thus, it’s necessary to conduct a comparative methodological analysis of a 
particular dataset before utilizing that dataset for further research steps such as demand side 
management. To the best knowledge of the authors, there is no straightforward comparative 
analysis based on the dataset [13]. Hence, the utilization and comparative analysis of dataset 
[13] can provide new and useful results for a further operational decision-making when 
considering the aggregated load of electric chargepoints as part of demand side management. 

3 Data preprocessing 
The raw data for the experimental statistics on the usage of domestic electric vehicle 
chargepoints are released by Department for Transport in the UK in December 2018. The 
raw data contain 3.2 million charging events recorded across approximately 25,000 funded 
domestic chargepoints through the whole year of 2017 [13]. Table 1 shows a part structure 
of the raw data. 

Table 1. Part structure of the raw data. 

Start 
Date 

Start 
Time 

End 
Date 

End 
Time 

Energy 
[kWh] 

Plugin 
Duration [h] 

2017-12-31 23:59:23 2018-01-01 18:20:23 8.8 18.35 

2017-12-31 23:59:00 2018-01-01 00:03:00 10.2 0.07 

… … … … … … 

 
Based on the date and time, the raw data are pre-processed to generate aggregated load 

demand by hour. In the preprocessing, any plug-in events that were less than 3 minutes in 
length are treated as anomalies and therefore excluded. Besides, it’s assumed that the 
charging power is constant throughout the plugin duration based on statistical observation 
and the simplified piecewise-linear charging profile model in [21]. All pre-processed data for 
the year 2017 are presented in Fig. 1. For a rapid training, forecast and analysis, the data of 
January, April, July and October as representative months in each season are extracted 
separately as inputs, which are presented in Fig. 2 and Fig. 3.  
 

 
Fig. 1. Aggregated Load Demand by hour in the year 2017. 
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Fig. 2. Aggregated Load Demand by hour in January and April 2017. 

 

 
Fig. 3. Aggregated Load Demand by hour in July and October 2017. 

4 Model training algorithms and modified persistence model 
In the present work, four different algorithms are chosen for model training based on [22]. 
They have been proven to be powerful in time series data training in different scenarios as 
mentioned in Section 2. In this section, each of them is briefly described. Besides, the 
definition of our modified persistence model as the baseline is also included in this section. 

4.1 Random Forest (RF) 

As an ensemble learning method for classification and regression problems [23], RF has been 
widely used in many classification and regression problems. For time series forecasting, it 
requires that the time series dataset be transformed into a supervised learning problem first. 
Fig. 4 shows this transformation process, i.e., sliding window, with an input size of one as an 
example, where Y is the value at each time step. However, there is a limitation of this method 
that cannot be ignored, i.e., random forest cannot extrapolate. It means that predicted values 
are always within the range of the training set. In this work, different input sizes are tested to 
find an ideal parameter. Finally, we create a bagged regression ensemble object with an input 
size of 5 together with the temporal features of days such as Monday, Tuesday etc. as the 6th 
input, to use bootstrap aggregation method for model training, since there are no significant 
improvements with further increased input sizes. 
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Fig. 4. Transformation of time series data into a supervised learning problem with input size of one. 

4.2 Support Vector Regression (SVR) 

As a variant of Support Vector Machine (SVM) for regression tasks, SVR has a great 
advantage to learn the nonlinear relationship between input data and a target output value 
with a margin around the target values by introducing a kernel function such as gaussian, 
linear and polynomial. Since it’s designed to build regression models for nonstationary 
numeric values, it’s selected with a linear kernel function for tasks like aggregated load 
demand forecasting in our work. To make meaningful comparisons, the setup for input size 
is kept consistent with RF.  

4.3 Long Short-Term Memory (LSTM)  

For predicting data based on time series while avoiding the vanishing gradient problem, 
LSTM has been developed as a modified version of traditional RNN. By introducing the so-
called gates, LSTM can regulate the flow of information and maintain valuable information. 
In comparison to other RNN, LSTM can deal with large amounts of data and time steps more 
easily [24]. Based on these advantages, it’s been chosen as one of the algorithms in the paper. 
The implementation is based on the library PyTorch. 

4.4 Gated Recurrent Unit (GRU) 

Gated recurrent units (GRU), introduced in 2014 by Kyunghyun Cho et al. [25], are also a 
gating mechanism in recurrent neural networks (RNN), which corresponds to a simplified 
version of LSTM. On consequence of its concise topology, GRU shows good performance 
with limited computational resources as an advantage. For the sake of comparison with 
LSTM, GRU is also included in the present work. The implementation is based on the library 
PyTorch. 

4.5 Modified Persistence Model 

The persistence model [26] is often used as a trivial reference model when different forecast 
models are compared. In this work, a modified version of the persistence model is defined 
by considering the temporal impacts. Instead of calculating the future value by assuming that 
no changes happen between the current time step and next time step, we use the values a 
week ago of the same time period, i.e., same days in the week as presented in Fig. 5. 

 
Fig. 5. Modified persistence model. 
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5 Results and discussions 
As mentioned in Section 1, the training set with cross-validation contains the first 744 hours 
data in January, April, July and October and the test set is the subsequent 72 hours. The 
hyperparameters for RF and SVR are automatically optimized in MATLAB and the 
hyperparameter setting for LSTM and GRU in PyTorch is shown in Table 2. Table 3 
summarizes the two descriptive statistics, i.e. nRMSE and MAPE, for each algorithm and the 
modified persistence model. The detailed plots are presented from Fig. 6 to Fig. 9. 

