
From method development to software
integration: A comprehensive approach
to geostatistical variogram uncertainty

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.)

von der KIT-Fakultät für
Bauingenieur-, Geo- und Umweltwissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Mirko Mälicke

aus Karlsruhe

Tag der mündlichen Prüfung: 29.09.2023

Referenten:
Prof. Dr.-Ing. Erwin Zehe

Prof. Dr.-Ing. Uwe Haberlandt
Prof. Dr. Achim Streit

Karlsruhe (2024)



This document is licensed under a Creative Commons Attribution 4.0 International License  
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en



0Abstract
This dissertation focuses on the analysis of spatial variability and uncertainty

in geostatistics. The importance of well-estimated variograms for geostatistical

analyses in highlighted and the need for tools to handle uncertainty and variability

in geostatistics effectively is emphasized. This work combines method development

in geostatistics with the development of new research software and dedicates a full

chapter to the synthesis of both. It highlights how research depends on suitable tools

on the one hand, but also how applicable research can frame software development,

to be more effective and pointed on the other hand.

We present a new measure for capturing spatial dissimilarity and analyze the

temporal evolution and emergence of soil moisture patterns using the Mean shift

clustering algorithm. An included case-study uses a novel measure to capture the

spatial dissimilarity of soil moisture and its change over time, showing that even a

few soil moisture time series contain a considerable amount of information about

dynamic changes in soil moisture. Spatial information contained in soil moisture

observations is highly redundant, which suggests that soil moisture observations

can be compressed without significant information loss.

A geostatistical software library was developed simultaneously with the pre-

ceding case study and over course of the following couple of years. Chapter A

presents this open-source Python package for variogram estimation, SciKit-GStat.

The package provides a flexible and interactive approach to variogram estimation

that fits well into established frameworks for scientific computing. SciKit-GStat

ships with a large number of predefined procedures, algorithms, and models, such

as variogram estimators, theoretical spatial models, and binning algorithms.

With SciKit-GStat available, building on findings described in chapter 2, sophisti-

cated, interactive tools for building an extension to the library were developed and

are introduced in chapter 3. The approach replaces the empirical variogram with

its uncertainty bound to acknowledge uncertainties characterizing the underlying

geostatistical datasets and typical methodological approaches. This allows for a

probabilistic description of the variogram and its parameters, enabling multiple

interpretations of a sample and a multi-model context for geostatistical applications.

The study shows how insights on uncertainty can be used to reject variogram mod-
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els, thus constraining the space of formally equally probable models and addressing

the issue of parameter equifinality.

Finally, B combines all three preceding chapters into a unified scientific workflow

definition. A framework for combining reusable research software into replicable

scientific analysis workflows, with a focus on implementing input and output inter-

faces for research software to increase transparency is discussed. The framework

aims to make a clear distinction between a reusable workflow to reproduce existing

results and a replicable analysis to apply previously obtained research findings to

new data in a different context. A robust analysis using force-directed graphs to

examine and visualize the covariance structure of representative variograms from

the Attert catchment is presented. Here, the findings from 2 are replicated in a

more systematic way using the software from chapter A and extend the analysis of

the underlying covariance described by the associated empirical variograms, using

force-directed for visualization in an original way. The chapter concludes with a

discussion of promising approaches to interpreting the force-directed graph and its

relationship to the covariance of the related variogram.
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0Zusammenfassung

Diese Dissertation befasst sich mit der Analyse von räumlicher Variabilität und

Unsicherheiten in der Geostatistik. Gut geschätzte Variogramme sind Vorausset-

zung für geostatistische Analysen und mit dieser Arbeit werden weitere Werkzeuge

zum effektiven Umgang mit Unsicherheiten und Variabilität in der Geostatistik

vorgestellt. Diese Arbeit verbindet die Methodenentwicklung in der Geostatistik

mit der Entwicklung neuer Forschungssoftware und widmet ein ganzes Kapitel

der Synthese beider Bereiche. Sie zeigt auf, wie die Forschung einerseits von geeig-

neten Werkzeugen abhängt, andererseits aber auch, wie angewandte Forschung

einen kontextualisierten Rahmen für die Softwareentwicklung bietet. Nur so ist ein

sinnvoller und effektiver Einsatz von Forschungssoftware möglich.

Durch die räumliche Beschreibung statistischer Unähnlichkeit können wir mit-

hilfe des Mean-Shift-Clustering Algorithmus die zeitliche Entwicklung von Bo-

denfeuchtigkeitsmustern analysieren. In einer Fallstudie im Attert Einzugsgebiet

in Luxembourg konnten wir mithilfe dieser Methodik zeigen, dass Zeitreihen der

Bodenfeuchte zeitlich redundant sind und bereits kurze Abschnitte einen beträcht-

lichen Informationsgehalt über dynamische Veränderungen der Bodenfeuchte ent-

halten. Dies deutet darauf hin, dass Bodenfeutebeobachtungen ohne erheblichen

Informationsverlust komrimiert werden können

Mit der oben genannten Studie starteten die ersten Arbeiten für eine geosta-

tistische Softwarebibliothek, welche sich über viele Jahre erstrecken sollten. Im

Kapitel A wird dieses vorgestellt: SciKit-GStat, ein open-source Paket für die Va-

riogramschätzung, geschrieben in Python. Das Paket bietet einen flexiblen und

interaktiven Ansatz zur Variogrammschätzung, der sich gut in etablierte Workflows

für wissenschaftliches Rechnen einfügt. SciKit-GStat wird mit einer großen Anzahl

von vordefinierten Funktionen, Algorithmen und Modellen ausgeliefert, wie z.B.

Variogrammschätzer, theoretische räumliche Modelle und Binning-Algorithmen.

Mit der Veröffentlichung von SciKit-GStat wurden weitere interaktive Werk-

zeuge zur Erweiterung der Bibliothek entwickelt, die direkt auf Erkenntnisse aus

Kapitel 2 aufbauen. Dies wird im Detail in Kapitel 3 beschrieben. Der Ansatz

ersetzt das empirische Variogramm mit seinem Unsicherheitsband, um die Unsi-

cherheiten zu berücksichtigen, die aus den zugrunde liegenden geostatistischen

Datensätze methodischen Ansätzen stammen. Dies ermöglicht eine probabilistische
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Beschreibung des Variogramms und seiner Parameter, die mehrere Interpretationen

einer Stichprobe in einen Multimodell-Kontext ermöglicht. Die Studie zeigt, wie

Erkenntnisse über die so beschriebene Unsicherheit genutzt werden können, um

Variogramm-Modelle abzulehnen und so den Raum formal gleich wahrscheinlicher

Modelle einzuschränken und Erkenntnisse zur Parameteräquifinalität der Modelle

zu gewinnen.

Schließlich schlägt Kapitel B als Synthese der vorangegangenen Kapitel eine

exemplarische Definition wissenschaftlicher Reproduzierbarkeit vor. Ziel ist eine

verbesserte Transparenz in der Anwendung wissenschafter Analyse-Workflows,

die durch die Implementierung einheitlicher Eingabe- und Ausgabeschnittstellen

Forschungssoftware kontextualisiert, reproduzierbar und kombinierbar macht. Das

vorgeschlagene Framework trifft eine klare Unterscheidung zwischen einer repro-

duzierbaren Prozedur, und replizierbaren wissenschaftlichen Methoden, deren Ziel

die Anwendung bereits gewonnener Erkenntnisse in einen neuen Kontext hat. Zur

Veranschaulichung wird eine robuste Analyse vorgestellt, bei der die Kovarianz-

struktur von wiederkehrenden Bodenfeuchtemustern aus dem Einzugsgebiet von

Attert mit Hilfe von kräftegeleiteten Graphen untersucht und visualisiert wird. Hier

werden die Ergebnisse aus dem Kapitel 2 mit Hilfe von SciKit-GStat systematisch

repliziert. Die Analyse der Kovarinaz durch repräsentative Variogramme, wird

durch die Visualisierung mittels kräftegeleiteten Graphen erweitert. Das Kapitel

schließt mit einer Diskussion über vielversprechende Ansätze zur Interpretation

des kraftgerichteten Graphen und seiner Beziehung zur Kovarianz des zugehörigen

Variogramms.

vi



0Acknowledgments

I want to thank my supervisor Erwin Zehe, who poured countless hours of sweat

and toil into guiding me through this scientific jungle. He kept my spirits up with

enlightening conversations and broke up the monotony with welcome distractions.

I would also like to express my heartfelt thanks to Alberto Guadagnini for sharing

his insights on geostatistical uncertainty with me.

My colleagues at the Hydrology working group at KIT deserve a shout-out, too.

You guys made the journey more enjoyable with your camaraderie and support. I

couldn’t have made it this far without you.

I’d like to give a special shout-out to the co-authors of my publications - Erwin

Zehe, Alberto Guadagnini, Sibylle Hassler, Theresa Blume, and MarkusWeiler. Your

insights and feedback were invaluable, and I’m proud to have worked alongside

such talented individuals.

Last but not least, I’m indebted to my family for their unwavering support. My wife

Sofie, in particular, deserves a medal for putting up with my endless blathering

about research topics that probably put her to sleep. And my two boys, Jakob

and Linus, have been the ultimate cheerleaders, even if they occasionally had to

sacrifice their daddy time to science. Thank you all from the bottom of my heart.

vii





0Contents
Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Introduction to geostatistics . . . . . . . . . . . . . . . . . . . . . 1

1.2 Geostatistical research software . . . . . . . . . . . . . . . . . . . 5

1.3 Uncertainty analysis as common ground . . . . . . . . . . . . . . 7

I Understanding dynamic pattern 11

2 Dynamic soil moisture patterns 13
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Study area and soil moisture data set . . . . . . . . . . . . 19

2.3.2 Dispersion of soil moisture observations as function of their

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Clustering of dispersion functions . . . . . . . . . . . . . 22

2.3.4 Cluster compression based on the cluster centroids . . . . 23

2.3.5 Uncertainty propagation and compression quality . . . . . 24

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Dispersion functions over time . . . . . . . . . . . . . . . 27

2.4.2 Dispersion time series as a function of depth . . . . . . . . 29

2.4.3 Recurring spatial dispersion over the years . . . . . . . . . 31

2.4.4 Redundant spatial dispersion functions . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Spatial similarity persist in time . . . . . . . . . . . . . . . 35

2.5.2 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . 37

ix



2.5.3 Different dominant processes lead to different patterns . . 38

2.5.4 Mean shift as a diagnostic tool . . . . . . . . . . . . . . . 40

2.5.5 Limitations of the proposed method . . . . . . . . . . . . 41

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.1 Mean shift algorithm . . . . . . . . . . . . . . . . . . . . . 43

2.7.2 Auxiliary quantitative results . . . . . . . . . . . . . . . . 43

2.8 Detailed result plots of 30 cm in 2014 and 2015 . . . . . . . . . . . 47

3 Uncertain observations in geostatistics 49
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Software implementation . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Empirical variogram estimation . . . . . . . . . . . . . . . 61

3.4.3 Uncertainty bounds of the empirical variogram . . . . . . 61

3.4.4 Theoretical model performance metrics . . . . . . . . . . 65

3.4.5 Variogram model assessment . . . . . . . . . . . . . . . . 69

3.4.6 Kriging uncertainty bounds . . . . . . . . . . . . . . . . . 70

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Variograms and related uncertainty . . . . . . . . . . . . . 72

3.5.2 Theoretical variogram models and associated performance

metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3 Kriging uncertainty bounds . . . . . . . . . . . . . . . . . 76

3.5.4 Identifiability of variogram model parameters for uncertain

variograms . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.1 Interactive geostatistical analysis . . . . . . . . . . . . . . 82

3.6.2 Uncertain variogram estimation and model evaluation . . 83

3.6.3 Model fitting and model parameters . . . . . . . . . . . . 85

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

.1 Structural risk minimization . . . . . . . . . . . . . . . . . . . . . 88

II Scientific software development 91

A SciKit-GStat - scientific geostatistical software 93
A.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

x



A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 SciKit-GStat general overview . . . . . . . . . . . . . . . . . . . . 101

A.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.3.2 Package description . . . . . . . . . . . . . . . . . . . . . 103

A.4 Main geostatistical components . . . . . . . . . . . . . . . . . . . 109

A.4.1 Variogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.4.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.4.3 Directional variogram . . . . . . . . . . . . . . . . . . . . 114

A.4.4 Space-time variogram . . . . . . . . . . . . . . . . . . . . 116

A.5 Software implementation . . . . . . . . . . . . . . . . . . . . . . . 118

A.5.1 Main classes . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.5.2 SciKit-GStat and gstools . . . . . . . . . . . . . . . . . . 140

A.6 Support, Application and Contribution . . . . . . . . . . . . . . . 141

A.6.1 User support . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.6.3 Integration into other libraries . . . . . . . . . . . . . . . 143

A.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.9.1 Meuse Data . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.9.2 Pancake Data . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.9.3 Maximum Likelihood fitting . . . . . . . . . . . . . . . . . 148

B Geostat API - interoperable geostatistics on demand 151
B.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.2 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.3 Methods and Implementation . . . . . . . . . . . . . . . . . . . . 156

B.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 156

B.3.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . 162

B.4 Results for reproducing a published workflow . . . . . . . . . . . 167

B.4.1 Reproducible workflows . . . . . . . . . . . . . . . . . . . 167

B.4.2 Visualization beyond variograms . . . . . . . . . . . . . . 168

B.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.5.1 Tool Framework . . . . . . . . . . . . . . . . . . . . . . . 175

B.5.2 Force-directed graphs . . . . . . . . . . . . . . . . . . . . 178

B.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C Conclusions & Outlook 181

xi



Bibliography 183

List of Publications 201

xii



1 Introduction

"Good, reproducible science needs good, generalizable research software." This

is one of the prime conclusions of this dissertation. Moreover, it has become

the main credo of my work underpinning all following chapters. Generalizable

software means software that can suit use cases beyond a specific implementation

or configuration as used within the scope of a single research study. At first sight,

it might seem to be hampering research, as time and/or resources are assigned to

software development that has no immediate impact on the results of the respective

research. During the course of this work, I will argue how this is not only short-

minded, but actually, the opposite is true. A thorough description of research

software and the context of its application lays the foundation to present an example

of research software from the field of geostatistics: The variogram estimation

toolbox SciKit-GStat (see chapter A).

1.1 Introduction to geostatistics

At its core, geostatistics is based on the basic assumption that for a given random

field, proximity in space and proximity in quantity are correlated. More precisely,

the closer two observations are in space, the more similar they are expected to

be. The objective of geostatistics is to detect and mathematically formalize this

correlation as a model function and either analyze its parameters or estimate (or

simulate) the quantity at unobserved locations.

The physical environment is often represented as spatially distributed in geo-

scientific models, which are usually only defined for a definable spatial context. A

prime example is hydrological catchments, which are usually represented by their

own parameters. Hence, universally applicable methods to analyze, harmonize,

and re-scale observation data with respect to their spatial variability are needed.

Geostatistical methods are well-established, widely used, and have proven to suit

these needs for decades. Taking the interpolation of a variable as an example,

the geostatistical approach is first fitting a mathematical model to the data, that

describes spatial covariance. Secondly, weighted estimates at unobserved locations

are based on this covariance to generate spatial coherent estimates, that respect
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Chapter 1 Introduction

variability. In general, this approach is superior to purely mathematical interpola-

tion methods, which impose a defined model, like spline interpolations. A spline

interpolation will interpolate according to the polynomial function used, even if

the represented model is not supported by the empirical data. In contrast, a geosta-

tistical interpolation will fall back to mean values as the best guess for interpolation

in the absence of a well-supported spatial model.

A core concept for geostatistical applications is therefore spatial variability.

Statistical variability generally refers to the extent to which observations of the same

population differ from each other. For the univariate case, it is usually measured as

standard deviation or variance. For geostatistics in particular, the variability of a

quantity across a spatial domain is considered. Here, these univariate measures are

not suitable, as they i.e. assume independent observations. For natural phenomena,

this is rarely the case as close observations are usually correlated to each other.

As these observation are samples of the same population, this correlation is more

precisely a spatial auto-correlation. Prime examples are meteorological parameters

like air temperature, soil properties, hydraulic conductivity, or soil moisture. In

these cases, the distance at which observations are not independent, but correlate,

is often the focus of study as it can be related to the scale at which different natural

processes are present. We refer to this distance as correlation length.

The aforementioned variations in a dataset are here interpreted as an inherent

feature of observations. A natural process will manifest in variable quantities, often

at different scales. On the contrary, the observation of this process can uncertain.

While spatial variations and uncertain observations both result in increased vari-

ability of the sample, the distinction between both concepts is important. The

variability of the process is usually part of the target variable. Geostatistics seeks

to capture and model this spatial variability, while it is usually the goal to avoid

uncertainties. In general terms, uncertainties can be described as variability due to

a lack of complete knowledge about the real nature of a process. This can be related

back to shortcomings or simplifications of a model concept or its structure itself,

a lack of or imperfect data, or random variation. This work primarily focuses on

uncertainties that are related back to the observation. An example is the precision

and accuracy of the measurement, or the lack of knowledge of where, when, and

how often to measure a quantity. These kinds of uncertainties are summarized as

observation uncertainty here.

The spatial auto-correlation of a geostatistical dataset is described by a semi-
variogram which is the foundation of almost any geostatistical application. The

semi-variogram, also simply called variogram, is a spatial model that relates a

measure for similarity (semi-variance) to the separating distance between two

2



Introduction to geostatistics Section 1.1
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Figure 1.1: Conceptual illustration of a spherical variogram model (green line) along

with its three main parameters: nugget, sill and effective range. Separating distance and

semi-variance are normalized.

observations (fig. 1.1). Empirical variograms are calculated for a sample and a

model is fitted to the empirical variogram. Variogram models are positive definite

and monotonously increasing up to a specific distance lag, which the model asymp-

totically approaches. The distance is called effective range and it corresponds to the

correlation length of the model. The semi-variance of this length is called the sill.
A variogram model may have a y-axis intersect, which is called nugget. In case of

finite variance, nugget and sill (should) sum up to the sample variance together.

With the help of the variogram it is possible to assign an expected semi-variance

value to each separating distance, even if this distance is not included in the sam-

ple. Thus, the variogram model describes the expected covariance structure of the

sample and can be used for simulating or interpolating while respecting the spatial

auto-correlation. At the same time, the ratio between nugget and sill can be used

to relate the overall variability of the sample to the share of variability, that is not

captured by the model. In the shown conceptual example this is interpreted that

20% of the overall variability cannot be attributed to spatial auto-correlation.

This implies that a carefully estimated and in a geostatistical context meaningful

3



Chapter 1 Introduction

variogram is one of, if not the most crucial step of any geostatistical analysis

or application workflow. In case the variogram does not expose a functional

relationship between separating distance and observations of a dataset, that can

explain most of the sample’s variance, the application of any geostatistical method

is not useful at all. With poorly fitted or unsupported variogram functions in

use, any geostatistical interpolation will degenerate from a powerful tool to a

resource-intensive visual gap-filler, that relies on spatial correlations, which are

not supported by the sample. The variogram, as a statistical tool, is the main focus

of this work.

The main consideration of variograms is to interpolate or simulate a quantity

at unknown locations. The interpolation is referred to as Kriging, named after the

inventor David Krige (Krige 1951). For kriging, the next (closest) observations are

used to estimate a quantity at an unobserved location. The estimation is then the

weighted sum and the weights are derived from a linear equation system that is built

from the modeled semi-variance values for the corresponding separating distances.

Hence, solely the theoretical model is used to impose the spatial correlation into

the interpolation result, not the sample itself. Consequently, poorly supported or

fitted models might still result in a spatial covariance present in the interpolation

result. Kriging is referred to as BLUE - it is the best linear unbiased estimator. This

is achieved by minimizing the prediction error and also requiring an expected value

of zero for prediction errors. By utilizing the variogram, the spatial correlation is

respected, and in case the neighboring observations are all outside the effective

range, the kriging equation system will use the same weight for all neighbors,

despite their actual distance. This is one of the key features of kriging, as this

results in interpolated mean values in case the variogram does not exhibit any

spatial structure (at that distance).

Beyond this interpolation, we use the variogram as a means to describe our

dataset. By relaxing the concept of variograms to generic dispersion functions, we

are able to detect recurrent dispersion function parameters. This is interpreted as a

manifestation of the spatial correlation structure within the dataset. In chapter 2, we

exemplify the use of dispersion functions beyond interpolation as we cluster time

series data based on structural similarity. A thorough understanding of recurrent

structures in the investigated system along with easily applicable software is the

key to replicating the methodology to other datasets.
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Geostatistical research software Section 1.2

Figure 1.2: General steps necessary for ensuring technical reproducibility of research

software. Figure taken from Essawy et al. (2020) (fig. 2)

1.2 Geostatistical research software

Scientific replicability and technical replicability are not the same. Synergies be-

tween both will be illustrated in this work, but scientific replicability can also

limit the strictly technical aspects. Thus, concepts of replicability known from

’classic’ software engineering need to be adapted before being applied to research

software engineering. Unit testing is important to assure the technical correctness

of different parts of software libraries, e.g. the variogram function value for any

given variogram parameter set should always be the same, despite the program-

ming language or environment used. A scientific replication of a method to i.e. a

new dataset will imply, that variogram values are not exactly the same, but the

5



Chapter 1 Introduction

interpretation is. In chapter 2, we cluster a spatially distributed time series of soil

moisture observations based on the spatial correlation structures emerging over

time. Any cluster may be linked to a process altering the soil moisture, like evapo-

ration, and characterized by its length and extent. Replicating the method to a new

dataset might very well yield different lengths and extents, but indicate the same

contextualized interpretation, pointing at the same process. Acknowledging this

kind of scientific replicability cannot be covered by tests assuring (only) technical

replicability.

Software development is becoming increasingly important in geoscience. Tools

can be shared and used throughout the internet and an increasing number of

scientific publications are accompanied by, or even about software. There are

recognized journals in the environmental science domain available, that are dedi-

cated to software and model development, namely Geoscientific model development
(GMD) published by Copernicus or Environmental Modelling & Software published
by Elsevier, to name just two.

Most (environmental) scientists do not have a formal software engineering

background (Simm et al. 2018), hence tools, frameworks, concepts, and terminology

develop in parallel and the field of research software engineering seems to be less

structured than the ’classic’ software engineering and computer science, which

usually employ a more rigorous terminology and taxonomy. According to ISO/IEC

24765:2017 software is described as any program that is intended to be run on a

computer system, including the program code, documentation, and data needed to

run properly. This definition is too broad for research software engineering as it

includes either all or hardly any program codewritten by (geo-)scientists, depending

on how rigorously one demands comprehensive technical documentation and data

distribution along with the software. From a software architecture point of view,

this kind of software can be categorized into application software and end-user

development, as further specified in ISO/IEC 2382-1:1993. This work will refer to

application software if termed solely ’software’, which is the collection of program

code, documentation, and tests to run tasks reliably and reproducibly. This kind

of software is usually realized in higher programming languages, in geoscience

traditionally languages like FORTRAN, C, C++, Java or more recently also Python

are used. These developments usually encapsulate models and data processing

routines, are continuously developed, and form the basis for more contextualized

and specific applications. In software engineering, this would be referred to as

end-user developments. End-user development is usually realized through scripts

written in so-called scripting languages, like Python, R, or Matlab, to name a few

popular ones. These scripts are usually monolithic, system-dependent, and solve
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specific problems, often coined by the scientists themselves (Simm et al. 2018). In

the context of this work, this kind of software is referred to as scripts.

One of the main objectives to foster software engineering in geoscience is to

enhance the replicability of current research (Baker 2016). Essawy et al. (2020)

suggests a new taxonomy, that defines the often interchangeably used terms re-

peatable, runnable, reproducible, and replicable. I reference especially figure 1.2

for an overview, which was originally published in Essawy et al. (2020). In order

to be repeatable, the researcher needs to define the program code, dependencies,

and data that are necessary to obtain consistent results. Runability is achieved by

containerizing the repeatable program, which will only become reproducible if

another researcher can run the runnable version with the same data. In contrast,

replicability covers the desired stage in which the containerized software can be

fed with new data, in order to replicate the methodology in a new context. Hence,

documentation and testing are core features of scientific software, that can help to

move an end-user developed script on the replicability spectrum toward application

software.

There are several approaches to increasing the replicability of scientific software.

Simm et al. (2018) outlines some opportunities for software engineering, particularly

in environmental modeling in this context. Namely, the demand for frameworks that

abstract and formalize the underlying models. An exhaustive review of modeling

frameworks is given in Chen et al. (2020), especially table 2 is helpful. Another

approach, that is complementary to modeling frameworks is a higher degree of

modularization and abstraction (Simm et al. 2018). Monolithic models need to be

split into more generalizable model compartments, that at least separate the core

algorithm from pre- and post-processing. This enables developers to combine and

compare different compartments and domain-specific pre- and post-processing

can be implemented in more domain-specific languages (ie. R), which in turn lets

scientists work more effectively. Another approach is to enhance and formalize

environmental models by using model application programming interfaces (APIs),

which should roughly satisfy the same requirements (Y.-D. Choi et al. 2021).

1.3 Uncertainty analysis as common ground
It is quite evident, that this dissertation involves two main focus areas: geostatis-

tics and research software engineering. From an abstract point of view, the link

between both worlds is uncertainty. Geostatistics is fundamentally linked to spatial

uncertainty, as the variogram is a spatially aggregated model used to statistically

7
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obtain an estimate of a quantity. For the research software part, the overall aim is

to improve reproducibility. The main means to achieve this are thorough and strict

testing, to increase the technical correctness of applied software. Documentation

aids researchers in understanding applied methods and comprehensive interfaces

foster methodological standardization. Chapter A describes the development of

the modular, comprehensive software library for variogram analysis, SciKit-GStat.
Chapter 3 describes how this software library was extended to include sophisticated

tools for uncertainty analysis in geostatistics.

With a good understanding of research software in the context of this work, I will

present two studies, both exemplify the synergy between SciKit-GStat leveraging

research and research extending the scope of the software. The first study (see

chapter 2) investigates how recurrent patterns in multi-variate datasets emerge

over time and exploits statistical dispersion to segment the data. SciKit-GStat could

generalize the formal description of a semi-variogram model to the broader concept

of statistical dispersion functions.

The second study presents a new approach representing empirical variograms as

uncertainty bounds allowing for consistent propagation of observation uncertain-

ties to interpolations and simulations (see chapter 3). This example is particularly

interesting as it involves a high demand for various geostatistical models and al-

gorithms, which were readily available through a number of research software

solutions, including SciKit-GStat. At the same time, the study implemented new

approaches for uncertainty propagation compatible with existing software. Be-

ing generalizable also includes the definition of generic interfaces for algorithms,

which allowed for new usages beyond the original scope of the software. Both

aforementioned studies are an example of the synergy between good science and

good software, which not only leverages both but allowed the development of

new methods to investigate a unique, multi-dimensional dataset from the Attert

catchment in Luxembourg.

Chapter B describes the development of Geostat API, which makes SciKit-GStat,

the uncertainty extension SKGstat-Uncertainty (chapter 3) and uncertainty-based

dispersion function clustering (chapter 2)available, as reproducible and interoper-

able as possible. It is demonstrated how well-designed software fosters relevant

scientific method development in the example of clustering spatial soil moisture

patterns in the context of observation uncertainty. The modular nature of the

exemplified reproducible geostatistical workflows allowed for rapid prototyping of

an original method to visualize the covariance structure of a geostatistical sample

beyond the scope of the original research as presented in chapter 2. Force-directed

network graphs, as a method from other areas of research, are used as a means to
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investigate the covariance structure of a sample beyond the aggregated information

presented by an empirical variogram and associated models and their ensuing

parameters.
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Chapter 2 Dynamic soil moisture patterns

Soil Moisture - variable in space, redundant in time

The following chapter 2 is already published as a research article in Hydrology and
Earth System Science as:

Mälicke, M., Hassler, S. K., Blume, T., Weiler, M., and Zehe, E.: Soil moisture:
variable in space but redundant in time, Hydrol. Earth Syst. Sci., 24, 2633–2653,
https://doi.org/10.5194/hess-24-2633-2020, 2020.

Author contributions:

The methodology was developed by me, supervised by EZ and discussed with

SKH. The data was provided by TB and MW. All code was developed by me. The

manuscript was written by myself, with contributions by EZ in the introduction and

discussion. SKH supplied the field and data descriptions. The structure, narrative

and language of the manuscript were revised and significantly improved by TB.

Data and Code availability:

Major parts of the analysis are based on the scipy (Virtanen et al. 2020), scikit-

learn (Pedregosa et al. 2011a) and scikit-gstat package (Mirko Mälicke, Möller, et al.

2021a). All plots were generated using the matplotlib package (Hunter 2007b). The

full analysis Python scripts are published onGithub (https://github.com/mmaelicke/soil-

moisture-dynamics-companion-code) (Mirko Mälicke 2019).

The data is available upon request.
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Abstract Section 2.2

2.1 Abstract

Soil moisture at the catchment scale exhibits a huge spatial variability. This suggests

that even a large amount of observation points would not be able to capture soil

moisture variability.

We present a measure to capture the spatial dissimilarity and its change over

time. Statistical dispersion among observation points is related to their distance to

describe spatial patterns. We analyzed the temporal evolution and emergence of

these patterns and use the Mean shift clustering algorithm to identify and analyze

clusters. We found that soil moisture observations from the 19.4 km
2
Colpach

catchment in Luxembourg cluster in two fundamentally different states. On the

one hand, we found rainfall-driven data clusters, usually characterized by strong

relationships between dispersion and distance. Their spatial extent roughly matches

the average hillslope length in the study area of about 500 m. On the other hand,

we found clusters covering the vegetation period. In drying and then dry soil

conditions there is no particular spatial dependence in soil moisture patterns and

the values are highly similar beyond hillslope scale.

By combining uncertainty propagation with information theory, we were able to

calculate the information content of spatial similarity with respect to measurement

uncertainty (when are patterns different outside of uncertainty margins?). We were

able to prove that the spatial information contained in soil moisture observations

is highly redundant (differences in spatial patterns over time are within the error

margins). Thus, they can be compressed (all cluster members can be substituted by

one representative member) to only a fragment of the original data volume without

significant information loss.

Our most interesting finding is that even a few soil moisture time series bear

a considerable amount of information about dynamic changes of soil moisture.

We argue that distributed soil moisture sampling reflects an organized catchment

state, where soil moisture variability is not random. Thus, only a small amount of

observation points is necessary to capture soil moisture dynamics.

2.2 Introduction

Although soil water is by far the smallest fresh water stock on earth, it plays a key

role in the functioning of terrestrial ecosystems. Soil moisture controls (preferential)

infiltration and runoff generation and is a limiting factor for vegetation growth.

Plant-available soil water affects the Bowen ratio i.e. the partitioning of net radiation

energy in latent and sensible heat, and last but not least it is an important control
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for soil respiration and related trace gas emissions. Technologies and experimental

strategies to observe soil water dynamics across scales have been at the core of the

hydrological research agenda for more than 20 years (Topp, Davis, et al. 1982; Topp,

Zebchuk, et al. 1984). Since these early studies published by Topp, spatially and

temporally distributed Time Domain Reflectometry (TDR) and Frequency Domain

Reflectometry (FDR) measurements have been widely used to characterize soil

moisture dynamics at the transect (eg. T. Blume et al. 2009) , hillslope (eg. L. Brocca,

Morbidelli, et al. 2007; Starr et al. 2002) and catchment scale (eg. Bronstert et al. 2012;

Andrew W. Western, Zhou, et al. 2004). A common conclusion for the catchment

scale is that soil moisture exhibits pronounced spatial variability and distributed

point sampling often don’t yield representative data for the catchment (see eg. L.

Brocca, Tullo, et al. (2012) and E. Zehe, Graeff, et al. (2010) or numerous studies

given in 2.2 of Vereecken et al., 2008).

Although large spatial variability seems to be a generic feature of soil moisture,

there is also evidence that ranks of distributed soil moisture observations are largely

stable in time as observed at the plot (Rolston et al. 1991; E. Zehe, Graeff, et al.

2010), hillslope (T. Blume et al. 2009; Brocca et al. 2009; L. Brocca, Morbidelli, et al.

2007), and even catchment scale (Rodger B. Grayson et al. 1997; Martínez-Fernández

and Ceballos 2003). This rank stability, which is also often referred to as temporal

stability (Vanderlinden et al. 2012), can i.e. be used to improve sensor networks (eg.

Heathman et al. 2009) or select the most representative observation site in terms of

soil moisture dynamics (eg. A. J. Teuling et al. 2006). In both cases rank stability

assumes some kind of organization in the catchment, otherwise this representativity

would not be observed.

Soil moisture dynamics have been subject to numerous review works (eg. Daly

and Porporato 2005; Vereecken et al. 2008). More specifically, the temporal stability

of soil moisture was reviewed by Vanderlinden et al. (2012). The authors analyzed

a large number of studies with respect to the controls on time stability of soil water

content (TS SWC), but yet "the basic question about TS SWC and its controls remain

unanswered. Moreover, the evidence found in literature with respect to TS SWC

controls remains contradictory" (Vanderlinden et al. 2012, p.2 l.2ff). We want to

contribute by proposing a method that helps to understand how and when spatial

soil moisture patterns are persistent.

Soil moisture responds to two main forcing regimes, namely rainfall driven wet-

ting or radiation driven drying. The related controlling factors and processes differ

strongly and operate at different spatial and temporal scales and the soil moisture

pattern reflects thus the multitude of these influences (Bárdossy and Lehmann 1998).

Hence, we hypothesise that periods in which different controlling factors were

dominant are reflected in fundamentally different soil moisture patterns. This can
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manifest itself in changes in the spatial covariance structure (Lark 2012; Schume

et al. 2003), either in form of changing nugget to sill ratios (spatially explained

variance) (E. Zehe, Graeff, et al. 2010) or state dependent variogram ranges (spatial

extent of correlation) (Andrew W. Western, Zhou, et al. 2004). In a homogeneous,

flat and non-vegetated landscape the soil moisture pattern shortly after a rainfall

event would be the imprint of the precipitation pattern and provide predictive

information about its spatial covariance. In contrast, in a heterogeneous landscape

driven by spatially uniform block rain events, the spatial pattern of soil moisture

would be a largely stable imprint of different landscape properties controlling

through-fall, infiltration as well as vertical and lateral soil water redistribution.

Without further forcing, the spatial pattern will gradually dissipate due to soil water

potential depletion and by lateral soil water flows. We therefore hypothesize that

differences in soil moisture (across space) are higher shortly after a rainfall event

and are dissipated afterwards.

Landscape heterogeneity is thus a perquisite for temporarily persistent spatial

patterns found in a set of soil moisture time series. While most catchments are

strongly heterogeneous, it is striking how spatially organized they are (Bras 2015;

Dooge 1986; McDonnell et al. 2007; Sivapalan 2003; Erwin Zehe, Ehret, et al. 2014).

Spatial organization manifests for instance through systematic and structured

patterns of catchment properties, such as a catena. This might naturally lead to

a systematic variability of those processes controlling wetting and drying of the

soil. One approach to diagnose and model systematic variability is based on the

covariance between observations in relation to their separating distance (Burgess

and R. Webster 1980) and geo-statistical interpolation or simulations methods

(Kitanidis and Vomvoris 1983; S. Ly et al. 2011; Pool et al. 2015).

A spatial covariance function describes how linear statistical dependence of

observations declines with increasing separating distance up to the distance of

statistical independence. This is often expressed as experimental variogram. Geo-

statistics relies on several assumptions such as second order stationarity (see e.g.

Lark (2012) or Burgess and R. Webster (1980)), which are ultimately important for

interpolation. Due to the above-mentioned dynamic nature of soil moisture obser-

vations, the most promising avenue for interpolation would be a spatio-temporal

geostatistical modeling of our data (De Cesare et al. 2002; Jost et al. 2005; Ma 2002;

Ma 2003; Snepvangers et al. 2003).

However, here we take a different avenue, as we do not intend to interpolate.

One of our goals is to detect dynamic changes in the spatial soil moisture pattern.

Following Sampson and Guttorp (1992) we relate the statistical dispersion of soil

moisture observations to their separating distance to characterize how their simi-

larity and predictive information declines with this distance (see section 2.3). More

17



Chapter 2 Dynamic soil moisture patterns

specifically, we analyze temporal changes in the spatial dispersion of distributed soil

moisture data and hypothesize that a grouping of the data is possible solely based

on the changes in spatial dispersion. We want to find out whether typical patterns

emerge in time, how those relate to the different forcing regimes and whether those

patterns are recurrent in time. The latter is an indicator for predictability and (self)

- organization in dynamic systems (Wendi and Marwan 2018; Wendi, Marwan, and

Merz 2018).

Erwin Zehe, Ehret, et al. (2014) argued that spatial organizationmanifests through

a similar hydrological functioning. This is in line with the idea of Wagener et al.

(2007) on catchment classification, or the early idea of a geomorphological unit

hydrograph (Patil and Stieglitz 2012; Rodríguez-Iturbe et al. 1979; Sivapalan et

al. 2011). Recently, R. Loritz et al. (2018) corroborated the idea of Erwin Zehe,

Ehret, et al. (2014) and showed that hydrological similarity of discharge time series

implies that they are redundant. Redundancy in our context means that new

observations (over time) do not add significant new information to the data set of

spatial dispersion. Thus, they can be compressed without information loss (Weijs et

al. 2013). This combination of compression rate and information loss is understood

to be a measure of spatial organization in our work. More specifically, R. Loritz

et al. (2018) showed that a set of 105 hillslope models yielded, despite their strong

differences in topography, a strongly redundant runoff response. Using Shannon

entropy (Shannon 1948) R. Loritz et al. (2018) showed that the ensemble could be

compressed to a set of 6 to 8 typical hillslopes without performance loss. Here we

adopt this idea and investigate the redundancy of patterns in spatially distributed

soil moisture data along with their compressibility.

The core objective of this study is to provide evidence that distributed soil

moisture time series provide, despite their strong spatial variability, representative

information on soil moisture dynamics. More specifically, we test the following

hypotheses:

• H1: Radiation-driven drying and rainfall-driven wetting leave different fin-

gerprints in the soil moisture pattern.

• H2: Both forcing regimes and their seasonal variability may be identified

through temporal clustering of dispersion functions.

• H3: Spatial dispersion is more pronounced during and shortly after rainfall

driven wetting conditions.

• H4: Soil moisture time series are redundant, which implies they are com-

pressible without information loss. However, the degree of compressibility is

changing over time.
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Figure 2.1: Attert experimental catchment in Luxembourg and Belgium. The purple dots

show the sensor cluster stations installed during the CAOS project. Here we focus on those

cluster stations within the Colpach catchment. Figure adapted after Ralf Loritz et al. (2017).

We test these hypotheses using a distributed soil moisture data set collected

in the Colpach catchment in Luxembourg. In section 2.3 we give an overview of

the study site and our method. The results section consists of three parts: spatial

dispersion functions, temporal patterns in their emergence and some insights on

generalization (or compressibility) of these functions, followed by a discussion and

summary.

2.3 Methods

2.3.1 Study area and soil moisture data set

We base our analyses on the CAOS data set, which was collected in the Attert

experimental watershed between 2012 and 2017 and is explained in Erwin Zehe,

Ehret, et al. (2014). The Attert catchment is situated in western Luxembourg and

Belgium (Figure 2.1). Mean monthly temperatures range from 18 °C in July to 0 °C
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Figure 2.2: Soil moisture data overview. Soil moisture observations in 10 cm (top), 30 cm

(middle) and 50 cm (bottom).

in January. Mean annual precipitation is approximately 850 mm (Laurent Pfister

et al. 2000). The catchment covers three geological formations, Devonian schists

of the Ardennes massif in the northwest, a mixture of Triassic sandy marls in the

center and a small area on Luxembourg Sandstone on the southern catchment

border (Martinez-Carreras et al. 2012). The respective soils in the three areas are

haplic Cambisols in the schist, different types of Stagnosols in the marls area and

Arenosols in the sandstone (IUSS Working Group 2006; Sprenger et al. 2016). The

distinct differences in geology are also reflected in topography and land use. In the

schist area, land use is mainly forest on steep slopes of the valleys, which intersect

plateaus that are used for agriculture and pastures. The marls area has very gentle

slopes and is mainly used for pastures and agriculture, while the sandstone area is

forested on steep topography.

