KIT | KIT-Bibliothek | Impressum | Datenschutz

New feature based on influence lines for anomaly detection in bridge monitoring

Döring, Andreas ORCID iD icon 1; Vogelbacher, Markus ORCID iD icon 1; Schneider, Oliver; Müller, Jacob; Hinz, Stefan 2; Matthes, Jörg 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Bridge monitoring using displacement, strain, acceleration or rotation measure-ments during normal operation can be a good supplement to conventional manual bridge inspections. In order to detect damage from the measured signal, features must be extracted from the signal that are primarily damage-sensitive. In recent years, features based on the influ-ence lines have been increasingly investigated. The influence line represents the simplified signal that can be measured with a sensor at a fixed position when a single vehicle crosses the bridge. In this paper, we present the new feature normalised integrated influence lines (niil). We show that niil is sensitive to damage, independent of vehicle geometry, velocity, sampling rate, devi-ation from ideal lane and robust against noise using the analytical bending beam and strain data from a real bridge that has been successively damaged. niil can be calculated based on the curvature, rotation or displacement influence lines.


Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Vortrag
Publikationsdatum 25.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000172249
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Veranstaltung 12th Bridge Maintenance, Safety, Management, Digitalization and Sustainability (IABMAS 2024), Kopenhagen, Dänemark, 24.06.2024 – 28.06.2024
Projektinformation ZEBBRA (BMBF, 13N14709)
Schlagwörter Bridge Health Monitoring, BHM, Features for BHM, Structural Health Monitoring, SHM, Features for SHM, Feature Extraction, Feature Engineering, Anomaly Detection
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page