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Abstract: Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can
provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nev-
ertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn),
weight average molecular mass (Mw) and others are not determined by MS, as they are commonly
characterized by gel permeation chromatography (GPC). In order to calculate polymer properties
from MS, a Python script was developed to interpret polymer properties from spectroscopic raw
data. Polypy script can be considered a peak detection and area distribution method, and represents
the result of combining the MS raw data filtered using Root Mean Square (RMS) calculation with
molecular classification based on theoretical molar masses. Polypy filters out areas corresponding to
repetitive units. This approach facilitates the identification of the polymer chains and calculates their
properties. The script also integrates visualization graphic tools for data analysis. In this work, aryl
resin (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) was the study case polymer molecule,
and is composed of oligomer chains distributed mainly in the range of dimers to tetramers, in some
cases presenting traces of pentamers and hexamers in the distribution profile of the oligomeric chains.
Epoxy resin has Mn = 607 Da, Mw = 631 Da, and polydispersity (Pd) of 1.015 (data given by GPC).
With Polypy script, calculations resulted in Mn = 584.42 Da, Mw = 649.29 Da, and Pd = 1.11, which
are consistent results if compared with GPC characterization. Additional information, such as the
percentage of oligomer distribution, was also calculated and for this polymer matrix it was not
possible to retrieve it from the GPC method. Polypy is an approach to characterizing major polymer
chemical properties using only MS raw spectra, and it can be utilized with any MS raw data for any
polymer matrix.

Keywords: polymers; python; polymer characterization; polymer chain distribution; mass spectroscopy;
gel permeation chromatography; aryl resin; mass polymerization

1. Introduction

Polymers’ physico-chemical properties are directly correlated with the mass distri-
bution profile, the degree of functionalization, and the shape of the chain distribution.
The characterization of polymers is highly dependent on the polymerization synthesis
technique and the polymer chemical structure itself, which makes the characterization
protocol quite complex [1,2].
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In the last four decades, significant advancements made in devices based on mass
spectrometry (MS) have resulted in fast and accurate protocols for macromolecule charac-
terization, mainly due to the maturing of soft ionization procedures based on electrospray
ionization (ESI), laser desorption ionization (LDI), and matrix-assisted laser desorption
ionization (MALDI). For most polymer samples, it is now possible to obtain broad MS
spectra and avoid fragmentation of the molecules during the ionization process [1–4]. Since
the advent of these techniques, one can observe that classic characterization techniques
such as size exclusion chromatography (SEC) and liquid adsorption chromatography (LAC)
are often no longer sufficient to access the required information for polymer characteriza-
tion [3].

Between the 1940s and 1960s, the main application of emission, fluorescent, and photo-
metric mass spectroscopic methods was in the detection of chemical sample impurities [5].
However, at that time these methods were already being investigated for polymer charac-
terization. Anufriev et al. (1965) applied MS as a characterization method to investigate
the thermal degradation mechanism of polymethylmethacrylate (PMMA) [6], and they
built up their findings based on a similar approach for the thermal characterization of
polystyrene [7] and polyethylene [8]. Charlesbby and Callaghan (1958) mentioned the
advent of mass spectroscopy as an auxiliary method for analyzing side chains of polyethy-
lene [9]. It is also interesting to note the “Bibliography on Mass Spectroscopy”, in which
most of the MS applications in “Section D—Applications to Organic Chemistry” were ori-
ented to the petroleum industry [10]. Additionally, in the 1940s and 1950s, several reports
present MS applications for polymer characterization; for example, Madorsky and Straus
(1948) [11] describe a characterization method using mass spectroscopy for polystyrene
pyrolysis fractions, Ciapetta et al. (1948) utilize mass spectroscopy to evaluate fractions of
butylene polymers [12], and Wall (1948) presents a mass spectrometric investigation of the
thermal decomposition of several vinyl and diene polymers [13]. Figure 1 depicts a typical
inlet apparatus and MS spectra from diverse polymer samples.