The experimental design is based on spatially distributed, clustered point mea-

surements within replicated hillslopes. Typical hillslope lengths vary between 400

and 600 m showing maximum elevations of 50 to 100 m above stream level. For

further details on the hillslopes we refer to Figure 6a in Ralf Loritz et al. (2017)

and a detailed description in section 3.1.1 of the same publication. Sensor clusters

were installed on hillslopes at the top, midslope and hill foot sector along the
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anticipated flow paths. Within each of those clusters, soil moisture was recorded

in three profiles in 10, 30 and 50 cm depth using Decagon 5TE sensors. While the

entire design was stratified to sample different geological settings (schist, marls,

sandstone), different aspects and land use (deciduous forest and pasture), we focus

here on those sensors installed in the Colpach catchment. In total we used 19 sensor

cluster locations and thus 57 soil moisture profiles consisting of 171 time series.

Soil moisture in the 19.4 km
2
Colpach catchment exhibits high but temporally

persistent spatial variability (Fig. 2.2). For each point in time a wide range of water

content values can be observed across the catchment. The range of soil moisture

observations is generally wider in winter than in summer. From visual inspection it

seems that the heterogeneity in observations is not purely random but systematic

as the measurements are rank stable over long periods. One has to note that the

different cluster locations differ in is aspect, slope and landuse. From the data

shown in figure 2.2, two sensors have been removed. Both measured in 50 cm

and can be seen in the figure at the very bottom. Both recorded values close to

or even below 0.1𝑐𝑚3𝑐𝑚−
3 for the whole period of four years. Additionally, the

plateaus lasting for a couple of days at constant 0.5𝑐𝑚3𝑐𝑚−
3 in 50 cm and 30 cm

were removed.

2.3.2 Dispersion of soil moisture observations as function of
their distance

We focus on spatial patterns of soil moisture and how they change over time. For

our analysis the data set was aggregated to mean daily soil moisture values 𝜃 . Each

time series is further aggregated using a moving window of one month as described

by equation (2.1).

𝑧𝑥 (𝑡) =
∑𝑡+𝑏
𝑡 𝜃𝑥

𝑏
(2.1)

This is calculated for each observation location 𝑥 and time step 𝑡 = 1, 2, . . . , (𝐿−𝑏),
with a time series length of 𝐿 in days and a window size of 𝑏 = 30

1
.

To estimate the spatial dependence structure between observations, we relate

their pairwise separation distance to a measure of pairwise similarity. Here, we

further define the statistical spatial dispersion to be a measure of spatial similarity.

We compare the empirical distribution of pairwise value differences at different

1 We tested different window sizes, as we expect that different processes control the emergence of

spatial dependence at different temporal scales. The chosen window size was most suitable to

detect seasonal effects.
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distances. Statistically, a more dispersed empirical distribution is less well described

by its mean value. Thus, observations taken at a specific distance are more similar

in value, if they are less dispersed.

To estimate the dispersion, we use the Cressie-Hawkins estimator (Cressie and

Hawkins 1980). This estimator is more robust to extreme values and the contained

power transformation handles skewed data better than estimators based on the

arithmetic mean (Bárdossy and Kundzewicz 1990; Cressie and Hawkins 1980). The

estimator is given by equation (2.2):

𝑎𝑡 (ℎ) =
1

2

(
1

𝑁 (ℎ)
∑
𝑖, 𝑗

√
|𝑧𝑡 (𝑥𝑖) − 𝑧𝑡 (𝑥 𝑗 ) |

)
4 (
0.457 + 0.494

𝑁 (ℎ) +
0.045

𝑁 2(ℎ)

)−1
(2.2)

for each moving window position 𝑡 with 𝑧𝑡 (𝑥𝑖, 𝑗 ) given by equation (2.1) for each

pair of observation locations 𝑥𝑖, 𝑥 𝑗 . ℎ is the separating distance lag between these

points pairs and 𝑁 (ℎ) the number of points pairs formed at the given lag ℎ. 10

classes were formed with a maximum separation distance of 1200 m
2
. The lag

classes are not equidistant, but with a fixed 𝑁 (ℎ) for all classes. This is further
discussed in section 2.3.3.

2.3.3 Clustering of dispersion functions
We analyzed how and if meaningful spatial dispersion functions emerge and

whether those converge into stable configurations. To tackle the hypotheses formu-

lated in the introduction a clustering is applied to the dispersion functions derived

for each window. The clustering algorithm should form groups of functions that

are more similar to each other than to members of other clusters. The similarity

between two dispersion functions is calculated by the Euclidean vector distance

between the dispersion values forming the function. This distance is defined by

equation (2.3):

𝑑 (®𝑢, ®𝑣) =
√
(®𝑢 − ®𝑣)2 (2.3)

with ®𝑢, ®𝑣 being two dispersion function vectors. This is the Euclidean distance of two
points in the (higher dimensional) value space of the dispersion function’s distance

lags. Two identical dispersion functions are represented by the same point in this

value space and hence their distance is zero. Thus, distance lags are not equidistant,

as this could lead to empty lag classes. Empty lag classes result in an undefined

2 Observation point pairs further apart than 1200 m are most likely located on different hillslopes.

These points might share similar soil, topographic and terrain aspect characteristics. Soil misture

dynamics might thus be similar, although they are located at rather lage separating distances
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position in the value space, which has to be avoided. The clustering algorithm

cannot use the number of clusters as a parameter, as this can hardly be determined

a priori. One clustering algorithm meeting these requirements is the Mean shift
algorithm (Fukunaga and Hostetler 1975). The actual code implementation is taken

from Pedregosa et al. (2011a), which follows the Comaniciu and Meer (2002) variant

of Mean shift. A detailed description of the Mean shift algorithm can be found in

the appendix (see 2.7.1).

2.3.4 Cluster compression based on the cluster centroids
The next step is to generate a representative dispersion function for each cluster.

The straightforward representative function is the cluster centroid (the dispersion

function closest to the point of highest cluster member density, see appendix 2.7.1

for a detailed explanation). All dispersion functions are calculated with the same

parameters, including the maximum separating distance of 1200 m. At larger

lags we found instances of declining dispersion values, because we then paired

points located on different hillslopes, but otherwise in similar landscape units (i.e.

same hillslope position or land use). To facilitate the comparison of the dispersion

functions we decided to monotonize them. In geostatistics this is usually done

through fitting of a theoretical variogram model to the experimental variogram,

which assures monotony and positive definiteness. Here we do not force a specific

shape by a fitting a model function. Instead we use the technique of monotonizing

the cluster centroid as suggested by Hinterding (2003) using the PAVA-Algorithm

(Barlow et al. 1972). The implementation is from Pedregosa et al. (2011a). This way,

the final compressed dispersion functions are monotonically increasing, while still

reflecting the shape properties of the cluster members. If dispersion functions are

monotonically increasing, they also provide information about the characteristic

length of the soil moisture pattern. Similar as for the semi-variogram in geostatistics

this characteristic length corresponds the the lag distance where the dispersion

function reaches its first local maximum.

We suggest that the number of clusters needed to represent all observed spatial

dispersion functions over a calendar year can be used as a measure of spatial

organization (fewer clusters needed means higher degree of organization, because

dispersion functions are redundant in time). Additionally, it is insightful to judge

the information loss that goes along with this compression, as a high compression

with little information loss is understood as a manifestation of spatial and temporal

organization of soil moisture dynamics.

In line with R. Loritz et al. (2018) we use the Shannon Entropy as measure for

the compression without information loss. It requires treatment of the clusters
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as discrete probability density functions, which in turn implies a careful selection

of an appropriate classification of the data. Motivated by R. Loritz et al. (2018),

we use the uncertainty in the dispersion function as a minimal class size for this

classification, as described in section 2.3.5.

2.3.5 Uncertainty propagation and compression quality

Uncertainty propagation

Soil moisture measurements have considerable measurement uncertainty of 1 - 3

𝑐𝑚3𝑐𝑚−3
as reported by manufacturers. For our uncertainty propagation we assume

an absolute uncertainty/measurement error 𝛥𝜃 of 0.02 𝑐𝑚3𝑐𝑚−3
.

Next we propagate these uncertainties into the dispersion functions and the

distances among those. As we assume the measurement uncertainties to be statisti-

cally independent, we use the Gaussian uncertainty propagation to calculate error

bands / margins . In a general form, for any function 𝑓 (𝑧) and an absolute error 𝛥𝑧

the propagated error 𝛥𝑓 can be calculated. In our case 𝑧 is itself a function of 𝑥 ,

the observation location, and the general form is given by equation (2.4).

𝛥𝑓 =

√√√
𝑁∑
𝑖=1

(
𝜕𝑓

𝜕𝑧 (𝑥𝑖)
𝛥𝑧 (𝑥𝑖)

)
2

(2.4)

To apply equation (2.4) for our method, the measurement uncertainty 𝛥𝜃 is propa-

gated into the dispersion estimator given by equation (2.2). The dispersion estimator

is derived with respect to 𝑧 (𝑥) and following equation (2.1), the uncertainty in 𝑧 (𝑥),
𝛥𝑧, is denoted as 𝛥𝑧 = 𝛥𝜃 = 0.02𝑐𝑚3𝑐𝑚−

3. Then, with given 𝛥𝑧, we can propagate

the uncertainty into the dispersion function. As the dispersion function is a func-

tion of the spatial lag ℎ, we need to propagate the uncertainty 𝛥𝑎 (uncertainty of

dispersion estimator) for each value of ℎ. At the same time, following equation

(2.2), for each ℎ, 𝑧 (𝑥𝑖) − 𝑧 (𝑥𝑖 +ℎ) is a fixed set of point pairs. Instead of propagating
uncertainty through equation (2.2), we can substitute 𝑧 (𝑥𝑖) − 𝑧 (𝑥𝑖 + ℎ) by 𝛿 , the
pairwise differences, for each value of ℎ. The uncertainty 𝛥𝛿 is given by equation

(2.5)

𝛥𝛿 =

√
𝛥𝑧2

𝑖
+ 𝛥𝑧2

𝑖+ℎ =
√
2𝛥𝑧 (2.5)

The uncertainty of dispersion 𝛥𝑎 is then defined by equation (2.6):

𝛿𝑎 =
𝜕𝑎

𝜕𝛿
𝛥𝛿 (2.6)
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= 2𝑐

(
1

𝑁

𝑁∑
𝑖=1

( |𝛿𝑖 |)
1

2

)
3

· 1

𝑁

(
𝑁∑
𝑖=1

|𝛿𝑖 |−1
) 1

2

· 𝛥𝛿 (2.7)

where the factors from equation (2.2) that stay constant in the derivative are denoted

as 𝑐 and defined in equation (2.8). In line with equation (2.2) 𝑁 is the number of

observation pairs available for a given lag class ℎ and therefore constant for a single

calculation. 𝛥𝛿 and 𝛿 are the substitutes for 𝑧, as described above (see equation

(2.5)).

𝑐 =
1

2

∗ (0.457 + 1

𝑁
+ 0.045

𝑁 2
)−1 (2.8)

The last step is to propagate the uncertainty into the distance function as defined

in equation (2.3). The Euclidean distance is used as a measure for proximity by

Mean shift, as it groups dispersion functions at short distances together (for more

details see appendix section 2.7.1). At the same time, we use the uncertainty

propagated into the Euclidean distance between two dispersion functions to assess

compression quality (as further described in section 2.3.5). Following equation (2.4)

the propagated uncertainty 𝛥𝐷 can be calculated by the derivative of equation 2.3

with respect to each of the vectors multiplied by the corresponding value of 𝛥𝑎,

which results in equation (2.9):

𝛥𝑑®𝑢,®𝑣 =

√(
𝛿𝑑

𝛿 ®𝑢
®𝛥𝑢

)
2

+
(
𝛿𝑑

𝛿 ®𝑢
®𝛥𝑢

)
2

(2.9)

=

√√
1

2

𝑛∑
𝑖=1

( | ®𝑢 − ®𝑣 | 12 )
𝑛∑
𝑖=1

((2( | ®𝑢𝑖 − ®𝑣𝑖 |)𝛥®𝑢𝑖)2 + (2( | ®𝑢𝑖 − ®𝑣𝑖 |)𝛥®𝑣𝑖)2) (2.10)

Where ®𝑢, ®𝑣 are two spatial dispersion function vectors as defined and used in

equation (2.3). ®𝛥𝑢, ®𝛥𝑣 are the vectors of uncertainties for ®𝑢, ®𝑣, where 𝛥𝑣𝑖 is the
uncertainty propagated into the 𝑖𝑡ℎ lag class as shown in equation (2.6). 𝑛 is the

number of lag classes and thus the length of each vector ®𝑢, ®𝑣, ®𝛥𝑢, ®𝛥𝑣.
Equation (2.9) is applied to all possible combinations of dispersion functions ®𝑢, ®𝑣

to get all possible uncertainties in dispersion function distances.

Compression quality

The Shannon entropy (Shannon 1948) of all pairwise dispersion function distances

is used as measure for information content. The Shannon entropy of a discrete
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probability density function of states (patterns in this case) is maximized for the

uniform distribution. It corresponds to the number of yes/no questions one has

to ask to determine the state of a system. The minimum entropy is zero, which

corresponds to the deterministic case that the system state is always known. A

common way to define spatial organisation of a physical system is through its

distance from the maximum entropy state (Kleidon 2012; Kondepudi and Prigogine

1998). The deviation of the entropy of the dispersion functions in a cluster from its

maximum value is thus a measure for their redundancy and thus similarity.

For a discrete frequency distribution of 𝑛 bins, the information entropy 𝐻 is

defined as:

𝐻 = −
∑
𝑛

𝑝𝑛𝑙𝑜𝑔2(𝑝𝑛) (2.11)

Where 𝑝𝑛 is the relative probability of the 𝑛th bin. 𝐻 is calculated for each depth in

each year individually to compare the information content across years and depths.

Note that the term bin is also used in literature to refer to the binning of pairwise

data, e.g. in geo-statistics. For this kind of binning, although technically the same

thing, we used the term lag classes here, to distinguish from the binning as shown

in equation (2.11). Thus, when we write bin or binning we refer to the classification

of distances between dispersion functions, not observation points.

To assure comparability we use one binning for all calculations of𝐻 (across years

and depths). To achieve this, all pairwise distances between all spatial dispersion

functions of all four years in all three depths are calculated. The discrete frequency

distribution is formed from 0 up to the global maximum distance (between two

dispersion functions) calculated using equation (2.3). The bins are formed equidis-

tant using a width of the maximum function distance that still lies within the error

margins calculated using equation (2.9). Thus, the information content of the spatial

heterogeneity is calculated with respect to the expected uncertainties. This way

we can be sure to distinguish exclusively those spatial dispersion functions that lie

outside of the error margins.

The Kullback-Leibler divergence (Kullback and Leibler 1951) is a measure for the

difference between two empirical, discrete probability distributions. Usually, one

distribution is considered to be the population and the other one a sample from it.

The Kullback-Leibler divergence 𝐷𝐾𝐿 then quantifies the uncertainty introduced

(e.g. in an statistical model) using a sample as a substitute for the population.

We use the Kullback-Leibler divergence to measure and quantify the information

loss due to compression. To compress the series of dispersion functions, each

cluster member is expressed by its centroid function. Now, we need to calculate

the amount of information lost in this process. To calculate the mean informa-
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tion content of the compressed series each cluster member is substituted by the

respective cluster centroid. This substitution is obviously not a compression in a

technical sense, but necessary to calculate the Kullback-Leibler divergence. Then a

frequency distribution for compressed series 𝑋 and the uncompressed series 𝑌 can

be calculated. The Kullback-Leibler divergence 𝐷𝐾𝐿 of 𝑋,𝑌 is given in equation

(2.12):

𝐷𝐾𝐿 (𝑋,𝑌 ) = 𝐻 (𝑋 | |𝑌 ) − 𝐻 (𝑌 ) (2.12)

Where 𝐻 (𝑋 | |𝑌 ) is the cross entropy of 𝑋 and 𝑌 and defined by equation (2.13):

𝐻 (𝑋 | |𝑌 ) =
∑
𝑥∈𝑋

𝑝 (𝑥) ∗ 𝑙𝑜𝑔2𝑝 (𝑦) (2.13)

Where 𝑝 (𝑥) is the empirical non-exceedance probability of the frequency distribu-

tion 𝑋 and 𝑝 (𝑦) of 𝑌 , respectively.

2.4 Results

2.4.1 Dispersion functions over time

Figure 2.3 a) shows the spatial dispersion functions for all moving window positions

in 2016 for the 30 cm sensors. The position of the moving window in time can

be retraced by the line color, darker red means a later Julian day. Each of the

spatial dispersion functions relates the dispersion for all pairwise observations to

their separating distance in the corresponding lag class. Dispersion increases with

separating distance, as small values correspond to observations which have similar

values while large values suggest the opposite. As expected, the dispersion is a

suitable metric for similarity/dependency of observations.

The spatial dispersion functions take several distinct shapes with each of these

shapes occurring during a certain period in time. More specifically from Figure 2.3

a) one can identify groups of functions of similar reds plotting close to each other.

Dispersion functions of similar red saturation, which reflects proximity in time,

are also similar in shape, and this in turn reflects similar spatial patterns. Similar

dispersion functions were grouped using the Mean shift clustering algorithm (Fig.

2.3 b); here, the color indicates the cluster membership.

To provide further insight on the temporal occurrence of cluster members, we

colored the soil moisture time series according to the color codes of the identified

clusters (Fig. 2.3 d). The blue parts of the soil moisture time series were classified

into Cluster #1, while the the orange was classified into Cluster #2. Note that cluster
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Figure 2.3: Spatial dispersion functions in 30 cm for 2016 based on on a window size of 30

days.

a): Spatial dispersion function for each position of the moving window. The red color

saturation is indicating the window position. The darker the red the later in the year.

b): The same dispersion functions as presented in a). Here the color indicates cluster

membership as identified by the Mean shift algorithm.

c): Compressed spatial dispersion information represented by corrected cluster centroids.

The colors match the clusters as presented in b).

d): Soil moisture time series of 2016 in 30 cm depth. The colors identify the cluster

membership of the spatial dispersion function of the current window location and is

matching the colors in b) and c). The bars on the top show the daily precipitation sums.

The solid blue line is the cumulative daily precipitation sum and the red line the cumulative

sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation

period. It covers the dates where the cumulative day-degree sum is > 15% & < 90% of the

maximum.
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memberships are constant for long periods of time, which means that also the soil

moisture patterns are persistent over these periods. Exact cluster lifespans can be

found in table 2.3. We could identify four clusters in 30 cm, with the orange cluster

roughly occurring during the vegetation period and the other three the remaining

time of the year. As new observations did not change the patterns during these

periods, they were redundant in time.

As the spatial dispersion functions in the presented example are redundant in

time, we compressed the information by replacing the dispersion function within

one cluster by the cluster centroid. All four representative functions shown in Figure

2.3 c) exhibit increasing dispersion with separating distance. For the blue and green

cluster this happens step-wise at a characteristic distance of 500 m. That reminds

us of a Gaussian variogram, which can also show a step-wise characteristic. The

small grey cluster shows an increase at 500 and another one at 1000 m separating

distance. In contrast the orange cluster, however, shows a only a gentle increase

with distance.

In the vegetation period observations are similar even at large separating dis-

tances. Interestingly, dispersion functions in the orange cluster start with small

values that only gently increase with separating distance. That means soil moisture

becomes more homogeneous. Outside of the vegetation period, different spatial

patterns can be observed, with increasing dissimilarity with separating distances.

The part of the blue cluster overlapping with vegetation period shows still higher

soil moisture values. The transition to the orange cluster sets in as the soil moisture

drops (Fig. 2.3 d). This suggests that vegetation influences, such as root water up-

take, smooth out variability in soil water content, leading to a more homogeneous

pattern in space, as further discussed in section 2.5.3.

2.4.2 Dispersion time series as a function of depth
Figure 2.4 shows the time series of the dispersion functions for all depths. Note

that the coloring between the sub-figure is arbitrary, due to Mean shift, that means

there is no connection between the orange cluster between the three figures.

In comparison to the dispersion functions in 30 cm (Fig. 2.4 b) the soil moisture

signal in 10 cm (Fig. 2.4 a) is more variable in time. A look at the centroid of

the orange cluster (Fig. 2.4 d) reveals a higher spatial heterogeneity in winter and

spring at large separating distances. At the same time the observations get spatially

more homogeneous in summer, particularly when the blue cluster emerges, i.e. the

dispersion at large lags decreases significantly. We can still find a summer-recession

cluster in 10 cm, but compared to the depth of 30 cm we also find this spatial

footprint of continuous drying earlier in the year around May. This is likely due to
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Figure 2.4: Soil moisture time-series of 2016 in all three depths with respective cluster

centroids. The three rows show the data from 10 cm (a), 30 cm (b) and 50 cm (c). The

colors indicate the cluster membership of the corresponding dispersion function of the

respective window position. The green bar marks the assumed vegetation period. It covers

the dates where the cumulative day-degree sum is > 15% & < 90% of the maximum. The

cluster centroids for each depth is shown in d, e and f.

a higher sensitivity to rising temperatures. Note that during May there was only

little rainfall and the soil moisture is already declining. This blue cluster shows

very small dispersion values for all separating distance classes (Fig. 2.4 d), just as

the orange cluster in 30 cm depth.

The green clusters emerge with strong rainfall events after longer previous dry

spells (Fig. 2.4, a,d). We would have expected a third occurrence at the beginning

of August, but the soil may already be too dry to bear a detectable dependency

on separating distance (Remember that the blue cluster does not show increasing

dispersion with distance).

Observations at 50 cm depth show a clear spatial dependency throughout the

whole year. We cannot identify a summer cluster, Mean shift yielded two clusters

and rainfall forcing does not have a clear influence on their occurrence or transition.

The two 50 cm dispersion functions (Fig. 2.4 f) show a clear dependence on distance,

but they differ in their dispersion value at large lags. In 10 cm and 30 cm we found

dispersion functions of fundamentally different shape, like the flat, blue function

(Fig. 2.4, d) or the step-wise blue and green functions (Fig. 2.4 e). In 50 cm depth

the characteristic length is 500 m and the blue cluster persists throughout most of

the year (282 days, see table 2.3). The orange cluster occurs during the cool and

wet start of the year, showing a larger dispersion and thus stronger dissimilarity
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Figure 2.5: Soil moisture timeseries of all years in 30 cm depth (e) and the respective

cluster centroids (a-d). The colors of the soil moisture data indicate the cluster membership

of the corresponding dispersion function of the respective window position and correspond

with the color of the cluster centroid (in a-d). The cumulative rainfalls (blue) and cumulative

temperature sums (red) are shown for each year individually. The green bar marks the

assumed vegetation period. It covers the dates where the cumulative day-degree sum is >

15% & < 90% of the maximum.

at larger lags (Fig. 2.4 f). Interestingly this cluster occurs again in early June after

an intense rainfall period. However, a similar rainfall period in August does not

trigger the emergence of this orange cluster as the top soil above 50 cm is so dry,

that even this strong wetting signal does not reach the depth of 50 cm (Fig. 2.4 c).

This behavior reveals the low pass behavior of the top soil, which causes a strong

decoupling of the soil moisture pattern in 50 cm depth from event scale changes.

2.4.3 Recurring spatial dispersion over the years

Table 2.1 summarizes the most important features of the clustering for all obser-

vation depths. Soil moisture patterns and their clustering appear generally to be

clearer for 2015 and 2016. The vegetation period is more often characterized by

a typical cluster and dispersion functions more often reveal a clear spatial depen-

dency. In some cases (10 cm, 2013 and 2014) no spatial dependency of dispersion

functions could be observed throughout the whole year. Less clusters were formed

in 2015 and 2016. Note that annual rainfall sums were higher in 2013 and 2014,

while 2015 and 2016 had significantly more precipitation in the first half of the year

followed by a dry summer (compared to 2013 and 2014).

To further illuminate inter annual changes in soil moisture patterns we present
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Table 2.1: Qualitative description of method success in all years and depths. The results

from years other than 2016 and all depths were inspected visually and are summarized

here for sake of completeness. The first three columns identify the year, sensor depth and

the number of clusters found by Mean shift. The remaining three columns state if specific

features existed in the given result. Vegetation period marks whether or not the vegetation

period was characterized by a single, or two, clusters. Spatial structure: Does a dependency
of dispersion on distance exist outside the vegetation period? rainfall transition: Were

cluster transitions accompanied by a rainfall event in close (temporal) proximity? This

feature is marked ’yes’ if it was more often the case than it was not.

Year depth # of clusters vegetation period spatial structure rainfall transition

2013 10 4 yes no no

2013 30 3 no yes yes

2013 50 6 no yes yes

2014 10 3 yes no yes

2014 30 4 no yes no

2014 50 5 no yes yes

2015 10 3 yes yes no

2015 30 3 yes yes yes

2015 50 3 no yes no

2016 10 3 no yes yes

2016 30 4 yes yes yes

2016 50 2 no yes no
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the time series of cluster memberships for the sensors in 30 cm for the entire

monitoring period in Figure 2.5. From this example it becomes obvious that patterns

are recurring. 2013 and 2014 cluster centroids look different from the following two

years. Dispersion values increase with distance in all centroids in 2013 and 2014,

while 2015 and 2016 show a sudden increase at 400 - 500 m (Fig. 2.5 a-d). 2015 and

2016 are segmented by Mean shift in a similar way, and cluster centroids reveal that

the green clusters in both years are actually the same. This green cluster emerges

with the occurrence of the largest rainfall event in the observation period and

lasts for around 5 months. All dispersion functions within this cluster look nearly

identical (see Appendix, Fig. 2.9, b). Similar observations can be made between

2014 and 2015. Here, the green and blue cluster seem to be an inter-annual cluster.

However, in contrast to to 2015/2016 the dispersion functions here are of different

shape (see Appendix, Fig. 2.8, b). Hence, the cluster transition indicated between

2014 and 2015 is indeed a real transition. When looking at cluster memberships

throughout the whole period, the division into calendar years is rather meaningless,

while the division in hydrological years is much more appropriate, as it is reflected

by the cluster membership and its changes.

Distinct summer recessions in soil moisture are only identified in 2015 and 2016.

Evapotranspiration (indicated by the cumulative temperature curves in Fig. 2.5

e) is dominating over rainfall input (blue sum curve) in the soil moisture signal.

Mean shift could identify a significantly distinct spatial dependency in dispersion,

as shown by the two orange centroids in figure 2.5 c and d). They are both distinct

from the other centroids in the same period by showing only a gentle increase

in dispersion. A likely reason for the absence of a distinct summer recession in

2014 is the rather wet and cold spring and summer, as can be seen from the steep

cumulative rainfall curve during that period (Fig. 2.5 e). In 2013 this identification

did not work. Possible reasons are provided in the discussion section 2.5.5.

2.4.4 Redundant spatial dispersion functions

We calculated the Shannon entropy for all soil moisture time series for all years

and depths (Table 2.2). As explained in section 2.3.5 this reflects the intrinsic

uncertainty of the clusters. Most entropy values are within a range of 1 < 𝐻 < 2.5.

The maximum possible entropy for a uniform distribution of the used binning is

3.55. The Kullback-Leibler divergence 𝐷𝐾𝐿 is a measure for the information loss

due to the compression of the cluster onto the centroid dispersion function. In the

overwhelming majority of the cases, the information loss is one magnitude smaller

than the intrinsic uncertainty and ranges between 0.01 < 𝐷𝐾𝐿 < 0.4. Hence, the

33



Chapter 2 Dynamic soil moisture patterns

Table 2.2: Information content and information loss due to compression. The information

content is given as Shannon entropy 𝐻 , which is the expectation value of information in

information theory. 2
𝐻
gives the number of distinct states the underlying distribution can

resolve. The information loss after compression is given by the Kullback-Leibler divergence

𝐷𝐾𝐿 between the compressed and uncompressed series of dispersion functions. The last

column relates 𝐷𝐾𝐿 to 𝐻

Year Depth # of clusters 𝐻 [bit] 2
𝐻 𝐷𝐾𝐿 [bit] 𝐷𝐾𝐿 ∗ (𝐻 + 𝐷𝐾𝐿)−1

2013 10 cm 4 0.97 1.95 0.44 0.31

2013 30 cm 3 1.49 2.81 0.06 0.04

2013 50 cm 6 2.0 3.99 0.13 0.06

2014 10 cm 3 1.35 2.55 0.22 0.14

2014 30 cm 4 1.57 2.97 0.3 0.16

2014 50 cm 5 2.44 5.42 0.28 0.1

2015 10 cm 3 1.87 3.67 0.18 0.09

2015 30 cm 3 1.18 2.26 0.09 0.07

2015 50 cm 3 2.39 5.24 0.9 0.27

2016 10 cm 3 2.49 5.62 0.76 0.23

2016 30 cm 4 1.44 2.71 0.02 0.02

2016 50 cm 2 3.21 9.27 2.5 0.44

information loss due to compression is negligible. There is one exception in 2016

(50 cm).

The clusters obtained in 30 cm for the year 2016 (compare 2.4.1) showed an

entropy of 1.44. Compared to this value, the Kullback-Leibler divergence caused

by compression of only 0.02 is small, if not negligible. The last column of table 2.2

relates 𝐷𝐾𝐿 to the overall uncertainty. It contributes less than one third in almost

all cases (2016, 50 cm is the only exception). In the majority of the cases it does not

contribute more than 20%.

According to equation (2.11) the Shannon entropy is derived from an discrete,

empirical probability distribution. As it is calculated using the binary logarithm, 2
𝐻

gives the amount of discriminable states in this discrete distribution. This number

of states is deemed to be a reasonable upper limit for the number of clusters for

Mean shift. A higher number of clusters than 2
𝐻
appears meaningless, and this

assures that only those clusters are separated, which are separated by a distance

large than the margin of uncertainty.
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2.5 Discussion
In line with our central hypothesis H1 - that radiation-driven drying and rainfall-

driven wetting leave different fingerprints in the soil moisture pattern which mani-

fests in temporal changes in the dispersion functions - we found strong evidence

that soil water dynamics is organized in space and time. Our findings reveal that this

organization is not static but exhibits dynamic changes which are closely related

to seasonal changes in forcing regimes. A direct consequence is that soil moisture

observations are quite predictable in time despite their strong spatial heterogeneity.

This is in line with conclusions of e.g. Mittelbach and Seneviratne (2012) or A. J.

Teuling et al. (2006), who also found characteristic spatial patterns to persist in

time. We used the statistical dispersion of soil moisture observations in dependence

of their separating distance to describe spatial patterns. The vector distance of

these dispersion functions was used to cluster them. As measure for the degree of

organization we used the information loss that goes along with the compression

of the entire cluster, ie the replacement of the cluster by the most representative

cluster member. Here we found that this compression adds negligible uncertainty

compared to the intrinsic uncertainty, caused by propagation of measurements

uncertainties. We thus conclude that soil moisture is heterogeneous, but temporally

persistent over several months.

In the following we will discuss our main findings that similarity in space leads

to dynamic similarity in time, the way we utilized the measurement uncertainty to

determine the information content and how two different processes forcing soil

moisture dynamics induce two fundamentally different spatial pattern.

2.5.1 Spatial similarity persist in time
We related the dispersion of pairwise point observations to their separating distance.

For brevity and due to their shape we called these relationships dispersion functions.
We emphasize that this term is not meant in a strict sense and no mathematical

functional relationship, analogous to a theoretical model, has been fitted to the

experimental dispersion functions. Despite the fact that the presented functions

are empirical, they show clear, recurrent shapes on many occasions.

We found spatial similarity to persist in time. This is reflected in the temporal

stability in cluster membership. In line withH2 - that both forcing regimes and their

seasonal variability may be identified through temporal clustering of dispersion

functions - the results (Fig. 2.3, 2.5, 2.4) provided evidence that similar dispersion

functions emerge in fact very closely in time. Generally they appeared in continuous

periods or blocks in time and their changes coincided with changes or a switch in
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the forcing regimes. In case we can relate the emergence of such a cluster more

quantitatively to the nature and strength of a specific forcing event/process, we

can analyze for how long this event/process imprints the spatial pattern of soil

moisture observations. Or in other words: we can analyze how long a catchment

state remembers a disturbance. However, an attempt to relate cluster transitions to

rainfall sums and frequencies within the respective moving windows (see Fig. 2.7)

did not yield clear dependencies.

Although cluster memberships occur in temporally continuous blocks in all

depths throughout all years, for a few cases we could not relate their emergence to

distinct changes in forcing. This implies that H2 needs to be partly revised.

Dispersion functions in 50 cm show a clear spatial dependency throughout the

year, with distinct differences within and outside the vegetation period. In 50 cm

of 2016 this is different. We find essentially two clusters that do not separate the

data series by vegetation period. The shape of the two centroids (Fig. 2.4, f) is

similar, only at large distances they differ in value. That means, from orange to

blue cluster observations became more similar at large separating distances. Heavy

rainfall disturbs this pattern leading to stronger dissimilarity at larger distances

and that pattern lasted for a couple of weeks. Then, evapotranspiration driven

drying smooths out soil moisture variability and during a similarly strong rainfall

event in summer, the cluster can not emerge again as the soil is already too dry.

The soil acts as a low pass filter here, which filters out any change in state above a

specific frequency. This happens mainly due to dispersion of the infiltrating and

percolating water through the soil, or due to storage in the soil matrix. By the time

it reaches the deep layers, spatial differences are eliminated. This kind of behaviour

is well known and was already reported in the early 90s (Entekhabi et al. 1992; Wu

et al. 2002). More recently (Rosenbaum et al. 2012) "found large variations in spatial

soil moisture patterns in the topsoil, mostly related to meteorological forcing. In

the subsoil, temporal dynamics were diminished due to soil water redistribution

processes and root water uptake". In the same year, Takagi and Lin (2012) analyzed

a dataset of 106 locations in a forested catchment in the US for spatial organization

in soil moisture patterns. They found a seasonal change in more shallow depths

(30 cm), controlled by rainfall and evapotranspiration. In deeper depths patterns

became more temporally persistent. All these findings are in line with our results

and conclusions.

Mittelbach and Seneviratne (2012) decomposed a long term (15 months) soil

moisture time series into time-invariant and dynamic contributions to the spatial

variance. Their dataset spanned 14 sites from Switzerland at a clearly different scale

(150 x 210 km). The study quantified the time-invariant contribution on average to

94%, which leads to "a smaller spatial variability of the temporal dynamics than
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possibly inferred from the spatial variability of the mean soil moisture" (Mittelbach

and Seneviratne 2012, p.2177 L.14ff). This is comparable to the instances, where

we find long lasting clusters while the absolute soil moisture changes considerably

(e.g. Fig 2.3 d), early April or mid of July).

2.5.2 Uncertainty analysis
We related the evaluation of compression quality directly to the measurement

uncertainty. This was achieved by Gaussian error propagation of measurement

uncertainty into the dispersion functions and their distances. The latter allowed

definition of a minimum separable vector distance between two dispersion functions

that are different with respect to the error margin. We based the bin width for

calculating the Shannon entropy on this minimum distance, because this assured

that the Shannon entropy gives the information content of each cluster with respect
to the uncertainty. On this basis it was possible to assess compression quality not

only by the number of meaningful clusters found, but also based on the information

lost due to compression with respect to uncertainty.

In line withH4 spatial patterns of soil moisture were found to be persistent over

weeks, if not months. In many instances we found only two to four clusters within

one year and compression was possible with small if not negligible information loss.

That means, during one cluster period an entire set of dispersion functions does

not contain substantially more information than the centroid function. Hence, the

whole cluster can be represented by only the centroid function. We conclude that

this is a manifestation of a strongly organized state which persist for a considerable

time, as most observations were redundant during these periods.

A. J. Teuling et al. (2006) concluded that picking a random soil moisture ob-

servation location and deriving the temporal dynamics from this single sensor is

more accurate than using the spatial mean of many soil moisture time series. This

conclusion was true for all three datasets they tested (A. J. Teuling et al. 2006).

This representativity of a single sensor to our understanding a manifestation of

a persistent spatial pattern in soil moisture dynamics, which also enables us to

compress clusters without information loss.

From equation (2.11) it can be seen, that the Shannon entropy changes substan-

tially with the binning. Therefore, it is of crucial importance to define a meaningful

binning based on objective criteria. We suggest that only a discrimination into bins

larger than the error margins makes sense, because smaller differences cannot be

resolved based on the precision of the sensors. For the application presented in this

work, this is important because otherwise one could not compare the compression

quality between depths or years, as different binnings lead to different Shannon
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entropy values, even for the same data. Hence, it would be difficult to analyze effects

or differences of spatial dispersion in depth or over the years. We thus conclude

that the Shannon entropy should only be used if the measurement uncertainties of

the data are properly propagated.

We provided an example of how the quality of a compression can be assessed.

Instead of considering the number of clusters (compression rate) only, we linked

the compression rate to the resulting information loss. We could show that in the

majority of the cases substantial compression rates could be achieved, which are

accompanied by negligible information losses. We thus suggest that the trade off

between compression rate and information loss should be used as compression

quality measure.

2.5.3 Different dominant processes lead to different patterns
Outside of the vegetation period, we found a recurring picture of spatial dispersion

functions with characteristic lengths clearly smaller than the typical extent of

hillslopes. Dispersion functions were calculated in three depths for every day

throughout four years. In most cases there is an characteristic length at which the

dispersion function shows a sudden rise in dispersion. For spatial lags smaller than

this distance the dispersion is usually very small. Higher lags show much higher

and more variable dispersion values. This characteristic length is approx. 500 m.

This corresponds to a common hillslope length for the Colpach catchment. During

the vegetation period variability at large separating distance was smoothed out.

Dispersion was low also at large distances suggesting similarity even at distances

larger than the typical slope length. We thus conclude that there is dependence of

the dispersion on the rainfall pattern, which is reflected in the dispersion function’s

shape and characteristic length. This confirms H2 and suggest that vegetation is

a possible dominant factor in smoothing out soil moisture variability. A similar

conclusion is drawn by Meyles et al. (2003), who identified ’preferred states in soil

moisture’ (Rodger B. Grayson et al. 1997; AndrewWWestern and Rodger B Grayson

1998; Andrew W. Western, Rodger B. Grayson, et al. 1999) and could relate the state

transition to a significant change in the characteristic length of their geostatistical

analysis. We generally found more than two clusters, but we still consider these

results to be comparable. Most of the clusters identified during vegetation period

are more similar to each other than to the clusters outside of the vegetation period

(and vice versa). This can be related to the ’wet’ and ’dry’ state in Meyles et al.

(2003). Although conducted in a very different climate McNamara et al. (2005) also

widened the separation of two preferred states into five which they found to be

explanatory for runoff generation. Interestingly they found the seasonal interplay
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of precipitation and evapotranspiration responsible for transitions between states.

Vanderlinden et al. (2012) further references Gómez-Plaza et al. (2001) as an example

study, which identified vegetation as the dominant factor. Plant root activity is

changing the temporal stability of soil moisture in the upper 20 cm of the soil

considerably.

Outside the vegetation period we observed multiple cluster transitions. Although

more than one cluster was identified, the clusters were more similar in shape to

each other, than to the clusters in the ’dry’ summer period. In many cases these

cluster transitions coincided with a shift in rainfall regimes. Either the first stronger

rainfall event after a longer period without rainfall sets in, or one of the heaviest

rainfall events of that year occurs. There are also instances with recurring clusters

that develop more than once (eg. Fig. 2.3, 2.4 a, 2.4 c, 2.5 e). As these periods

are controlled by rainfall either different rainfall patterns or different hydrological

processes are dominating. Depending on antecedent wetness, rainfall amounts and

rainfall intensity, infiltration and subsurface flow processes can change and thus

also alter the soil moisture pattern. Although this may only be a coincidence, we

found the green cluster in 2016 (Fig. 2.3) to form with strong rainfall input setting

in after a period of little rainfall. Similar observations can be made for other years,

unfortunately not in all cases. Consequently, we can neither confirm nor reject H3
- that spatial dispersion is more pronounced during and shortly after rainfall driven

wetting conditions.