The best results in each month are bolded. For instance, the best forecast results in January 
are given by GRU with a nRMSE of 8.24% and MAPE of 5.12%. However, GRU does not 
always give the best results in other months. For example, the results of LSTM are the best 
in April with a nRMSE of 7.57% and MAPE of 5.81%. And in the same month, even the 
baseline has a lower MAPE than the results with GRU. Therefore, the evaluation and 
discussion should be carried out based on each month.  

Table 2. Hyperparameter setting for LSTM and GRU. 

 LSTM GRU 

Input Size 1 1 

Hidden Size 150 150 

Hidden Layer 1 1 

Epoch 200 200 

Learning Rate 0.01 0.01 

Criterion MSEloss MSEloss 

Optimizer Adam Adam 

Table 3. Summary of descriptive statistics for each algorithm. 

  Persistence 
Model RF SVR LSTM GRU 

nRMSE 

January 16.35% 17.04% 32.27% 9.84% 8.24% 

April 11.80% 41.62% 35.46% 7.57% 27.82% 

July 3.76% 30.98% 33.40% 25.84% 10.69% 

October 11.72% 19.44% 34.99% 9.71% 8.49% 

MAPE 

January 12.18% 11.95% 31.23% 6.27% 5.12% 

April 9.15% 28.63% 31.29% 5.81% 18.42% 

July 2.88% 25.02% 33.72% 19.89% 8.94% 

October 7.68% 11.87% 34.23% 6.08% 6.48% 
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Fig. 6. Load Demand Forecast with RF. 

 

    
Fig. 7. Load Demand Forecast with SVR. 
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Fig. 8. Load Demand Forecast with LSTM. 

 

 
Fig. 9. Load Demand Forecast with GRU. 

In April, it’s worth noting that the prediction errors of almost all machine learning 
algorithms, except LSTM, are larger than the results of the modified persistence model. In 
July, the baseline results give even the overall lowest error with a nRMSE of only 3.76% and 
a MAPE of only 2.88%. There are two possible reasons for the relatively inaccurate forecast 
results in these two months, especially when utilizing RF and SVR. First, we have only used 
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a relatively small training set i.e. one month for each season for a rapid training which could 
limit the quality of the trained model of all methods.  

Besides, the number of features to consider when looking for the best split in RF impacts 
the quality of the results. If too many features are considered at each split, the model may 
overfit. If too few are considered, the model may underfit. Similarly, the features that capture 
patterns in time series data such as temporal trends have a huge impact when using RF and 
SVR for forecast. Therefore, more training data and different input sizes in different months 
together with new features such as different hour in the day should be considered as further 
steps to improve the quality of the trained model by utilizing RF [27,28] and SVR.  

On the other hand, with a smaller input size of one, LSTM achieves the smallest 
prediction error in April which reflects the superiority of this deep learning-based algorithm 
with the hyperparameter setting in Table 2 in this scenario. However, the results in other 
months reveal the limitations of the current setup. The results in July show that when the 
value range fluctuates widely, in our case, the range is decreasing gradually, the trained 
model cannot predict the load demand with a good accuracy. On the contrary, the results in 
October are more accurate when the value range is more stable. One possible reason is that 
the method of closed loop forecasting within LSTM and GRU is implemented in the current 
work, which can be less accurate when compared to open loop forecasting because they don’t 
have access to the true values during the prediction process. 

Furthermore, these facts could also be caused due to lack of other features such as 
different hours in the day when training the model. The selection of relevant features such as 
temporal features is crucial for time series forecasting in this scenario. The aggregated load 
demand has shown different patterns on each hour according to the figures in Section 3. 
Therefore, to further improve the accuracy of the prediction, more new features such as 
pattern of different hours in the day should be included in the training process.  

Moreover, a third possible reason for the relatively poor results in April with GRU and in 
July with LSTM would be that the model architecture of both deep learning-based methods 
contains only one hidden layer. Generally, adding more hidden layers can help improve the 
accuracy of the model by allowing it to capture more patterns in the training set. However, 
since the focus of this paper is not on optimizing a particular algorithm, different hidden 
layers in a LSTM or GRU model are not compared in the current work. Similarly, the 
hyperparameters in both algorithms are not fine-tuned for a better performance which could 
limit the ability of the model to capture more complex patterns in April and July. Thus, it’s 
necessary to optimize the hyperparameters in the next step to tackle the inaccuracies in 
specific months. 

6 Conclusions 
The present paper investigates the accuracy of different machine learning and deep learning 
algorithms for aggregated load demand analysis and forecast with a modified persistence 
model as the baseline. The aggregated load demand is pre-processed with an hourly interval 
based on a massive real-world dataset consisting of the uncoordinated deployment of electric 
chargepoints over the UK. With a predictive horizon of 72 hours, we used the first 744 hours 
data in January, April, July and October 2017 for training and the next 72 hours data for 
prediction and as test set respectively. The forecasting results indicate that the modified 
persistence model achieved the overall best accuracy in July 2017 with a nRMSE of 3.76% 
and a MAPE of 2.88% and GRU presented the best accuracy in January 2017 with a nRMSE 
of 8.24% and a MAPE of 5.12%. In April, the smallest prediction error is produced by using 
LSTM. Moreover, the results with RF and SVR are worse than the baseline in almost all 
months, except that in January RF has a slightly smaller MAPE than the baseline, which 
shows the limitations of these two algorithms in our scenario. These results and conclusions 
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could be used as a basis for a more comprehensive comparison when considering other 
important features in a longer time series data such as electricity price over time. 

    As further steps, larger training set for RF should be considered to improve the 
accuracy. The model architecture together with the hyperparameters for LSTM and GRU 
could be further tuned, compared and optimized for a better performance, especially in April 
and July. Moreover, new features such as electricity price over time and specific hours in the 
day could be included to improve the accuracy of results and further to help operational 
decision making such as flexibility optimization and demand side management. 
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