Figure 1. State of the art of mass spectroscopy in the 1950s. (a) Single inlet sample injection for mass
spectroscopy ionization [13]. (b) Mass spectra of diverse polymers [14].

In the 1970s, noticeable developments in MS instrumentation and methods led to a
vast acceptance of MS in almost every field of research, including pharmaceuticals, food
and flavoring, ecology, pharmacology, clinical medicine, polymer science, and many others.



Polymers 2024, 16, 1771 3 of 17

MS methods, in combination with gas chromatography (hyphenated GC-MS), became
an indispensable tool for biochemical analysis, as well as chemical ionization and mass
fragmentography methods, the main MS protocols for which emerged in the 1970s. At
the end of this decade, it was clear to the research community that there were challenges
related to the MS ionization process due to the ion formation step. As there are diverse
ways of providing energy to a certain molecule to generate its ion species, naturally, the
mass spectrum of it may be uniquely bound to the ionization conditions and/or ionization
technique. That said, a molecule usually presents a completely different MS spectrum if the
ionization protocol is changed. In addition to this challenge, there are multiple ionization
pathways, which can be classified into two kinds: molecular ionization and fragment
ionization. Molecular ions are chemical species missing electrons at the valence electron
shell, which means that no chemical bond cleavage happens. In cases where sufficient
energy is available during the ionization process, the majority of organic molecules do not
lose a second electron at the valence shell; instead, they undergo a fragmentation process,
splitting the molecules into several other chemical species and resulting in a fragmentation
pattern known as the ‘fingerprint’ of the initial molecule species [10,11,15,16].

The middle of the 1970s was also marked by the coupling of MS with liquid chro-
matography (LC-MS), combining high MS sensitivity with LC separation efficiency for
non-volatile molecules. Definitions of on/off-line were used for different LC-MS combina-
tion setups, where off-line stands for MS analysis after LC separation. In this technique, the
LC mobile phase is fractioned into different retention times, isolating each desired set of
molecules or single molecule. Afterward, each fraction is characterized by MS. The on-line
system solves the challenge of inserting low or non-volatile molecules into a high vacuum
system to achieve the ionization process [17].

As MS techniques matured, it became clear that mass spectrometry does not deal with a
well-defined property of molecules, but depending on the ionization process, distinct results
and spectra can be obtained. Based on this knowledge, one has to select the appropriate
ionization technique that will be the most suitable for the structure determination of a
target molecule. From the end of the 1980s to 2000, new ionization protocols led to the
development of the soft ionization method, which aims to avoid the molecule fragmentation
process. Solid-state ionization processes, including Laser Desorption Ionization (LDI) and
Matrix-Assisted Laser Desorption Ionization (MALDI), and also the liquid state process of
electrospray ionization (ESI), are the most well known soft ionization techniques [1,4,18–22].

In the 21st century, developments in software and hardware for the better coupling of
several techniques led to innovative approaches using, for example, Ion Mobility Spectrom-
etry coupled with Mass Spectroscopy (IMS-MS). Two-dimensional chromatographic setups
have also been studied specifically for polymer characterization, providing simultaneous
information regarding molar mass and chemical functionality, such as co-polymer compo-
sition ratio and polymer chain end-groups.This has been achieved by taking advantage of
liquid adsorption chromatography at critical conditions (LACCC), obtaining separation
in polymer chain functionalization and combining it with size exclusion chromatography
(SEC), which separates molecules by molar weight [1,3,23,24].

Although MS-hyphenated techniques have become very powerful for polymer charac-
terization, one has to deal with spectral complexity to elucidate a sample, as depicted in
Figure 2b.