Many other works also tried to link soil moisture pattern to forcing. Adriaan

J Teuling and Troch (2005) report for soil moisture measurements taken on an

agricultural field in Belgium, that the first rainfall events in the late growing season

even out the variability, which arose due to heterogeneous transpiration. Although

soil moisture pattern became more homogeneous in summer in our case, we also

suspect rainfall events after the vegetation period to be responsible for cluster

transitions. Similarly, Albertson and Montaldo (2003) present a set of examples of

modelled experiments, in which precipitation is consistently ’producing’ variability

in soil moisture dynamics and transpiration is reducing variability. The question

of how spatial patterns or their variability change is also contradictory in the

literature. Vanderlinden et al. (2012) present two studies in their review. Both

investigated the variability of time persistent soil moisture patterns over depth.

While Pachepsky et al. (2005) found no difference in depth, W. Choi and Jacobs

(2011) reported a decrease of variability with depth. During the vegetation period

no spatial dependence is detectable. For the vegetation period, we found usually

only one or at maximum two clusters (Table 2.2). These clusters are characterized

by showing no dependence of dispersion on separating distance. That means,

evapotranspiration forcing the system to drier states is doing this in a (spatially)
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homogeneous manner. Dispersion is not only low when the catchment is dry, it is

also low while the system is drying. Similar observations have been reported for

the Tarrawarra catchment in Australia (Rodger B. Grayson et al. 1997; Andrew W

Western and Rodger B Grayson 1998; Andrew W. Western, Rodger B. Grayson,

et al. 1999). Although these works focused on the relation of spatial organization to

topographic indices, no spatial correlation of soil moisture observations could be

found for the dry period. This is comparable to our to our findings about dispersion

functions during the vegetation period. It has to be noted that the lowest soil

moisture values, i.e. residual moisture, are only observed for very short periods in

time. At residual soil moisture all sensors show essentially the same absolute value

(which leads to small dispersion as well).

We conclude that cluster transitions were often triggered by rainfall events. Not

each of the strongest rainfall events caused a cluster transition and not each cluster

transition could be related to a rainfall sums or frequency within the window of the

transition. The characteristics provided in appendix 2.7.2 provide a good starting

point, but further investigations on the rainfall events, their spatial characteristics

and relation to the moisture state are needed.

2.5.4 Mean shift as a diagnostic tool
We used Mean shift mainly as a diagnostic tool to cluster dispersion functions based

on their similarity. Similarity is measured by the Euclidean distance between two

dispersion function vectors. This Euclidean distance does, however, not provide

information on the underlying cause of dissimilarity and thus a minor difference in

the values of the dispersion functions, even though characterized by a very similar

shape, could result in the same level of dissimilarity as a change in the shape of

the dispersion function. We observed some cluster separations that were caused by

minor differences in mean dispersion, while essentially describing the same spatial

dependency.

It is possible to train better Mean shift algorithm instances. As described in the

methods, we selected the bandwidth parameter for Mean shift to yield meaningful

results for the entire data set. The same parameter was used for all subsets to

cluster dispersion functions on the same basis. This makes the clustering procedure

itself comparable and thus, the number of identified clusters can support result

interpretation. Nevertheless, it is likely that better bandwidth parameters can be

found for each data subset individually and overcomemisclassifications as described

above. Our objective, however, was to find clustering results that can directly be

compared to each other (instead of comparing hyper-parameters).

Dispersion functions operate in a higher dimensional space and might be affected
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by the curse of dimensionality. Mean shift clusters data points based on their

distance to each other. Following the theory of the curse of dimensionality, with

each added dimension (of these points), the difference of maximum and minimum

distance between points become less significant (Beyer et al. 1999). On the one hand,

we wish to resolve dispersion functions on as many distance lag classes as possible

to gain more insight on spatial dependencies. On the other hand, each additional

lag class possibly decreases the performance of Mean shift (or any other clustering

algorithm) and turns the results less meaningful. We calculated dispersion functions

using a 30 days aggregation window and therefore end up with 335 points for Mean

shift. However, despite the limited number of points and the resulting uncertainty

of cluster identification the clusters identified here seem plausible.

Mean shift is sensitive for the bandwidth parameter. As described in the methods

(section 2.3.3), the bandwidth parameter has to be specified and has direct influence

on the amount of clusters formed by the algorithm. We found a suitable parameter

through trial-and-error. It would be more satisfactory to infer this crucial parameter

from the data or supplementary information gathered at field campaigns. How-

ever, to our knowledge there is no such method or procedure to infer bandwidth

parameters for Mean shift from a data sample.

2.5.5 Limitations of the proposed method
Successful clustering does not point out spatial dependency. Mean shift can cluster

functions without spatial dependency, as it uses their distance and no actual covari-

ance between the functions. In this case the clustering is based on differences in

mean, which may not even be statistically significant. The Mean shift algorithm is

not meant to test clusters for statistical independence. If two groups of points are

separated or not depends only on the bandwidth parameter. Therefore the centroid

functions of each cluster have to be checked for their shape and the information

on spatial dependency that follows from that shape.

Our approach to find suitable bins to calculate the Shannon entropy is sensitive to

outliers. We decided to rather define the width of a bin instead of their number. The

reasons and necessity to do so were discussed in detail in section 2.5.2. As a width

we used the uncertainty propagated into dispersion function distances. From all

distances within uncertainty margins, we used the maximum value. In cases where

this maximum distance is an outlier, it will influence the whole entropy calculations.

This is a limitation to our method, but an acceptable one as it is still superior to other

approaches from our point of view. Choosing the maximum distance within each

year or depth (or both) will yield more bins for entropy calculations and therefore

a wider range of values, but it would be very hard to compare these values.
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From the point of view of the monitoring network, it has to be mentioned that

the analysis of the 2013 data is likely to be less reliable, as during this period of

installation the number of sensors was still lower than in the following years.

Due to the sampling design and the amount of observation points, we did not

systematically test for differences of forest vs pasture plots, but ran our analyses

across the two land covers. The fundamentally different shapes of cluster centroids

in the summer clusters and, thus, the strong effect of vegetation altering soil

moisture patterns might be partly more pronounced due to the sampling design

and not easy transferable to other sites. In our opinion, we would have made the

same observations with a more stratified sampling design, as this is systematic

catchment behavior, but we can neither confirm nor reject this.

2.6 Conclusions

We presented a new method to identify periods of similar spatial dispersion present

in a data set. While soil moisture observations might be spatially heterogeneous,

spatial patterns are much more persistent in time. We found two fundamentally

different states: On the one hand rainfall-driven cluster formations, usually char-

acterized by strong relationships between dispersion and separating distance and

a characteristic length roughly matching the hillslope scale. On the other hand

we found clusters forming during the vegetation period. A drying and then dry

soil exhibits dispersion functions which are much flatter, indicating homogeneity

across space. Interestingly, these functions flatten out by minimizing the disper-

sion on large distance lags, which implies that dissimilarities do not increase with

separating distance. We can thus see how the soil acts as a low pass filter.

While these long lasting periods of similar spatial patterns help us to understand

how andwhen the soil is wetting or dying in an organizedmanner, there are possible

applications beyond this. One could use the identification of clusters to stratify

data based on spatial dispersion for combined modeling. Then, for example, a set

of spatio-temporal geostatistical models or hydrological models applied on each

period separately, might in combination return reasonable catchment responses.

Our most interesting finding is that even a few soil moisture time series bear

a considerable amount of predictive information about dynamic changes of soil

moisture. We argue that distributed soil moisture reflects an organized catchment

state, where soil moisture variability is not random and only a small amount of

observation points is necessary to capture soil moisture dynamics.
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2.7 Appendix

2.7.1 Mean shift algorithm
Mean shift starts by forming a cluster for each sample on its own. Here, a sample
corresponds to one dispersion function. We will illustrate the fundamental mecha-

nism of the algorithm for the two-dimensional case, as the samples can easily be

plotted in ℝ2
(see figure 2.6 a, b). Mean shift works iteratively. In each iteration, a

window is shifted over all samples, which can be thought of as coordinate points

in the two-dimensional case (see fig. 2.6 a). This window is called a kernel that is
controlled by a size parameter called bandwidth, which is the Euclidean distance

between two samples. In the two-dimensional case, this can be thought of a circle

with a radius set to the given bandwidth as shown in figure 2.6 a. In each kernel

position, the center of sample density is calculated and the current sample is shifted
onto this point, which is the new cluster mean, called cluster centroid. On the next

iteration, the newly created cluster centroids are used as the new (input) samples, as

shown in figure 2.6 b. Hence, with the bandwidth, we define a maximum Euclidean

distance at which two samples are still considered to belong to the same group. The

iterations stop when the shifting means converge (centroids do not change their

position anymore). We substitute the centroids calculated on the last iteration by

the original sample closest to this point. Thus, we choose the most representative

dispersion function for the cluster.

Mean shift is sensitive to the selected bandwidth. Two clusters whose centroids

are within one bandwidth length will be shifted into a combined cluster before

convergence is met. As a result a bandwidth parameter chosen too big might classify

all samples as a single cluster as indicated in figure 2.6 c. In case the bandwidth

is chosen too small many tiny clusters with just a few members will be the result.

Figure 2.6 d shows an extreme example, where no sample will shift anywhere. We

tested different bandwidth parameters at a few examples and set the bandwidth to

the 30% percentile of all pairwise Euclidean vector distances between the dispersion

functions of one year and depth. We chose the so-called flat kernel as a kernel,

which would result in a circle in the two-dimensional case and a N-dimensional

sphere in the ℝ𝑁
, where 𝑁 is the number of lag classes used for the dispersion

function.

2.7.2 Auxiliary quantitative results
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Figure 2.6: Schematic procedure of the Mean shift algorithm in ℝ2
. a): Red dots indicate

hypothetical samples to be clustered. The circles are illustrating the flat kernel of the

centered sample at first iteration. The bandwidth parameter is illustrated by the radius. The

red arrows indicate the shift of the respective sample onto the geometric mean of all samples

inside the current kernel. Note that three points on the left side are shifted differently, as

the upper and lower point do not lie in each others kernel. b): Second iteration step after

a). The blue dots are the shifted means from a) and will be used as the input sample for

the next iteration. The procedure finishes when no points can be ’shifted’ anymore. c):
Example of a large bandwidth (radius), which will result in only one cluster at convergence.

d): Example of a too small bandwidth, where no point will be shifted at all.
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Figure 2.7:Mean rolling rainfall sum (a) and rainfall frequency (b) in for 2016. The colored

boxes indicate the current cluster as shown in figure 2.3 d. Both values were calculated for

the same windows as the dispersion functions by using equation (2.1) for the daily rainfall

sums, with the total rainfall sum in the window in (a) and the number of days rainfall

occured in (b).
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Table 2.3:Quantitative results summary. For each depth and cluster of 2016 different cluster

characteristics were calculated. The duration of each cluster is given in the third column.

To compare rainfall forcing with the emergence of clusters, the rainfall characteristics were

based on the same moving window as the clusters. The mean rainfall frequency 𝑓30 within

each window is given in the fourth column. The mean 30 day-sum over the whole cluster∑
30

𝑖=0 𝑅 in the fifths column. To assess the variability of dispersion functions within each

cluster, different measures are given. 𝛾 is the dispersion, as calculated in equation (2.2).

This describes the dispersion of dispersion functions within one cluster. 𝐻 is the entropy

of the distribution of all cluster members within each cluster. Both measures are calculated

for the distribution of each distance lag class individually.

depth cluster duration [days] 𝑓30
∑

30

𝑖=0 𝑅 𝛾 𝐻

10cm blue 167 16.22 59.39 5.5e-6 1.34

10cm orange 88 17.48 73.73 1.12e-5 0.69

10cm green 113 20.54 81.31 4.36e-5 1.25

30cm blue 135 17.84 73.32 2.16e-5 1.83

30cm orange 136 15.78 54.87 4.21e-6 1.63

30cm green 42 21.86 100.62 4.4e-5 1.31

50cm blue 282 16.41 60.66 3.51e-5 0.99

50cm orange 54 21.59 98.02 3.64e-5 0.9
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2.8 Detailed result plots of 30 cm in 2014 and 2015

Figure 2.8: Spatial dispersion functions in 30 cm for 2014 based on on a window size of 30

days.

a): Spatial dispersion function for each position of the moving window. The red color

saturation is indicating the window position. The darker the red the higher in the year.

b): The same dispersion functions as presented in a). Here the color indicates cluster

membership as identified by the Mean shift algorithm.

c): Compressed spatial dispersion information represented by corrected cluster centroids.

The colors match the clusters as presented in b).

d): Soil moisture time series of 2014 in 30 cm depth. The colors identify the cluster

membership of the spatial dispersion function of the current window location and is

matching the colors in b) and c). The bars on the top show the daily precipitation sums.

The solid blue line is the cumulative daily precipitation sum and the red line the cumulative

sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation

period. It covers the dates where the cumulative day-degree sum is > 15% & < 90% of the

maximum.
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Figure 2.9: Spatial dispersion functions in 30 cm for 2015 based on on a window size of 30

days.

a): Spatial dispersion function for each position of the moving window. The red color

saturation is indicating the window position. The darker the red the later in the year.

b): The same dispersion functions as presented in a). Here the color indicates cluster

membership as identified by the Mean shift algorithm.

c): Compressed spatial dispersion information represented by corrected cluster centroids.

The colors match the clusters as presented in b).

d): Soil moisture time series of 2015 in 30 cm depth. The colors identify the cluster

membership of the spatial dispersion function of the current window location and is

matching the colors in b) and c). The bars on the top show the daily precipitation sums.

The solid blue line is the cumulative daily precipitation sum and the red line the cumulative

sum of all mean daily temperatures > 5 °C. The green bar marks the assumed vegetation

period. It covers the dates where the cumulative day-degree sum is > 15% & < 90% of the

maximum.
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SciKit-GStat Uncertainty: A software extension to
cope with uncertain geostatistical estimates

The following chapter 3 is already published as a research article in Spatial Statistics
as:

Mälicke, M., Guadagnini, A., & Zehe, E.: SciKit-GStat Uncertainty: A software
extension to cope with uncertain geostatistical estimates. Spatial Statistics,
https://doi.org/10.1016/j.spasta.2023.100737, 2023.

Author contributions:

Mirko Mälicke: Conceptualization, Use-Case, Data, Methodology, Software. Al-

berto Guadagnini: Use-Case, Data, Methodology. Erwin Zehe: Use-Case, Methodol-

ogy.

Data and Code availability:

The pancake dataset is available with the SciKit-GStat package (Mirko Mälicke,

Möller, et al. 2021a). The source code, including the pancake data sample, is available

on Github
3
. The Berea sandstone data sample can be obtained from the original

publication (Vincent C. Tidwell and John L. Wilson 1997).

The source code for the SciKit-GStat Uncertainty extension is available on Github4.
This repository includes a copy of the used data samples. The primary distribution

of the software package is a docker image
5
.

The demo application is not open source. It can be reached at https://geostat.

hydrocode.de

3 https://github.com/mmaelicke/scikit-gstat; last accessed: 25.10.2022

4 https://github.com/hydrocode-de/skgstat_uncertainty; last accessed 25.10.2022

5 : https://github.com/hydrocode-de/skgstat_uncertainty/pkgs/container/skgstat_uncertainty; last

accessed: 25.10.2022
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Abstract Section 3.2

3.1 Abstract

This study is focused on an extension of a well established geostatistical software

to enable one to effectively and interactively cope with uncertainty in geostatistical

applications. The extension includes a rich component library, pre-built interfaces

and an online application. We discuss the concept of replacing the empirical vari-

ogram with its uncertainty bound. This enables one to acknowledge uncertainties

characterizing the underlying geostatistical datasets and typical methodological

approaches. This allows for a probabilistic description of the variogram and its

parameters at the same time. Our approach enables 1) multiple interpretations of

a sample and 2) a multi-model context for geostatistical applications. We focus

the sample application on propagating observation uncertainties into manual var-

iogram parametrization and analyze its effects. Using two different datasets, we

show how insights on uncertainty can be used to reject variogram models, thus

constraining the space of formally equally probable models to tackle the issue of

parameter equifinality.

3.2 Introduction

Geostatistical analyses are key in several research and industrial areas, includ-

ing environmental and Earth sciences and engineering application. In this broad

context, geostatistics typically considers (statistical) dependences of spatial or

spatio-temporal datasets. In viewing a given quantity as a correlated random field,

it has been shown to provide critical insights on ways to interpolate, assess, re-scale,

and model scenarios of interest in the presence of scarce information. A broad

variety of studies is geared towards assessing uncertainty through geostatistical

estimation or simulation frameworks (Delbari et al. 2009; Emery and Peláez 2011;

Handcock and Stein 1993; André G Journel 1994; Lloyd and Peter M Atkinson 2001;

Mowrer 1997; Nowak and Verly 2005; Todini 2001; Erwin Zehe, Becker, et al. 2005),

including some recent hydrological applications focused on preferential pathway

analysis (Schiavo et al. 2022; E. Zehe, R. Loritz, et al. 2021). Otherwise, only a

limited number of studies focus on a rigorous framework of analysis to explicitly

include uncertainties associated with the empirical variogram and the way these

can impact the estimation of an appropriate interpretive model. In this context, our

study aims at providing enhanced insights on this, as the reliability of a geosta-

tistical analysis hinges on an appropriate estimation of the empirical variogram.

Thus, our distinctive objective relates to the way one can incorporate uncertainties

into the variogram estimation. We then assess the way uncertainty associated
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Figure 3.1: Image of the pancake, which motivated this work. It shows the image of a

pancake with several conceptualized errors applied. a) Red channel of the original image

with a 20x20 zoom of an area with apparent gradient on short distance. b) Image from a)

with a systematic shift of 5 in the red channel value. c) Image from a) with a random error

of 5 applied to each cell in the red channel. d) Image from a) with a random error of 15

applied to each cell in the red channel.
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with the assessment of the empirical variogram can propagate onto subsequent

analysis steps. This allows seamless inclusion of uncertainty into geostatistical

interpolations.

To the best of our knowledge, only a limited series of studies address uncertainty

in the empirical variogram. Webster and Oliver (1993) define confidence limits

for individual spatial models and their parametrizations. Their study considers

sub-sampling of a dense datasets and focuses solely on the impact of sample size

and the way a threshold can be defined for it through numerical Monte Carlo

simulations. Pardo-Igúzquiza and Peter Dowd (2001) describe various approaches

to yield approximations of the standard error associated with the variance evaluated

across a sample. These authors point out that exact confidence intervals for the

empirical variogram are difficult to construct in practice and only a number of

approximations can be employed. Some of the methods discussed therein are

detailed in Section 3.4. Their studies relate the uncertainty of empirical variograms

to the nature of the semi-variance estimator. Metrics of statistical robustness are

then proposed on the basis of the size of the underlying finite sample.

While building on these approaches, here we address the joint effect of several

sources of uncertainty on the empirical variogram. We highlight ways these can

be tackled and ultimately be included into a variogram modeling context. Some of

these sources of uncertainty are aleatory. These include e.g., the inherently limited

precision of data in terms of accuracy of an observed quantity as well as of the

spatial locations at which observations are taken. Other sources of uncertainty

are epistemic and stem from incomplete knowledge about a system functioning

and/or processes taking place therein (Der Kiureghian and Ditlevsen 2009; Hora

1996; Hüllermeier and Waegeman 2021). Observations are never perfect in terms of

precision and accuracy associated with a given measurement. Furthermore, in some

cases one cannot observe directly a target quantity, while only data (corrupted

by uncertainty) associated with other related quantities can be monitored. As a

common example, one can refer to a rainfall radar, which is not rendering rainfall

observation, but reflectivity of hydro-meteors. The latter depends on size and shape

of the meteors, their chemical phase and a variety of additional factors (Neuper

and U. Ehret 2019). All of these sources of uncertainty jointly contribute to what

we term observation uncertainty in this study.

An exemplary scenario underpinning of our study is associated with the geo-

statistical Python package SciKit-GStat (Mirko Mälicke, Möller, et al. 2021a) and

corresponds to an image of a pancake taken at a given time during browning. Figure

3.1 a) illustrates the actual image and an inset of a target area. Color gradation cor-

responds to the red channel pixel value, which has a resolution of 8-bit, as common
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for images. We rely on this pixel value as observation here. This is also consistent

with common remote sensing observation techniques, the pancake surface and the

image corresponding to the random field under study and to the measurement,

respectively. Note that this representation (along with the 8-bit resolution) already

implies observation uncertainty. Any given RGB value in the photograph does not

reflect the real color of the actual pancake. There are systematic and random errors

influencing the measurement. These include e.g., the moisture of the air between

the camera and the pancake or oscillations of the light bulb brightness slightly

affecting room illumination. To assist evaluation of observation uncertainties in

the context of pancakes and as an example to provide a visual depiction of the

effect of uncertain observation, we apply a systematic shift in value (fig.3.1 b) and a

random variation in value (fig. 3.1 c, d) of a different magnitude in each sub-panel

to the original image. Differences in color from figure 3.1a (original) to figure 3.1b

and c are visually very hard to detect. This illustrates that even a considerable

variation in value might manifest in a subtle way from a visual standpoint. Figure

3.1c depicts the magnitude of measurement error, which forms the basis for some

of the analyses detailed in Section 3.4 and 3.5.

These kinds of observation uncertainties are somehow less subtle in remote

sensing, groundwater hydrology or soil science. Sensor sensitivity studies have

shown that observation values are typically subject to much larger ranges of un-

certainty (ie. fig. 4 Arthur and Robinson 2015; C. Jackisch et al. 2020; Erwin Zehe

and Blöschl 2004). In addition to the above mentioned elements, one should note

that some research studies can also be affected by un-calibrated sensors and/or, in

some instances, on community-sourced sensors (Chapman et al. 2017), which do

not comply with the same measurement standards and might also provide only

indirect information about the quantity of interest.

Prompted by these elements, we illustrate here the software library SKGstat-

Uncertainty that has been developed to specifically address these outstanding

issues. The latter is built on existing and established packages for geostatistics in

Python. It implements existing and original methods to analyze, assess, quantify,

visualize, and propagate uncertainties in variogram estimation. Existing software

solutions in Python include SciKit-GStat (Mirko Mälicke, Möller, et al. 2021a). The

latter is a variogram estimation toolbox that is currently characterized by only

limited capabilities to handle observation uncertainties. For example, in the current

implementation one could add error bars to semi-variance values on the basis of a

manual input. Additionally, GSTools (Müller et al. 2021a), an advanced geostatistical

toolbox in Python, implements uncertainty elements for Kriging only if the user can

supply the measurement error as a parameter. In this context, SKGstat-Uncertainty
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can be identified primarily as an extension to SciKit-GStat and is also compatible

with GSTools.

SKGstat-Uncertainty is designed as a general toolbox, that is aimed at perform-

ing uncertainty analyses associated with variogram estimation in a way that is

accessible to a broad audience. As such, end-users are envisioned to be associated

with education, research, and industry sectors. In addition to providing a thorough

introduction to the various functions of the toolbox, we exemplify the importance

of variogram uncertainty upon considering two exemplary datasets.

Note that our study does not involve automatic fitting of a variogram model,

even as the toolbox includes these features (namely the method-of-moments and

the Maximum Likelihood approach). For the purpose of our exemplary study, we

favor manual fitting of variogram functions to the uncertainty bounds. Doing so

enables users to readily inspect various dimensions of uncertainty arising in the

context of variogram analysis. By replacing the empirical semi-variance with its

confidence limits (see Section 3.4.3), we explore the uncertainty in the parametriza-

tion of a given variogram model. Importantly, we also show that the choice of the

theoretical model itself becomes uncertain. In this sense, the heart of the toolbox is

a processing module that implements a suite of methods for the quantification of

uncertainty associated with empirical semi-variance. Each of these is conducive to

an uncertainty bound against which a collection of variogram models and ensuing

parametrizations can be assessed. A rich selection of visualization routines enables

the user to inspect various aspects of uncertainty. This offers a considerable added

value with respect to parameterizing a black-box workflow to obtain a result, which

might possibly be considered as the right or most probable one.

We perform the uncertainty analysis for a) the pancake data set depicted in figure
3.1 and b) a hydrogeological dataset. The latter comprises a set of well-established

and broadly used air permeability data collected across a Berea sandtone rock on a

regular, dense grid (Vincent C Tidwell and John L Wilson 1999; Vincent C. Tidwell

and John L.Wilson 1997; Vincent C. Tidwell and John L.Wilson 2002) and is detailed

in Section 3.4.1.

After an introducing the software package and the sample application for manual

variogram parametrization, we explore the following two research hypotheses:

• hypothesis H1: Empirical variograms (or semi-variances) are uncertain due

to inherent observation and estimation uncertainty.

• hypothesis H2: Uncertain empirical semi-variances imply that an interpreting

variogram model and the embedded parameters are uncertain; this, in turn,

yields uncertain geostatistical interpolation results.
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Testing both hypotheses relies on the presented toolbox.

Our study is structured as follows: Section 3.3 describes the toolbox from a

technical perspective; Section 3.4 includes all methodologies used for the presented

analysis; Section 3.5 illustrates the results and our findings, which are then discussed

in Section 3.6. Conclusions are presented in 3.7.

3.3 Software implementation
Our software is a toolbox that is designed to extend the functionality of two well-

established geostatistical Python packages, i.e., SciKit-GStat (Mirko Mälicke, Möller,

et al. 2021a) and GSTools (Müller et al. 2021a). Key extensions include the imple-

mentation of geostatistical analysis tools and functions with options for uncertainty

analysis and propagation. The toolbox implements building blocks to form appli-

cations governed through a dedicated graphical user interface. While the main

focus is set on variography and Kriging, the toolbox is general and can be readily

extended to include additional features.

The toolbox SKGstat-Uncertainty is written in Python and is published as open

source (Mirko Mälicke 2022a). It is a collection of functions, which can be run

through the Python framework streamlit. This opens a web-browser based

interface to operate the underlying Python code and its settings. As such, advanced

programming skills are not required to load data, set up geostatistical libraries,

pre- and post-process data, set model parameters, run analyses, and visualize the

ensuing results.

Applications built with our toolbox can be scaled. With minimal overhead, it

can be run locally on any client computer, a feature that enables one to readily

interact with locally hosted data. Alternatively, public streamlit applications can

be hosted on a cloud infrastructure of streamlit with limited resources, freely

available. It is further noted that deploying a streamlit application on custom

infrastructure is straightforward and in line with common web-based deployment

strategies. This enables one to use the software at any scale in educational and

professional scenarios, in a freely accessible mode, or as the foundation of a paid

model. Finally, the toolbox is distributed as a Docker image with fixed software

versions and architecture. Docker is a common solution to ensure reproducible

software deployment independent of the host architecture and operating system.

This enables one to repeat analyses ensuring consistent results.

The software toolbox is structured across several units. First, the Data Models
describes the structure of the data used by the application. Exemplary, one model
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describes the attributes and structure of uploaded samples, while another one de-

scribes the attributes, which represent an empirical variogram. Data models also

include relations between data model instances (usually called entities). Each model

is implemented as a Python class and can easily be exported to the open standard

format JSON
6
. Thus, students, scientists, or engineers and practitioners can easily

export data and results from the application and use these for further analyses in

any other framework of their choice. SKGstat-Uncertainty uses an SQLite database

to save application data and intermediate results, as a default option. Connecting

the toolbox to other database systems is also possible, as it uses the widely spread

Python module SQLAlchemy (Bayer 2012), which can connect to (almost) any re-

lational database management system. The demo application stores the data in a

remote PostgreSQL database.

Another unit termed processor implements algorithms for model evaluation, sam-

pling, uncertainty propagation, and analysis. These algorithms are detailed in

Section 3.4. An Application Programming Interface (API) unit collects functions
for all common data management tasks, including filtering, creating, editing, or

deleting information. While the API is used by the application, it is also usable as

a standalone Python module and can be run as a command line interface directly

from the operating system. The core unit is termed components. It includes the
main functions, which are used by the streamlit framework to build the application.

These functions run and operate the analysis as specified by the developer.

The chapters unit is a collection of standalone streamlit applications. These can be

composed together into a final application, or can be run individually. Each of the

chapters covers a given topic. Most chapters build on others, e.g., the chapter about

Kriging algorithms can only be used after variograms are estimated for a target

dataset. The software toolbox currently implements the following chapters:

• Data management - This chapter can upload, list and edit existing datasets.

New samples can be created by re-sampling exiting datasets.

• Learn geostatistics - This chapter provides an interactive and guided step-

by-step introduction to geostatistics, which might be appropriate for an

undergraduate or early stage graduate student. The details are not covered

in this work, given their introductory nature and target audience.

• Variogram estimation - The chapter implements an interactive interface to

estimate sample variograms and propagate various kinds of uncertainty into

6 Human readable JSON format specification. URL: https://www.json.org/json-en.html, last ac-

cessed: 25.10.2022.
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the empirical variogram. This yields a uncertainty bound-based empirical

variogram.

• Model parametrization - The chapter implements an interactive interface

to identify an arbitrary amount of models and associated model parametriza-

tion within the uncertainty bounds of each variogram.

• Kriging - The chapter implements four different Kriging algorithms (simple,

ordinary, universal, and external drift Kriging) leveraging on the identified

variogram model functions to project data onto unobserved locations.

• Geostatistical simulations - The chapter implements an interface to per-

form geostatistical simulations for each theoretical variogrammodel function.

For simplicity, the simulation feature of the tool is not included in this study.

• Analysis tool - The chapter enables one to visualize estimation (i.e., Kriging)

or simulation results with a variety of pre-defined visualization options (see,

e.g., Section 3.5).

A scientific demo application (termed uncertain geostatistics) is implemented to

assist the user and can be reached publicly at https://geostat.hydrocode.de
7
. It does

not add any significant functionality in terms of geostatistics or uncertainty analysis.

The demo application runs an additional PostgreSQL database instead of the default

sqlite database. Besides the chapters of SKGstat-Uncertainty described above,

three more chapters were added to the application. The help page chapter loads
documentation from the underlying Python packages SciKit-GStat and GSTools for

reference. A tutorials page lists a number of short video tutorials about the other

chapters. Additionally, a landing page including a login was added. Authenticated

users are granted full access to additional data samples, which are not available

under an open data license. Without authentication, data are still available when

using the application. Otherwise, re-sampling and downloading non-open data (e.g.,

the Berea sandstone dataset illustrated in Section 3.4.1) are disabled. Authenticated

access to the scientific sample application is managed by a third party
8
, access to the

Berea sandstone dataset can be obtained from the original publication (Vincent C.

Tidwell and John L. Wilson 1997).

7 The whole geostatisitcal ecosystem around SciKit-GStat, SKGstat-Uncertainty and demo ap-

plications can be reached at https://geostat.hydrocode.de. The standalone demo application is

deployed at https://uncertain.geostat.hydrocode.de

8 As of this writing, the demo application and the Python package are properties of hydrocode

GmbH (https://hydrocode.de). The Python package is open source, while the demo application is

free of charge.
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3.4 Data and Methods

3.4.1 Data
Pancake dataset

A detailed description of the pancake dataset is offered by (Mirko Mälicke, Möller,

et al. 2021a). In line with this study, we consider the red channel of the RGB

image in our analyses. For the purpose of our analysis, we re-scale the original red

channel image described by (Mirko Mälicke, Möller, et al. 2021a) (and associated

with a 500 × 500 resolution) to a 100 × 100 resolution using a mean filter. Note

that this step corresponds to smoothing the original image, hence decreasing the

sample spatial variance. Otherwise, a) it does not affect the workflow underpinning

the application of our approach to tackling sample variogram uncertainty and b)
it enables us to obtain a sample that is approximately the same size as the one

associated with the air permeability information evaluated across the block of Berea

sandstone described in Section 3.4.1. We then apply our workflow considering a

reduced size data sample constructed upon re-sampling the 100 × 100 resolution

image according to a uniform 10 𝑡𝑖𝑚𝑒𝑠10 grid without any offset from the border,

to avoid extrapolations in Kriging analyses.

Berea sandstone

The second dataset we consider is well established and representative of a Darcy-

scale collection of air-permeability data (Vincent C Tidwell and John LWilson 1999;

Vincent C. Tidwell and John L. Wilson 1997; Vincent C. Tidwell and John L. Wilson

2002). The latter are sampled on the six faces of a 81 × 74 × 63𝑐𝑚3
block of Berea

sandstone, across an area of 30 × 30𝑐𝑚2
. The sampling grid comprises 36 × 36

regularly spaced nodes (horizontal resolution 𝛥 = 0.85𝑐𝑚). Data collection relies on

four air minipermeameters, each with a given tip-seal (inner and out radius of the

minipermeameter are 𝑟 𝑖 = {0.15, 0.31, 0.63, 1.27} and 𝑟2 𝑖 = {1, 2, 3, 4}, respectively).
For the purpose of our analyses, we focus on the set of data associated with the

smallest tip-seal radius.

Recent geostatistical analyses of these data include the works of (Dell’Oca et al.

2020; Riva, Neuman, et al. 2013).

Given the size of the minipermeameter tip, the original Berea sandstone dataset

can be considered exhaustive and is used as the (hydrogeological) field equivalent

of the pancake image. A sub-sample of the air permeability data to be used in our

uncertainty analyses is then obtained upon considering the information available

on a uniform 8 × 8 grid, approximately corresponding to 10% of the field. This
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Figure 3.2:Data Overview: a) Permeability data associatedwith one of the faces (denoted as

face 1) of the Berea sandstone sample obtained through the minipermeameter characterized

by a 0.15 cm inner radius of the tip. Data are originally published and described in Vincent C

Tidwell and John L Wilson (1999) and Vincent C. Tidwell and John L. Wilson (1997). b)
Spatial distribution of the data associated with the pancake setting (see also figure 3.1 a)),

color gradation being adjusted to match the corresponding visualization related to the

Berea sandstone sample. Symbols in (a) and (b) correspond to the data employed in our

exemplary analyses. c, d) Empirical variogram obtained considering the sampled data

depicted in (a) and (b) for the Berea sandstone grid sample (c, blue circles) and the pancake

dataset (d, black circles). The purple area corresponds to the uncertainty bounds estimated

for the variograms.
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enables us to perform the same types of analyses for the two selected datasets and

consistently compare results across these.

3.4.2 Empirical variogram estimation

Empirical variograms are estimated using the Python package SciKit-GStat (Mirko

Mälicke, Möller, et al. 2021a). The package offers various options to this end.

The scientific demo application integrates nine out of the ten binning algorithms

implemented in SciKit-GStat (table 3.1). Depending on the binning algorithm, the

user may select the number of lag classes for the evaluation of the variogram and

the associated confidence limits. The largest separating distance at which point

pairs are formed can be set directly or selected from predefined values such as, e.g.,

the median separating distance. The semi-variance of the resulting population of

increments corresponds to the sample variogram for a given separation distance

(or lag) and can be estimated through one of the five implemented estimators (table

A.1). In case of a positively skewed data set and in the presence of outliers, we

recommend the use of robust semi-variance estimators (see, e.g., Table A.1).

The empirical variogram for the pancake dataset (fig. 3.2 d) is estimated upon

relying on Matheron semi-variance (Matheron 1963) according to 14 evenly spaced

bins. The largest separating distance between a point pair was set to 100 grid units,

thus coinciding with the length of the side of the domain across which data are

sampled. Visual inspection of the results shows that the empirical variogram is

characterized by a nugget/sill ratio of about 0.25. This is deemed as a remarkable

amount of the total observed variability that could not be explained by the observed

degree of spatial dependence (or correlation) of the target quantity.

The empirical variogram for the data associated with the Berea sandstone sample

is depicted in figure 3.2 c). The KMeans based binning algorithm (see table 3.1) is

employed to form 10 lag classes up to the largest considered lag of 24 cm. Similar

to the pancake dataset, this corresponds to the length of the side of the domain

across which data are sampled. The semi-variance is evaluated using the Matheron

estimator, consistent with the pancake dataset. These results (see fig.3.2) suggest

that the nugget/sill ratio of the empirical variogram might be smaller for the Berea

than for the pancake dataset.

3.4.3 Uncertainty bounds of the empirical variogram

The key element of the application is the possibility to propagate observation uncer-

tainties onto the estimation of the empirical variogram. These are then ultimately
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Table 3.1: Overview of all lag class binning methods implemented in SciKit-GStat (from

Mirko Mälicke, Möller, et al. (2021a)).

Function Identifier Description Implementation

Equidistant

lags

’even’ 𝑁 lags of same width; Almost always

used.

Mirko

Mälicke,

Möller, et al.

(2021b)

Uniform

lags

’uniform’ 𝑁 lags of same sample size; Estimates

are based on the same sample size &

no empty bins

Mirko

Mälicke,

Möller, et al.

(2021b)

Sturge’s rule ’sturges’ Equidistant lags derived from

Sturge’s rule; use for small normal

distributed distance matrices

Virtanen et

al. (2020)

Scott’s rule ’scott Equidistant lags derived from Scott’s

rule; use for large datasets

Virtanen et

al. (2020)

Freedman-

Diaconis

estimator

’fd’ Equidistant lags; use for small

datasets with outliers in the distance

matrix

Virtanen et

al. (2020)

Square-root ’sqrt’ Equidistant lags; Very fast function,

but usually not recommended

Virtanen et

al. (2020)

Doane’s rule ’doane’ Equidistant lags; based on data skew-

ness, use for small non-normal dis-

tance matrices

Virtanen et

al. (2020)

K-Means ’kmeans’ Non-equidistant lags; clustered dis-

tance matrix is used as binning; slow

but statistically robust

Pedregosa

et al. (2011a)

Hierarchical

Clusters

’ward’ Non-equidistant lags; clustered dis-

tance matrix is used as binning; Based

on Ward’s criterion for minimizing

cluster variance. Computational in-

tensive

Pedregosa

et al. (2011a)
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Table 3.2: Overview of all semi-variance estimator functions implemented in SciKit-GStat

(Mirko Mälicke, Möller, et al. 2021a) (modified after Mirko Mälicke, Möller, et al. (2021a)).

Estimator Identifier Description Reference

Mathéron ’matheron’ Default, most popular estimator Matheron

(1963)

Cressie-Hawkins ’cressie’ Power transformation based - robust

to outliers

Cressie and

Hawkins

(1980)

Dowd ’dowd’ Median based, fast estimator for non-

normal distributed residuals

Dowd (1984)

Genton ’genton’ Percentile-based estimator - powerful

for skewed residuals, but very com-

putationally intensive

Genton

(1998)

Shannon Entropy ’entropy’ Information theory metric focusing

on information content of residuals

Shannon

(1948)

employed to characterize the empirical variogram through bounds of uncertainty.

We note that we specifically tailor our approach to empirical variograms and con-

sider the underlying random field to be either second-order stationary or to satisfy

the intrinsic hypothesis.

The first option available relies on the quantification of a confidence interval

through the standard deviation of the empirical density of the (zero-mean) residuals

of the squared increments of the target quantity corresponding to a given lag. The

approach is straightforward and can be used, e.g., when no other information on

observation uncertainty is available. The characteristic width, 𝛿 , associated with

the confidence interval is evaluated as:

𝛿 = 𝑧
𝜎
√
𝑁

(3.1)

where 𝜎 is the standard deviation of sample squared increments, 𝑁 is sample

size, and 𝑧 is the 𝑧-score of the desired confidence level of the standard Normal

distribution function 𝑍 . As the uncertainty bound is evaluated on the basis of the

confidence interval of the mean point pair residual, the central limit theorem is

expected to hold. The latter may be violated, though, when using a high number

of lag classes in combination with a small sample size for some of these. We thus

encourage the user to carefully inspect the histogram of point pairs associated

with all lag classes. Note that in the following we consider typical 95% confidence
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intervals for the Berea sandstone sample variograms. This approach is employed

for the Berea sandstone scenario, as no further information on actual observation

uncertainties is available.

The second approach is based on the evaluation of semi-variance values for

each lag class in the context of a 𝑘-fold statistical robustness test. The application

implements options to subdivide each class associated with a given lag into 3, 5,

7, or 10 folds and evaluate the semi-variance 𝑘 times for 𝑘 − 1 folds comprised in

the bin. Upon relying on 100 iterations, values of squared increments are allocated

randomly to the folds and the uncertainty bounds are evaluated for the 𝑖 × 𝑘
estimated semi-variance values. The number of iterations can be adjusted by the

user. The key assumption underlying this approach is that the robustness of semi-

variance values calculated for a large number of smaller subsets strongly reflects

the true uncertainty associated with the semi-variance. The main advantage of

the methodology is that it does not require any particular assumptions about the

residual distribution because it simply evaluates the actual semi-variance given

the reduced size dataset. Otherwise, a weak element of the procedure is that it is

quite sensitive to the settings of the robustness test (especially to sample size). If

the number of pairs within each lag class is not sufficiently large, the 𝑘-subsets

might be too small to infer robust statistics. Otherwise, when considering large

samples, the computational demand for this iterative process needs to be carefully

considered and might hamper its efficiency. The approach is well suited to tackle

scenarios where the user cannot quantify observation uncertainties and the amount

of data enables one to avoid resorting to the simple approach encapsulated in eq.

3.1.

The third approach implemented is set within a numerical Monte Carlo sim-

ulation context. It is here demonstrated considering the (re-sampled) field of

observations resulting from the original data. The array of observations is replaced

by a randomly generated array, given a specified aleatory uncertainty measure.

Here, we consider three kinds of uncertainty metrics that can be propagated onto

the variogram.

A first metric is based on considering measurement error to be represented by

a uniform distribution with a given mean (corresponding to the observed value)

and a minimum/maximum value specified by the user, which we will denote as

measurement error bounds. This enables one to assign the same weight to all of the

values included in the support of the distribution.

A second metric relies on the standard error of the mean (SEM) of the obser-

vations. The latter needs to be specified by the user as an input parameter to the

procedure. By doing so one considers observation errors to be characterized by a
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Normal distribution with a given mean (corresponding to the observed value) and

standard deviation, 𝜎 , given by:

𝜎 = 𝑆𝐸𝑀 ∗
√
𝑁 (3.2)

where 𝑁 corresponds to the sample size.

A third option considers specifying directly the standard deviation of the afore-

mentioned Normal distribution.

Resorting to a given observation error metric depends on available metadata,

i.e., on additional information eventually complementing the analyzed dataset. For

example, some manufacturers of physical sensor devices might supply SEM values,

while modeling results might rather be associated with a well defined error bound.

It is quite often possible to estimate one of the three aforementioned metrics from

expert knowledge. When knowledge on the uncertainty metrics described above is

available, the Monte Carlo approach is preferable, as compared to the other options

described, which are based on stronger assumptions. If available, SEM is possibly a

preferred aleatory uncertainty measure, as it describes observation uncertainties

by definition.

The empirical variogram is then represented through the evaluated uncertainty

bounds. These embed the concept of uncertainty we propose to employ in the

context of geostatistical analyses fully encapsulating uncertainty in the empirical

variogram. In line with the spirit of our study, we then obtain a collection of

variogram models (and ensuing parametrizations) that are consistent with an

interpretation of a variogram based on the concept of uncertainty bounds. As

previously stated, the ensuing collection of models (and parameters) can then be

employed to propagate variogram uncertainty onto geostatistical analyses (i.e., in

the context of estimation and/or simulation scenarios).

3.4.4 Theoretical model performance metrics

Accounting for uncertainty bounds of the empirical variogram enables one to

consider a)multiple parameter sets conditional to a given model and/or b)multiple

competing model formulations that are all consistent with the level of uncertainty

associated with observations. Thus, model selection is a major epistemic source

of uncertainty, directly tied to our research hypothesis H2 (Section 3.2). A key

research question tackled through the tool hinges on the identification of theoretical

variogram models that, following a given parametrization, are fully comprised
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Table 3.3: Overview of all theoretical variogram model functions implemented in SciKit-

GStat (modified after Mirko Mälicke, Möller, et al. (2021a)).

Model Identifier Description Implementation

Spherical ’spherical’ Short ranged correlation length, pop-

ular model in geoscience; for smooth,

but steep gradients in fields.

Burgess and

R. Webster

(1980)

Exponential ’exponential’ Long ranged for smooth fields with

less steep gradients.

A G Jour-

nel and

Huijbregts

(1976)

Gaussian ’gaussian’ Mid ranged for sharply changing

fields

A G Jour-

nel and

Huijbregts

(1976)

Cubic ’cubic’ Similar to Gaussian models, but with

a shorter correlation length.

Montero et

al. (2015)

Matérn ’matern’ Has an additional smoothness param-

eter to adapt shapes between Expo-

nential and Gaussian models.

Zimmermann

et al. (2008)

Stable ’stable’ Has an additional shape (power) pa-

rameter to adapt the range.

Montero et

al. (2015)
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within the identified uncertainty margins.

Model formulations available in the toolbox are listed in table 3.3.

The toolbox implements a variety of metrics to assess model performance, as

detailed in the following Sections.

Root Squared Mean Error - RMSE

An adjusted version of the root squared mean error (𝑅𝑀𝑆𝐸) can be used as a

goodness-of-fit metric for a given variogram model parametrization. In this context,

for uncertainty bounds of width 𝛥𝛾 = 𝑢 − 𝑙 (𝑢 and 𝑙 being an upper and lower limit)

at a given lag and for a target model variogram 𝛾 , we set 𝑅𝑀𝑆𝐸 := 0 if 𝑙 < 𝛾 ′ < 𝑢.
Otherwise, 𝑅𝑀𝑆𝐸 is evaluated as:

𝑅𝑀𝑆𝐸 =

√∑𝑁
𝑖=0𝑚𝑖𝑛(𝛾 ′𝑖 − 𝑢, 𝑙 − 𝛾 ′𝑖 )2

𝑁
(3.3)

where 𝑁 is the number of lags at which the empirical variogram (and hence the

uncertainty bounds) is estimated from available data. We note that 𝑅𝑀𝑆𝐸 is used

to assess the model solely on the basis of the fit of the theoretical model to the

empirical variogram uncertainty bounds. As such, it does not provide information

about the ability of a given model (or model parameter set) to correctly estimate or

simulate the analyzed quantity at unobserved locations.

Cross-validation through Ordinary Kriging

As a second metric that can be employed to evaluate the performance of a given

variogram model, we also rely on a classical leave-one-out cross-validation. For

𝑍 (𝑠𝑁 ) observations, the model is applied considering 𝑁 − 1 observations to esti-

mate 𝑍 (𝑠𝑁 )∗ at the omitted location via Ordinary Kriging. The ensuing differences

between observed and interpolated values are then assessed upon relying on their

associated RMSE. A value of 𝑅𝑀𝑆𝐸 = 0 indicates that the model is capable of re-

producing the observations. Increasing values of 𝑅𝑀𝑆𝐸 correspond to an increased

mismatch between observation and interpolation-based estimates.

Deviance Information Criterion - DIC

The application also allows for the evaluation of a given variogram model upon

relying on model selection criteria. These are employed to evaluate the relative

skill of a candidate model (as compared against other model analyzed) to interpret
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available observations. We rely here on formal model selection criteria to evaluate

(in a relative sense) the ability of each of the models we consider to be consistent

with the estimated uncertainty bounds related to the empirical variogram. Among

the various model selection criteria proposed in the literature to discriminate

amongst models (see e.g. Höge et al. (2018) and Riva, Panzeri, et al. (2011)), we rest

here on the Deviance Information Criterion 𝐷𝐼𝐶 (Spiegelhalter, Best, Carlin, and

Van Der Linde 2002; Spiegelhalter, Best, Carlin, and Van der Linde 2014), which is a

generalization of the Akaike Information Criterion 𝐴𝐼𝐶 (Akaike 1973; Hurvich and

Tsai 1989).

The deviance 𝐷 of a given model (parameterized through a set of parameters

collected in vector ®𝛩 ) is given by:

𝐷 ( ®𝛩 ) = −2𝑙𝑛(𝐿) (3.4)

where 𝐿 is the likelihood function of the considered theoretical variogram model.

Here, we consider the following definition of a negative log-likelihood function

from (Lark 2000, eq. (14)):

𝐿(𝑟, 𝑠 | ®̂𝑚, 𝜎̂2, ®𝑧) = 𝑛

2

𝑙𝑛(2𝜋) + 𝑛
2

− 𝑛
2

𝑙𝑛(𝑛) + 1

2

𝑙𝑛 | ®𝐴|+
𝑛

2

𝑙𝑛

(
(®𝑧 − ®̂𝑚)𝑇𝐴−1(®𝑧 − ®̂𝑚)

) (3.5)

where ®𝑧 is a vector whose entries correspond to 𝑛 available observations; 𝑟 and 𝑠

are the range and sill of the considered variogram model, respectively;
®̂𝑚 is a vector

of maximum likelihood estimates of the available data at the observation points

(see also Lark (2000, eq. (12))); 𝜎̂2 is a maximum likelihood estimate of the sample

variance (see also Lark (2000, eq. (13))); and 𝐴 is the auto-correlation matrix for the

sample and specified (Lark 2000, eq. (9)) as follows:

®𝐴(𝑖, 𝑗) = 1 𝑖 = 𝑗,

= 𝑠{1 − 𝑓 ( ®𝑥𝑖 − ®𝑥 𝑗 |𝑟 )} 𝑖 ≠ 𝑗
𝑠 =

𝑐

𝑐0 + 𝑐
(3.6)

Here, 𝑖, 𝑗 are the indices corresponding to the observation locations; 𝑓 ( ®𝑥𝑖 − ®𝑥 𝑗 |𝑟 )}
is the spatially structured component of the variogram model conditioned only to

the range parameter, 𝑟 ; 𝑠 is a term associated with the nugget to sill ratio, 𝑐 and 𝑐0
corresponding to the variogram sill and nugget, respectively.

We note that equation (3.5) underlies the assumption of Gaussian distribution for

the associated variogram model parameters.
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The deviance information criterion penalizes a model with respect to its com-

peting counterparts through the complexity of its parametrization. The latter is

quantified via the concept of effective parameters, 𝑝𝐷 , defined as:

𝑝𝐷 = 𝐷 ( ®𝛩 ) − 𝐷 ( ®𝛩 ) (3.7)

where ®𝛩 is the mean of all parameters associated with a given model (i.e., a given

functional format of the variogram) and 𝐷 ( ®𝛩 ) is the sample mean of deviance

evaluated across all models and parameter sets.

Considering the sample probability density of model parameters, 𝐷𝐼𝐶 is then

evaluated as:

𝐷𝐼𝐶 = 𝐷 ( ®𝛩 ) + 𝑝𝐷 (3.8)

Following Spiegelhalter, Best, Carlin, and Van Der Linde (2002), one could assess 𝑝𝐷

upon relying on the mode or on the median of the distribution of model parameters

assessed through model characterization on the basis of the uncertainty bounded

empirical variogram. All of these options are implemented in the toolbox. As an

additional option to evaluate 𝑝𝐷 , we also consider Gelman et al. (2014, eq.7.10):

𝑝𝐷 =
1

2

𝑣𝑎𝑟 (𝐷 ( ®𝛩 )) (3.9)

This formulation always yields positive values for 𝑝𝐷 , which, in turn, makes the

use of 𝐷𝐼𝐶 very intuitive. Thus, we use the latter approach and formulation for

this study and as a default option for the toolbox due to its readily intuitive nature.

Structural risk minimization

Another area where one usually needs to balance between model complexity and

over-fitting is machine learning. In this context, an appealing framework is provided

by the concept of structural risk minimization (Vapnik and Chervonenkis 1974).

While the toolbox implements a variation of the latter, we not pursue it further in

this study. The interested reader is referred to Appendix .1, where the available

option from the toolbox is briefly illustrated.

3.4.5 Variogram model assessment

The toolbox function formanual variogramfitting enables the user to a) select any of
the available theoretical variogram models and b) interactively parameterize these
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for the desired number of model parameter sets while considering the estimated

uncertainty bounds related to the given empirical variogram. The quantitative

metrics described in Section 3.4.4 are evaluated for the collection of all models

and associated parameters employed for data interpretation. We recall that the

objective here is to sample the set of possible theoretical model functions and their

parametrizations. We further note that other techniques conductive to (posterior)

distributions of model parameters such as, e.g., acceptance-rejection sampling (e.g.

Russian et al. 2017, and references therein) are not yet embedded in the toolbox.

Otherwise, the modular nature of the toolbox facilitates the integration of additional

simulation tools. Thus, users are foreseen to be able to choose among various

approaches (as soon as these are implemented) to obtain a collection (i.e., an

ensemble) of candidate theoretical models (and ensuing model parameter sets)

in their scenarios of interest.

The collection of model functions and ensuing parameter sets are then filtered

to retain the best-performing models. With reference to this issue, our toolbox

implements an interactive, feature-rich selection interface. The user may perform

model selection analysis upon relying on one of the metrics detailed in Sections

3.4.4 to 3.4.4 or comparing the results associated with the use of all of these. While

the demo application is currently confined to a given number of options for model

selection, its flexible structure enables one to seamlessly expand on these. The

user can either a) retain a fixed amount of parameter sets (e.g 10 best ones), b)
retain a fixed amount of parameter sets stratified by model type (like 3 Gaussian, 3

Spherical, and so on) or c) calculate a threshold by defining an acceptable relative

deviation from the best parameter set. Only the selected parameter sets are then

considered for the estimation of a Kriging uncertainty bound, as described in the

following Section.

3.4.6 Kriging uncertainty bounds
Our toolbox includes four different Kriging algorithms from GSTools (Müller et al.

2021a). While the default option is Ordinary Kriging, the user may select to rely on

either Simple or Universal Kriging. If auxiliary information is available, external

drift Kriging can be used, incorporating such data as drift. For Simple Kriging, the

mean of the field needs to be specified by the user. For Universal Kriging, a linear

or a quadratic internal drift term is currently available.

To propagate uncertainties to a Kriging application, each of the selected models

is used with each of the associated parameter sets to project the data onto a target

grid. While the size of such grid can be specified interactively by the user, the
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toolbox also implements some options to automatically evaluate the coordinate

locations for each grid cell.

The following option is of interest for our demo software. In case the user uploads

a field (such as, e.g., the pancake scenario we consider) and uses the toolbox to

sub-sample it, the toolbox automatically uses the grid of the originally uploaded

field, if Kriging is applied to the sub-sample. The advantage of this procedure is
that one can associate a value from the originally uploaded field to any location

of the target grid which is not tied to the sub-sample. This enables the user to

objectively assess the overall performance of each kriged field.

The uncertainty propagated onto the Kriging-based estimates corresponds to the

range of interpolation estimates associated with each grid location. We note that the

number of available estimates matches the number of selected models and model

parameter sets. In some cases, it is possible that a given parameter set is conducive

to kriged estimates that markedly differ from those of the remaining models and

model parameter sets, either across the whole target field or only within a certain

region. Thus, an important feature implemented in the tool enables one to examine

and compare the contribution of a given parameter set to the overall uncertainty

of the results. We do so upon relying on the Shannon entropy (Shannon 1948)

associated with the collection of predictions at each grid cell/node. The Shannon

entropy is defined as:

𝐻 = −
𝑀∑
𝑖=0

𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖) (3.10)

where 𝑝𝑖 is the empirical probability of non-exceedance of the 𝑖 − 𝑡ℎ value of the

collection of estimates related to a target location in the domain. The Shannon

entropy is well suited to analyze redundancy within a model and model parameter

collection (R. Loritz et al. 2018; M. Mälicke et al. 2020, e.g.). Non-exceedance

probabilities are evaluated upon subdividing the range of the obtained interpolated

values across the whole domain into a number𝑀 of bins, which is typically set to

the number of selected parameter sets. This is tantamount to considering the same

binning for obtaining 𝑝𝑖 at all grid locations.

In order to compare Shannon entropy across datasets and assess the agreement

of estimates between the models and ensuing parameter sets, the Shannon entropy

is normalized. A suitable normalization considers the Shannon entropy of a distri-

bution of𝑀 uniformly sized bins, 𝐻𝑚𝑎𝑥 . For the whole domain, the same 𝐻𝑚𝑎𝑥 will

be considered. The normalized Entropy 𝐻𝑛 =
𝐻

𝐻𝑚𝑎𝑥
is a measure of how close the

distribution of estimates in each grid cell is to a uniform distribution (corresponding

to𝐻𝑛 = 1). Thus, it can be used to identify grid locations of high estimate variability
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within a set of Kriging results. It can also be used to compare results across multiple

datasets, with respect to the number of parameter sets selected. We note that a

𝐻 = 0 for a given grid location implies that all estimates reside within the same bin.

This does not imply that all estimates are numerically close, because 𝑀 (i.e., the

number of selected parameter sets) might be quite small in some cases. Here, we

use the normalized Shannon Entropy to identify regions of the domain where there

is high estimate variability, that can then be compared across multiple datasets.

3.5 Results

3.5.1 Variograms and related uncertainty
Here, we illustrate all details of the application with reference to the pancake

sample. We then present and analyze our findings for the Berea sandstone sample

(see fig. 3.2, a&b). Visual inspection suggests that the two fields display a similar

spatial structure and their variograms exhibit a similar pattern (fig. 3.2 c&d). The

two variograms differ clearly with respect to the width of their uncertainty bounds.

The latter is larger for the Berea sandstone dataset. We note that, taking only the

uncertainty bounds into account, almost any theoretical model might fit each of

these empirical variograms and a prior selection of a specific model is not justified.

3.5.2 Theoretical variogram models and associated
performance metrics

With respect to the uncertainty bound of the empirical variogram, almost none of

the theoretical model (here manually parameterized) can be rejected (see fig. 3.3

a). Figure 3.3 b) provides a graphical depiction of the relevant metrics for all of

these models. Here, the different model types are listed in the first column and each

band represents one set of model parameters, color gradation being indicative of a

given model type. The first connection to the second column ranks the models by

their fit in terms of 𝑅𝑀𝑆𝐸 (eq. (3.3)). For visual reasons, 𝑅𝑀𝑆𝐸 values are ranked

and grouped into quartiles, with the 25% best performing model parameter sets at

the top of the column. The bands spread out significantly and are not grouped by

model type anymore. This stresses the visual impression that no model instances

are significantly off when considering empirical variogram uncertainty.

The third column in figure 3.3 b) ranks the model parameter sets by the corre-

sponding 𝐷𝐼𝐶 value (eq. (3.8)). By design the model parameter sets are grouped by
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Figure 3.3: a) Uncertainty bounds (gray area) associated with the empirical variogram

related to the pancake dataset, including with all theoretical variogrammodels fitted (green

curves). b) Parallel coordinates plot for the models depicted in (a) showing the considered

performance metrics, i.e., 𝑅𝑀𝑆𝐸 (2nd column), 𝐷𝐼𝐶 (3rd column), and cross-validation (4th

column). The first column groups the individual models by their type and corresponding

color gradation. For each of the measures, the models are ranked into quartiles; as an

illustrative example, we consider < 25% to delineate the collection of the best performing

models.
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Figure 3.4: a) Uncertainty bounds (gray area) associated with the empirical variogram

related to the Berea sandstone dataset, including all theoretical variogram models fitted

(green curves). b) Parallel coordinates plot for the models depicted in (a) showing the

considered performance metrics, i.e., 𝑅𝑀𝑆𝐸 (2nd column), 𝐷𝐼𝐶 (3rd column), and cross-

validation (4th column). The first column groups the individual models by their type and

corresponding color gradation. For each of the measures, the models are ranked into

quartiles; as an illustrative example, we consider < 25% to delineate the collection of the

best performing models.

74



Results Section 3.5

model type, as 𝐷𝐼𝐶 is a performance metric on model type and does not distinguish

among the different parametrizations. Similar to other information criteria, 𝐷𝐼𝐶

grounds the suitability of a given model on the likelihood of the model parameters,

given the sample distribution. In terms of 𝐷𝐼𝐶 , the Cubic and Gaussian models

perform best, while exponential and stable models are characterized by poorer

performance. We further note that, due to manual parametrization, the model

collection sizes are quite small and 𝐷𝐼𝐶 values might change when additional

parameter sets are added to the collection.

The last column in figure 3.3 b) provides a ranking of the model parameter sets

grounded on cross-validation results. The predictive power of each (manually

fitted) model and model parameter set is assessed by applying Kriging interpolation

via a leave-one-out cross-validation for all observation points. Interestingly, all

bands cross on the connection of the third and fourth column (see fig. 3.3 b). Thus,

model and model parameter ranking change to favor Matérn parametrizations

over Gaussian and cubic models. One has to keep in mind that for the purpose

of our demonstration Kriging is only applied to the sample considered and model

performance might differ for unobserved locations. This is expected to depend on

the density and structure of the observation points.

Taking all of the above elements into consideration, one can conclude that the

uncertain observations allow for various models and ensuing parametrizations

to be considered as suitable in a virtually indistinguishable way. This is largely

supported by the 𝑅𝑀𝑆𝐸 results. In practice all parameter sets would be accepted in

any least-square based automatic procedure. The 𝐷𝐼𝐶 criterion rests on variogram

likelihoods given the sample distribution and does favor specific model types over

others. This can loosely be seen as an assessment of how and which models an

automated maximum likelihood approach favors. Results from cross-validation,

which is conceptualized as a visualization of the training error of the model, are in

contrast with those provided by 𝐷𝐼𝐶 . This finding is unexpected and raises some

interesting questions about when and how to apply automatic and semi-automatic

fitting procedures.

The shape of the uncertainty bound is slightly different for the Berea sandstone

sample and is characterized by a less pronounced increase of semi-variances within

the first few lag classes. Similar to what can be observed for the pancake dataset,

all theoretical variogram functions (green curves in fig.3.4a) appear to be equally

compatible with the estimated uncertainty bounds. This results in a straightforward

parametrization of Gaussian or Gaussian-shaped Matérn models. Otherwise, the

exponential and exponentially shaped stable models appear not to be fully com-

patible with the estimated uncertainty bounds, with special reference to the upper
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limit of these. This behavior is also reflected by the 𝑅𝑀𝑆𝐸 values in the second

column (fig. 3.4 b), which rank the exponential model parametrizations slightly

lower than for the pancake dataset.

According to the values of 𝐷𝐼𝐶 (fig. 3.4 b), spherical and exponential models are

highly ranked, as opposed to their Gaussian and stable counterparts. Similar to

the pancake dataset, results of cross-validation based on Kriging appear to favor

some models that were ranked low according to the other metrics employed. While

the Gaussian models still perform worse than others, the stable models are ranked

significantly higher according to this metric. It is worth noting that all parameter

sets of the stable model lie in the best performing quartile in terms of Kriging

cross-validation, even those that visually show notable deviations when juxtaposed

to the uncertainty bound. The same finding holds for the exponential model. All

parametrizations of the latter are ranked in the lowest quartile for RMSE, in the

highest quartile for 𝐷𝐼𝐶 and close to median for the cross-validation metric.

In summary, there is no model type that is ranked low consistently by all metrics

across both datasets considered. Likelihood- and uncertainty bound- driven metrics

do not yield a unique and unequivocal outcome when analyzed jointly and neither

of these is entirely supported by Kriging cross-validation across the collection of

the corresponding parameters. Possibly, a clear conclusion is that Gaussian models

should be avoided, although they appear to fit the uncertainty bound best.

All of these results suggest that any kind of automatic variogram fit should always

be complemented by careful inspection of results of the kind we illustrate, on the

basis of multiple metrics, each revealing a particular aspect of uncertainty.

3.5.3 Kriging uncertainty bounds
A collection of about 30 different model parameter sets has been identified for the

pancake dataset. A critical element in the analysis of the way variogram uncertainty

propagates onto Kriging results is the possibility of ranking model parameter sets

according to the performance metrics selected. This is accomplished through the

implementation of a filtering step in the tool. The latter allows for various functions

to filter the model parameter sets with respect to one of the performance metrics

detailed in Section 3.4.4.

All models parameter sets are then ranked with reference to each of the metrics

considered (i.e., 𝑅𝑀𝑆𝐸, 𝐷𝐼𝐶 , and cross-validation). The filter rejects the 10% worst

parameter sets for each metric. For both datasets we find that six instances were

rejected, most of these associated with Gaussian models, which is seen to be ranked

lowest in more than one metric.
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Figure 3.5: Kriging estimation results for the pancake dataset after re-sampling on a

regular grid. Width of the interval of variability of a) Kriged values and b) Kriging error

variance values associated with all models analyzed at each cell across the domain . Note

that a zero variance value means that the Kriging variance is the same for all models. Large

values imply a variable Kriging error variance (It’s illustrating the variability of variances).

c) Normalized Shannon entropy of all model estimates d) Kriging interpolation result for

the best model parameter set (mean rank of RMSE, 𝐷𝐼𝐶 and cross-validation).
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Figure 3.6: Kriging estimation results for the Berea sandstone dataset after re-sampling

on a regular grid. Width of the interval of variability of a) Kriged values and b) Kriging
error variance values associated with all models analyzed at each cell across the domain .

Note that a zero variance value means that the Kriging variance is the same for all models.

Large values imply a variable Kriging error variance (It’s illustrating the variability of

variances). c) Normalized Shannon entropy of all model estimates d) Kriging interpolation

result for the best model parameter set (mean rank of RMSE, 𝐷𝐼𝐶 and cross-validation).
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Propagating variogram uncertainties onto the Kriging results generally leads to

large corresponding uncertainty bounds. By taking different model parametriza-

tions into consideration, one finds a spread of Kriging interpolation results which

is typically of about 25 units, while attaining peaks of about 70 units (fig. 3.5 a),

which corresponds to about 30% of the range of values of the available data. The

width of the Kriging uncertainty bounds is highly heterogeneous in space. In some

areas the uncertainty bounds are not much larger than the observation uncertainty

propagated into the procedure, while being markedly larger in other regions. In

general, uncertainty band widths correlate with the location on the grid and most

model parameter sets seem to disagree in terms of Kriged values close to the domain

boundaries.

As expected, the Kriging error variance generally tends to vanish close to obser-

vation locations. Figure 3.5 b) shows the range of Kriging error variances for all

selected model parameter sets. As expected, and consistent with the dense sampling

arrangement, no particular spatial differences can be identified. We remark that

a value of 0 in figure 3.5 b) implies that all Kriging variance values coincide, all

models being in agreement.

While the range of kriged values for a given unobserved location can be large,

this can be due, in some cases, to a single parameter set or to a limited number

thereof. This element can be investigate through the analysis of the entropy map

of model Kriging results. Figure 3.5 c) depicts the spatial distribution of the values

of the normalized information entropies. Here, a value of 1 or 0 implies large

variability across the collection of estimates or that all estimates fall into the same

bin, respectively. Values of the normalized information entropy of estimates (fig.

3.5 c) are largely spread evenly across the domain, even as some clusters are noted

around a number of observation locations. Values are small in most areas. This

finding suggests that only a few model parameter sets are driving the width of the

uncertainty bands in figure 3.5 a). The entropy map displays a high level of spatial

organization.

The Berea sandstone sample is characterized by similar results (fig. 3.6). There is

a considerable overlap of larger normalized entropies and wider uncertainty bands.

This is especially evident in the proximity of the right boundary of the domain.

Normalized information entropy values are considerably larger for the Berea dataset

(attaining values consistently > 0.4) than their counterparts associated with the

pancake datset. This is consistent with the observation that a number of estimations

differ by orders of magnitudes in these areas. Interestingly, one can also note the

presence of the smallest values of the underlying field in this area. Figure 3.6 d)

shows the Kriging interpolation result stemming from the model parameter set,
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Figure 3.7: Results of the parameter testing phase for 100×100 combinations of sill/nugget

ratio and effective range for a spherical model using the pancake dataset. a) 𝑅𝑀𝑆𝐸 (eq.

3.3) of the model fit to the uncertainty bound. Red or blue grading denotes larger or smaller

metric values. b) deviance value for all parameter combinations. c) Leave-one-out cross-
validation of the interpolated observation values. The orange symbols show the models

and parametrizations used in manual fitting for all model types (the spherical model types

are marked by thick yellow outline). The red cross marks the global minimum for each of

the parameter tests.

best performing in terms of mean rank in all used performance metrics. From here,

these areas, colored blueish, can easily be identified.

3.5.4 Identifiability of variogram model parameters for
uncertain variograms

We exemplify the way one can select some parameter sets as optimal upon relying

on the concept of variogram uncertainty bounds through a detailed analysis of the

corresponding metrics based on the spherical variogram model. We do so because

a) the model is seen to perform well for both datasets and b) this is the model type

selected to demonstrate automatic fitting of empirical variograms with SciKit-GStat

by (Mirko Mälicke, Möller, et al. 2021a).

Here, we use only the definition of the deviance in equation (3.4). As the mean

deviance will be the same for all parameters, the value of 𝐷𝐼𝐶 will be linearly
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dependent on the deviance. At the same time, the negative log-likelihood function

used in a maximum likelihood approach differs only by a factor of 2 from equation

(3.4). Thus, this enables us to jointly interpret the results in terms of maximum

likelihood (deviance) and method-of-moment (RMSE) approaches.

Each of the aforementioned metrics is evaluated (fig.3.7) for 100 × 100 combina-

tions of range and nugget/sill ratios. A maximum nugget to sill ratio value of 1 was

used (i.e., nugget and sill have the same (absolute) value). We note that considering

values of this ratio larger than unity might hamper the usefulness of geostatistical

approaches, which rest on the concept of a spatial correlation structure.

We added to the coordinates of the grid locations a white noise of about 0.1‰of

the grid extent. Thus, any impact on the lag classes of the empirical variogram can

be neglected. This was a necessary step to circumvent the issue that the Kriging

system of equations be associated with too many instances of singular matrices.

This likely originated from the regular spacing of the sampling locations, as further

detailed in Section 3.6.3.

Large areas show a satisfactory performance in terms of 𝑅𝑀𝑆𝐸 of model fit (fig.

3.7 a). Moreover, figure 3.7 a) illustrates clearly that there is in fact parameter

equifinality (K. Beven and Binley 1992) due to parameter interaction. We note that

a global minimum is not readily identifiable across the parameter space. All of the

results of the manual parametrizations here presented (orange dots) lie within the

area of optimal parameter values (blue-graded region).

The deviance metric does not yield a result for several parameter sets (fig. 3.7 b);

white regions). Here, the auto-correlation matrix 𝐴 (see eq. 3.6) is singular and

could not be inverted. The extent of the blue-graded areas is considerably smaller

than for the the 𝑅𝑀𝑆𝐸 metric. Finally, figure 3.7 c) illustrates the leave-one-out

cross-validation metric for all 100 × 100 parameter combinations. Similar to the

𝑅𝑀𝑆𝐸, all manually fitted parameter sets are contained in the blue-graded area

within which good performance values of the metric are obtained. The global

minimum is very close to the lower right corner (range of 93 and nugget to sill

ratio of 0.01). We note that the 𝑅𝑀𝑆𝐸 and cross-validation metrics appear to be in

a substantial overall agreement.

3.6 Discussion
Our analysis provides a clear evidence that a) uncertainty of the experimental

variogram should not be ignored and b) the presented toolbox markedly facilitates

assessment and propagation of such uncertainty onto a set of acceptable theoretical
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variogram models and corresponding Kriged fields. The presented test cases yield

insights into the ability of different performance metrics and on the goodness of

individual members of a family of acceptable variogram models (in terms of their

ensuing parameters). Interestingly, ranks of individual models and parameter sets

is not the same for the different metrics. We show these elements for two data sets,

by propagating uncertainties into the empirical variogram, assessing acceptable

theoretical variogram models and their associated parameter sets, and comparing

their kriged estimates across the system (also considering cross-validation) as well

as the spreading of Kriging results at unobserved locations. Overall, a clear choice of

a superior variogram model type or the identification of a best parameter set cannot

be identified. A key asset of the presented toolbox is that it also provides enhanced

understanding about how and where these uncertainties are caused. While a variety

of selection algorithms or variogram parameter optimization approaches could

be considered, for the purpose of our demonstration we choose a straightforward

approach and eliminate models which perform poorest with respect to each of the

performance metrics.

We acknowledge that the current stage of our work and version of the associ-

ated tool is restricted to an isotropic spatial covariance. Otherwise, a variety of

environmental variables/quantities exhibit an anisotropic spatial covariance, also

depending on the scale at which they are considered. As an example, we mention

cold front precipitation bands, topography or macropores in soils, as well as sedi-

mentological attributes or parameters characterizing variably saturated subsurface

flow. The standard approach to detect a geometric anisotropy is to use directional

experimental variograms. While our method to estimate uncertainties can be read-

ily applied to the assessment of directional experimental variograms, this task is

beyond the scope of the current study.

In the following we discuss a) the way the toolbox can assist interactive geosta-

tistical analyses, b) variogram estimation under uncertainty and the related model

evaluation, and c) the assessment of our driving hypotheses.

3.6.1 Interactive geostatistical analysis
Our software toolbox is built on established and well-tested software packages

for numerical computing, visualization, and geostatistics. The implementation

focuses on well-defined datasets. By providing clear interfaces and metadata, our

API can be used to automate common tasks and build user interfaces such as those

associated with the illustrated sample application. This is not only convenient

but also considerably speeds up analysis workflows. As such, it empowers early
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stage researchers and students to dive deeper into the material and scientists and

practitioners to operate on data more effectively. This will ultimately favor practical

implementations of new approaches. As an example: We would not have been

able to manually parameterize so many models more effectively and faster than

automatic approaches if it would not have been for an interactive slider element

that enables one to adjust variogram parameters on the fly.

All this convenience comes at the cost of the implementation effort. As the user

is less engaged with the actual, technical implementation than in more traditional

scripting approaches, the software to be employed needs to be built in a general-

ized way. Achieving this element, in turn, needs comprehensive tests to ensure

technical correctness. Tutorials and a complete and detailed documentation are

equally important. Otherwise, the user will not be able to identify misuses and

errors. A website and video tutorials are available for SKGstat-Uncertainty.
Remarkably, the essential core of all calculations is implemented within other soft-

ware products, each of these being carefully chosen to entail comprehensive testing

and documentation. This enables the user to focus on analysis and visualization

while being confident in the technical correctness of the results.

3.6.2 Uncertain variogram estimation and model evaluation
Using different methods for uncertainty propagation and estimation, we evaluate

uncertainty bounds for the empirical variogram associated with the two showcases

illustrated. This is a key result, as by simple visual inspection it is possible to

estimate variogram parameters manually, thus favoring enhanced understanding

on the system behavior. We note that at least one of each available theoretical

variogram model type could be parameterized to fit into the uncertainty bound, or

at least very close to it. This result confirms our hypothesis H2, as it makes the

epistemic uncertainty relate to a prior model choice waymore obvious than through

a classical fitting procedure targeting empirical variograms. We rely here on manual

procedures, due to their ease of usage and pedagogic potential. Otherwise, we stress

that the toolbox is not limited to manual parametrization. Any suitable alternative

approach implemented in Python (such as, e.g., ensemble learning methods or

acceptance rejection) can be readily implemented into a new chapter of the tool.

An additional added value of tool resides in the observation that data management

and processing chapters, as well as subsequent analysis chapters, are modular.

An important limitation to our illustrative results, though, is that only one in-

stance of an empirical variogram was estimated. The estimation is known to be

sensitive to sampling strategies, especially sampling size, binning procedures, and
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amount of lag classes used. While our modeling choices are based on expert knowl-

edge, there might be a more suitable empirical variogram candidate, especially for

the Berea sandstone setting. The purpose of this work, however, is to demonstrate

the software package for exemplary analyses. Thus, we are confident that the

illustrated insights can be adapted and transferred to focus on other critical aspects

of empirical variograms, such as uncertainty bands based on systematic testing for

different sample sizes.

Each selected variogram model parameter set was used in a Kriging interpolation

context. As shown in figure 3.5 and 3.6, the corresponding interpolation results

differ substantially. Considering all of the interpolation results, it was not possible

to identify a unique model type (or parameter set) that clearly describes the spatial

correlation structure of the field unequivocally better than all others. Otherwise, by

combining insights from three different kinds of evaluation metrics, which focus on

different aspects of a variogram fit, we can exclude model types. This is considered

as an additional key result of our study and approach.

The Gaussian and cubic models are found to interpret adequately the empirical

variogram associated with the pancake dataset (in terms of its uncertainty bounds).

While 𝐷𝐼𝐶 favors these two model formulations, the leave-one-out cross-validation

excludes both of them regardless of their parametrizations. Inspection of the

single interpolated grids based on Gaussian variogram models revealed that all of

them produced considerable amounts of kriged values far outside the observation

value space. We encourage the user of the application to interpret the results by

considering the critical message that observation uncertainties exist and need to

be comprehensively addressed. As analysis results may differ vastly, one could

at least rely on insights obtained through modeling under uncertainty to exclude

models (or parametrizations). This enables one to learn by rejection and enhance

our knowledge from quantification of uncertainties, instead of neglecting these.

We assess sources of uncertainty that affect the different kinds of fitting pro-

cedures (least squares, maximum likelihood, manual) in very different ways and

demonstrate the significance of our results in geostatistical applications . These

insights, if taken into account, can assist in limiting the parameter space for a

geostatistical analysis and lead to new knowledge about a field under investigation.

It also bears an important implication with respect to quality and precision of

the measured data. A smaller sample of highly precise observations will result in

a small variogram uncertainty similar to what one could obtain through a large

sample of less accurate data.
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3.6.3 Model fitting and model parameters

A core decision taken for the application and in the exemplary study we present is

the focus on manual variogram parametrization. Such a manual parametrization is a

valid operational and educational choice. This is especially relevant in cases where

one might select to renounce to some computing speed for a more thoughtful and

detailed variogram analysis. Manual parametrization is straightforward, reflects a

deep understanding of the variogram concept, and can be applied without the need

for the implementation of optimization algorithms.

During the systematic exhaustive testing of variogram parameter values, the

leave-one-out cross-validation calculation failed in several instances, especially

for medium and small values of the effective range parameter. Due to the repet-

itive pattern underlying a grid, the number of distinct separating distances was

significantly decreased in our examples. For the pancake sample, while the upper

triangle of the distance matrix contains more than 4500 entries, these hold only

34 different distance values. The main reason for this is conceptually illustrated

in figure 3.8. For the center point (in red), the Kriging equation system may be

built solely from the surrounding blue points, which are all 1 or

√
2 units away

from the center point. The two blue points at 𝑦 = 1 are symmetrical with respect

to the center. This means that the Kriging equation system is characterized by

duplicated rows at the index of exactly these two points. This makes the Kriging

matrix singular thus hampering its inversion. This was verified to happen quite

often in our examples, as the Kriging algorithm built into SciKit-GStat limits the

neighbor selection by the effective range of the variogram.

The same principle underpins the failure of the likelihood-based calculations ob-

served in most cases.

In line with our first hypothesis that empirical variograms are uncertain, we

present evidence that (Kriging) interpolation results cannot be simply limited to

rely on a unique parametrization. Thus, geostatistical applications need to fully

consider empirical variogram uncertainty bounds. Moreover, the parametrization

of the variogram itself is markedly affected by different kinds of uncertainty. Our

exemplary scenarios provide strong evidence of the basic assumption that propa-

gating observation uncertainties into the variogram would lead to broad ranges of

variogram parameter values that can be employed in a practical application. It is

also apparent that a global minimum for a given metric can not be identified easily.

Furthermore, our results show that there is no evidence that any automatic proce-

dure would perform better, even if only one set of parameters is considered to be

valid. And finally, the best manual fit is very close to the global minimum of RMSE,
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Figure 3.8: Conceptual figure of an observation grid in a dimensionless Cartesian space.

Blue dots correspond to observation locations. The red dot is the point of interest, which is

subject to estimation in a leave-one-out cross-validation. The figure illustrates the repetitive

pattern of just two different distances being used in a Kriging application.
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even if the difference to adjacent parameter sets is considered to be significant.