In Figure 2a, oligomeric phenolic resin is characterized by means of gel permeation
chromatography (GPC), and in Figure 2b, the same aryl resin is characterized using ESI-tof-
MS. Notably, for this specific case, GPC usually does not provide enough resolution to sep-
arate each repetitive unit from the oligomer distribution. In such cases, the common over-
lapping of the oligomer derivative is visible only by analyzing the MS spectra. As another
example, a simple homopolymer with average molecular mass (Mn) = 3.3 × 103 g·mol−1

and polydispersity (Pd) of 1.27 will present 60 distinct masses, without considering isomer
analogs [22,24].
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Figure 2. Chromatogram and spectra comparison between GPC and ESI-tof-MS characterization for
oligomeric aryl resin. (a) Aryl resin GPC chromatogram. (b) Aryl epoxy ESI-tof-MS spectra.

In the last two decades, significant development in custom scripts for MS data in-
terpretation has been achieved. The literature presents several approaches to tackle the
complexity of MS data using distinct programming strategies. Nevertheless, one will note
that most applications were developed towards biological samples. Hu et al. (2023) pre-
sented Mass-Suite script, a Python interpreter designed to analyze high-resolution MS for
water quality assessment and general environmental application using machine learning
technique for peak assignment [25].

Davila et al. (2022) used machine learning to better interpret chemical fingerprint work-
flows of the same molecule/target that are characterized from different sample sources [26].
Nikolopoulou et al. (2022) developed TrendProbe script to characterize samples via LC-
HRMS through a non-target screening method combined with deep learning and neural
network programming strategies, using R programming language [27].

Helmus et al. (2021) reported patRoon, an open-source platform to help in the in-
terpretation of non-target screening MS datasets. The script can be used through R, C++,
and JavaScript programming languages [28]. Liebal et al. (2020) presented an overview of
machine learning methods applied for metabolomic characterization from MS datasets [29].
Melnikov et al. (2020) describe Peakonly, a script designed based on a deep learning strat-
egy for accurate peak detection in high-volume MS datasets. The script was written in
Python [30].

Riquelme et al. (2020) reported TidyMS, a Python package designed for LC-MS data
of untargeted metabolomic characterization [31]. Levitsky et al. (2019) reported Pyteomics
4.0, a Python interface for proteomics data characterization [32].

The MS-DIAL script was presented by Tsugawa et al. (2015) for the identification and
quantification of small molecules through mass spectral deconvolution, using MS excel
sheets [33]. Röst et al. (2016) developed an OpenMS framework based on C++ and Python
to overcome issues regarding the volume and complexity of high throughput MS data, for
example in the field of proteomics [34].

Improvements to large-scale metabolomics data using R programming were presented
by Uppal et al. (2013) using xMSanalyzer script, in which the automated processing of
metabolomics is possible [35]. Pluskal et al. (2010) presented MZmine 2, a Java script
designed to overcome the processing of complex profiling biological samples, such as
proteomics, genomics, and metabolomics [36].

Over the course of the 21st century, MS methods have established themselves as
fundamental techniques in polymer science, providing in-depth information about polymer
samples. However, they have also raised new challenges in interpreting complex data,
making it clear that the interpretation of the dataset has become more complex and time-
consuming. In order to help with this challenge, a Python script is proposed to interpret and
calculate fundamental polymer properties from MS raw spectra. Our script implements
peak detection and area distribution calculations regarding repetitive units, as a result
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of combining the filtering of MS raw data using Root Mean Square (RMS) calculation
with molecular classification based on theoretical molar masses. The script also integrates
graphic visualization tools for data analysis.

2. Materials and Methods

Aryl resins (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) are oligomer chains
distributed mainly in the range of dimers to tetramers, and in some cases presenting traces
of pentamers and hexamers in the distribution profile of the oligomeric chains. Mn is
607 Da and Pd is 1.015, both given by GPC. Aryl resins were synthesized previously, and
detailed information on synthesis and characterization is presented by Vlnieska (2019) [37].