While, in general terms, 𝑅𝑀𝑆𝐸 (fig. 3.7 a) and cross-validation (fig. 3.7 b) agree in

identifying some sets of well-performing parameters (blue-graded), they also show

some disagreements. These two figures suggest that even if a variogram model fits

well to the uncertainty bound (or to the empirical variogram), cross-validation adds

an additional (enriching) dimension against which the goodness of a performance

should be assessed.

3.7 Conclusions
We introduce the toolbox SciKit-GStat Uncertainty and exemplify its use upon

relying on sample data-sets pertaining to two different processes and scenarios.

Our work leads to the following major conclusions

1. The toolbox is envisioned as a required extension of existing geostatistically-

oriented computational tools and software. Our toolbox is built in a Python

environment and includes the implementation of existing and new approaches

to analyze, visualize, and quantitatively propagate uncertainties in variogram

estimation onto kriging-based estimates and the associated variance. Its

interactive nature empowers one to tackle uncertainty in a straightforward

way and underpins the potential of the tool to play a key role in the context

of research and educational contexts.

2. The toolbox enables one to explore the way various sources of uncertainty

can imprint the results of a geostatistical analysis. Uncertainties considered

through the toolbox arise from measurements (in terms of observations and

location associated with these) as well as from the choice of an interpre-

tive model and its parameters. Thus, the user can readily inspect various

dimensions of uncertainty during variogram analyses. As a notable research

element, we introduce and embed in SciKit-GStat Uncertainty the concept

of replacing an empirical variogram (or semi-variance) through uncertainty

bounds. This provides an original way to explore uncertainty, as imprinted

onto the way one can evaluate the ability of a collection of models and

ensuing parameters to perform variogram analysis upon relying on such

uncertainty bounds. This is accomplished through a processing module that

implements a suite of methods for the quantification of uncertainty associated

with empirical variograms.

3. The software allows operating in a multi-model context and enhances our

ability to interpret spatially correlated (random) fields. Exemplifying the
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use of our toolbox with emphasis on manual variogram parametrization

enables us to emphasize the value of the toolbox in the context of a pedagogi-

cal/educational perspective. The user can then explore the benefit of resorting

to the joint use of various metrics, each of them providing a specific insight

on the quantification of uncertainty, to yield a comprehensive depiction of

system behavior and characterization. In this context, we investigate the

way coupling the concept of variogram uncertainty-bounds with the joint

analysis of multiple methods and metrics can contribute to disregard some

models and parametrizations over others.

.1 Structural risk minimization
Another available option to assess model parameter performance is derived form

structural risk minimization. The work of Vapnik and Chervonenkis (1974) is

focused on classification problems and support vector machines, its basic idea can

be transferred to the scenario we consider. This is consistent with the observation

that model selection can be viewed as a classification problem driven by uncertainty.

The methodology introduced by Vapnik and Chervonenkis (1974) is designed to

balance training errors and an expected over-fitting. Similar to an information

criterion, the so-called capacity of the parameter space is employed, which in turn

should measure model complexity through the minimization of:

𝐽 ( ®𝛩 ) = 𝜀𝑡𝑟𝑎𝑖𝑛 ( ®𝛩 ) + 𝜆𝐻 ( ®𝛩 ) (.11)

Here, 𝜀𝑡𝑟𝑎𝑖𝑛 ( ®𝛩 ) is a measures of training error and𝐻 ( ®𝛩 ) is a regularization term. The

latter penalizesmodels with a higher level of complexity, in terms of parametrization.

The value of the weight 𝑙𝑎𝑚𝑏𝑑𝑎, needs to be set by the user. We adapt this concept

by interpreting the parametrization of a variogram model as the training of our

model and combine it with the 𝑝𝐷 as described in Section 3.8. The scientific demo

application evaluates 𝜀𝑡𝑟𝑎𝑖𝑛 ( ®𝛩 ) either with the 𝑅𝑀𝑆𝐸 (see Section 3.4.4) or the MAE

as suggested by Vapnik and Chervonenkis (1974):

𝑀𝐴𝐸 =

𝑁∑
𝑖=1

𝑚𝑖𝑛(𝑙 − 𝛾 ′𝑖 , 𝛾 ′𝑖 − 𝑢) (.12)

Where 𝛾 ′𝑖 the modeled semi-variance at the 𝑖 − 𝑡ℎ lag class. As such,𝑀𝐴𝐸 := 0 for

𝑙 < 𝛾 ′ < 𝑢.
With reference to the regularization term 𝐻 ( ®𝛩 ) in equation (.11) one can set it

either to equation (3.7) or equation (3.9).
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The toolbox implements all combinations to evaluate equation (.11), but the exem-

plary demo application does not make use of these metrics.
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SciKit-GStat - a SciPy flavored geostatistical
variogram estimation toolbox written in Python

The following chapter A is already published as a model description paper in

Geoscientific Model Development as:

Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation
toolboxwritten in Python, Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-
15-2505-2022, 2022.

Data and Code availability:

The source code of SciKit-GStat is available on Github. Additionally, each minor

version is published as a code publication (Mirko Mälicke, Möller, et al. 2021a). The

code to reproduce the figures made with SciKit-GStat, including the data samples

shown, is available on Github and Zenodo (Mirko Mälicke 2021). Note that the data

samples are also part of the SciKit-GStat documentation.
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A.1 Abstract
Geostatistical methods are widely used in almost all geoscientific disciplines, i.e. for

interpolation, re-scaling, data assimilation ormodeling. At its core geostatistics aims

to detect, quantify, describe, analyze and model spatial covariance of observations.

The variogram, a tool to describe this spatial covariance in a formalized way, is at

the heart of every such method. Unfortunately, many applications of geostatistics

rather focus on the interpolation method or the result, than the quality of the

estimated variogram. Not least because estimating a variogram is commonly left

as a task for computers and some software implementations do not even show a

variogram to the user. This is a miss, because the quality of the variogram largely

determines, whether the application of geostatistics makes sense at all. Furthermore,

the Python programming language was missing a mature, well-established and

tested package for variogram estimation a couple of years ago.

Here I present SciKit-GStat, an open source Python package for variogram es-

timation, that fits well into established frameworks for scientific computing and

puts the focus on the variogram before more sophisticated methods are about to

be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics

the typical geostatistical analysis workflow. Its main strength is the ease of usage

and interactivity and it is therefore usable with only a little or even no knowledge

in Python. During the last few years, other libraries covering geostatistics for

Python developed along with SciKit-GStat. Today, the most important ones can be

interfaced by SciKit-GStat. Additionally, established data structures for scientific

computing are reused internally, to keep the user from learning complex data

models, just for using SciKit-GStat. Common data structures along with powerful

interfaces enable the user to use SciKit-GStat along with other packages in estab-

lished workflows, rather than forcing the user to stick to the authors programming

paradigms.

SciKit-GStat ships with a large number of predefined procedures, algorithms

and models, such as variogram estimators, theoretical spatial models or binning

algorithms. Common approaches to estimate variograms are covered and can be

used out of the box. At the same time, the base class is very flexible and can

be adjusted to less common problems, as well. Last but not least, it was made

sure, that a user is aided at implementing new procedures, or even extending

the core functionality as much as possible, to extend SciKit-GStat to uncovered

use-cases. With broad documentation, user guide, tutorials and good unit-test

coverage, SciKit-GStat enables the user to focus on variogram estimation, rather

than implementation details.
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A.2 Introduction
Today, geo-scientific models are more available than they have ever been. Hence,

producing in-situ datasets to test and validate models is as important as ever. One

challenge that most observations of our environment have in common is they

are non-exhaustive and often only observe a fraction of the observation space. A

prime example is the German national rainfall observation network. Considering

the actual size of a Hellmann observation device the approx. 1900 stations, the

meteorological service operates, sum up to only 38 m
2
. Compared to the area of

Germany, these are non-exhaustive measurements.

If one takes an aerial observation, such as a rainfall radar, into account, at face value

this can seem to be different. But a rainfall radar is actually only observing a quite

narrow band in height, which might well be a few thousand meters above ground

(Marshall et al. 1947). And it observes the atmosphere’s reflectivity, not the actual

rainfall. Consequently, the rainfall input data for geo-scientific models, which is

often considered to be an observation, is rather non-exhaustive or a product of yet
another modelling or processing step. Methods that interpolate, merge or model

datasets can often be considered to be geostatistical, or at least rely upon them

(Goovaerts 2000; Jewell and Gaussiat 2015).

I hereby present SciKit-GStat, a Python package that implements the most funda-

mental processing and analysis step of geostatistics: the variogram estimation. It is

open source, object oriented, well documented, flexible and powerful to overcome

the limitation other software implementation may have.

The successful journey of geostatistics started in the early 1950s and continuous

progress has been made ever since. The earliest work was published 1951 by the

South African engineer David Krige (Krige 1951). He also lent his name to the most

popular geostatistical interpolation technique kriging. Nevertheless, Matheron

(1963) is often referenced as the founder of geostatistics. His work introduced the

mathematical formalization of the variogram, which opened geostatistics to a wider

audience, as it could easily be applied to other fields than Mining.

From this limited use case, geostatistics gained importance and spread annually.

A major review work is publish almost every decade, illustrating the continuous

progress of the subject. Today, it’s a widely accepted field that is used throughout all

disciplines in geoscience. P. A. Dowd (1991) reviewed the state of the art works from

1987 to 1991 in the fields of geostatistical simulation, indicator kriging, fuzzy kriging

and interval estimation. But also more specific applications such as hydrocarbon

reservoirs and hydrology are reviewed. Peter M. Atkinson and Tate (2000) reviewed

geostatistical works specifically focused on scale issues. The authors highlight the
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main issues and pitfalls when geostatistics are used to upscale or downscale data,

especially in remote sensing and GIS. A few years later, Hu and Chugunova (2008)

summarized 50 years of progress in geostatistics and compared it to more recent

developments in multi-point geostatistics. These methods infer needed multivariate

distributions from the data to model covariances. Recently, Sarann Ly et al. (2015)

reviewed approaches for spatial interpolation, including geostatistics. This work

focuses on the specific application of rainfall interpolation needed for hydrological

modelling.

Such works are only a small extract from what has been published during recent

years. They are only outnumbered by the many domain-specific studies that focus

on improving geostatistical methods for specific applications.

In recent years the field of geostatistics has experienced many extensions. Many

processes and their spatial patterns studied in geoscience are not static but dynami-

cally change on different scales. A prime example is soil moisture, which changes

on multiple temporal scales exposing spatial patterns that are not necessarily driven

by the same processes throughout the year (M. Mälicke et al. 2020; Vanderlinden

et al. 2012; Vereecken et al. 2008; AndrewW. Western, Zhou, et al. 2004). The classic

Matheronian geostatistics assumes stationarity for the input data. Hence, a tempo-

ral perspective was introduced into the variogram, modeling the spatial covariance

accompanied by its temporal counterpart (Christakos 2000; De Cesare et al. 2002;

Ma 2002; Ma 2005). In parallel, approaches were developed, that questioned and

extended the use of Euclidean distances to describe proximity between observation

locations (J. B. Boisvert et al. 2009; Jeff B. Boisvert and Clayton V. Deutsch 2011;

Curriero 2005). Last but not least, efforts are made to overcome the fundamental

assumption of Gaussian dependence, that underlies the variogram function. This

can be achieved for example by sub-Gaussian models (Guadagnini et al. 2018) or

copulas (Bárdossy 2006; Bárdossy and Li 2008). Non-Gaussian geostatistics are,

however, not covered in SciKit-GStat.

The variogram is the most fundamental means of geostatistics and a prerequisite

to apply other methods, such as interpolation. It relates the similarity of observa-

tions to their separating distance using a spatial model function. This function,

bearing information about the spatial covariance in the dataset, is used to derive

weights for interpolating at unobserved locations. Thus, any uncertainty or error

made during variogram estimation, will be be propagated into the final result. As de-

scribed, geoscientific datasets are often sparse in space and that makes it especially

complex to choose the correct estimator for similarity and decide when two points

are considered close in space. Minor changes to spatial binning and aggregations

can have a huge impact on the final result, as will be shown in this work. This is
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an important step that should not entirely be left to the computer. To foster the

understanding and estimation of the variogram, SciKit-GStat is equipped with many

different semi-variance estimators (table A.1) and spatial models (table A.2), where

other implementations only have one or two options if any at all. Spatial binning,

can be carried out utilizing one of ten different algorithms to break up the tight

corset that geostatistics usually employs for this crucial step. Finally, SciKit-GStat

implements various fitting procedures, each one in weighted and unweighted varia-

tion, with many options to automate the calculation of fitting weights. Additionally,

even a utility suite is implemented, that can build a maximum likelihood function

at runtime for any represented variogram to fit a model without binning the data

at all (Lark 2000). Appendix A.9.3 briefly summarizes the tutorial about maximum

likelihood fitting. These tools enable a flexible and intuitive variogram estimation.

Only then, is the user able to make an informed decision, whether a geostatistical

approach is even the correct procedure for a given dataset at all. Otherwise, Kriging

would interpolate based on a spatial correlation model, which is in reality not

backed-up with data.

De-facto standard libraries for geostatistics can be found in a number of com-

monly used programming languages. In FORTRAN, there is gslib (Clayton V

Deutsch and André G Journel 1998), a comprehensive toolbox for geostatistical

analysis and interpolation. Spatio-temporal extensions to gslib are also available

(De Cesare et al. 2002). For the R programming language, the gstat package

(Gräler et al. 2016; E. J. Pebesma 2004) can be considered the most complete pack-

age, covering most fields of applied geostatistics.

For the Python programming language, there was no package comparable to gstat
in 2016. A multitude of Python packages, that were related to geostatistics could

be found. A popular geostatistics related Python package is pykrige (Murphy

et al. 2021). As the name already implies, it is mainly intended for kriging inter-

polation. The most popular kriging procedures are implemented, however, only

limited variogram analysis is possible. HPGL is an alternative package offering

very comparable functionality. Unlike pykrige, the library is written in C++, which

in wrapped and operated through Python. The authors claim to provide a substan-

tially faster implementation than gslib (which is written in FORTRAN). Another

geostatistical Python library that can be found is pygeostat. It mainly focuses on

geostatistical modeling. Unfortunately, obtaining the files and then installing it in

a clean Python environment turned out to be cumbersome
9
.

All of the reviewed packages focus only on a specific part of geostatistics and in gen-

eral, interfacing options were missing. Thus, I decided to develop an open source

9 At the time, several undocumented issues raised and solving them was not straightforward
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geostatistics package for the Python programming language called SciKit-GStat.
In the course of the following years, another Python package with similar objectives

was developed called gstools (Müller et al. 2021b). Both packages emerged at

similar times; SciKit-GStat was first published on Github in July 2017, gstools
in January 2018. With streamlining developments between these two packages,

the objective of SciKit-GStat shifted and is today mainly focused on variogram

estimation. Today, both packages work very well together and the developers of

both packages collaborate to discuss and streamline future developments. Further

details driving this decision are stated throughout this work, especially in section

A.3.2, A.5.2 and A.6.3. One of the goals of this work is to present differences between

SciKit-GStat and existing other packages and illustrate, how it can be interfaced

and connected to them. This will foster the development of a unique geostatistical

working environment that can satisfy any requirement in Python.

A number of works were especially influential during the development of SciKit-

GStat. An early work by Burgess and R. Webster (1980) published a clear language

description, of what a variogram is and how it can be utilized to interpolate soil

properties to unknown locations. In the same year Cressie and Hawkins (1980)

published an alternative variogram estimator to the Matheron estimator introduced

20 years earlier. This estimator is an important development, as its contained power

transformation makes it more robust to outliers, that we often face in geoscience.

A noticeable amount of functions implemented in SciKit-GStat are directly based

on equations provided in Bárdossy and Lehmann (1998). This work does not only

provide a lot of statistical background to the applied methods, but also compares

different approaches for kriging. Finally, a practical guide to implement geosta-

tistical applications was published by Montero et al. (2015). A number of model

equations implemented in SciKit-GStat are directly taken from this publication.

SciKit-GStat is a toolbox that fits well into the SciPy environment. For scientific

computing in Python, SciPy (Virtanen et al. 2020) has developed to be the de facto

standard environment. Hence, using available data structures, such as the numpy

array (van der Walt et al. 2011), as an input and output format for SciKit-GStat

functionsmakes it very easy to integrate the package into existing environments and

workflows. Additionally, SciKit-GStat uses SciPy implementations for mathematical

algorithms or procedures wherever available and feasible. I.e., the SciPy least

squares implementation is used to fit a variogram model to observed data. Using

this common and well-tested implementation of least squares makes SciKit-GStat

less error prone and fosters comparability to other scientific solutions also based

on SciPy functionality.
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SciKit-GStat enables the user to estimate standard, but also more exotic vari-

ograms. This process is aided by a multitude of helpful plotting functions and

statistical output. In other geostatistical software solutions, the estimation of a

variogram is often left entirely to the computer. Some kind of evaluation criterion

or objective function takes the responsibility of assessing the variograms suitability

for expressing the spatial structure of the given input data in a model function.

Once used in other geostatistical applications, such as kriging, the theoretical model

does not bear any information about its suitability or even goodness of fit to the

actual experimental data used. Further advanced geostatistical applications do

present a variogram to the user, while performing other geostatistical tasks, but

this often seems as a passive information that the user may recognize or ignore.

The focus is on the application itself. This can be fatal as the variogram might

actually not represent the statistical properties well enough. One must remember

that the variogram is the foundation of any geostatistical method and unnoticed

errors within the variogram will have an impact on the results even if the maps

look viable. The variogram itself is a crucial tool for the educated user to interpret

whether data interpolation using geostatistics is valid at all.

SciKit-GStat takes a fundamentally different approach here. The variogram itself

is the main result. The user may use a variogram and pass it to a kriging algorithm,

or use one of the interfaces to other libraries. However, SciKit-GStat makes this a

manual step by design. The user is put from a passive into an active role, and is

therefore close to geostatistical textbooks, which usually present the variogram

first.

SciKit-GStat is also designed for educational applications. Both students and

instructors are specifically targeted within SciKit-GStat’s documentation and user

guide. While some limited knowledge of the Python programming language is

assumed, the user guide starts from zero in terms of geostatistics. Beside a technical

description of the SciKit-GStat classes, the user is guided through the implemen-

tation of the most important functionality. This fosters a deeper understanding

of the underlying methodology for the user. By using SciKit-GStat documenta-

tion, a novice user does not only learn how to use the code, but also what it does.

This should be considered a crucial feature for scientific applications, especially

in geostatistics where a multitude of one-click software is available, producing

questionable results if used by uneducated users.

SciKit-GStat is well documented and tested. The current unit test coverage is

>90%. The online documentation includes an installation guide, the code reference

and an user guide. Additionally, tutorials are available, that are suitable for use in

higher education level lectures. To facilitate an easy usage of the tutorials a Docker
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image is available (and the Dockerfile is part of SciKit-GStat). SciKit-GStat has a

growing developer community on Github and is available under a MIT license.

The following section will give a more detailed overview of SciKit-GStat. Section

A.4 introduces the fundamental theory behind geostatistics as covered by SciKit-

GStat. Section A.5 guides through the specific implementation of the theory, section

A.6 gives details on user support and contribution guidelines.

A.3 SciKit-GStat general overview
The source code repository contains the Python package itself, the documentation

and sample data. This work will focus mainly on the Python package, starting

with a detailed overview in section A.3.2. The documentation is introduced to

some detail in section A.3.2 and section A.6. Most data distributed with the source

code is either artificially created for a specific chapter in the documentation, or

originally published somewhere else. In these cases either the reference or license

is distributed along with the data itself. For this publication, all figures were created

with the same data, wherever suitable. This is further introduced in section A.3.1

and appendix A.9.2.

A.3.1 Data
There are already some benchmark datasets for geostatistics, such as the meuse

dataset distributed with the R package sp (Bivand et al. 2008; E. Pebesma and

Bivand 2005), which is also included in SciKit-GStat. In order to provide a dataset

of a random field (not only a sample thereof), which has obvious spatial covariance

structure, an image of a pancake was utilised (figure A.1). This approach was

employed to enable the implementation of custom sampling strategies and the

ability to analyse the dataset at any level of sampling density within such an image.

Furthermore, with a pancake, one does not focus too much on location specifics

or properties of the random field, as it will happen with i.e. a remote sensing soil

moisture product from an actual location on earth. The pancake browning (figure

A.1) shows a clear spatial correlation, the field is exhaustive at the resolution of the

camera device and creating new realizations of the field is possible as well. Processes

forming spatial structure in browning might be different from processes dictating

the spatial structure of i.e. soil moisture, but they are ultimately also driven by

physical principles. Testing SciKit-GStat tools not only with classic geoscientific

data, but also with pancakes made the implementation more robust. But it also

illustrates that the geostatistical approach holds beyond geoscience. A technical
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Figure A.1: Original photograph of the pancake used to generate the pancake dataset.

The white points indicate the 500 sampling locations that were chosen randomly, without

repeating. The observation value is the red channel value of the RGB value of the specified

pixel.

description of how to cook your own dataset is given in appendix A.9.2. The meuse

dataset is used in the tutorials of SciKit-GStat (Mirko Mälicke, Möller, et al. 2021a).

Appendix A.9.1 summarizes the dataset and the tutorial briefly and can be used to

compare this to the pancake results presented.

Neither the pancake nor the meuse dataset provide space-time data. To demon-

strate the support of space-time variogram within SciKit-GStat, another dataset of

distributed soil temperature measurements is utilized and distributed with the soft-

ware. The data is part of a dense network of cosmic-ray neutron sensors (B. Fersch

et al. 2020), located in the Rott headwater catchment at the TERENO Pre-Alpine

Observatory (Kiese et al. 2018) in Fendt, Germany. The distributed soil temperature

measurements consist of "55 vertical profiles [...] covering an area of about 9 ha [...]
record[ing] permittivity and temperature at 5, 20 and 50 cm depth, every 15min."
(B. Fersch et al. 2020, section 3.8.1, p.2298). In order to decrease the computing

demands, I only used temperature measurements at 20 cm and used only every 6th

measurement
10
.
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Figure A.2: Default variogram plot of SciKit-GStat using the matplotlib backend. The

variogram was estimated with the pancake dataset using the exponential model (green

line) fitted to a experimental variogram (blue dots) resolved to 25 evenly spaced lag classes,

up to 500 units (the axe length of the sampled field). The histogram in the upper subplot

shows the amount of point pairs for each lag class. The histogram shares the x-axis with

the variogram, to identify the corresponding lag classes with ease.

A.3.2 Package description

SciKit-GStat is a library for geostatistical analysis written in the Python program-

ming language. The Python interpreter must be of version 3.6 or later. The source

files can be downloaded and installed from the Python package index using pip,

which is the standard tool for Python 3
11
. All dependencies are installed along with

the source files. This is the standard and recommended procedure for installing

and updating packages in Python 3. Additionally, the source code is open and

available on Github and can be downloaded and installed from source. SciKit-GStat

is published under a MIT license.

10 Note that I only used a measurement every 1.5 hours and did not aggregate the time series.

11 SciKit-GStat is also available on Conda Forge, the largest community driven Anaconda channel.

This package is not covered here, as the content is the same and installation requires the presence

of an Anaconda environment and some knowledge of the system. Nevertheless, Anaconda is

widely spread among scientists and it might be worth mentioning the existence for anaconda

users.
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The presented module is built upon common third party packages for scientific

computing in Python, called scipy. In recent years, the SciPy ecosystem has

become the de facto standard for scientific computing and applications in Python.

SciKit-GStat makes extensive use especially of numpy (Oliphant 2006; van der Walt

et al. 2011) to build data structures and numerical computations, matplotlib
(Hunter 2007a) and plotly (Inc. 2015) for plotting and the scipy library itself

(Virtanen et al. 2020) for solving some specific mathematical problems, such as

least squares or matrix operations.

An object oriented programming approach was chosen for the entire library.

SciKit-GStat is designed to interact with the user through a set of classes. Each

step in a geostatistical analysis workflow is represented by a class and its methods.

Argument names passed to an instance on creation are chosen to be as close as

possible to existing and common parameter names from geostatistical literature.

The aim is to make the usage of SciKit-GStat as intuitive as possible for geoscientists

with only little or no experience in Python.

The main focus of the package is variogram analysis. Ordinary kriging is also

implemented into SciKit-GStat, but the main strength is variogram analysis. Kriging

is available as a valuable tool to cross-validate the variogram by interpolating the

observation values. For flexible, feature rich and fast kriging applications, the

variogram can be exported to other libraries with ease. SciKit-GStat offers an

extensible and flexible class that implements common settings out of the box but

can be adjusted to rather uncommon problems with ease. An example variogram is

shown in figure A.2. By default, the user has an experimental variogram, a well

fitted theoretical model and a histogram to estimate the point pair distribution

in the lag classes at ones disposal. This way, the plot of the variogram instance

helps the user at first sight to not only estimate goodness of fit, but also the spatial

representativity of the variogram for the sample used. All parameters can be

changed in place and the plot can be updated, without restarting Python or creating

new unnecessary variables and instances.
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Table A.1: Overview of all semi-variance estimator functions implemented in SciKit-

GStat. Using Normalized Range and Percentile is only advised to users understanding the

implications as explained in section A.5.1.

Estimator Identifier Description Reference

Mathéron ’matheron’ Default, most popular estimator Matheron

(1963)

Cressie-Hawkins ’cressie’ Power transformation based - robust

to outliers

Cressie and

Hawkins

(1980)

Dowd ’dowd’ Median based, fast estimator for non-

normal distributed residuals

Dowd (1984)

Genton ’genton’ Percentile-based estimator - powerful

for skewed residuals, but very com-

putationally intensive

Genton

(1998)

Shannon Entropy ’entropy’ Information theoretic measure focus-

ing information content of residuals

Shannon

(1948)

Normalized Range ’minmax’ Experimental estimator using only

the spread of residuals

Percentile ’percentile’ Uses any user-defined percentile as

semi-variance, but untransformed.

Experimental
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Table A.2: Overview of all theoretical variogram model functions implemented in SciKit-GStat.

Model Identifier Description Implementation

Spherical ’spherical’ Short ranged correlation length, popular model in

geoscience; for smooth, but steep gradients in fields.

Burgess and R.

Webster (1980)

Exponential ’exponential’ Long ranged for smooth fields with less steep gradi-

ents.

A G Journel and

Huijbregts (1976)

Gaussian ’gaussian’ Mid ranged for sharply changing fields A G Journel and

Huijbregts (1976)

Cubic ’cubic’ Similar to Gaussian models, but with a shorter corre-

lation length.

Montero et al.

(2015)

Matérn ’matern’ Has an additional smoothness parameter to adapt

shapes between Exponential and Gaussian models.

Zimmermann et

al. (2008)

Stable ’stable’ Has an additional shape (power) parameter to adapt

the range.

Montero et al.

(2015)

Isotonic Regression ’harmonize’ Data harmonization algorithm to directly mono-

tonize the experimental variogram, without fitting

Pedregosa et al.

(2011a)
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Table A.3: Overview of all lag class binning methods implemented in SciKit-GStat.

Function Identifier Description Implementation

Equidistant lags ’even’ 𝑁 lags of same width; Almost always used. Mirko Mälicke,

Möller, et al.

(2021a)

Uniform lags ’uniform’ 𝑁 lags of same sample size; Estimats are based on

the same sample size & no empty bins

Mirko Mälicke,

Möller, et al.

(2021a)

Sturge’s rule ’sturges’ Equidistant lags derived from Sturge’s rule; use for

small normal distributed distance matrices

Virtanen et al.

(2020)

Scott’s rule ’scott Equidistant lags derived from Scott’s rule; use for

large datasets

Virtanen et al.

(2020)

Freedman-

Diaconis estima-

tor

’fd’ Equidistant lags; use for small datasets with outliers

in the distance matrix

Virtanen et al.

(2020)

Square-root ’sqrt’ Equidistant lags; Very fast function, but usually not

recommended

Virtanen et al.

(2020)

Doane’s rule ’doane’ Equidistant lags; based on data skewness, use for

small non-normal distance matrices

Virtanen et al.

(2020)

K-Means ’kmeans’ Non-equidistant lags; clustered distance matrix is

used as binning; slow but statistically robust

Pedregosa et al.

(2011a)

Hierachical Clus-

ters

’ward’ Non-equidistant lags; clustered distance matrix is

used as binning; Based on Ward’s criterion for mini-

mizing cluster variance. Computational intensive

Pedregosa et al.

(2011a)

Stable Entropy ’stable_entropy’ Non-equidistant lags; Bin edges are set byminimizing

the deviations of per-lag Shannon entropy

Mirko Mälicke,

Möller, et al.

(2021a)
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SciKit-GStat contains eight different semi-variance estimators (overview in table

A.1) and seven different theoretical variogram model functions (overview in table

A.2). At the same time implementing custom models and estimators is supported

by a decorator function that only requires the mathematical calculation from the

user, which can be formulated with almost no prior Python knowledge. Often with

a single line of code.

SciKit-GStat offers a multitude of customization options to fit variogram models

to experimental data. The model parameters can be fitted manually or by one

of three available optimization algorithms: Levenberg-Marquardt, Trust Region

Reflective and parameter Maximum Likelihood (see section A.5.1). It is also possible

to combine both. Furthermore, it is possible to weight experimental data. Such

weighting of experimental data is a crucial feature to make a variogram model fit

data at short lags more precisely than distant observations. The user can manually

adjust weights or use one of the many predefined functions, that define weights i.e.

dependent on the separating distance. Closely related is the way how SciKit-GStat

handles spatial aggregation. The user can specify a function that will be used to

calculate an empirical distribution of separating distance classes, which are the

foundation for spatial aggregation. Especially for sparse datasets which base their

aggregation on small sample sizes, even adding or removing a single lag class can

dramatically change the experimental variogram. The default function defines

equidistant distance lag classes, as mostly used in literature. However, SciKit-GStat

also includes functionality for auto-deriving a suitable number of lag classes or

cluster based methods, which have to my knowledge, not been used so far in this

context. A complete overview of all functions is given in table A.3.

Interfaces to a number of other geostatistical packages are provided. SciKit-GStat

defines either an export method or a conversion function to transform objects

that can be read by other packages. Namely, the Variogram can export an pa-

rameterized custom variogram function, which can be read by kriging classes of

the pykrige package. A similar export function can transform a variogram to a

covariance model as used by gstools. This package is evolving to be the prime

geostatistical toolbox in Python. Thus, a powerful interface is of crucial importance.

Finally, a wrapping class for Variogram is provided that will make it accessible as

a scikit-learn (Pedregosa et al. 2011a) estimator object. This way, scikit-learn can

be used to perform parameter search and use variograms in a machine learning

context.

SciKit-GStat is easily extensible. Many parts of SciKit-GStat were designed to

keep the main algorithmic functions clean. Overhead, like type checks and function

mapping to arrays are outsourced to instance methods wherever possible. This
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enables the user to implement custom functions with ease, even if they are not too

familiar with Python. As an example, implementing a new theoretical model is

narrowed down to only implementing the mathematical formula this way.

Documentation provided with SciKit-Gstat are tailored for educational use. The

documentation mainly contains a user guide, tutorials and a technical reference.

The user guide for SciKit-GStat does not have any prerequisites in geostatistics

and guides the reader through the underlying theory, while walking through the

implementation. For users with some experience in Python, geostatistics and other

fields of statistics, tutorials are provided. The tutorials focus on a specific aspect

of SciKit-GStat and demonstrate the application of the package. Here, a sound

understanding of geostatistics is assumed. Finally, the technical reference does only

document the implemented functions and classes from a technical point of view. It

is mainly designed for experienced users that need an in-depth understanding of

the implementation or for contributors that want to extend SciKit-GStat.

SciKit-GStat is 100% reproducible through docker images. With only the docker

software installed (or any other software that can run docker containers), it is

possible to run the scikit-gstat docker image, which includes all dependencies and

common development tools used in scientific programming. This makes it possible

to follow the documentation and tutorials instantly. The user can use a specific

SciKit-GStat version (from 1.0 on) and conduct analysis within the container. That

will fix all used software versions and, if saved, make the analysis 100% reproducible.

At the same time the installation inside docker container does not affect any existing

Python environment on the host system and is therefore perfect to test SciKit-GStat.

SciKit-GStat is recognized on Github and has a considerable community. Issues

and help requests are submitted frequently and are usually answered in a short

amount of time by the author. At the same time, efforts are made to establish a

broader developer community, to foster support and development. Additionally,

the development on SciKit-GStat is closely coordinated with gstools and the

parenting Geostat-Framework developer community.

A.4 Main geostatistical components

A.4.1 Variogram
In geostatistical literature, the terms semi-variogram and variogram are often mixed

or interchanged. Although closely related, two different methods are described

by these terms. In most cases, the semi-variogram is used, but called simply var-
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iogram. Here, I follow this common nomenclature and both terms describe the

semi-variogram in the following.

At its core, the semi-variogram is a means to express how spatial dependence in

observations changes with separating distance. An observation is here defined to

be a sample of a spatial random function. While these functions are usually two

or three dimensional in geostatistical applications, they can be N-dimensional in

SciKit-GStat (including 1D). A more comprehensive and detailed introduction to

random functions in the context of geostatistics is given in Montero et al. (2015,

chapter 2.2, p. 11 ff.). The most fundamental assumption that underlies a variogram,

is therefore, that proximity in space leads to similar observations (proximity in

value). To calculate spatially aggregated statistics on the sample, the variogram

must make an assumption up to which distance two observations are still close in

space. This is carried out by using a distance lag over the exact distances, as two

point pairs will hardly be at exactly the same spatial distance in real world datasets.

Separating distance is calculated for observation point pairs. For different dis-

tance lag classes (e.g. 10m to 20m), all point pairs 𝑠𝑖, 𝑠 𝑗 within this class are

aggregated to one value of (dis)similarity, called semi-variance 𝛾 . A multitude of

different estimators are defined to calculate the semi-variance. For a specific lag

distance ℎ (e.g. 10m), the most commonly used Matheron estimator (Matheron

1963) is defined by equation (A.1):

𝛾 (ℎ) = 1

2𝑁 (ℎ)

𝑁 (ℎ)∑
𝑖=1

(𝑍 (𝑠𝑖) − 𝑍 (𝑠𝑖+ℎ)) (A.1)

Where 𝑁 (ℎ) is the number of point pairs for the lag ℎ and 𝑍 (𝑠) the observed

value at the respective location 𝑠 . The obtained functions is called an experimental
variogram in SciKit-GStat. In literature, the term empirical variogram is also quite

often used and is referring more or less, to the same thing. In SciKit-GStat, the

empirical variogram is the combination of the lag classes and the experimental

variogram. All estimators implemented in SciKit-GStat are described in detail in

section A.5.1.

To model spatial dependencies in a data set, a formalized mathematical model

has to be fitted to the experimental variogram. This step is necessary, to obtain

parameters from themodel, in a formalizedmanner. These describe spatial statistical

properties of the model, which may (hopefully) be generalized to the random field.

These parameters are called variogram parameters and include:
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Figure A.3: Scatter plot of the observation values in the pancake dataset related to only

one coordinate dimension. As the pancake dataset was 2D, 1-dimension corresponds to

the x coordinate and 2-dimension to the y-coordinate of the pancake sample. This plotting

procedure can help the user to identify a dependence on the location for the data sample,

which can violate the second order stationarity.

1. nugget - the semi-variance at lag ℎ = 0. This is the variance, that cannot be

explained by a spatial model and is inherit to the observation context. (i.e.

measurement uncertainties or small-scale variability).

2. sill - the upper limit for a spatial model function. The nugget and sill add up

to the sample variance.

3. effective range - the distance, at which the model reaches 95% of the sill. For

distances larger than the range, the observations become statistically inde-

pendent. Variogram model equations also define amodel parameter called

range, which leads to misunderstandings in the geostatistical community. To

overcome these problems, SciKit-GStat formulated all implemented models

based on the effective range of the variogram and not the range model pa-

rameter. Consequently, the given formulas might differ from some common

sources by the transformation of effective range to range model parameter.

This transformations are straightforward and reported in literature, but for

some models (i.e. Gaussian) not commonly the same. In these cases, the user

is encouraged to carefully check the implementation used in SciKit-GStat.

Closely related to these parameters is the nugget to sill ratio. It is interpreted
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as the share of spatially explainable variance in the sample and is therefore a very

important metric to reject the usage of a specific variogram model at all.

The theoretical model is a prerequisite for spatial interpolation. For this to

happen, a number of geostatistical assumptions need to be fulfilled. Namely, the

observations have to be of second-order stationarity and the intrinsic hypothesis

has to hold. This can be summarized as the requirement, that the expected value

of the random function and its residuals must not dependent on the location of

observation, but solely on the distance to other points. This assumption has to

hold for the full observation space. Hence, the semi-variance is calculated with the

distance lag ℎ as the only input parameter. A more detailed descriptions of these

requirements is e.g. given in Montero et al. (2015, chapter 3.4.1 p. 27 ff.) or Bárdossy

and Lehmann (1998) and Burgess and R. Webster (1980). An important tool to learn

about trends in the input dataset is a scatter plot like shown in figure A.3. The same

variogram instance that was used for figure A.2 is used here. The two subplots

show the observation values related to only one dimension of their coordinates.

This scatter plot can help the user to identify a dependence of observations on the

location, which could violate the assumptions named above. The pancake sample

observations are independent of the x-axis coordinates (1. dimension). For the

second dimension there might be a slight dependence of large observation values

on the y coordinate. This readily available plot is useful to guide the user into

the decision of utilizing statistical trend tests to test for statistical significance and

finally detrending input data.

The other requirement for variogram models is that it has to be monotonically

increasing. A drop in semi-variance would imply that observations become more

similar with increasing distance, which is incompatible to the most fundamental

assumption in geostatistics of spatial proximity. This requirement can only be met

by a statistical model function and not the experimental variogram, which is often

not monotonically increasing in a strict sense. This may happen due to the fact that

(spatial) observations are not exhaustive and measurements might be uncertain.

A.4.2 Kriging
One of the most commonly used applications of geostatistics is kriging. A sample

result is shown in figure A.4. The interpolation was made with the same variogram

instance used to produce figures A.2 and A.3. The center sub-figure shows the result

itself, along with the original field (left) and a kriging error map (right), which will

be introduced later. In this example, the spatial properties and correlation lengths

of the original are well captured by the result.
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Figure A.4: Ordinary Kriging result of the pancake dataset sample used in figure A.2 and

A.3. The kriging was performed with default parameters on a grid of same resolution as

the original field. The original image and ordinary kriging result share the value space and

thus, the colorbar between the two subplots is valid for both. The original is the same as

in fig. A.1, but using a different color-scale to make differences more pronounced. The

white crosses indicate the sample positions. The third subplot (right panel) indicated the

associated kriging error variance as returned by the algorithm.

Kriging estimates the value for an unobserved location 𝑠0 as the weighted sum of

nearby observations as shown in equation (A.2).

𝑍 ∗(𝑠0) =
𝑁∑
𝑖=1

𝜆𝑖𝑍 (𝑠𝑖) (A.2)

Where 𝑍 ∗(𝑠0) is the estimation and 𝜆𝑖 are the weights for the 𝑁 neighbors 𝑠𝑖 . The

kriging procedure uses the theoretical variogram model fitted to the data to derive

the weights from the spatial covariance structure. Furthermore, by requiring all

weights to sum up to one (equation (A.3)) the unbiasedness of the prediction is

assured.

𝑁∑
𝑖=1

𝜆𝑖 = 1 (A.3)

A single weight can thereby be larger than one or smaller than 0. As the weights are

inferred from the spatial configuration of the neighbors, this can require stronger

influence (𝜆 > 1) or even negative influence (𝜆 < 0) of specific observations.

Combined with unbiasedness, this is one of the most important features of a

kriging interpolation and can make it superior to, i.e. spline-based procedures in

an environmental context. Deriving weights from the spatial properties of the data

is especially helpful, as the local extreme values have likely not been observed, but

their influence is present in the spatial covariance of the field close to it.
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To obtain the weights for one unobserved location, a system of equations is

formulated, called the kriging equation system (KES). By expecting the prediction

errors to be zero (equation (A.4)) and substituting equation (A.2) in equation (A.4),

the KES can be formulated.

𝐸 [∗(𝑠0) − 𝑍 (𝑠0)] = 0 (A.4)

The final kriging equation (A.5) is taken from Montero et al. (2015, equation 4.16, p.

86) and its derivation is given in chapter 4.3.1 of the same source (Montero et al.

2015, p.84-90). {∑𝑁
𝑗=1 𝜆 𝑗𝛾 (𝑠𝑖 − 𝑠 𝑗 ) + 𝛼 = 𝛾 (𝑠𝑖 − 𝑠0), 𝑖 = 1, . . . , 𝑁∑𝑁
𝑖=1 𝜆𝑖 = 1

(A.5)

Where 𝛼 is the Lagrange multiplier needed to solve the KES by minimizing the

estimation variance subject to the constraint of equation (A.3). By minimizing the

prediction variance and requiring the weights to sum to one, it is possible to obtain

the best linear, unbiased estimation. Thus, kriging is often referred to as being a

BLUE (Best Linear Unbiased Estimator). Using Kriging an estimate of the variance

of the spatial prediction can be obtained. This is shown in the right panel of figure

A.4. Such information is vital to assess the quality of the prediction. Finally, the

setup of Kriging makes it a smooth interpolation, as the predictions very close

to observation locations are approaching the observation values smoothly. The

kriging variance is significantly higher in less densely sampled regions (figure A.4),

which enables the user to visually assess the spatial representativity of the obtained

results.

A.4.3 Directional variogram

The standard variogram as described in section A.4.1 handles isotropic samples.

That means the spatial correlation length of the random field is assumed to be of

comparable length in each direction. Usually, one refers only to the directions along

themain coordinate axes. However, direction can be definedwith any azimuth angle

and does not have to match the coordinate axes. If the spatial correlation length

differs in direction this is referred to as anisotropy. There are two different kinds

of anisotropy: geometric and zonal anisotropy (Wackernagel 1998). Considering

geometric anisotropy, the effective range differs for the two perpendicular main

directions of the anisotropy. In the zonal case, sill and range differ. Geometric

anisotropy can be handled by a coordinate transformation (Wackernagel 1998).
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FigureA.5:Two directional variograms calculated for the pancake dataset. Both variograms

use the same parameters as the instance used to produce figure A.2. In addition, the direction

is taken into account. The two variograms shown differ only in the azimuth used, which is

0 ° (left) and 90 ° (right).

These cases can be detected by directional variograms. For an application, the main

directions of anisotropy must be identified to then estimate an isolated variogram

for each direction.

For each directional variogram, only point pairs are considered that are oriented

in the direction of the variogram. For two observation locations 𝑠1, 𝑠2 the orientation

is defined as the angle between the vector ®𝑢 connecting 𝑠1 and 𝑠2 and a vector along

the first dimension axis: ®𝑒 = [1, 0]. The cosine of the orientation angle 𝛩 can be

calculated using equation (A.6):

𝑐𝑜𝑠 (𝛩 ) = ®𝑢 ◦ ®𝑒
|®𝑒 | · | (1, 0) | (A.6)

The directional variogram finally defines an azimuth angle, defined analogous to

equation (A.6) and a tolerance. Any point pair which deviates less than tolerance

from the azimuth, is considered to be oriented in the direction of the variogram

and will be used for estimation.

The example data used so far shows a small anisotropy (figure A.5). The two

variograms used exactly the same data and parameters as used for figure A.2. The

only difference is that both are directional and they use two different directions of

0 ° and 90 °. There is a difference in effective range and sill in the 90 ° directional

variogram.

As long as more than one directional variogram is estimated for a data sample, the
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difference of the estimated variogram parameters describes the degree of anisotropy.

In a kriging application, the data sample can now be transformed along the main

directions at which the directional variograms differ until the directional variograms

do not indicate an anisotropy anymore. The common variogram of the transformed

data can be used for kriging and the interpolated field is finally transformed back.

Transformations are not part of SciKit-GStat. The scipy and numpy packages offer

many approaches to apply transformations. Alternatively, gstools implements

anisotropy directly and can use it for covariance models and kriging. In these

cases the user needs to identify the directions manually and specify them on object

creation.

A.4.4 Space-time variogram

At the turn of themillennium, geostatistics had emerged to amajor tool in environmental-

and geoscience, the demand for new methods was rising. Datasets collected in

nature are usually dynamic in time, which can easily violate the second order sta-

tionarity assumptions underlying classic geostatistics. Hence, substantial progress

had been made to incorporate temporal dimensions into variograms.

The classic variogram is modelling the semi-variance of a sample in dependence

of the separating distance of the underlying point pairs. For a space-time variogram,

this dependence is expanded to time-lags. Thatmeans the data is not only segmented

in terms of spatial proximity, but also temporal proximity. The resulting model will

be capable to identify co-variances over space and time at the same time (figure A.6).

SciKit-GStat uses a 3D plot by default. The plot can be customized and exclude the

fitted model or plot the experimental variogram rather as a surface, than a scatter

plot. While figure A.6 might contain both, the experimental and the theoretical

variogram, it is also quite overloaded and not always helpful. Finally, a printed 3D

plot cannot be rotated, and the usage in publications is discouraged. To overcome

these limitations, SciKit-GStat implements 2D contour plots of the experimental

variogram in two variations, which differ only in visualization details (figure A.7).

The contour plot is the more appropriate means to inspect the covariance field as

estimated by the space-time variogram. With the given example, one can see that

the auto-correlation (temporal axis) is dominant and except for a few temporal lags

(50 - 60, or 30 - 40), the variogram shows almost a pure nugget along the spatial

axis. Note that the contour lines smooth out the underlying field to close lines to

rings wherever possible. This can lead to the impression that the experimental

variogram is homogeneously smooth along the two axis. In fact, this is not the case

and the smoothing is due to the implementation of contour lines. Thus, the contour
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Figure A.6: Default 3D scatter plot of a space-time variogram (blue points), with fitted

product-sum model (surface). The variogram is estimated from the in-situ soil temperature

measurements at 20 cm depth (WSN product) published in B. Fersch et al. (2020). To decrease

the computational workload, only every sixth measurement was taken from the timeseries.

plot should be used to get a general idea of the experimental variogram. To inspect

the actual semi-variance values, the experimental variogram can be accessed and

plotted using a matrix plot.

To build a separable space-time variogram model, the two dimensions are first

calculated separately. Non-separable space-time variogram models are not covered

in SciKit-GStat. The two experimental variograms are called marginal variograms

and relate to the temporal or the spatial dimension exclusively, by setting the other

dimension’s lag to zero. Finally, these two variograms are combined into a space-
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Figure A.7: Contour plot of an experimental space-time variogram, without theoretical

model. The shown variogram is from exactly the same instance as used for A.6, without

any modifications. The contours are calculated for the semi-variances (z-axis) and thus

contain the same information as the scatter plot in figure A.6. The color is indicating the

magnitude of the semi-variance according to the colorbar.

time variogram model. SciKit-GStat implements three models: the sum model,

product model and product-sum model. For each of the marginal experimental

variograms, a theoretical model is fitted, as described in section A.4.1. These two

models 𝑉𝑥 (ℎ) (spatial) and 𝑉𝑡 (𝑡) (temporal) are then used to combine their output

into the final model’s return value 𝛾 . The space-time model defines how this

combination is archived.

For the sum model, 𝛾 is simply𝑉𝑥 (ℎ) +𝑉𝑡 (𝑡). The product and product-sum models

are implemented following De Cesare et al. (2002, equation (4), (6)).

A.5 Software implementation

This section focuses on the implementation of SciKit-GStat. It aims to foster an

understanding of the most fundamental design decisions made during development.
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Thus, the reader will gain a basic understanding how the package works, where to

get started and how SciKit-GStat can be extended or adjusted.

A.5.1 Main classes
SciKit-GStat is following an object-oriented programming (OOP) paradigm. It

exports a number of classes, which can be instantiated by the user. Common

geostatistical notions are reflected by class properties and methods to relate the

lifetime of each object instance to typical geostatistical analysis workflows. At the

core of SciKit-GStat stands the Variogram class for variography. Other important

classes are:

• DirectionalVariogram for direction dependent variography.

• SpaceTimeVariogram for space-time variography.

• OrdinaryKriging for ordinary kriging interpolations.

Variogram

The Variogram is the main class of SciKit-GStat and the only construct the user

will interact with, in most cases. Each instance of this class represents the full

common analysis cycle in variography. That means, each instance will be associated

to a specific data sample and holds a fitted model. Other than other libraries, there is

no abstraction of variogram models and fitted models are not an entity of their own.

If alternate input data (not parameters) is used a new object must be created. This

makes the transfer of variogram parameter onto other data samples a conscious

action performed by the user and not a side-effect of the implementation. At the

same time parameters are mutable and can be changed at any time, which will

cause re-calculation of dependent results. While this design decisions makes the

usage of SciKit-GStat straightforward, it can also decrease performance. I.e., in

SciKit-GStat, a variogram model is always fitted, even if only the experimental

variogram is used. This can be a downside, especially on large datasets. For cases

where the full variogram instance is not desired or needed, possible pathways are

described in section A.5.1 and A.5.1, but the usage of gstools might be preferable

in these cases.

The second design decision for Variogram was interactivity. To take full advan-

tage of OOP, every result, parameter and plot is accessible as an instance attribute,

property or method. This always clearly sets ownership and provenance relations

for data samples and derived results and properties, as there are no floating results
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Figure A.8: Benchmark test for estimating an experimental variogram. For each sample

size, the mean runtime of ten repetitions is shown. The experimental variogram was

calcualted with a native Python implementation (blue), gstools (green) and SciKit-GStat

(red).

that have to be captured in arbitrarily named variables. Moreover, parameters that

might be changed during a variogram analysis are implemented in a mutable way.

A substantial effort was made to store as few immutable parameters as possible

in the instance. Thus, whenever a parameter is changed at run-time, depending

derived attributes and results will be updated. This convenient behavior for analysis

comes at the cost of performance. This is another major difference to the gstools
library, in which the author assumes performance to be a driving design decision.

To illustrate this as an example: When a variogram instance is constructed with-

out further specifying the spatial model that should be used, it will default to the

spherical model. The instance is fitted to this model after construction and can be

inspected by the user i.e. by calling a plot method. The user wants to check out

another semi-variance estimator, such as the Cressie-Hawkins estimator, because

there are a lot of outliers in the dataset. Changing the estimator is as easy as

setting the literal estimator name to the estimator property of the variogram. The

experimental variogram will instantly be dropped and re-calculated as well as all

depending parameters, such as the variogram parameters. The spherical model is

fitted a second time now. The user might then realize that a spherical model is not
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suitable and can simply change the model attribute, i.e. to the Matérn model. As a

direct effect, the variogram parameters are dropped again, as they are once again

invalidated, and a new fitting procedure is invoked. This behavior is extremely

convenient, as it is easy, interactive, expressive and instant. But it is also slow, as i.e.

the theoretical model had been fitted three times, before the user even looked into

it. To add some context to slow calculations, an experimental variogram estimation

run-time test
12
has been performed (figure A.8). One can see, that SciKit-GStat and

gstools are very comparable in this case and both significantly faster than a native

Python implementation, especially for larger datasets. Note the log-scaled y-axis,

indicating differences of magnitudes for larger sample sizes. Interactively adjusting

variogram parameters will invoke additional calculations of given run-times.

Although most attributes are mutable, they use common data types in their

formulation. This enables the user to intercept the calculation at any point using

either primitive language types or numpy data types, which are most accepted by

the scientific community as the prime array and matrix data types. Thus, there is

no need for the user to learn about custom data-, parameter or result structures

using SciKit-GStat.

distance lag classes

Possibly the most crucial step to estimate a suitable variogram is the binning of

separating distances into distance lag classes. In some parts, SciKit-GStat also

includes information theoretic methods. Here, to calculate the basic measure,

Shannon Entropy (Shannon 1948), the input data has to be binned to calculate

empirical non-exceeding probabilities. To distinguish the information theoretic

binning from the procedure of binning separating distances into classes, I will refer

to the latter as lag classes. In the literature, lag classes are commonly referred to as

bins, lags, distance lags or distance bins.

SciKit-GStat implements a large number of methods to form lag classes. They

can be split into two groups: some are adjusting class edges to fit the requested

amount of lag classes. The other group will adjust the number of lag classes to fit

other, statistical properties of the resulting lag classes. All methods can be limited

by a maximum lag. This is a hyper-parameter, that can be specified by the user, but

is not set by default. There are various options for the maximum lag. The user can

set the parameter by an absolute value, in coordinate units and larger than one.

12 This only tests the estimation of the experimental variogram and does not test any other func-

tionality. I.e. kriging implementations in gstools are substantially faster than in SciKit-GStat.

The test was not performed in an isolated environment, but repeated several times.
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Alternatively, a number between 0 and 1 can be set. Then, the Variogram class

will set the maximum lag to this share of the maximum pairwise distance found in

the distance matrix. I.e. if 0.5 is used, the maximum lag is set to half of the largest

point pair distance found. Note, that this is not a median value. Finally, a string can

be set as maximum lag. This can either request the arithmetic mean or the median

value of the distance matrix as the maximum lag. Typical values from geostatistical

textbooks are the median or 60% of the maximum lag (value of 0.6 in SciKit-GStat).

The default behavior is to form a given amount of equidistant lag classes, from 0,

to the maximum lag distance. This procedure is used in the literature in almost all

cases (with different max-lags), and is thus, a reasonable default method.

Another procedure, takes the number of lag classes and will form lag classes of

uniform size. That means, each lag class will contain the same amount of point

pairs and, thus be of varying width. This procedure can be explicitly useful to avoid

empty lag classes, which can easily happen for equidistant lag classes. Another

advantage is that the calculation of semi-variance values will always be based on

the same sample size, which makes the values statistically more comparable. These

advantages come at the cost of less comparable lag classes. Care must be applied

when interpreting lag-related variogram properties such as the effective range.

There might be lag ranges that are supported by only a very small amount of actual

lag classes.

The next group of procedures use common methods from histogram estimation

to calculate a suitable amount of lag classes. This is carried out, either directly, or

by estimating the lag class width and deriving the amount of classes needed from

this.

The first option is to apply Sturge’s rule (Scott 2009) as shown in equation (A.7):

𝑛 = 𝑙𝑜𝑔2(𝑠 + 1) (A.7)

Where 𝑠 is the sample size and 𝑛 is the number of lag classes. This rule works good

for small, normally distributed distance matrices, but often yields too small 𝑛 for

large datasets.

Similar to Sturge’s rule, the square-root rule estimates the number of lag classes as

given in equation (A.8):

𝑛 =
√
(𝑠) (A.8)

This rule is not recommended in most cases. It comes with similar limitation as

Sturge’s rule but in contrast, it usually yields too large 𝑛 for large 𝑠 . The main ad-

vantage of this rule is that it is computationally by far the fastest of all implemented
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rules.

Scott’s rule (Scott 2010) does not calculate 𝑛 directly, but rather ℎ, the optimal width

for the lag classes using equation (A.9):

ℎ = 𝜎

(
24 ∗

√
𝜋

𝑠

) 1

3

(A.9)

Where 𝜎 is the standard deviation of 𝑠 . By taking 𝜎 into account, Scott’s rule

works good for large datasets. It’s application does not work very well on distance

matrices with outliers, as the standard deviation is sensitive to outliers.

If Scott’s rule does, due to outliers, not yield suitable lag classes, the Freedman-

Diaconis estimator (Freedman and Diaconis 1981) can be used. This estimator

is similar to Scott’s rule, but makes use of the inter-quartile range as shown in

equation (A.10):

ℎ = 2

𝐼𝑄𝑅

𝑠1/3
(A.10)

The inter-quartile range (𝐼𝑄𝑅) is robust to outliers, but in turn the Freedman-

Diaconis estimator usually estimates way too many lag classes for smaller datasets.

The author cannot recommend to use it for distance matrices with less than 1000

entries.

Finally, Doane’s rule (Doane 1976) is available. This is an extension to Sturge’s

rule, that takes the skewness of the sample into account. This makes it especially

suitable for smaller, non-normal datasets, where the other estimator do not work

very good. It is defined as given in equation (A.11):

𝑛 = 1 + log
2
(𝑠) + log

2

(
1 + |𝑔 |

𝑘

)
𝑔 = 𝐸

[(𝑥 − 𝜇𝑔
𝜎

)
3

]
𝑘 =

√
6(𝑠 − 2)

(𝑠 + 1) (𝑠 + 3)

(A.11)

Here, 𝑔 is the skewness, 𝜎 is the standard deviation, 𝜇𝑔 is the arithmetic mean and

𝑥 is each element in 𝑠 .

All rules that calculate the number of lag classes use the numpy implementation of

the respective methods (van der Walt et al. 2011).
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All histogram estimation methods given above just calculate the number of lag

classes. The resulting classes are all equidistant, except for the first lag class, which

has 0 as a lower bound, instead of𝑚𝑖𝑛(𝑠).

Finally, SciKit-GStat implements two other methods. Both are based on a cluster-

ing approach and need the number of lag classes to be set by the user. The distance

matrix is clustered by the chosen algorithm. Depending on the clustering algorithm,

the cluster centers (centroids) are either estimates of high density or points in the

value space, where most neighboring values have the smallest mean distance. Thus,

the centroids, are taken as a best estimate for lag class centers. Each lag class is

then formed by taking half the distance to each sorted neighboring centroid as

bounds. This will most likely result in non-equidistant lag classes.

The first option is to use the K-Means clustering algorithm, which is maybe the

most popular clustering algorithm. The method is often attributed to MacQueen

et al. (1967), but there are thousands of variations and applications published. The

implementation of K-Means used in SciKit-GStat is taken from scikit-learn
(Pedregosa et al. 2011a). One important note about K-Means clustering is, that it is

not a deterministic method, as the starting points for clustering are taken randomly.

In practice this means, that exactly the same Variogram instantiated twice can

result in different lag classes. Experimental variograms are very sensitive to the lag

classes. In some unsystematic tests undertaken by the author, the variations in lag

class edges could be as large as 5% of the distance matrix range, which would result

in substantially different experimental variograms. Thus, the decision was made

to seed the random start values. For this reason, the K-Means implementation in

SciKit-GStat is deterministic and will always return the same lag classes for the

same distance matrix. The downside is, that the clustering loses some of it’s flexibil-

ity and can’t be cross-validated. Additionally, the K-Means might not converge. In

these cases the Variogram class raises an exception and invalidates the variogram.

Furthermore, the K-Means will find one set of lag classes, not necessarily the best

one. However, the user can still calculate lag class edges externally, using K-Means,

and pass the edges explicitly to the Variogram class.

The other clustering algorithm is a hierarchical clustering algorithm (Johnson 1967).

These algorithms group values together based on their similarity. SciKit-GStat

uses an agglomerative clustering algorithm, which uses Ward’s criterion (Ward Jr

and Hook 1963) to express similarity. Agglomerative algorithms work iteratively

and deterministic, as at first iteration each value forms a cluster on its own. Each

cluster is then merged with the most similar other cluster, one at a time, until

all clusters are merged, or the clustering is interrupted. Here, the clustering is

interrupted as soon as the specified number of classes is reached. The lags are
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then formed similar to the K-Means method, either by taking the cluster mean or

median as center. Ward’s criterion defines the one other cluster as the closest, that

results in the smallest intra-cluster variance for the merged clusters. That, finally

results in slightly different lag class edges than K-Means. The main downside of

the agglomerative clustering is that it is by far the slowest method. In some cases,

especially for larger datasets, the clustering took longer than the full workflow to

estimate a variogram and fit a theoretical model, by magnitudes.

The implementation follows scikit-lean (Pedregosa et al. 2011a). Using the

AgglomerativeClustering class with the linkage parameter set to ’ward’.

One method of utilizing clustered lag classes is to compare the K-Means lag

edges with the default settings. The idea is to minimize the deviation of both

while searching a suitable amount of classes. This combines the advantages of K-

Means, while yielding equidistant lag classes, that have the best match to clustered

centroids. SciKit-GStat makes that possible, while leaving the interpretation to the

user.

Another option available is called stable entropy. This is a custom optimization

algorithm, that has not been reported before. The algorithm takes the number of

lag classes as a parameter and starts with the equidistant lag classes as a initial

guess for optimization. It seeks to adjust bin edges until all lag classes show a

comparable Shannon entropy. The Shannon entropy is calculated using equation

(A.15), with a static binning created analogous to equation (A.8), the square-root

rule for histogram estimation. The lag classes are optimized by minimizing the

absolute deviation in Shannon entropy, at a maximum of 5000 iterations. The

algorithm uses the Nelder-Mean optimization (Gao and Han 2012) implemented in

scipy (Virtanen et al. 2020). As the Shannon entropy is a measure of uncertainty

based on information content, it is expected to yield statistically robust lag classes.

At the same time it is expected to show the same limitations as the uniformly sized

lag classes, such as a potentially difficult interpretation of variogram parameters.

sub-module: estimators

SciKit-GStat implements a number of semi-variance estimators. It includes all

semi-variance estimators that are commonly used in the literature.

numba support: The numba package offers function decorators, that enable

just-in-time compilation of Python code. Although there are ways to compile

code even more effectively (i.e. cython, nuitka packages), numba comes at zero

implementation overhead and fair calculation speed ups. The numba decorator is

implemented for the matheron, cressie, entropy and genton estimators. For the
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other estimators, the just-in-time compilation adds more compiling overhead, than

a compiled version actually gains performance on reasonable data sample sizes. The

main reason is, that the remaining estimators are already covered mathematically

by a numpy function, which are in most cases already implemented in a compiled

language.

matheron: The matheron function implements the Mathéron semi-variance 𝛾

(Matheron 1963). This estimator is so commonly used, that it is often referred to

just as semi-variance and thus the obvious default estimator in SciKit-GStat. It is

defined in equation (A.1).

cressie implements the Cressie-Hawkins estimator 𝛾𝑐 (Cressie and Hawkins

1980). As given in equation (A.12):

2𝛾𝑐 (ℎ) =
( 1

𝑁 (ℎ)
∑𝑁 (ℎ)
𝑖=1

|𝑍 (𝑠𝑖) − 𝑍 (𝑠𝑖+ℎ) |0.5)4

0.457 + 0.494
𝑁 (ℎ) +

0.045
𝑁 2 (ℎ)

(A.12)

Where 𝑁 (ℎ) is the number of point pairs 𝑠, 𝑠𝑖 at separating lag ℎ and 𝑍 (𝑠) is the
observation value at 𝑠 .

dowd implements the Dowd estimator 𝛾𝐷 (Dowd 1984). As given by equation

(A.13):

2𝛾𝐷 (ℎ) = 2.198 ∗𝑚𝑒𝑑𝑖𝑎𝑛(𝑍 (𝑠𝑖) − 𝑍 (𝑠𝑖+ℎ))2 (A.13)

This estimator is based on the median value of all pair-wise differences 𝑠𝑖, 𝑠𝑖+ℎ
separated by lag ℎ, where 𝑍 (𝑠) is the observation value at location 𝑠 . Thus, the

Dowd estimator is very robust to outliers in the pair-wise differences and very fast

to calculate.

genton implements the Genton estimator 𝛾𝐺 (Genton 1998). As given by equa-

tion (A.14):

𝛾𝐺 (ℎ) = 2.2191{|𝑍𝑖 (𝑠𝑖) − 𝑍 𝑗 (𝑠 𝑗 ) |; 𝑖 < 𝑗}( 𝑘
𝑞
)

𝑘 =

(
[𝑁 (ℎ)/2] + 1

2

)
𝑞 =

(
𝑁 (ℎ)
2

) (A.14)

Where the pair-wise differences 𝑍 (𝑠𝑖), 𝑍 (𝑠 𝑗 ) at separating lag ℎ are only used if

𝑖 < 𝑗 . The nth percentile is calculated from 𝑘, 𝑞, which are both binomial that only

depend on the number of point pairs 𝑁 (ℎ). The implementation in SciKit-GStat
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simplifies the application of the equation by setting
𝑘
𝑞
:= 0.25 for 𝑁 (ℎ) >= 500.

This avoids the necessity to solve very large binomials at negligible errors, as

lim

𝑁 (ℎ)→∞
𝑘
𝑞
= 1

4
. The author has found the Genton estimator to yield a reasonable

basis for variogram estimation in many environmental applications (a personal,

maybe biased observation). However, calculating the binomials requires some time.

Especially if there are a lot of lag classes and a considerable amount of them does

not fulfill the 𝑁 (ℎ) >= 500 constraint, it will slow the calculation down by many

magnitudes compared to the other estimators.

minmax implements a custom estimator. The author is not aware of any pub-

lication of this estimator. It was introduced during development, as it has quite

predictable statistical properties. However, I am also not aware of any useful prac-

tical applications of this estimator and can thus not recommend using it in typical

geostatistical analysis workflows.

The MinMax estimator divides the value range of pairwise differences by their

mean value.

entropy : Is an implementation of the Shannon Entropy 𝐻 (Shannon 1948) as

a semi-variance estimator. An successful application of Shannon Entropy as a

measure for similarity in dependence of spatial proximity has been reported by

Thiesen et al. (2020). The Shannon Entropy is defined with equation (A.15):

𝐻 (ℎ) = −
𝑁 (ℎ)∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖) (A.15)

Where 𝑝𝑖 is the empirical exceeding probability of 𝑍 (𝑠𝑖) − 𝑍 (𝑠𝑖+ℎ) for each sepa-

rating lag ℎ. To calculate the empirical probabilities of occurrence, a histogram

of all pairwise differences is calculated. This histogram has evenly spaced bin

edges and the user can set the amount of bins as a hyper-parameter to entropy.
Alternatively, the bin edges can be set explicitly. One has to be aware that the

Shannon Entropy relies on a suitable binning of the underlying data. This might

need some preliminary examination of 𝑍 (𝑠𝑖) − 𝑍 (𝑠𝑖+1), which is readily accessible

as a property. It is highly recommended to use exactly the same bin edges for all

separating distances ℎ needed to process a single variogram. Otherwise the entropy

values and their gradient over distance is not comparable and the whole variogram

analysis turns meaningless.

Finally, it is possible to use custom user-defined functions for estimating the

semi-variance. The function has to accept a one dimensional array of pair-wise

differences, as these are already calculated by the Variogram class. The return
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value must be a single floating point value. This can either be the primitive Python

type or a 64 bit numpy float. The given function is finally mapped to all separating

distance lags automatically, thus there is no need to implement any overhead, such

as sorting or grouping, by the user. This empowers users with little or no experi-

ence in Python to define new semi-variance estimators as only the mathematical

description of the semi-variance is needed as Python code.

sub-module: models

SciKit-GStat implements a number of theoretical variogram models. The most

commonly used models from literature are available. However, during researching

theoretical models, the author brought an almost limitless number of models, or

variations thereof to light. Thus, the process of implementing new models was

eased as far as possible, instead of implementing anything that could be useful. Any

variogram model function (implemented and custom) will receive the effective range
as a function argument and is fitted using it. In case the mathematical model of a

variogram function uses the range parameter, one has to implement the conversion

into the model function as well.

The core design decision for SciKit-GStat’s theoretical variogram models was to

implement a decorator, that wraps any model function. This decorator takes care

of handling input data and aligning output data. Thus, the process of implementing

new variogram models is simplified to writing a function that maps a single given

distance lag to the corresponding semi-variance value.

Each model will receive the three variogram parameter effective range, sill and

nugget as function arguments. The nugget is implemented as a optional argument

with a default value of zero, in case the user disables the usage of a nugget in the

Variogram class. Custom variogram models have to reflect that behavior.

spherical is the implementation of the spherical model, which is one of the

most commonly used variogram models. Thus, the spherical variogram model is

the default model, in case the user did not specify a model explicitly. The model

equation is taken from Burgess and R. Webster (1980) and given in equation (A.16):

𝛾 (ℎ) =
{
𝑏 +𝐶0 ∗

(
1.5 ∗ ℎ

𝑎
− 0.5 ∗ ℎ

𝑎

3

)
ℎ < 𝑎

𝑏 +𝐶0 ℎ ≥ 𝑎
𝑎 := 𝑟

(A.16)

Where ℎ is the distance lag and 𝑏,𝐶0, 𝑎 are the variogram model parameters: nugget,
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sill and range. The range of a spherical model is defined to be exactly the effective

range 𝑟 .

exponential is the implementation of the exponential variogram model. The

implementation is taken from A G Journel and Huijbregts (1976) and given in

equation (A.17):

𝛾 (ℎ) = 𝑏 +𝐶0 ∗
(
1 − 𝑒−ℎ𝑎

)
𝑎 =

𝑟

3

(A.17)

Where ℎ is the distance lag and 𝑏,𝐶0, 𝑎 are the variogram model parameters: nugget,

sill and range. For the exponential model, the effective range 𝑟 is different from the

variogram range parameter 𝑎.

gaussian is the implementation of the Gaussian variogram model. The imple-

mentation is taken from A G Journel and Huijbregts (1976) and given in equation

(A.18):

𝛾 (ℎ) = 𝑏 + 𝑐0 ∗
(
1 − 𝑒−

ℎ2

𝑎2

)
𝑎 =

𝑟

2

(A.18)

Where ℎ is the distance lag and 𝑏,𝐶0, 𝑎 are the variogram model parameters: nugget,

sill and range. For the Gaussian model, the effective range 𝑟 is different from the

variogram range parameter 𝑎. In SciKit-GStat, the conversion from effective range

to range parameter is implemented as shown in equation (A.18). However, the

author is aware of other implementations in literature. The package does not allow

to somehow switch the conversion and the user has to implement a new Gaussian

model, in case another conversion is desired.

cubic is the implementation of the cubic variogram model. The implementation

is taken from Montero et al. (2015) and given in equation (A.19):

𝛾 (ℎ) =
{
𝑏 +𝐶0 ∗

[
7 ∗

(
ℎ2

𝑎2

)
− 35

4
∗

(
ℎ3

𝑎3

)
+ 7

2
∗

(
ℎ5

𝑎5

)
− 3

4
∗

(
ℎ7

𝑎7

)]
ℎ < 𝑎

𝑏 +𝐶0 ℎ ≥ 𝑎
𝑎 := 𝑟

(A.19)

Where ℎ is the distance lag and 𝑏,𝐶0, 𝑎 are the variogram model parameters: nugget,

sill and range. For the cubic model, the effective range 𝑟 is exactly the variogram

range parameter 𝑎.
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matern in the implementation of the Matèrn variogram model. The implemen-

tation is taken from Zimmermann et al. (2008) and given in equation (A.20):

𝛾 (ℎ) = 𝑏 +𝐶0

(
1 − 1

2
𝜐−1𝛤 (𝜐)

(
ℎ

𝑎

)𝜐
𝐾𝜐

(
ℎ

𝑎

))
𝑎 =

𝑟

2

(A.20)

Where ℎ is the distance lag, 𝛤 is the gamma function and 𝑏,𝐶0, 𝑎 are the variogram

model parameters: nugget, sill and range. Additionally, the Matérn model defines a

fourth model parameter 𝜐, which is a smoothness parameter. For the Matérn model,

the effective range 𝑎 is a fraction of the variogram parameter range 𝑟 .

stable is the implementation of the stable variogram model. The implementa-

tion is taken from Montero et al. (2015) and given in equation (A.21):

𝛾 (ℎ) = 𝑏 +𝐶0 ∗
(
1. − 𝑒−ℎ𝑎

𝑠 )
𝑎 =

𝑟

3
𝑠−1

(A.21)

Where ℎ is the distance lag and 𝑏,𝐶0, 𝑎 are the variogram model parameters: nugget,

sill and range. Additionally, the stable model has a shape parameter 𝑠 . The effective

range of the variogram is a fraction of the variogram range parameter, dependent

on this shape. Generally, the effective range will increase with larger shape values.

harmonize is an implementation, that is rather uncommon in geostatistics. It is

based on the idea of monotonizing a data sample into a non-decreasing function.

That means, there is nomodel fitting involved and the procedure bypasses all related

steps. A successful application in geoscience was reported by Hinterding (2003).

For SciKit-GStat, the more generalized approach of isotonic regression (Chakravarti

1989) was used which is already implemented in scikit-learn (Pedregosa et al.

2011a).

Note, that a harmonized model might not show an effective range, in which cases

the library will take the maximum value as the effective range for technical rea-

sons. Thus, the user has to carefully double-check harmonized models for their

geostatistical soundness. Secondly, the harmonized model cannot be exported to

gstools, which makes it unavailable for most kriging algorithms.
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Fitting theoretical models

As soon as an estimated variogram is used in further geostatistical methods, such as

kriging or field simulations, it is necessary to describe the experimental, empirical

data by a model function of defined mathematical properties. I.e., for kriging, a

variogram has to be monotonically increasing and positive definite. This is assured,

by fitting a theoretical model to the experimental data. The models available in

SciKit-GStat are described in section A.5.1.

Fitting the theoretical model to the experimental data is crucial, as any uncer-

tainty caused by this procedure will be propagated to any further usage of the

variogram. Almost any geostatistical analysis workflow is based on some kind

of variogram and hence, the goodness of fit will influence almost any analysis.

The Variogram class can return different parameters to judge the goodness of

fit, among other the coefficient of determination, root-mean squared error and

mean squared error. Beyond a direct comparison of experimental variogram and

theoretical model, the Variogram class can run a leave-one-out cross validation of

the input locations to assess the fit based on kriging. As the experimental values and

their modeled counterparts are accessible for the user at all times, implementations

of any other desired coefficient are straightforward.

When fitting the model, SciKit-GStat implements four main algorithms, each one

in different variations. A main challenge of fitting a variogram model functions is,

that closer lag classes result in higher kriging weights and are therefore of higher

importance. A variogram model that might show a fair overall goodness of fit, but

is far off on the first few lag classes, will result in poorer kriging results, than an

overall less well fitted model that hits the first few lags perfectly. On the other hand,

emphasizing the closer lags is mainly done by adjusting the range parameter. The

only other degree of freedom for fitting the model is then the sill parameter. Thus,

if the modeling of the closer lag classes is put too much into focus, this happens at

the cost of missing the experimental sill, which is basically the sample variance,

in case the nugget is set to zero. If the nugget is not zero, a insufficient sill will

change the nugget to sill ratio and one might have reject the variogram at all. A

kriging interpolation of reasonable range is able to reproduce the spatial structure

of a random field, but if the sill is far off, the interpolation is not able to reproduce

the value space accordingly and the estimations will be inaccurate. In the extreme

case of a pure nugget variogram model, kriging will only estimate the sample mean

(which is the correct behavior, but not really useful). Thus, the fitting of a model

has to be evaluated carefully by the user and SciKit-GStat is aiming to support the

user with this.
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A procedure that is frequently used to find optimal parameters for a given model

to fit a data sample is least squares. These kinds of procedures find a set of parame-

ters, that minimize the squared deviations of the model to observations. A robust,

widely spread variant of least squares is the Levenberg-Marquardt algorithm (Moré

1978). It is a robust and fast fitting algorithm that yields reasonable parameters

in most cases. However, Levenberg-Marquardt is an unbounded least-squares al-

gorithm, meaning that value space for the parameters can neither be limited, nor

constrained. In the specific case of variogram model fitting, there are a number of

assumptions that actually do constrain the parameter space. Thus, in some occa-

sions, Levenberg-Marquardt is failing to find optimal parameters, as it is searching

parameter regions, that would not be valid variogram parameters, anyway. The

implementation for Levenberg-Marquardt least squares is taken from the scipy
package (Virtanen et al. 2020).

Another least-squares approach is Trust-Region Reflective (TRF) (Branch et al.

1999). A major difference to Levenberg-Marquardt is that TRF is a bounded least-

squares algorithm. That means, the Variogram class can set lower and upper limits

for each of the parameters. Thus, the TRF is, from what I can say, always finding

suitable parameters and is therefore the default fitting method in SciKit-GStat.

The adjustable variogram model parameters are the effective range, sill, nugget, if

used, and a shape parameter for the Matèrn and stable model. The lower bound for

all parameters is zero, as all parameters have to be positive by definition. The upper

bounds can also be defined for all parameters. The effective range is bounded to the

maximum lag, or largest separating distance observed, if the maximum lag was not

specified by the user. The sill is bounded by the largest semi-variance value that

was estimated for the experimental variogram. As nugget and sill effectively sum

up to sample variance, it consequently has to be smaller than any individual semi-

variance value. The same has to hold for the nugget, due to the implementations

given in section A.5.1. For technical reasons, the sill must not be 0. The nugget has

the same upper bound as the sill, as TRF does not take constrains, only parameter

bounds (a constraint would put a dependency of one parameter to the other into

the algorithm, which would be the more appropriate handling here).

The implementation for Trust-Region Reflective least squares is taken from the

scipy package (Virtanen et al. 2020).

The third fitting method is a maximum likelihood approach. The theoretical

model is fitted to the experimental data by minimizing the negative log-likelihood

of the variogram parameters. Each of the parameters samples from a normal

distribution with the last parameters predictions mean and standard deviation

as first and second moment. In the current implementation, an unbounded and
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unconstrained Nelder-Mead solver (Gao and Han 2012) is used to minimize the

log-likelihood function. The implementation is taken from scipy (Virtanen et al.

2020). For rare cases where this solver is not able to find valid variogram parameters,

the SLSQP (Kraft et al. 1988) algorithm can be used. It is substantially slower but

more flexible and will search the best parameters in a valid parameter space only.

Without having performed a systematic testing beyond unit-tests for the maximum

likelihood option, it seems like the maximum likelihood estimation often struggles

with larger nugget values and does not find optimal variogram parameters. Note

that this approach is optimizing the variogram parameters by their likelihood

of fitting to the experimental data, it is not a maximum likelihood fitting of the

variogram model to the sample auto-corrleation as described i.e. by Lark (2000).

The latter approach is briefly described in appendix A.9.3.

The last option is not an algorithm. The Variogram class has the ability to

directly take the variogram parameters from the user as hyper-parameters. In these

cases the class will bypass the fitting procedures and just set the user input as fitting

coefficients. This is convenient for cases where the user receives the parameters

externally. It is also possible to switch to custom fitting, after another algorithm had

already been used. This can be helpful to fine-tune automatically fitted parameters.

On the other hand, the implementation does also bypass all checks and constrains

made to the parameter space and the user could i.e. pass invalid values. An example

is a negative nugget value, which is mathematically applicable (there is i.e. no

runtime error), but does not make any sense from a geostatistical point of view.

Ensuring variogram validity is completely in the responsibility of the user in these

cases.

All fitting mechanisms except for the manual fit, can be further refined by setting

an array of fitting weights. This enables the user to focus only a few lag classes

for fitting and achieve a higher goodness of fit on specific lags. The weights are,

following the logic of scipy, actually not weights, but uncertainties. Thus, if one

has only weights available, their inverse has to be used. It is possible to pass a

numeric value array to the Variogram class, that has to be of same length as the

number of lag classes. If not set, the Variogram will equally weight all lag classes.

In most other cases the user will want to apply decreasing weights with increasing

separating distance, to put more focus on the first few lag classes. SciKit-GStat

conveniently includes a number of functions, that calculate an uncertainty array

that will effectively apply decreasing weights.

The first option is a linear decrease of weights with increasing lags. The second

option uses the square-root of the the normalized lag as an approximation. The

third option uses the inverse of the normalized lag squared as a weight. This results
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Figure A.9: Red squares show a sample experimental variogram (values are made up)

with four different spherical variogram models. All four models are fitted using Trust-

Region Reflective fitting procedure and distance depended weights. The weights are linear
decreasing with distance (blue line), decreasing by the square-root of the normalized

distance (green line), the squared normalized distance (red line) and decreasing by e-
function, as shown in equation (A.22) (yellow line).

in completely neglecting any lag class but the first two or three, depending on

the total amount. The last function applies an exponential function as given by

equation (A.22):

1

𝑤
= 𝑒𝑙𝑎𝑔

2

𝑛
(A.22)

Where 𝑤 is the calculated weight and 𝑙𝑎𝑔𝑛 the normalized lag.