2.1. Electrospray Ionization–Time of Flight–Mass Spectroscopy (ESI-µTOF-MS)

Samples were prepared in a concentration range of 10−6 mol·mL−1, and acetone was
the solvent. Spectra were acquired using a microTOF-QII spectrometer (Bruker, Karlsruhe,
Germany). Acquisition was set to positive mode, 5.5 × 103 V, with a nebulizer with no
pressure, dry gas flow at 3.0 mL·mL−1, a dry temperature of 90 ◦C, transfer system with
radio frequency (RF) 1 and RF 2 at 200 VPP, Hexapole at 100 VPP, ion energy of 3.0 eV,
collision energy at 12.0, collision RF of 250 VPP, transfer time of 70 µs, and pre-storage of
5.0 µs. The mass range was initially recorded from 102 to 104 M·Z−1. After not observing
any peaks in the high-mass region, spectra were then recorded in a range from 102 to
2.5 × 103 M·Z−1.

2.2. Spectra Interpretation through Python Algorithm—Polypy

Spectroscopic raw data were imported from text files and processed in Python. First,
the background signal was removed from datasets. All values below the defined threshold
were excluded from further processing. In this study, the threshold was set to the root
mean square error (RMSE). Mass peaks for each oligomer (neat units) and its derivatives
and adducts were found by comparing detected values with theoretically derived masses,
based on each product’s chemical composition. Additionally, possible mass variation due
to isomers was included as tolerance for mass values for products from monomers to
tetramers, leading to most peaks being able to be detected by the algorithm. The Polypy
interpreter main logic can be represented by the following steps:

(I) Theoretical masses calculation;
(II) MS raw data reading and filtering;
(III) Background signal noise filtering;
(IV) Classification of neat, derivative, and side-product peaks;
(V) Separation of repetitive unit regions and distribution percentage calculation;
(VI) Polymer properties calculation;
(VII) Polypy and MS caveats.

3. Results and Discussion
3.1. Aryl Resins—Neat, Derivative, and Adduct Product Definitions

The mass polymerization (bulk polymerization) reaction technique provides low
control of the polymer chain nucleation and propagation [38]. Nonetheless, for a diverse
set of molecules, including the molecule in this study, (2,2-bis(4-hydroxyphenyl)propan)),
mass polymerization is an effective technique to synthesize polymer chains. In this regard,
one has to accept the formation of derivative compounds during polymerization reactions.
Figure 3 presents the mass polymerization reaction from 2,2-bis(4-hydroxyphenyl)propan.

Mass polymerization through the electrophilic aromatic substitution (EAS) of 2,2-
bis(4-hydroxyphenyl) propane can generate distinct profiles of oligomers. Depending on
synthesis parameters, different profile distributions of the polymer/oligomer chains will be
obtained. Figure 4 presents three MS spectra of poly(2,2-bis(4-hydroxyphenyl)propan), each
of them a triplicate reaction, and one can observe different oligomer profiles. Although
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using the same synthesis protocol, due to the different molar ratio between reagents,
temperature, reaction time, and catalyst amount, distinct results are obtained [37].

Figure 3. Two-step synthesis of poly(2,2-bis(4-hydroxyphenyl)propan). (a) Electrophilic aromatic
substitution, applying formaldehyde as an electrophile. (b) Aryl resin epoxydation (alkylation),
applying 1-Chlor-2,3-epoxypropan as alkylant agent

Figure 4. The bis(4-oxy-(2-(methyloxirane)phenyl)propan MS spectra in different synthesis pa-
rameters. Reproduced with permission from Vlnieska (2019) [37]. (I), (II) and (III) represent the
same reaction system (triplicates), applying different values for molar ratio between alkylation
agent:monomer, temperature, time, and solvent volume.
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MS spectra provide a detailed chemical fingerprint of the polymer chains, presenting
every single difference in molecular weight (Da) within the polymer distribution. Together
with a theoretical mass assignment of the oligomer formation, one can define the following
chemical structure categories:

- Repetitive units, considered neat products from polymerization.
- Derivatives, which are repetitive units added by an n numbers of hydroxymethyl

groups.
- Adducts, which are usually one of the categories above, with sodium atoms added at

phenolic positions.