All four distance-dependent weighting functions are compared in figure A.9. All

four functions show very comparable coefficients of determination, calculated over

all lag classes. That means, the four models describe the experimental variogram

equally well. It is now up to the user to decide which one to use. SciKit-GStat does

not apply any of these distance weighting functions automatically. This example

illustrates, how important it is to examine experimental variograms and the many

possibilities how one can capture its properties in a theoretical model, before

approaching more complex geostatistical methods like kriging or field generation.

Otherwise, the choice of model and model parameters might seem arbitrary. To

illustrate this, the four models resulting solely from a different weighting of the lag
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Figure A.10: Four random fields generated using the same seed for randomization, which

results in exactly the same field for same input. The only differing input parameter is the

automatic distance weighting function that was used for fitting the theoretical variogram

model. All four fields share the same value range. As the underlying models were made up,

neither the values nor the axis coordinates have any meaning. The two coordinate axes

name correspond to the index of the random field in matrix form 𝑖, 𝑗 .

classes for fitting (figure A.9) were used to generate a random field. The generation

of the random field was seeded with a fixed value, in order to create reproducible

results and hence the only difference in the fields originates from the choice of

weighting function (figure A.10). Finally, the fitting of variogram models is usually

neither exposed to the user (as sometimes even not the variogram itself), nor does

the user have control on the internals of fitting. In the shown example (figure
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A.10), only one parameter that influences fitting was changed, and that shows

dramatic effects. SciKit-GStat seeks to give the user more options to assume control

over this important step. Each of the other options for fitting might well produce

similar dramatic changes in field generation. Hence, it is so important to assess

automatically derived fitting results, because finally it should be up to human

interpretation whether a variogram should be used or not.

Another predefined possibility to determine weights for fitting is information

theory. Unlike the other functions, this option is not based on an inverse of weights.

The information theory based weighting option calculates the uncertainties directly,

by using the Shannon Entropy (Shannon 1948). It is calculated for the empirical

distribution of point pairs within each distance lag class. This will link the weight

during fitting directly to the information content of that lag. From a practical

point of view, the resulting weights are usually closer to uniform weights, than the

distance dependent weights. For the distance weighted procedures, the larger lags

are almost completely ignored. With the information theoretic approach this will

only happen for very thin populated lag classes.

Directional variograms

Directional variograms can be estimated in SciKit-GStat using the DirectionalVariogram
class. It inherits from Variogram, making all its properties and methods available.

Only methods that actually work on the distance matrix are re-implemented to

intercept calculations with a spatial filter. This let’s the user interact with the

class as learned with the base class, focusing only on the differences between a

directional variogram calculation and a classic.

DirectionalVariogram only overwrites one internal method and one prop-

erty of the base class. This is the logic assigning the correct lag group to each

point pair calculated and then deriving the lag bin edges from this. In both cases,

point pairs are filtered by their orientation, before the calculation is continued.

This way, DirectionalVariogram only adds necessary calculations steps and

the base class does not have to handle data, information or logic (such as point

pair orientation) that does not affect the classic calculation. This conscious design

decision leaves the code as readable as possible to make contributions easier for

others.

Three new attributes are introduced, that can be set by the user. For all three

parameters SciKit-GStat retains the name, implementation and usage as close to

Montero et al. (2015) as possible.

The azimuth of the directional variogram is the direction for which the directional
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variogram will be calculated. It is given in degrees as a counter-clockwise deviation

from the coordinate x-axis (which will be East in most cases). The tolerance is an
angle in degrees, which defines the limit at which a deviation from the azimuth is

still acceptable. Only these point pairs will be taken into account, which orientation

as calculated with equation (A.6) are within the tolerance of the azimuth. The

tolerance defaults to 45 degrees.

As the tolerance is given in degrees, the absolute deviations in the unit of the coor-

dinate system can be quite considerable for larger separating distances. Therefore,

it is possible to set a bandwidth. This parameter limits the maximum acceptable

perpendicular distance from the azimuth vector in coordinate units and default

to the 33% percentile of the distance matrix. It can be set as a percentile or as a

absolute limit, in coordinate units.
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Figure A.11: Pair Field plot of two directional variograms. The plot was created with

exactly the same two directional variogram instances as used in figure A.5. Both figures

show the network graph for two observation points (index 42 and 170 in the sample file),

in both directions of the variogram. The lines connect all point pairs that were taken into

account for these two points. The line colors have no meaning and are just included for

visual reasons.

Apart from the basic hyper-parameters that define a directional variogram, there

are different implementations, how to apply them. SciKit-GStat denotes these

implementations as directional models and implements two different.

The default triangle model is applying the three directional parameters as most

often reported in literature (Montero et al. 2015), by constructing a triangle in

the direction of the azimuth using the tolerance as a opening window. For larger
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distances, the triangle is bounded by the bandwith and turned geometrically into a

rectangle.

The unbounded version of the triangle model is called compass, which simply

ignores the bandwidth parameter. Thus, it will only restrict point pairs to be

oriented into a specific direction.

For convenience and to further inspect the point pairs which are actually taken

into account, there is an additional auxiliary plotting method. This plots a network

graph for all input locations with a edge for each point pair that will be taken into

account for calculation (figure A.11). Unlike other network graphs, the vertices

keep their real locations in the coordinate space to identify specific input data

points. A plot like this can be helpful to specify reasonable azimuth and tolerance

values, which will highly impact the result.

Spatio-temporal variogram

For calculating spatio-temporal variograms, SciKit-GStat has a class called SpaceTimeVariogram.
Other than the DirectionalVariogram class, SpaceTimeVariogram does not

inherit from Variogram, but is an independent class. For a spatio-temporal vari-

ogram, any processing step is not only dependent on a spatial lag, but also on a

temporal lag. This actually changes the function signatures for almost all methods

and, thus it was decided to re-implement the whole class without any inheritance.

Nevertheless, SpaceTimeVariogram and Variogram share attribute and method

names wherever possible.

At the core of all implemented theoretical variogram methods for the spatio-

temporal variogram is the estimation of two marginal variograms. The class will

estimate a temporal and a spatial marginal variogram. These are both instances of

the Variogram class. The spatio-temporal models themselves expect bothmarginal

variograms as an attribute.

Finally, the SpaceTimeVariogram implements a rich plotting method. It can

plot the the experimental spatio-temporal variogram and the fitted theoretical

model as a 3D or 2D plot (figure A.6, A.7). For 2D plotting, different plot types are

implemented, i.e. a contour plot for semi-variance values. Both 2D and 3D plots

are available. 3D plots allow for the user to interactively rotate, pan and zoom the

plot, enabling the user to inspect a spatio-temporal variogram. 2D plots are helpful

for printed material.
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sub-module: stmodels

SciKit-GStat implements three different theoretical spatio-temporal variogram

models: the sum, product and sum-product model. In line with the models sub-

module, the stmodels sub-module has a decorator functions to wrap the models.

This decorator takes care of the data flow and leaves the implementation of the

mathematical formula to the user, if custom models should be used.

In the following equations the marginal variograms represented by 𝛾𝑥 , 𝛾𝑡 refer only

to the spatial lag ℎ or temporal lag 𝑡 , respectively. They are estimated and modeled

as described in section A.4.1 using any of the semi-variance estimators from section

A.5.1 and any model described in section A.5.1.

sum is the implementation of the sum model. This is the most basic spatio-

temporal model, a sum of a spatial marginal variogram 𝑉𝑥 (ℎ) and a temporal

marginal variogram 𝑉𝑡 (𝑡) as shown in equation (A.23):

𝛾 (ℎ, 𝑡) = 𝛾𝑥 (ℎ) + 𝛾𝑡 (𝑡) (A.23)

Where 𝛾𝑥 , 𝛾𝑡 are the semi-variance estimations by the two marginal variograms and

are not restricted to a specific semi-variance estimator or theoretical model.

The sum model provides an understanding of the idea and workflow of spatio-

temporal models. However, it should not be used for real data in almost all cases. It

assumes the covariance field to be isotropic across temporal and spatial dimensions.

A situation which can be considered rarely true. Moreover, it might not be positive

definitive, as required for variogram models (Dimitrakopoulos and Luo 1994; Myers

and A. Journel 1990).

product is the implementation of the product model. The implementation is

taken from De Cesare et al. (2002, equation (4), p.207) as shown in equation (A.24):

𝛾 (ℎ, 𝑡) = 𝐶𝑥 ∗ 𝛾𝑡 (𝑡) +𝐶𝑡 ∗ 𝛾𝑥 (ℎ) − 𝛾𝑥 (ℎ) ∗ 𝛾𝑡 (𝑡) (A.24)

Where 𝐶𝑥 is the sill parameter of the spatial marginal variogram 𝛾𝑥 (ℎ) and 𝐶𝑡 is
the sill of the temporal marginal variogram 𝛾𝑡 (𝑡).

product_sum is the implementation of the product-sum model. The implemen-

tation is taken from De Cesare et al. (2002, equation (6)) as shown in equation

(A.25):

𝛾 (ℎ, 𝑡) = [𝑘1𝐶𝑇 + 𝑘2] ∗ 𝛾𝑥 (ℎ) + [𝑘1𝐶𝑠 + 𝑘3]𝛾𝑡 (𝑡) − 𝑘1𝛾𝑥 (ℎ)𝑥𝛾𝑡 (𝑡) (A.25)

Here, 𝑘1, 𝑘2, 𝑘3 are additional fitting parameters needed for the product-sum model.
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All three parameters need to be positive and may not be larger than any of the

marginal sill parameters 𝐶𝑥 ,𝐶𝑡 .

Ordinary Kriging

SciKit-GStat implements a ordinary kriging algorithm. It is implemented following

Montero et al. (2015) and can be used using the class OrdinaryKriging. The
user needs to pass a instance of Variogram as a parameter. In a majority of other

kriging implementations, the procedure accepts the observations and estimates

a variogram automatically. Sometimes even as an internal processing step. For

SciKit-GStat, the decision was made to focus on variogram estimation. The kriging

class should be seen as an auxiliary class to implement the full typical geostatistical

analysis workflow. The user is encouraged to take a closer look on the variogram,

utilizing all the plotting routines and descriptions, before passing it on to the kriging

class. This should have a positive effect on geostatistical applications.

It must be noted that the OrdinaryKriging class is mainly implemented for

cross validating variogram models. It does not claim to be a very performing

implementation of the kriging algorithm. Nor is it implemented with the flexibility

and analysis tools, the Variogram has. The author is also aware, that further

kriging algorithms exist and ordinary kriging might not be the most useful one.

Thus, SciKit-GStat is more focused on implementing interfaces to other libraries,

that including other kriging methods. Namely these are gstools and pykrige.
To date, the two aforementioned libraries are aligned to each other, future pykrige
iterations will implement gstools co-variograms. This will leave SciKit-GStat

only with the need for a powerful interface to gstools to provide the full power of

pykrige to SciKit-GStat users. The SciKit-GStat Variogram class has an interface

function, that can instantiate any gstools kriging algorithm from a SciKit-GStat

variogram. More details on SciKit-GStat and gstools and their future co-existance

are given in section A.5.2.

A.5.2 SciKit-GStat and gstools

SciKit-GStat has three interfaces to gstools, all three implemented as instance

methods of the Variogram class. The first option is to export the empirical var-

iogram. This is the combination of the lag classes edges with the experimental

variogram. The lag classes edges can optionally be shifted to the class centers, as

this is the notation that gstools uses for empirical variograms. This interface is

useful in case one of the many binning functions or semi-variance estimators was
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used, that is not available in gstools.
The second, major, option is to translate the theoretical model into a fitted covari-

ance model instance of gstools, which is their respective base class. With that in

place, one can use the covariance model in conjunction with all the great methods

available in gstools.
For the specific case of kriging, a third interface exports the variogram directly

into a gstools kriging class instance. At the time of writing, currently available

kriging algorithms are simple kriging, ordinary kriging, universal or regression

kriging, kriging with external drift and kriging the mean (Müller et al. 2021b).

Both libraries chose different avenues, how the user may interact with the library.

For gstools, the user defines a covariance model and passes it to one of the rich

set of geostatistical functions, which can be found in gstools. The user then

captures the return value of the function and uses it for further development and

analysis. In SciKit-GStat, as described in this paper, the user rather instantiates one

object and mutates it during the analysis.

A.6 Support, Application and Contribution

A.6.1 User support
Users are supported by a comprehensive documentation that includes API reference,

installation instructions, getting started guide, a detailed user guide and tutorials.

The user guide is written at the example of a lecture script. No geostatistical

prior knowledge is necessary. Only some limited experience in Python and basic

knowledge of univariate statistics is advantageous. Additionally, the user guide

includes a number of technical notes, that discuss some specialities of SciKit-GStat

in great detail.

SciKit-GStat is managed and hosted on Github under a MIT license. For technical

problems, questions and feature requests, the Github issues ticketing system is

used. To date any issues arising have been processed by the author himself. As

some of the raised issues discussed fundamental geostatistical principles and basic

applications of SciKit-GStat, these closed issues are also a valuable resource for

new users to SciKit-GStat as well as geostatistics. The evaluation of these issues

was taken into account for compiling the user guide.

To use SciKit-GStat in production environments and also for rapid installation,

a docker image is offered. The Dockerfile is also included into the SciKit-GStat

repository ,and therefore, also distributed under MIT license enabling users to
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adapt and utilize it. The associated docker image includes an interactive jupyter

notebook environment, which auto-starts the tutorials. These tutorials are also

included into the documentation and accompany the descriptions. In classroom

situations, each student can easily start with the interactive tutorials, while the

teacher can follow the documentation. The student should implement the core

functionality of SciKit-GStat themselves to fully understand geostatistical analysis

workflows. This knowledge can then be applied to SciKit-GStat emphasising the

correct application of the package and geostatistics in general. Finally, the student

can easily apply the learned techniques to real problems with a production-ready

Python package. The overall aim is to rather teach geostatistics with the given

resources at the example of SciKit-GStat, than narrowing geostatistics down to the

application of SciKit-GStat only.

A.6.2 Contributions

Contributions to SciKit-GStat are managed via Github. Generally, anyone can create

a private copy of the full source code. Adaptions, enhancements or corrections

to the source code of SciKit-GStat can be merged into the official code base via

Github. With respect to coding style, technical correctness and overall objective

of the library any possible contribution is reviewed by the author or any other

maintainer of the package. To further guarantee technical correctness, SciKit-

GStat is covered by unit-tests, which test all main functionality in isolated test

cases. Due to technical challenges, most plotting routines are not covered by unit-

tests. Historically, there have been a number of tests, but they require a lot of

maintenance and are to a specific degree dependent on the host platform. Thus,

it can be doubted that this is actually beneficial for the user. Additionally, a few

tests in the style of end-to-end test (e2e) were added to run a full analysis against

an expected result. Such e2e tests also assess the performance, measured as test

run-time. However, dropping performance does not cause a test failure, but can be

used by the author and contributors to assess contributions with respect to their

influence on performance. It was also decided to not accept any new contributions

that decrease test coverage significantly, by adding automatic coverage reports

to new contributions. This can be considered important to assure a specific level

of technical correctness for SciKit-GStat, especially because the open source MIT

license does not put any warranties in place, that the user could rely on.
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A.6.3 Integration into other libraries

The main interface to gstools is already discussed in section A.5.2. SciKit-GStat

has an interface to pykrige, which makes it possible to export a Variogram
instance as kriging parameters directly into pykrige. However, as pykrige is

fundamentally changing, it is not yet clear if the interface will still work in the

future. Nevertheless, as the code restructuring is finished, the more powerful

interface to gstools can be used to interact with pykrige in a more feature rich,

natural and native way.

scikit-learn is the most popular data science and machine learning frame-

work in Python. Beside that, scikit-learn developed a tool-chain pipeline over

the past years, that is used way beyond data science. This enables the user to

quickly change isolated parts of large and complex automated analysis workflows.

SciKit-GStat implements an interface to the corresponding class in scikit-learn,
which makes variogram analysis available in any workflow. At the same time,

scikit-learn implements a great number of data transformation algorithms

as usually used in machine learning. By adopting the pipeline tool-chain, these

preprocessing steps can be used together with SciKit-GStat, as many of them are

useful for geostatistical preprocessing as well. A prime example is trend detection

and detrending, which is often necessary in geostatistics.

A.7 Discussion
Most limitation and notes on application have already been mentioned in the

respective sections, along with implementation details. This section is discussing

general comments to SciKit-GStat. SciKit-GStat is toolbox for variogram estimation,

equipped with a large amount of methods. Most of these methods and settings do

not make sense in every situation. SciKit-GStat is generally leaving any assessment

of estimated variograms, beyond numerical goodness of fit values, to the user.

From this, it is further clarified, that SciKit-GStat is a variogram estimation toolbox,

which is used for building geostatistical methods or conducting analyses. It is not a

analysis framework itself.

This limitation also applies to preprocessing. While geostatistical prerequisites,

like the intrinsic hypothesis, are mentioned and further literature is referenced,

SciKit-GStat does not contain any diagnostic tool to i.e. check given input data any

further than by offering the presented scatter plots in figure A.3 for visual inspection.

External software needs to be used to test and transform input data. This applies to

coordinate transformations as well as observation normalization if required. For

143



Chapter A SciKit-GStat - scientific geostatistical software

both cases flexible and powerful Python packages are available (scipy, numpy,
scikit-learn). Hence, I had the impression that anything implemented into

SciKit-GStat can’t come close to existing software. Furthermore, I cannot claim to

overlook all geoscientific fields in enough detail to be able to offer generic integrity

checks and preprocessing for just any kind of input data. On the other hand, from

my personal experience in answering Github issues, non-transformed, misused

and non-applicable datasets in combination with rather uncommon variogram

estimations already lead to some confusion. As an example: If one uses the stable

entropy method to find lag classes, the method tries to assure that all classes are of

comparable entropy. As a consequence, using the entropy as a variogram estimator

will yield nugget effect models by design. If not, it is due to a weakness in method

and not a statistical feature of the sample. SciKit-GStat will not stop you from doing

so, nor does it stop the user from using this model for external drift kriging, which

will solely use the external drift variable for interpolation, then. One might be under

the impression that a sophisticated geostatistical interpolation was performed and

the result is backed by the covariance of observations. In fact, one did only apply a

computationally intensive averaging overlayed by a simple linear regression of the

external drift term. It is up to the user to inspect the variogram and be aware of

these implications. Not everything SciKit-GStat calculates is automatically correct

beyond technical correctness.

Another general comment concerns spatio-temporal geostatistics. I want to

clearly state here, that spatio-temporal variograms cannot be exported to any other

Python package and SciKit-GStat does not include spatio-temporal kriging. An

implementation is neither planned by the author, nor for gstools or pykrige,
as far as I am aware. Thus, from what I can say, one has to use the wonderful

gstat package and the R programming language, or gslib in FORTRAN right

now. Due to the lack of kriging procedures, the spatio-temporal variogram repre-

sentation of SciKit-GStat falls way behind the base class in terms of functionality

and interactivity. Similar statements can be made for the directional variogram.

While it is as functional, interactive and powerful as the base class, it can’t be

exported either. The original intention was to build a diagnostic variography tool

for detecting anisotropy. It turned out, that the current design of the directional

variogram is incompatible to the design in gstools and pykrige. Hence, the user
has to detect anisotropy and in the case of geometric anisotropy and then transform

the input data manually. This can be cumbersome and gstools might offer the

better approach here, if kriging or field generation are the final steps.
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Figure A.12: Default sample experimental variogram (blue points) with fitted spherical

model (green line) of the Meuse dataset (Bivand et al. 2008; E. Pebesma and Bivand 2005).

The histogram in the upper sub-figure shows the count of point pairs for each of the 15 lag

classes.

A.8 Conclusion

With SciKit-GStat, the scientific Python community has gained a flexible, well doc-

umented and well written package for variogram estimation. SciKit-GStat enables

the user to estimate variograms in almost limitless variations in a language-natural

and efficient manner. Many quality measures and especially plotting routines

accompany the library, to not only do the hard work, but also help the user to

understand what was actually done. Such an educational aspect of SciKit-GStat is

as important as the technical implementation details. Even the best code can be

applied the wrong way to draw incorrect or skewed conclusions. If one does not

write the code himself, this risk might be even higher. With SciKit-GStat the focus

is on the variogram. Variograms that are better understood by a user, lead to better

models, which are beneficial not only in application, but also as an educational tool.
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Figure A.13: Ordinary kriging application using the theoretical variogram model shown

in figure A.12. The kriging procedure estimated the lead concentration on a 100x100 grid.

A.9 Appendix

A.9.1 Meuse Data

Users of SciKit-GStat that relate easier to geoscientific data samples, than to pan-

cakes, are referred to the tutorial section of SciKit-GStat (Mirko Mälicke, Möller,

et al. 2021a), which includes a sample variogram and kriging application of the

Meuse dataset. This dataset is published along with the R package sp (Bivand et al.

2008; E. Pebesma and Bivand 2005) and contains 155 samples of heavy metal ions

(cadmium, copper, lead, zinc) along the river Meuse in the Netherlands. In the

tutorial, the lead measurements are used. While the original R package description

(E. Pebesma and Bivand 2005) is not specifying the coordinate reference system

used, I am confident its Amersfoort / RD New (EPSG: 28992), which projects the

sample locations next to the town Stein in the Netherlands. The sample variogram

(fig. A.12) is calculated for 15 lag classes up to the median of all separating distances.

The spherical theoretical model is fitted using Trust-Region reflective method with-

out a nugget effect. The model is under-estimating the semi-variance for the first

two lag classes, which could either hint on a nugget or suggest a different spatial

model. This requires a detailed assessment of the dataset in any application. One

needs to cross-validate at least a Matérn and a stable model, with and without

nugget each, before making any decision. However, for this demonstration the

variogram is sufficient.
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The model was used to interpolate the sample on a 100x100 sized grid (fig. A.13).

This grid size is used to decrease the calculation workload and hardware demand

for demonstration purposes only. The grid is bounded by the bounding box of the

input coordinates. This results in an irregular cell size of 27.85m along the x-axis

and 38.97m along the y-axis. Further, one has to be aware, that anything estimated

outside of the convex hull of the measurement locations (white points in fig. A.13)

is extrapolated and should be not be further used.

While this example demonstrates the ease of usage of SciKit-GStat, as data sources

can simply be exchanged, the application of geostatistics can be way more com-

plicated. SciKit-GStat can help with easily approachable methods and algorithms,

but the user still needs expert knowledge to estimate useful variograms and set

meaningful hyper-parameters.

A.9.2 Pancake Data

Using a photograph of a pancake for geostatistics was fun, but not only a joke. When

I first saw the browning-pattern in the pan I was just curious if means of geostatistics

work for this example as well. The application was easy and straightforward and I

took literally the first photograph made. I find it striking how well the variogram

estimation worked. I have no other geoscientific real world or even artificial data

example at hand that yielded more textbook-like variograms than this pancake.

Today, I would conclude that while a pancake is not a geoscientific phenomenon,

the browning of the dough is largely driven by thermodynamic principles which are

universally applicable. Thus, this ’artificial’ data set was great for development and

has become my prime benchmark data set for geostatistical method development.

I personally prefer artificial datasets over real world examples here, as sampling

sizes and locations can be altered. With real world datasets I, personally, tend to

focus too much on the system that the data actually represents and not the method

development. On the other hand, generating a random field by putting a covariance
structure represented by a specific variogram into the field and then reproducing

the very same variogram from a sample of the field is not much of a surprise. In

these use cases I found pancakes to be very useful.

To bake your own data, there are a few technical instructions, which should

help to produce comparable pancakes. The photograph was taken with a Canon

Powershot 540SX digital camera at 3267x2305 resolution. The camera position was

as orthogonal as possible at about 60 cm height. The original image was re-scaled to

709x500 pixels by cubic interpolation and finally cropped to 500x500 pixels centered

along the x-axis. To sample the pancake, 300 random pixel positions are chosen,
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without replacement to form the array of coordinates. The red band value at these

pixels form the corresponding observations array. The photograph is a PNG, thus

the value range is of a unsigned 8-bit integer (0 <= 𝑣𝑎𝑙𝑢𝑒 <= 255).

Finally, my pancake dough is very liquid (more like a Crêpe and less like an Amer-

ican pancake). From my experience, liquid dough and high temperatures (short

time in the pan) are the key to spatially structured pancakes. I would expect a

classic American pancake to be way more homogeneous browned. I use 500 g of

flour, 2 medium sized eggs, about a half liter of milk, a bit of salt and about 50g

sugar. Finally I add water to the dough until it is about as liquid as warm motor oil.

Usually, that sums up at least to another half liter (of water). Maybe a bit more. To

bake the random field, use oil, not butter. I could produce similar results with two

different pans on two different stoves (a very old one and a new induction stove).

My final advice is to archive only a digital copy of the pancake and eat the actual

one with maple syrup.

A.9.3 Maximum Likelihood fitting

0 100 200 300 400
Lag (-)

0

500

1000

1500

se
m

iv
ar

ia
n
ce

 (
m

at
h
er

on
)

experimental

ML fit (Lark, 2000)

SciKit-GStat TRF

Figure A.14: Default SciKit-GStat Trust-Region reflective fit of the pancake dataset (blue

line) to the experimental variogram (blue dots) compared to amaximum likelihood approach

following Lark (2000) (green line).
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With version 1.0 SciKit-GStat introduced a utility suite that can generate negative

log-likelihood functions for any given Variogram instance. The definition of a

negative log-likelihood function taken from Lark (2000, eq. 14). To construct this

function, the utility suite is reading the distance matrix and the theoretical model

type from the variogram instance at runtime and constructs an auto-correlation

matrix as defined in eq. 9 of Lark (2000). The utility module covers all theoretical

functions except the harmonized model, which can’t be fitted.

This appendix briefly summarizes the tutorial introducing the utility function. A

prime application for using this function is fitting a theoretical variogram model

using a maximum likelihood approach (Lark 2000). SciKit-GStat does only return

the likelihood function. It is designed to be used along with SciPy’s minimization

function (Virtanen et al. 2020) to find optimal variogram parameters by minimizing

the negative log-likelihood of the model. The maximum likelihood fit is performed

for the pancake sample as well (fig. A.14). For comparison, the default trust-region

reflective fit is calculated for the same sample (blue line). In order to highlight a

difference between both fits, the binning of the sample used here was changed to

Scott’s rule (table A.3). While the least-squares fit (blue line) follows the experimen-

tal variogram, the maximum likelihood fit does not involve any estimation of an

experimental variogram. It covers the first few bins significantly better, but at the

cost of sample variance, which is underestimated by the maximum likelihood fitted

model’s sill. From a technical point of view, the maximum likelihood approach

should only be used for very small sample sizes. The least squares approaches im-

plemented into SciKit-GStat are by magnitudes faster than minimizing a likelihood

function. The computational demand is depending on the auto-correlation matrix

for all sample points, which has to be inverted for each evaluation.
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B.1 Abstract

I present a framework for combining reusable research software into replicable

scientific analysis workflows. The technical details to conduct new workflows

as well as the limitations of the framework are presented and discussed. The

framework also introduces a specification of how input and output interfaces for

research software can be implemented to increase the transparency of such tools.

By separating parameters from data, the distinction between a reusable workflow,

to reproduce existing results and replicable analysis to apply previously obtained

research findings to new data in a different context is made more clear.

I revisit the analysis from chapter 2 to build such a workflow and present a robust

analysis that consequently builds on the latter findings. Modularized research

tools enabled the combination of different programming languages and entirely

different libraries to easily test the suitability of force-directed graphs, a tool to

examine and visualize relationships between entities in mathematical network

graphs, for the use in the context of chapter 2. An original method is presented

to visualize the covariance structure of representative variograms from the soil

moisture observations in the Attert catchment in an intuitive and informative way.

Each of these variograms was related back to different catchment states and physical

processes in chapter 2, with respect to propagated observation uncertainties in the

calculation of statistical dispersion functions. Using force-directed graphs, a few

promising approaches to either interpret the graph itself or way how it forms with

respect to the covariance of the related variogram are presented and discussed.

B.2 introduction

This chapter serves two purposes. It is the synthesis of all preceding chapters

and also the synthesis of all I have learned so far. An exemplary framework is

presented that can combine arbitrary reusable research software into replicable

analysis workflows. That can increase productivity and shifts the limits of how

much information can be processed within the scope of a scientific research project.

Even more importantly it shifts the limits of the tools that can be used and combined

as due to its modular nature, previous analysis can be replicated.

The work presented in chapter 2 is implemented using the proposed framework.

Limitation to the work as discussed in the respective chapter are systematically

tested as a starting point to build on the previous work. Finally, the technical details

of the framework are overcome to conduct new analysis and showcase, how a better

implementation of the previous research software can advance new insights and
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research.

One of the objectives in 2 was to present new ways how one can analyze, but also

visualize recurrent spatial patterns in soil moisture. We used a spatial dispersion

function to describe these patterns, which has not only proven to be a powerful

statistical description, its also a handy visualization. For this chapter, an entirely

different approach to visualize spatial covariance is taken.

A number of datasets have been presented throughout this work. Different meth-

ods were developed and applied to better understand the dynamics, patterns, or

characteristics of the systems represented by these samples. To summarize, the uti-

lization of modeling frameworks may provide a helpful stride towards reproducible

research, given that they partition indivisible, monolithic user-developed scripts.

This way, pre-, and postprocessing can be decoupled from the actual simulation,

which enhances the reusability. At the same time, the model presents itself more

transparently as inputs and outputs to the core algorithm need to be clearly defined

within the modeling framework. Without a framework requiring the user to pass

data and parameters to the building blocks of the framework, the researcher might

more likely end up with a script that does not separate data preprocessing from

data processing. Here, the preprocessing is linked to the specific dataset used and

should ensure data quality, while the data processing is already part of the model

itself. The core model algorithm is directly bound to the methodology and theory,

the research is built upon, or even investigating. The preprocessing is setting the

frame, how these methods need to be applied in a specific case, thus giving the

theory a context for interpreting and discussing results. That makes preprocessing

a prerequisite to research, not part of the research. Without a transparent definition

of processing steps, it might remain unclear if, ie. scaling of particular data to a

specific (spatial) grid is a peculiarity of the research question and/or catchment this

script is built for, or an inherent processing step of the model itself, which might,

in turn, limit use cases and/or applications.

When it comes to hydrological modeling, a number of attempts have been

made to build modeling frameworks that can be applied in as many contexts

as possible. An abstract description of model compartments or processes, that the

model seeks to represent is common to most of these attempts. In a commentary,

Weiler and Beven (2015) criticizes the lack of a common hydrological model, similar

to the WRF model (Skamarock and Klemp 2008) widely used in meteorology. The

commentary mentions several initiatives to build such a model and also some

attempts to introduce a meta-modeling framework, ie. FUSE (Clark et al. 2008) or

FARM (Euser et al. 2013). An even earlier attempt to establish a generic rainfall-

runoff model, that I am aware of was published by Leavesley, Stannard, et al. (1995).
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Despite all these efforts, none of these models and frameworks can be considered

a common community standard and Weiler and Beven (2015) even note that the

amount of different hydrological models and frameworks is increasing ever since.

This suggests the prospect that the hydrological discipline has not yet agreed on a

consensus on a common conception of hydrological processes in a catchment or

that the attainment of such a consensus is impeded by the uniqueness of catchments

(K. J. Beven 2000).

Besides more ’classic’ conceptual or physically-based hydrological models, ma-

chine learning and more specifically, artificial neural network approaches are enter-

ing the hydrological modeling domain. Two recent reviews on machine-learning in

hydrology (Nearing et al. 2021; Reichstein et al. 2019) illustrate the potential appli-

cations in hydrology, but also the sheer number of different network architectures.

While artificial neural networks are implemented by only a very limited number of

frameworks (compared to hydrological models), the implementation itself is still

unguided and, following the existing literature, almost always bound very closely

to the context of a case study. Thus, from a software engineering perspective in

the context of this work, a distinction between ’classic’ hydrological models and

machine-learning approaches is not useful. In both cases, the inputs and outputs

of an application are not standardized and the different compartments of the used

model structure are not interoperable.

To enhance the modularization and interoperability of geostatistical preprocess-

ing routines, the presented work collects the most crucial methods into a consol-

idated tool definition, with a special focus on the standardization of inputs and

outputs and the interoperability of methods. Rather than introducing an additional

framework for data processing or confining the tools to a particular pre-existing

modeling framework, the tool definition is tailored to facilitate the development of

application programming interfaces (APIs).

APIs are well suited to potentially enhance and formalize environmental models

and the necessary data processing steps (Y.-D. Choi et al. 2021). Especially in ’classic’

software engineering several approaches exist to standardize APIs to enhance

communication between applications.

To exemplify the usefulness of such a framework, I seek to not only reproduce the

findings of chapter 2, but extend the method. The clustering introduced in chapter

2 helped to aggregated spatial information under consideration of uncertainty. It

was used to link spatial dependencies and how they emerge back to meteorolog-

ical processes affecting soil moisture. At the same time, these spatial dispersion

functions and their clustering represent a visualization of spatial dependence in
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a dataset beyond the ’classic’ variogram. This chapter will not only extend the

technical implementation of the previous work, but actually use the implementation

to develop a new approach for visualizing the spatial properties of the dataset.

The presented approach aims at visualizing the co-variance of the sample repre-

sented by a dispersion function, or variogram, directly. The variogram aggregates

point-pairs at specific separating distances into a single statistical moment, called

semi-variance. This is the expected value of the point pairs observation squared

differences, representative of the separating lag class’s median distance. Instead

of aggregating the matrix of separating distances and squared differences for any

given lag class, a network graph is used to visualize i) which points are actually

connected at this lag (thus, form a point pair at all), and ii) how far away two points

are in terms of observation value.

In a network graph, observation points of the dataset are represented by points,

called nodes, and the connections between nodes are called edges. An edge is

solely illustrated if the two connecting observation points fall within the separating

distance under consideration. To visualize the squared difference associated with

each edge, a force-directed graph is used, which will adjust the node position

using the Fruchterman-Reingold algorithm (Fruchterman and Reingold 1991). This

algorithm defines various emulated forces, which drive the movement of nodes

until their position does not change anymore, or a maximum number of simulation

iterations has been reached. These forces can relate to actual physical forces,

like attraction between particles, but also implement any functional constraint

that mutates the movement of nodes. Here, a rule is implemented to maintain a

predetermined length for each node, which in turn accelerates the nodes to comply

with this constraint.

Force-directed graphs a widely used to visualize and analyze social network

datasets (Bannister et al. 2013; Itoh et al. 2009; Rahman and Karim 2016). All three

named studies focus on methodological aspects of simulating and drawing force-

directed graphs. Other applications have been found in biology (Danaci et al. 2018;

Genc and Dogrusoz 2003), which used force-directed graphs to visualize biological

signaling pathways, or enzyme pathways respectively. A combination of a biological

application and a spatio-temporal interpretation of meteorological parameters

was reported by Damos (2016). The authors used force-directed graphs to link

observations in a time-series of air temperature and humidity to the population size

of moles. The edges are weighted by the statistical significance of meteorological

parameters for the population size, which means, these edges associated with the

most significant parameters will dominate the others for the layout.

For the proposed method presented in this chapter, we weigh the edges by the
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residual value of the respective point pair. To assess the usefulness of this approach

the following hypotheses are tested:

• The force-directed graph of the two or more datasets are suitable to visualize

the underlying co-variance and distinctly classify the respective sample.

• Modularization of research tools through containerization enhances the sci-

entific re-usability and scales the application of research tools.

B.3 Methods and Implementation

B.3.1 Implementation
As of this writing, the Open Geospatial Consortium (OGC) is actively developing,

verifying, and approving a new family of APIs for geospatial data distribution and

processing, called OGC API 3.0 (Consortium 2019). These APIs build on the legacy

of the OGC Web service standards (ie. WMS or WPS), which are well-established

and accepted by all GIS systems. The new APIs will all be OpenAPI 3.0 compliant,

which drastically increases the interoperability of implementations, even outside

the GIS domain. In the context of this work, there are a number of relevant APIs,

which can be used to implement geostatistical workflows.

The OGC API is furthermore quite appealing, as core parts of the API, including

Features, Coverages and Processes are built on the legacy of their respective prede-

cessors, the OGC Web service standard. These are well-established and accepted

by all GIS systems and the corresponding OGC APIs will be downward compatible.

Important is the web mapping service (WMS) (Michaelis and Ames 2008) for raster

data, the web coverage service (WCS) for coverages, the web feature service (WFS)

(Michaelis and Ames 2008) for vector data and the web processing service (WPS)

(Michaelis and Ames 2008) for geospatial processing of data. To deploy these web

services, a multitude of open-source and proprietary solutions exist. The Java soft-

ware GeoServer and C software mapserver are the two most common open-source

projects, while ArcGIS Server is the most common proprietary solution.

Due to the novel character of the implementation framework at the time of this

writing, not all APIs are yet verified and/or the API code is not yet fully supporting

all use cases stable enough for production. Thus, to exemplify possible implementa-

tions, data distribution can be realized using GeoServer due to the maturity of the

software. In future implementations, either GeoServer might extend to OGC API

itself, or the other frameworks will be ready for production to migrate the API.
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Requirements diagram for the geostat tools
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FigureB.1:Dependency graph for the OGCProcesses API for system-wide implementation.
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To implement geostatistical methods, the OGC Processes API can be used. A

process can be any runnable computer program that consumes standardized input

and returns standardized output. Each of these processes can describe its inputs

using Swagger and OpenAPI, which offers interoperability to literally any client

program. Data can be supplied directly by passing it in text-based formats like

GeoJSON or CoverageJSON, or preferably by providing the URI of an OGC Features

or Coverages API compatible endpoint, or legacy web services like WCS and WFS.

This way the API methods can be applied to the accompanying datasets, or to any

other geospatial dataset available through a web API.

A major downside of the infrastructure specified up to this point is the depen-

dencies. An API like this needs different types of applications and runtimes present

on the operating system in order to run (fig. B.1). The simplified dependency

graph does not include system dependencies of the actual geostatistical libraries,

like GEOS or PROJ4. The entities (boxes) on the graph represent different kinds of

system architecture. The lines represent two different kinds of interactions between

entities: the solid line represents implementations where one entity interacts with

the other within the same environment, while the dashed lines represent require-

ments, which are the prerequisite for applications and libraries to be implemented.

The graph involves two runtimes, Python to run the OGC API implementation and

the tools, and OpenJDK to run the Geoserver application. As Geoserver is packed

into a web archive, a server application running this archive is needed. This server

is called Tomcat, which in turn needs an Apache2 web server to communicate with

remote clients. The OGC Processes API can be implemented using the Python

library pygeoapi. This is the backbone, which on the one hand operates the geo-

statistical Python libraries GSTools and SciKit-GStat and on the other hand

requests data for the processes run from the Geoserver, based on the parameteriza-

tion given by the user. An optional, but usually important, last building block is a

Proxy server that operates as the single gate for information entering and leaving

the stack, which can be served under a single domain. This is important as any

communication between the server and the proxy should be encrypted by an SSL

certificate. The Apache2 and proxy entity can be realized by physically the same

server, but would still run two separate tasks.

There is no way around the described dependencies, in case all elements of

the system are required. The approach and originality for this work, however, is

to split the above architecture into modular, containerized units which are only

dependent on a container-running service on the host system. In addition, a simple

yet flexible specification of how these container modules communicate with the

host system relaxes most of the issues arising from the aforementioned dependency

158



Methods and Implementation Section B.3

/in/*

Docker container

/out/*

parameters.json tool.yaml

Figure B.2: Simplified information flow into a docker container, which implements the

tool specification used for Geostat API.

diagram. The other main advantage is, that containers can be split by runtimes so

that no part of the implementation interferes with the host system and multiple

and even incompatible runtimes can be operated at the same time. Furthermore,

the dependencies relevant to a single tool are packaged along with the tool itself

and not with all dependencies of all entities that just arbitrarily happen to use the

same runtime. This should make developments and maintenance straightforward.

The most common software for building and running these kinds of containers

is called docker. It is available for all major operating systems, widely accepted

and containers built by docker can be run with other solutions as well. In order

to run arbitrary tools inside a docker container, a specification was formulated,

which will turn a container into a recognizable tool. This specification is created

in a generic, implementation language-agnostic way and does not dependent on

the presented framework implementation in any way. The specification is hosted

publicly on Github, allowing community contributions (Mirko Mälicke and Dolich

2023b). The main requirements for building such a container are a set of files and

the entry point of the container (fig. B.2). The container entry point has to be any

runnable file without any runtime arguments. Otherwise, the state of the container

would be dependent on the way it was called. Next, a YAML file has to be present

at a specific location inside the container, which contains metadata like the tool

description and the parameters, which the tool will accept. The metadata also

specifies if more than one tool can be found in the container. Parameterizations for

running a tool are collected in the parameterization file (parameters.json), which

will be included in a specific input data folder, that is mounted from the host system

to the container on runtime. This way, the parameterization, and the input data can

be created by any kind of framework, editor, or script at runtime. For parameters

that cannot be serialized into JSON or are simply too large, the parameterization

file can link any file-based data source inside the input folder. To ease the loading
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of these parameterizations into data structures of the respective implementation

language, a number of software packages have been created. These can be installed

into the tool container and read the parameterization, including standard data file

formats like JSON, CSV, and netCDF. Libraries exist for Python, R, NodeJS, Octave

and Matlab.

On the output side of a tool container, the scripts are required to store all results

in a specific output location. This folder is again mounted to the host file system

and will therefore persist results after the container has finished. The reason for

this is, that it is common practice to remove containers by docker after they have

finished. Even if the container is kept on the system, any user of the tool would be

required to commit changes into a new docker layer, as the container does not store

changes on exit automatically. Additionally to a result folder, it is recommended

to bind standard output and standard error stream of the container to the host’s

streams. This way, one can capture any error and console output by the tool inside

the container.

The aforementioned specifications for docker containers to recognize them as

tool containers are framework agnostic. As long as a service executing containers,

like docker13, singularity14 or containerd15 is present, the tools can be used.

However, the specification itself should be seen as standardization across platform-

dependent client applications and thus the intended audience is developers. For the

programming languages Python and NodeJS, I provide a client application to run

the tool containers. First, the Python library toolbox-runner (Mirko Mälicke

and Dolich 2023a) that consumes parameters and Python objects natively and

translates everything to container parameterizations is implemented. This should

make the tools way more usable for Python users. It also adds control flows like

asynchronous and event-based execution options and implements a number of

convenience methods to archive tool results.

The NodeJS library @hydrocode/tool-runner (Mirko Mälicke 2023a) provides

similar functionality for a NodeJS environment. It focuses more on providing an

HTTP-based API for building cloud and web applications for tool specification-

enabled containers. An exemplary project
16
, which makes use of this API is also

developed, that translates tool specifications into a graphical user interface and can

13 Docker. (n.d.). What is a Container? Retrieved March 30, 2023, from https://www.docker.com/

resources/what-container

14 Singularity. (n.d.). Singularity. Retrieved March 30, 2023, from https://sylabs.io/singularity/

15 containerd. (n.d.). containerd. Retrieved March 30, 2023, from https://containerd.io/

16 hydrocode-de. (n.d.). tool-runner-frontend. Retrieved March 30, 2023, from https://github.com/

hydrocode-de/tool-runner-frontend
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be compiled to a native desktop application for Windows, macOS, and Linux, or

used as a basis for mobile applications for iOS and Android.

Another advantage of using frameworks instead of interacting with the docker

containers directly is, that frameworks can collect error messages, log output,

results, and runtime metadata in a unified way for all tools. In case the user decides

to pull semantic versions of tools (ie. 1.3 instead of the docker-specific version

latest, which always points to the newest version), the provided frameworks

persist all inputs, all outputs, a checksum for the used container, and the exact

version of the underlying image into a local archive. This enables the user in

principle to pull the exact same image locally, mount the archived input data and

parameterization, and run the container. After finishing, the newly created results

and their checksum can be compared to the checksum in the archive as an example

of repeatable tools. The same container can be used with substituted input data to

run a replicable tool, as it was just verified that exactly the same tool was applied in

exactly the same way, but to other data. To this end, this is an example of technical

replicability.

To link back to the beginning and the exemplary OGCAPI implementation, which

is finally built around the framework, not the tools. This separates the architecture

from tool implementation while utilizing the interoperability of OGC APIs. Finally,

it also leaves the implementation of a tool to a containerized and therefore isolated

environment, that, once parameterization files are loaded, focuses only on the

tool algorithm through a single executable script in literally any programming

language. The specification abstracted all pre- and postprocessing away. This can

turn especially useful in case user-defined scripts are used from third parties, like

other scientists, that are not trained software engineers and prioitize algorithm

implementation over technical implementation and workflow details.

Coming from chapter 2, the presented framework is used to connect directly

to the discussion of that chapter. To assess the validity of the chosen approach,

the analysis workflow can be run several times changing only one parameter in

question at a time, similar to sensitivity analysis in modeling. To exemplify this,

the main limitation (as I see it today) of the aforementioned work is focused.

The clustering of spatial dispersion functions was based on the distance between

two empirical variograms. The idea of a variogram is to represent the spatial

covariance structure of a sample by a suitable model and its parameterization. Thus,

in principle, the results of chapter 2 should be repeatable by using the variogram

parameters as input for the clustering tool, instead of the empirical variogram itself.
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Another big advantage of the proposed framework is the ability to combine tools

and software. A force-directed network graph (Fruchterman and Reingold 1991) tool

is implemented using the aforementioned tool specification. As a novel approach

to visualize the co-variance of a geospatial dataset, this tool is combined with the

clustering results replicated from chapter 2, as described above. The force-directed

network graph is used to visualize the distance matrix of all observation points

and the associated squared observation differences at the same time. In general

terms, force-directed graphs can be used to group entities, ie. in social networks

to weigh connections between nodes by the relationship of the persons that are

represented by the node (Bannister et al. 2013; Itoh et al. 2009; Rahman and Karim

2016). For the presented application, each node represents an observation location

of a geostatistical dataset and the edges connect point pairs that are within the

separating distance of the considered separating distance lag. This is a natural way

to visualize, how the observation network influences the emergence of a covariance

structure. Force-directed graphs introduce an additional dimension when compared

to other mathematical network graphs, as an iterative simulation moves nodes

like particles through a two- or three-dimensional canvas, following different rules

that accelerate particles or constrain their movement. These rules are called forces,
hence force-directed graph. Hence, the movement of the nodes and their final

position, after the simulation terminated are related to the spatial co-variance of the

dataset. The squared differences associated with each edge are used to dimension

them, such that the nodes are moved to match the pre-determined length.

Here, I use this visualization tool to implement a force that seeks to keep the

length of an edge at the squared observation difference of the respective point pair.

This way, point pairs pull and push each other depending on the joint differences in

observation. The final setting the nodes end up in when the simulation converges

can be interpreted as the expected value of the joint distribution of the connected

edges, which is simply the local covariance.

I hypothesize that a force-directed graph is a suitable tool to visualize the joint

effect of the observation network and spatial covariance in a single graph. Further,

visual distinctions between the network graphs of the average variogram for each

cluster, or the emergence thereof, are expected.

B.3.2 Data and Methods
The current state of the Python framework is used to demonstrate a geostatistical

workflow and implement an analysis. Besides the scientific insight into how co-

variance structures develop and are sustained over time in soil moisture samples,
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another objective is to showcase the ease of usage and the analytical depth of the

workflow.

The dataset used is the same as described in 2.3.1. No changes have been applied

to the described data preprocessing, yet only the soil moisture time series recorded

at an installation depth of 30cm are used. Following the description of 2.3.1, we end

up with 57 profiles at 19 cluster locations within the Colpach catchment (fig. 2.1).

The first tool implemented into this workflow is a generalization of the dispersion

functions (Mirko Mälicke 2022b) used to describe spatial statistical dispersion over

time (see section 2.3.2). The implementation used in the original publication defined

dispersion functions as a generalization of variogram functions to relax the intrin-

sic hypothesis. To implement a tool function, SciKit-GStat is used to calculate

dispersion functions and is then applied to a moving window, which can be parame-

terized in terms of window size and shift. This way, any kind of variogram function

supported by SciKit-GStat can be applied as a moving window aggregation

function to any kind of moving window setup supported by NumPy (van der Walt

et al. 2011). The user is encouraged to check the geostatistical validity of the chosen

settings, but it is noted that SciKit-GStat also implements spatio-temporal vari-

ogram functions for windows that may need to respect temporal auto-correlation

within the window itself. In the given example, the parameterization described in

section 2.3.2 is reproduced, which used 30 days window sizes to estimate dispersion

functions based on the Cressie-Hawkins estimator (Cressie and Hawkins 1980). A

notable difference between the original analysis and the parameterization chosen

for the workflow is the binning function. Here, the standard function of even lag

class widths is used, instead of the variable bin widths to create uniform sample

sizes within each lag class as described and motivated in section 2.3.2. The original

publication repeated the analysis not only for different sensor installation depths

but also for three different years. For this chapter, only the 2013 data is used.

To identify windows of similar spatial covariance structure between the ob-

servation locations, the analysis described in chapter 2 conducted a Mean shift

clustering algorithm (see section 2.7.1). The tool implemented is generalized as

a generic clustering tool built on SciKit-Learn, the most sophisticated Python

implementation for clustering (Mirko Mälicke 2023b). The implemented tool can

handle N-dimensional samples, including a transformation for 1D samples, which

the underlying software is not capable of. Besides Mean Shift a number of other

clustering algorithms are available: K-Means, Affinity propagation (Frey and Dueck

2007), and Agglomerative clustering (Pedregosa et al. 2011b), with four different

methods to link sets into a cluster. For consistency, the Mean shift was used, which

identified 5 clusters for 2013, of which two only contained very few members and
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Figure B.3: Conceptual idea of representing spatial co-variance by a force-directed graph.

The graph shows three nodes connected by two edges. The sketch illustrates how the

squared observation differences between ie. 𝑥1 and 𝑥2 if set as the distance 𝑥12 indirectly

control the value of the spring constant 𝑘1, if interpreted as a physical spring.

are therefore neglected. For comparison, the tool was parameterized to identify 3

clusters using K-Means, which ended up in the identification of broadly the same

clusters.

Up to this point, the main data processing from chapter 2 is repeated, using a

more robust and consistent software implementation as described in chapter A. In

the following, a new perspective on the spatial structure is introduced, which can be

compared to the findings presented in chapter 2. Other than in the original analysis,

the parameterization of the clustering tool was changed to cluster the dispersion

function parameters over the empirical values. Interestingly, still, the same clusters

are identified. For each of the clusters, the mean soil moisture was used to calculate

a variogram. Beyond chapter 2 and its re-implementation, the separating distances

and associated squared observation differences for all point pairs within the effective

range of the respective variogram are further analyzed. The final main tool for

this workflow is intended to visualize the covariance structure based on this data

directly.

To visualize the covariance of any given variogram instance, a network graph is

used. Each observation location is represented by a network node, however, the

position is not derived from the spatial coordinates (the measurement location),

but simulated by a verlet integration of a position and velocity matrix representing

the network nodes. The implementation is taken from an existing Python library

(Hagberg et al. 2008). The implemented numerical integrator is simplified by a

number of assumptions to make the simulation of large networks feasible. A

constant unit time step for the simulation is assumed, which does not impact the

proposed analysis, as only the network after the simulation converged into stable

positions is used. Second, all nodes in the network are represented by particles of the

same mass. The simulation implements an abstract concept of forces, which in this

context are any kind of transformation function, changing the particles’ velocities,

or locations directly. Thus, a simulated force can apply a physical force like gravity,

but can also apply constraints, like preventing particles from leaving a certain

164



Methods and Implementation Section B.3

area. When referring to a force in this context, the implementation function of the

simulation is meant, not necessarily the physical concept. The used simulation

activated various forces. First, all particles move towards the shared center of

weight. The main reason is to keep nodes together and can be thought of as a joint

center of mass. The second kind of force is applied along the network edges. If

they are supplied with a value, the force function will accelerate the particle along

its edges to reach the desired edge lengths. These values default to 1 if no data is

supplied. The implementation of the tool uses pairwise observation differences

to connect all pairs within a given range of lag classes. Effectively, this turns the

pairs within a lag class into springs connecting the observation locations and their

observation differences into the spring constant.

Consider three exemplary nodes 𝑥1, 𝑥2, 𝑥3 (fig. B.3). The respective distances 𝑥12, 𝑥23
are set to the squared observation distances, and the simulation is run until the

velocities of the nodes relative to each other have converged. Using Hook’s law,

the ratio of the spring constants can be related to the two distances, as long as the

nodes do not move to relative to each other:

𝐹 = 𝑘𝛥𝑥

𝑘1𝑥12 = 𝑘2𝑥23

𝑘1

𝑘2
=
𝑥23

𝑥12

(B.1)

Where 𝐹 is the force applied, 𝑘 is the spring constant and 𝑥 is the distance between

two nodes. Given that 𝑥12 is half the distance 𝑥23 (fig. B.3), the associated spring

constant 𝑘1 needs to be 2𝑘2. Thus, observation point pairs with small squared

differences are not pulled closer together, one would also need a larger force to

push them apart. This is a very intuitive illustration of co-variance in a geostatistical

dataset. Given an interactive version of a force-directed graph, it is even possible

to actively push nodes away from their stable position and investigate on the effect

on the network graph and the movement velocity, when the simulation accelerates

the nodes to match the edge length constraints again. The simulation will stop as

soon as the particle velocities are smaller than a specified threshold or a maximum

number of iterations is reached. This threshold is set to 5000 here. The resulting

state of the network is interpreted as a visualization of the sample’s covariance

structure.

To better assess the network graphs of a variogram, different template variograms

are calculated to visualize their covariance structure as a benchmark of how these

graphs can look like. Then, the actual variogram can be located on the spectrum

of possible network manifestations. The first variogram is a pure nugget effect
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variogram, as calculated on a sample of random coordinates and purely random

observations. With a sample large enough, no spatial correlation is expected, thus

the network nodes are not expected to exhibit any specific order and the driving

force for layout is the movement towards the center coordinate of the sample.

The final layout is then expected to be a fairly ’small’ circle, as within the circle

the network can arrange to contain all, normally distributed, pairwise squared

differences in a compact way. As the variograms in question have rather small

sample sizes, a random sample of the same sample size is created. The deviation of

its covariance network graph to a circle is interpreted as inherent uncertainty to the

method, which is attributed to the sample size, rather than the spatial configuration

of each cluster variogram.

The second benchmark variogram is calculated for a highly structured field. Let𝑀

be a 2D regular grid defined as:

𝑀𝑖, 𝑗 = 𝑖 + 𝑗 (B.2)

Where 𝑖 is the matrix row index and 𝑗 is the matrix column index. This field is

highly structured, as the field values are ordered. It is also deterministic, as for any

location on the grid, the whole field can be derived, solely from the single value

at that location. The variance of the field is increasing with the size of the grid, in

principle unbounded.

Finally, a second, highly structured field is created. Other than the grid described

in equation (B.2), the second field is defined as:

𝑆𝑖, 𝑗 = 1 (B.3)

Where 𝑖 is the matrix row index and 𝑗 is the matrix column index. Similar to 𝑀 ,

the field is structured, as it is ordered and deterministic. In contrast to 𝑀 , the

variance is always 0. A variogram sampled from this field is also a pure nugget

effect variogram, but in contrast to the random sample, the variance is 0 and the

nugget effect variogram will be located at the x-axis. These two cases help to

differentiate the effect of non-spatial variability on the overall network layout.

With these benchmark variograms calculated for the sample size of the spatial data

in question, the actual covariance graph of the sample can be assessed in a field

structure versus field variance spectrum.
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Figure B.4: Result for reproducing the results of (M. Mälicke et al. 2020), with variogram

models fitted to the aggregated, clustered variogram parameters (in contrast to clustered

empirical variograms in the original publication). a) Soil moisture in the Colpach catch-

ment in 2013, the time series are colored according to the clustering result for variogram

parameters. b): The fitted variogram models for each of the clusters. Each of these models

is the aggregation of the dispersion functions within each cluster and not fitted to empirical

variograms of the observations.

B.4 Results for reproducing a published workflow

B.4.1 Reproducible workflows
Using containerized, reproducible workflows put one in the position to run extensive

analysis systematically. This has an impact on vastly decreased processing times

and also clearly communicates parameterizations and data used in the workflow in

standalone files. Large parts of the analysis presented in chapter 2 were reproduced

(fig. B.4 a) in two containerized tools, first to apply dispersion functions in a moving

window, then a generic clustering tool, which includes the Mean shift algorithm

used in the original publication (fig. B.4 b). In the second step, parameterizations

have been changed in an iterative process and the actual analysis result could

be used as an objective function, to explore how sensitive the result is on the

parameterization. This application already is way beyond the scope of the original

application, in which only two window sizes could be tested due to technical

limitations.

The soil moisture time series observed in the Colpach catchment from 2013 is

shown in figure B.4 a). In line with the methodology of chapter 2, each observation

is colored according to the clustering result. The identified clusters exhibit temporal
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coherence, with similar clusters occurring consecutively in time. Unlike the original

chapter, the clusters were generated based on variogram parameters computed

for each moving window. Despite this modification, the proposed method yielded

highly similar results. In order to facilitate a more comprehensive comparison of

the three clusters, an illustrative variogram based on the mean parameters of each

cluster is presented in Figure B.4b).

The exemplary hypothesis that can be answered at this point is: The results from

chapter 2 can be reproduced by clustering the variogram parameters, instead of the

empirical variogram (see fig. B.4 a).

As the parameters describe a theoretical variogrammodel that represents the spatial

properties of the sample captured by the empirical variogram, differences are

expected to be imposed on the variogram parameters as well. While the clustering

itself worked as expected, as a second step the variogram parameters for each of the

three main clusters, blue, green, and yellow, are aggregated in cluster means (fig.

B.4 b). These variogram models are provided to visualize the differences in spatial

covariance structure. The cluster variogram models differ in sill and effective range

parameter, which fits the results and conclusions of M. Mälicke et al. (2020) for the

dispersion functions. The remaining chapter will use the underlying data (for both

variogram models and dispersion functions) to introduce a novel way to visualize

the described spatial co-variance.

B.4.2 Visualization beyond variograms
The presented workflow loosened the restriction of implementing a scientific analy-

sis workflow in a single programming language. The interfaces of the two tools are

clearly defined and the actual code is containerized. For the presented workflow,

one can easily switch from Python, which was used so far, to other languages. A

language particularly interesting at this point is Javascript. Due to its tight relation

to web browsers, it is a highly interactive language, which is designed to react

to user input asynchronously and mutate existing HTML elements as functions

return. This is uncommon for (geo-)scientific workflows, which usually run code in

a static way that transforms inputs into outputs in a transparent manner. For data

exploration, especially without the need to generate results, a more interactive yet

in-transparent language like Javascript has advantages.

With the containerized tools in place, combining both approaches is straight-

forward. A lightweight Javascript application was written (Mirko Mälicke 2023c),

that reads generic network graph definitions and outputs them as force-directed

diagrams in a browser window. By binding most parameters of the underlying
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Figure B.5: The upper row shows conceptualized variograms for the three benchmark

datasets, where random is based on a random variogram, and the other two on a determin-

istic field with high variance (de. high var.), and the no variance (det. no var.). The center
row illustrates the force-directed diagram of the three benchmark datasets. The bottom

row shows force-directed diagrams for the three spatial dispersion parameter clusters,

denoted blue, green, and yellow cluster. For all network graphs, only the first three distance

lag classes of the respective empirical variograms were taken into account. This roughly

reflects the effective range of the variograms.
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library to HTML elements, the graph can be explored in an extremely interactive

way. This step allowed exploring force-directed graphs and their suitability to

visualize covariance structures of an empirical variogram instance. One could very

rapidly re-run the full workflow to generate new graph visualizations, but also

inject network graph data originating from different sources. Three benchmark
variograms were generated following B.3.2, a) a purely random variogram and

two sampled from a regular mesh grid with b) large and c) no variance. The three

benchmark datasets present three distinctly different force-directed graphs (fig.

B.5, center row). For reference, a conceptual variogram model representing the

spatial covariance of each benchmark dataset is shown as well (fig. B.5 top row).

Both illustrations depict the spatial covariance from different perspectives: the

variogram in a functional condensed form, and the force-directed graph to reveal

structure as visually as possible. The graph of the deterministic mesh grid with

high variance and trend presents itself as a simulacrum of the mesh grid itself. As

the high variance of the field is generated by adding the matrix indices, the squared

difference of any point pair is reflecting their distance exactly. Thus, the native

way of organizing these differences is the mesh grid itself.

One insight the force-directed graphs revealed for the clusters (fig B.5 bottom row)

is the observation network design. The network is split into two parts, connected

only by three nodes. Each node represents an observation location. These loca-

tions are well-connected to all other points, indicating a central location in the

network, but all three nodes also keep the two sub-networks at fairly medium

distances, meaning they are the most representative observation locations for both

sub-networks simultaneously. In case one needs to dismantle a dense observation

network, but wants to keep a reduced amount of sensors active, the force-directed

graph is most helpful to identify suitable candidates.

Note, that the Javascript-based version was interactive, thus dragging network

nodes or watching the initial arrangement of the nodes cannot be depicted in figure

B.5. But the interactive nature of the graph unearthed different behavior of the
networks. First, the time until the graph converged and node positions did not

change substantially anymore differed for the force-directed graphs (fig. B.5). The

particle velocity for a force-directed diagram is only driven by the forces applied,

which in turn only depends on the required length of an edge that is set to be

the squared observation difference of the respective point pair. In case the force-

directed diagram converges slowly, there are significant interfering forces, that

draw a particle in different directions at the same time. This can be thought of as

high friction within the network.

Secondly, the interactive nature of the Javascript driven web-page allowed dragging
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particles interactively. That basically stretches or bends the edges and effectively

temporarily changes the squared difference of the respective point pair, by changing

the position of a node. The force-directed graph will run another simulation to

get the nodes and edges back into their equilibrium position. Here, it is worth

mentioning, that these positions are not necessarily the same as the positions the

nodes were dragged from. The simulation runs again and can end up in a different

state. This is an illustration of equifinality, as in these cases it is possible to arrange

the nodes in more than one way. Directly connected to the first observation, this

dragging resulted in faster and slower responses of the network, which directly

relates to the aforementioned friction. The random graph could easily be dragged

away and almost instantly moved back into position. The same-value mesh grid, in

which all edges seek to be of the same length, not only results in a very structured

graph, but the graph reacted slowly to changes, hence there is a lot of frictionwithin
the network. More random variations in the covariance structure allow for more

flexible positioning of nodes and faster convergence, as there is more variety in edge

lengths. In turn, this implies that the time until convergence and the final stability

of the network can be used as a proxy for the degree of organization in the spatial

covariance. The stability of the network is here defined to be the average particle

movement that still occurs after the graph converged or the simulation was ended

due to a parameterized time limit. In general terms, I hypothesize that convergence

time is negatively correlated with randomness, while network stability is correlated

to equifinality in the network arrangement. The latter has been observed in the

limited use cases presented especially for highly structured, deterministic fields.

These findings resulted in the development of a Python integration of force-

directed networks as described in section B.3.2. Python is preferred here, as the

reproducibility of the workflow is focused on instead of explorative interactivity.

The Python-driven containerized tool can be run in parallel with the Javascript

tool.

The simulations were run again and in general terms, the final, converged networks

looked the same as for the Javascript tool. In addition to simply reproducing the

results, the Python tool built on the implementation in NetworkX (Hagberg et al.

2008) to allow for intercepting the simulation on each iteration, which would be

fairly difficult to do in the Javascript version. By tracking the positions of the nodes

on every second iteration of the simulation, relative velocities for each node were

calculated (fig. B.6). The thin lines describe the movement of single nodes, while

the thick line is the network average. Note that all calculated velocities have been

smoothed by a moving average of window size 2, mainly for visual reasons.

Figure B.6 is used to visually describe characteristic behavior of the networks
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Figure B.6: Network convergence of the force-directed graph simulation for the networks

presented in figure B.5. The thin lines show the relative velocity per iteration for all nodes

of the graph and the thick line is the average velocity of all nodes combined. The names on

the y-axis identify the same networks as shown in figure B.5.

Name Initial velocity Convergence at it. Velocity at con. Stddev at con.

det. high var. 0.171 16 0.132 0.066

det. no var. 0.077 34 0.000 0.000

random 0.166 6 0.078 0.035

blue cluster 0.199 22 0.043 0.031

green cluster 0.218 20 0.049 0.029

yellow cluster 0.247 28 0.045 0.037

Table B.1: Convergence signatures for the force-directed graphs shown in fig. B.5.
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during the simulation. Mainly the initial velocity, the iterations until convergence,

the remaining speed after convergence (base level), and the rate of decrease in

velocity until the velocity converges are focused. The combination of these charac-

teristics are summarized as convergence signatures.
The three benchmark networks show distinct convergence signatures (fig. B.6). The

force-directed graph for the deterministic field with high variance (1. row), shows

high initial velocity, which does not drop significantly. It moves into position at

a constant speed and then continuously keep changing positions. When turning

the simulation frames into a video, this movement looks like flickering resulting

from nodes switching positions. While the network keeps its mesh grid structure,

the nodes are interchangeable, because the graph is based on (repeating) squared

observation differences, not geographic coordinates. This is an interpretation of

equifinality, manifesting as a base level of movement, that is almost as high as the

initial velocity. From figure B.6, a drop in initial velocity cannot easily be captured.

Thus, the simulation time was forced to the 10-fold of the first run, preventing

the simulation to stop. The results for the deterministic field with high variance

(1. row) better show the drop from initial velocity and the high base level after

convergence, which is reached after 16 iterations.

The other deterministic field shows a distinctly different convergence signature.

The mean velocity is practically zero. With 34 iterations, it also took the longest

time to converge. The nodes all show a monotonic decline in velocity and also

keep their relative rank compared to the other nodes while converging. The two

other benchmark datasets show a constant change in velocities for all particles for

the whole simulation. After convergence, the node velocities and their standard

deviation are negligible, meaning there is no movement in the network anymore.

The force-directed graph for the random sample converges faster than any other

graph calculated. This also holds for other realizations of random graphs. The

average node velocity after convergence is larger but does not reach the level of

the high variance network. In addition, the rate at which the velocities change is

changing as well. While the deterministic, high variance graph showed a general,

persistent high movement, the random sample network has periods of compara-

tively high movement, but also periods of smaller average movement. This can

better be seen in the longer simulation (fig. B.7).

The three force-directed network graphs built from the residual matrix of the

soil moisture cluster variograms exhibit only slight differences (fig.B.5). Their

convergence signature, however, is distinct. A similar network graph is expected

as all three cluster variograms share the exact same spatial positions and therefore

also the same distance matrix. The distance matrix is directly related to the point
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Figure B.7: Network convergence of the force-directed graph simulation for the networks

presented in figure B.5 for 200 iterations. The thin lines show the relative velocity per

iteration for all nodes of the graph and the thick line is the average velocity of all nodes

combined. The names on the y-axis identify the same networks as shown in figure B.5.
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pairs that will be used as a basis for the force-directed graph. Thus, the networks

share the same nodes and edges and only differ in the desired edge lengths.

The blue cluster force-directed graph shows the signatures of two different

benchmark datasets. The early phase of the simulation shows a deterministic,

high-variance signature, but the graph then converges after 22 iterations. After

convergence, there is a fair amount of the random signature, as one would expect

in a real geospatial sample. From the visualization of the force-directed graph

after convergence (fig. B.5, blue graph) one can see two sub-graphs that are only

connected by three points. This setup results from the observation network used.

The similarity to the deterministic high variance graph can also be seen for the

upper sub-graph. The blue cluster formed at the end of a rainy spring and ended

with the beginning of a long dry summer.

Then, the green cluster formed for the dispersion functions of drying and then dry

soil. The convergence signature of the green cluster shows way less similarity to

the deterministic, high variance signature, compared to the blue one (fig. B.6). The

signature visually presents as a union of a random and deterministic, no-variance

signature. The soil moisture observations got closer as the soil was drying towards

residual soil moisture. This signature can be seen in the convergence of the force-

directed graph, although the observation network was not arranged on a regular

grid (like the mesh grid for the benchmark graph).

The yellow force-directed graph exhibits less similarity to the deterministic, high-

variance graph (fig. B.5). The upper sub-graph has a more rounded shape, although

allowing for more nodes to position inside the blob. This shape cannot be directly

linked to one of the benchmark graphs, yet it might be a combination of the no

variance and random graphs. The yellow cluster formed with the first heavy rainfall

reaching the subsurface after a long dry summer and lasted way shorter than the

other two clusters (in terms of time). The graph could still reflect the observation

of near residual soil moisture, overlayed by increasing random components, as

rainfall sets it. In terms of convergence signatures, the yellow signature presents

like an overlay of the random and the deterministic, no-variance signatures.

B.5 Discussion

B.5.1 Tool Framework
I presented a specification for replicable software workflows and implementations

for the Python and NodeJS programming languages. To exemplify the usefulness of

the approach, an existing methodology published a couple of years ago was used to
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rerun the original analysis and replicate the approach in a different setting. Finally,

it is used to develop a new visualization and analysis tool for spatial covariance

described through empirical variograms.

The main abstraction of the approach is containerization. This entails two main

improvements over ’classic’ scientific analysis workflows and research software

implementations equally.

Tools are containerized and thus, also modular. That means, an entity is created

for each tool, which represents a specific step in an analysis workflow. The container

content is defined to be the context of this processing step. From a software

perspective, the container contains all the necessary dependencies a tool needs

to run. Besides rather high-level dependencies like other software libraries the

tool imports in the implementation language, this also includes dependencies and

prerequisites like the implementation language itself down to the operating system

level. The advantage is, that the state of the container is not dependent on the host

system. Hence, all software relevant to the tool is contained in the container, but

also not more. In more ’classic’ scientific workflows, all dependencies for all tools

needed in a specific workflow, and usually way more dependencies are present in

the host system. That can make it particularly complicated for the user to identify

the exact processing context of a tool. One might miss dependencies, run non-

supported or conflicting versions, run code, which was mutated due to yet another

workflow conducted on the host system or might even rely on data, that is not

related to the research at all.

A prime example is the Python programming language, which is widely used

in geoscience. It is common practice to host more than one Python interpreter

on the system and have software libraries available, which are shared between

workflows. Further, many libraries used in a scientific context are actually not

implemented in Python, but in FORTRAN or C/C++. These libraries usually have

system dependencies, like compilers, to compile sources either at installation or

even runtime. A FORTRAN compiler is shared across resources, and thus an update

of any system component can be cascaded to a newer compiler version, which

might then affect unrelated scientific code.

Another example are geospatial libraries like GDAL or GEOS, which include data

about coordinate reference systems. These libraries are shared system-wide and

updates, ie. in a GIS system might change the data (about reference systems) in an

unrelated Python workflow that depends on a library that wraps the system-wide

libraries. This can turn into a non-trivial dependency conflict, especially in case

the spatial functions of that Python library is not used in the workflow at all. A
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Docker container bypasses these problems, as each tool container would ship with

its own compiler and its own copy of system-wide libraries.

The other main improvement of containerization is contextualization, which is

directly bound to the software perspective on containerization given above. The

geoscience community does neither have a standard programming language, nor

standard analysis tools. For almost any processing step, at least two solutions exist.

Containers are interchangeable. If one moves from one software to another solution,

another interface is used, as both software solutions are unrelated and may not

be standardized or rely on interfaces. The tool specification takes on this aspect.

It provides a clear, human, and machine-readable description of the container’s

interface. Communicating an interface is already a huge step forward, despite

different implementations would still be necessary. Thus, the tool specification

is also a building block for generating tool-related interfaces. As an example, it

could be used to generate a common interface for using analysis tools for digital

elevation models. Then, a tool containing GRASS GIS could easily be interchanged

with another container using whitebox GIS and the parameterization of the tool

would stay the same. At the current state, the tool specification does not intend

to solve this but is aiming at providing a common ground to implement interfaces

like that.

Through the aforementioned contextualization, the proposed tool specification

and implementation frameworks can be used to let scientists work more effectively

together. As every tool ships with its own context, the actual processes that

transform input parameterization and data into the tool output are not exposed and

do not interfere with other system components. Thus, two tools can be implemented

in two different contexts. An example can be the chosen programming language.

Rainfall data for a given catchment could be downloaded and processed using the

statistical language R, which is widely used among hydrologists. The subsequent

tool, which may use a neural network to predict discharge from the processed

rainfall data can be implemented in Python, which has become the de-facto industry

standard for machine learning.

Another example of differing contexts is programming paradigms. In cases where

monolithic software stacks need to be created to run a processing toolbox for

scientific workflows, many different tools need to be unified into a single code

base. Ensuring the maintainability of such software would imply transforming

code into a single coding style. In a scientific context, that implies that many tools

are effectively re-implemented in cases where the final software is ie. following an

object-oriented approach, but tools are delivered following imperative, procedural,

or functional approaches. This is an issue as it is obviously a lot of unnecessary

177



Chapter B Geostat API - interoperable geostatistics on demand

work. More important is, that a specific paradigm might have been chosen for a

good reason and a transformation might entail issues that are only caused by the

transformation.

Finally, (geo-)scientists are not trained in software development. Thus, collaborative

scientific workflows combine wildly different code in terms of style and paradigm,

but also code that has been written at almost any level of professionalism. The

proposed tool specification and implementation frameworks abstract all these issues

away into the container and the context it represents. The scientist just has to

define the parameterization of the analysis and the data needed in a clear and

transparent standardized file.

A scientific processing workflow like describes also implies, that the proposed

specification and frameworks do not necessarily improve the quality of the code of

individual processing steps. It improves the interoperability of individual steps by

increasing technical repeatability. It helps to use all the code at once, without the

need to teach scientists proper software engineering or rewriting all the code in a

single language. The underlying algorithms used can still be wrong or used in the

wrong way. Both issues cannot be solved by the proposed specification. The tool

specification is an attempt to unify wildly different software codes in order to be able

to build frameworks that might point out scientific errors in the workflow. Another

possible application is a framework that could estimate propagated uncertainties

for all steps of a workflow. The tool container can easily be run in a Monte Carlo

approach.

B.5.2 Force-directed graphs
Force-directed graphs are to my knowledge an innovative and original approach

to visualizing the covariance of a variogram function. The visualization can be

parameterized to include the full distance- and squared difference matrix, filtered by

amaximum separating distance, or include a single lag class only. This complements

the ’classic’ visualization of variogram functions quite well as it gains insight into

the development of the covariance beyond the aggregated information of a semi-

variance value for a particular lag class.

This chapter re-created the result of chapter 2, which linked the clustering of

empirical dispersion functions to meteorological processes driving the wetting

and drying of the observed soil. The hypothesis here was that a force-directed

graph of each cluster is distinct, which was found to be true. While the converged

graphs presented similarly, the properties of the converging graphs were different.

The yellow cluster converged slower and showed overall higher ’friction’ in the
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network, which refers to the ability of the network simulation to find a stable

configuration for the nodes, that satisfies the specified desired edge sizes. Following

the argumentation of chapter 2, that can be explained by the same processes

taking place, as the soil is already dry during that time and the pairwise squared

observation differences are expected to be small.

The three benchmark graphs have proven helpful to classify any given force-

directed network graph on the spectrum of possible graphs. In this work, random-

ness, sample variance, and field determinism were focused on. There might be

more statistical field properties of interest, which can be translated into a bench-

mark force-directed graph to assess variogram co-variances. The three analyzed

properties were chosen, as differences are expected in these regards. A necessary

extension of the proposed method is to apply the analysis to other datasets and

compare the graphs across datasets. The three clusters focused describe all the same

field, but during different seasons. I expect all three network graphs to be distinctly

different from other graphs representing other datasets or processes. To better

assess the limits of the proposed method, a systematic comparative study has to be

conducted. I hypothesize that the force-directed network graph of a rainfall field

during the spring season in the Attert catchment at the time of study is different

from the presented three clusters. At the same time, I expect it to be more similar

to the cluster graphs than ie. the force-directed graph of a pancake.

B.6 Conclusions
My main conclusions for this chapter are as follows:

1. Containerization of individual scientific analysis tools solved implementation

and dependency issues, that otherwise impose an overly complex implemen-

tation for generic tools.

2. A contextualization of research tools clearly separates individual tools and

transparently communicates interfaces of tools. Scientifically, these interfaces

represent the context and limits at which a specific parameterization of a tool

is valid.

3. The implementation of the proposed containerization and tool specification

allowed for rapid reproduction of research, an extension of the workload by

magnitudes, and a straightforward combination of tools, which are technically

challenging to combine.
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4. Force-directed network graphs presented as a useful visualization and analysis

tool for co-variance structures described by a variogram. The potential to base

variogram classification algorithms on these graphs was clearly illustrated.
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C Conclusions & Outlook

This thesis covered various distinct but interconnected areas of research. I con-

tributed to the advancement of geostatistics by combining clustering approaches to

the emergence of spatial dispersion functions. For the Attert catchment, evidence

for two fundamentally different states within the catchment was presented and

could be linked back to dominating processes. By combining information theory

with geostatistics, we were able to link the clustering directly to the uncertainty of

the measurements. The observation uncertainty was analytically propagated into

dispersion functions and thus, uncertainty bounds for their distance turned into

a valuable measure for clustering. Clusters are distinct because the soil moisture

patterns are distinct with respect to the observation uncertainty.

The Python software SciKit-GStat was developed in the scope of this thesis.

The Python package is highly flexible, generalized, well-documented, and well-

tested. It has been used in a number of other research articles and has been used by

engineering companies, which is evidence of the maturity to be used in practical

applications. Especially interfaces to other software for geostatistical interpolation

and simulationmake SciKit-GStat an indispensable part of the geostatistical analysis

environment in Python.

With SciKit-GStat available, further developments became possible. The SciKit-

GStat uncertainty expansion is a well-written, graphical interface for SciKit-GStat

and related tools. Beside the easier educational usage, a major extension to handle

(observation) uncertainties in variograms have been presented. We embed the

concept of replacing empirical variograms through uncertainty bounds. This way,

the choice of an interpretive model and its parameters is subject to uncertainty itself,

which needs to be considered. This links back to dispersion functions calculated

for the soil moisture measurements in the Attert catchment, which were clustered

with respect to the same source of uncertainty. While the respective chapter does

not perform the step of choosing an interpretive model, SciKit-GStat Uncertainty

now finally presents a framework in which such a choice can be made relying on

a processing module that implements a suite of methods for the quantification of

uncertainty associated with empirical variograms.

Finally, the flexibility of SciKit-GStat is embedded into the way the broader con-

text of advancing reusable research tools. I presented a simple, additive specification
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for research tools. Due to its additive character in combination with container-

ization, it is possible to implement the specification for a multitude of different

existing research software, which is not standardized. This is not only convenient

as it speeds up workflows and makes them replicable, but the concept also provides

context to each research tool individually, as input and output data are clearly

communicated and parameters are separated from data and clearly described.

This was exemplified by combining a broader application of dispersion functions to

the same data used in the first place and finally combining the variogram functions

with force-directed diagrams, which are not part of the geostatistical domain. I

provided evidence that force-directed diagrams are a valuable tool to visualize and

also analyze the covariance structure of spatial samples, which is captured by an

empirical variogram.

As a personal statement, I want to highlight that the advances in building research

software focused on reliable and easy-to-use research code, while the research it-

self guided the technical developments. In my opinion, this is the main benefit

and purpose of good research software. The thesis illustrates how technical de-

velopments to produce more reliable research code, measured to the standards

of software engineering, can be fed back, to fuel new research. As SciKit-GStat

and SciKit-GStat Uncertainty was not developed as an end in themselves, it was

possible for me to keep on building on the same basis. As findings from the first

studies became more easily reproducible it was possible to rigorously weave the

open ends discussed. Finally, an in-depth framework for analyzing and working

with observation uncertainties in geostatistics is made available.
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