Sodium adducts are usually products specifically generated during the atomization
process of mass spectroscopy, and which have to be considered in order to characterize
the polymer system [39]. Figure 5 presents derivatives and adducts from the monomer
molecule. Figures S1 and S2 in the Supplementary Material present dimer and trimer
mechanism formations regarding derivative and adduct products.

It is worth noting for this molecule that, due to the higher energy activation in meta
positions, only orto positions are considered for reaction in aromatic rings, as depicted
in Figure 3a. That said, each monomer molecule will have four positions to be alkylated
through EAS mechanism. [37]. Although meta positions are not considered for polymeriza-
tion, MS data are still expected to be considerably dense. Previously evaluated experimental
data have shown that the more chemical substitutions take place, the lower the intensity
of sodium adducts and hydroxymethyl derivatives. This result indicates that either the
atomization process is less effective for highly substituted repetitive units (known as the
suppression effect of soft MS ionization setups), or the amount of those products is lower
than that produced during synthesis, following EAS kinetics, which is the more probable
hypothesis. Figure 6 presents evidence regarding the amount of hydroxymethyl group
substitutions versus spectra intensity.

One can see that the suppression effect for this polymer matrix is not significant due
to some pieces of evidence: (1) The polymer matrix is composed only of oligomers (range
of 230–1500 Da), which shall not promote a significant suppression effect. (2) There is a
linear relationship of the intensities x aryl ring substitutions at the spectra in Figure 6 [40].
(3) GPC data support this statement. If the suppression effect is strong enough in higher
molecular weights, Mn would be of higher value in GPC analysis, which is not the case for
this polymer matrix.

The interpreting and correlating of peak masses vs. chemical structure demands a
considerable amount of time, and besides, one has to know the reaction mechanism of
the analyzed material. After such an effort, it could be worthwhile to extract additional
information from the MS spectra. In the case of polymer characterization, chain size
measures and polymer distribution, such as polydispersity, can be calculated from MS
data, and scripts designed for this purpose can be an efficient approach to retrieve polymer
properties from MS raw data. Polymer properties are usually characterized via GPC, and
as a standard comparison, Figure 7 presents the P3-b sample chromatogram and Table 1
presents its calculated oligomer properties.

Table 1. P3-b sample oligomer properties (calculated using the GPC method).

Peak nr Mp a Mn d Mw i Mz v Mz+1 v Mv u Pd c

1 625 622 631 641 651 630 1.01447
a Molecular weight of the highest peak. d Average molecular weight. i Weight average molecular weight.
v Centrifugation average molecular weights. u Viscosity average molar mass. c Polydispersity.
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Figure 5. The 2,2-bis(4-hydroxyphenyl)propan mass polymerization derivative and sodium adduct representation based on monomer molecules.
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For oligomer characterization, it is common to observe results as seen in Figure 7,
where characterization is resumed in one single peak. Low resolution is usually found, and
attributed to the column properties and GPC settings and optimization. Typically, GPC
systems are designed for high molar mass characterization, and GPC setting optimization
will most likely not be effective to resolve this chromatogram into each repetitive unit.
Thus, small oligomer chains are poorly characterized by means of GPC.

Figure 6. MS spectra at dimer region from sample P3-C and derivative molecular structures of the
mono sodium adduct dimer. Increase in EAS substitutions results in lower intensities in MS spectra.
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Figure 7. Aryl resin chromatogram. (a) Single peak in retention time dimension. (b) Oligomeric chain
mass distribution.

3.2. Polypy Interpreter

(I) MS theoretical masses calculation

Theoretical masses for aryl resins were calculated based on the aforementioned as-
sumptions, where meta positions of the aryl rings are not functionalized and only one
methylation happens per repetitive unit. Hydroxymethyl groups can be added at the
remaining aryl orto positions. Figure 8 depicts how the theoretical masses were calculated
based on the monomer structure.

Figure 8. Aryl resin theoretical mass calculation. (a) Chemical structure and expected substitution
positions. (b) Simplified theoretical mass equation extracted from polypy interpreter.

For this study, theoretical masses were calculated from monomers to hexamers, and
each single mass value was classified into neat, derivative, and adduct products. Table S1
(Supplementary Material) presents the complete set of mass possibilities generated from
the polypy interpreter, whereas in Figure 9 one can observe the entire set of calculated
theoretical masses, plotted as an MS-like spectrum.
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Figure 9. Calculated theoretical masses represented in an MS-like spectrum (plotted using polyps
interpreter).

(II) Raw data reading

MS data from aryl resin were acquired as described in the Methods section, and
afterwards data were evaluated using the polypy interpreter. Spectroscopic raw data
were imported from text files and processed in Python version 3.9 (main packages: json,
math, pandas, matplotlib, numpy, datetime, os, pathlib, pickle, csv, re, matplotlib, seaborn).
The graph range of mass values was adjusted based on the intensity values, where the
maximum M/Z (Da) value was set after not observing significant intensity, as Figure 10
exemplifies.

Figure 10. Aryl resin MS spectra. (a) Spectrum from MS raw data (b) MS spectrum after RMS filtering.

(III) Background signal noise filtering

In this study, the threshold was set to the root mean square error (RMSE) of the raw
data and all values below the defined threshold were excluded from further processing,
which, in our case, meant that the RMSE calculation resulted in 16.26 (a.u.). Figure 10a
depicts the raw data, and in Figure 10b one can observe results from the RMSE filtering
calculation. Also, in Figure 10b, the x-axis was set from 0 to 1250, where peaks were
observed. Although RMSE filtering is an efficient approach to avoid background noise
signals being calculated within the datasets, for this polymer molecule model, regions of low
intensity such as tetramers and pentamers were reduced significantly; therefore, in order
to decide which statistical method might be applied for background signal noise filtering,
ideally one should know beforehand the major polymer chain distribution properties of
the sample.
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(IV) Separation of neat, derivative, and adduct peaks

Neat, derivative, and adduct peaks were distinguished based on the predicted theoret-
ical masses calculated using polypy, as presented in Table S1 (Supplementary Material).
The classification of the peaks from experimental data was also carried out with a polypy
interpreter. Samples were compared and classified into two main classes: (1) repetitive unit
(column: “Repetitive Unit”), and within it (2) neat, derivative, and adduct peaks (column:
“Mer radical”), where “NaX” stands for the number of sodium adducts and “meX” for the
number of hydroxymethyl groups. In Figure 11, one can observe a snapshot of the table’s
head and tail from aryl resins’ experimental MS data after classification using polypy. The
script also tracks compared values from experimental and theoretical data (column “Ms
(Da)—Theor (Da)”), where one can determine if the given classification is reasonable or not.

Figure 11. Aryl resin MS spectra classified regarding neat, derivative, and adduct molecules. The
table was sorted by the Intensity (a.u.) column.

(V) Separation of repetitive unit regions and distribution percentage calculation

After experimental MS data have been classified, one can then evaluate a diverse
set of polymer properties. As mentioned, for this polymer matrix it might be critical to
characterize the oligomer chains within its composition. Oligomer regions were classified
using the previously calculated theoretical dataset; afterward, the averaged intensity was
computed for each of the repetitive unit regions, and a percentage of each region was
compared with the total intensity sum of the computation.

For example, Figure 12 presents oligomer distributions for one of the sample’s sets.

(VI) Polymer property calculations

Polymer properties were calculated by applying the following equations to polypy script:

Mn =
ΣNi Mi

ΣNi

Mw =
ΣNi M2

i
ΣNi Mi

M =
ΣNi Mn+1

ΣNi Mn
i

Mv =

[
ΣM1+a

i Ni

ΣMi Ni

]1/a

where:
Ni = number of molecules;
Mi = weight of the polymer;
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n = 1 gives M = Mw;
n = 2 gives M = Mz;
n = 3 gives M = Mz + 1;
a = Mark–Houwink–Sakurada constant.

Figure 12. Aryl resin experimental MS data after classification by polypy. (a) Spectra represented by
repetitive unit regions. (b) Percentage distribution of each repetitive unit.

As Ni is usually an internal and relative correlation between distribution fractions of
the polymer matrix [41], one can apply the same approach to the script; nevertheless, each
mass peak is now identified with a specific structure, leading to an accurate computation
of Ni × Mi, where the precise contribution of each molecule to the average weight of the
polymer matrix can be retrieved. For the internal estimation, Ni = 10,000 was applied to
the most intense peak. Figure 13 presents the calculated polymer properties for the aryl
resin using polypy script.

Figure 13. Experimental MS oligomer properties (calculated with polypy).
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(VII) Polypy and Mass spectroscopy caveats

The comparison between theoretical datasets and experimental data requires a limit
value to assign each MS peak to a respective theoretical structure. In our script, this
comparison was given by the ionization value term, which mimics the number of protons
that a certain structure could release during the ionization process in the MS experiment.
Figure 14 presents the influence of ionization value for the experimental MS data.

Figure 14. Oligomer distribution of aryl resin. (a) Distributions are directly affected by the ionization
value limit (IV). (b) Percentage calculation of oligomer distribution.

In Figure 14, one can observe a clear distinction between no ionization limit and
ionization values above 3. Since the repetitive units have multiple ionization possibilities
(see Figure 5), it is reasonable to set the ionization term with values above 10. For example,
the complete alkylated aryl monomer would have 6 possibilities of ionization, and the
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complete alkylated aryl dimer structure would present 10 possibilities of ionization (in
these examples, “complete” means alkylation only at orto positions of the aromatic rings).

Revisiting the introduction, one has to pay attention to the nature of the MS ionization
mechanism. How the ionization energy is transferred to the chemical system is not yet
completely elucidated. This results in nonlinear energy transfer to the polymer matrix,
and eventually, one range of molecules can become more ionized than others, resulting in
nonlinear intensity. This conflicts with the internal estimation method, where Ni is defined
as the number of molecules for each characterized peak, retrieved using peak intensity
as an internal linear comparison. To emphasize good characterization practice, one could
obtain a series of MS spectra from the same sample, averaging the intensities, through
which the nonlinear ionization transfer energy might be mitigated, and the characterization
protocol would be more reliable.

4. Conclusions

Polypy is a framework to characterize major polymer properties through mass spec-
troscopic data. The interpreter can be applied to any polymer system characterized by MS.

Nonetheless, differing from other scripts, using polypy, one can calculate the theoreti-
cal dataset of values for the target polymer system and use it as a reference dataset. It is
worth noting that additional information can be retrieved from the script interpreter, in
which, in our case study, the percentage of the oligomer distribution is presented.

In order to make it similar to GPC method, polymer properties such as Mn = 584.42,
Mw = 649.29, Mz = 705.63, Mv = 754.6, and Pd = 1.11 were calculated using polypy, and
the results were the expected ones for this polymer matrix and are consistent with GPC
data. Although GPC and MS characterization methods cannot be directly compared, in
this study we assumed GPC as an external reference for our script as a proof-of-concept
calculation. The literature presents several options like Polypy, and each script tackles MS
data either regarding data volume complexity or a specific need from a certain application,
like metabolomics, polymer chemistry, and others. Custom script and open source examples
such as xMSanalyzer, Mass-Suite, TrendProbe, patRoon, Peakonly, MZmine 2, and OpenMS,
and including Polypy, provide the freedom to calculate and interpret any other physical–
chemical properties, and additionally, one can apply specific statistics that may be needed
for characterization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16131771/s1, Figure S1: Dimer, derivates and sodium adduct
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values isolated with intensity.
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