

A Lightweight Introduction to FAIR Digital Objects

Nicolas Blumenröhr – nicolas.blumenroehr@kit.edu

KARLSRUHE INSTITUTE OF TECHNOLOGY

The Struggle of (Meta)data Management

Scientists waste time with data wrangling

Let's consider an example for NMR data acquisition:

Searching different storage systems

Dealing with different metadata contents

Many steps done manually

- FAIR Principles provided guidelines for improved stewardship and management
- But, their implementations are not fully aligned

Dealing with Storage Systems

- A variety of storage systems exist that implement FAIR principles
- Information retrieval works via access protocols and metadata descriptions
- These are typically diverse

For example, to retrieve license information for data reuse:

In the Zenodo repository:

In the NMRxiv database:

Dealing with Metadata

- Metadata Schemas and Standards help to define, organize, and manage metadata
- Enable Machine-readability and interpretability
- Differ between- and within disciplines regarding structure, contents and formats
- Metadata schemas often have different structures and vocabularies

```
"rightsList":[{"lang":"en","rights":"Creative Commons Attribution 4.0 International","rightsUri":"https://creativecommons.org/licenses/by/4.0/legalcode","schemeUri":"https://spdx.org/licenses/","rightsIdentifier":"cc-by-4.0","rightsIdentifierScheme":"SPDX"}]
```

```
"license":{"title":"Creative Commons Attribution 4.0 International (CC BY 4.0)","slug":"cc-by-4.0","spdx_id":"CC-BY-4.0","url":"https:\/\/
creativecommons.org\/licenses\/by\/4.0\/...
```


Machine-actionability

- Requires machine-readability and interpretability
- Automated systems act on digital resources and their metadata
- No, or less human intervention is required

How to Tackle?

- High-level information should be harmonized
- Underlying systems and standards must not be changed

Harmonization of essential information

Additional, but uniform representation format

License example:

- Name: License
- Description: A URL referring to a license that defines the scope of use for a digital resource
- A unique PID
- Typing --> is a URL for a existing license from an enumeration list

The FAIR Digital Objects Concept

- Representation of digital resources in a uniform way (Digital Object)
- Integrates the essential elements for FAIRness

Information is Reduced and Standardized

- Each FAIR Digital Object (FDO) is based on the same structure
- Information at this level is unified and can be treated equally

Readable and interpretable for humans and machines

Original Handle Record Example

Handle.Net®

Hand	Handle Values for: 21.11152/865d3383-55a4-4620-b4ef-e806382e7e09					
Index	Type	Timestamp	Data			
1	21.T11148/076759916209e5d62bd5	2024-05-31	1 19:42:07Z 21.T11148/631080d008dfbf1ec49e			
2	21.T11148/f3f0cbaa39fa9966b279	2024-05-31	1 19:42:07Z HMDB0001149			
3	21.T11148/6ae999552a0d2dca14d6	2024-05-31	1 19:42:07Z Aminolevulinic Acid			
4	21.T11148/aafd5fb4c7222e2d950a	2024-05-31	1 19:42:07Z 2004-09-16T00:00:00.000000Z			
5	21.T11148/397d831aa3a9d18eb52c	2024-05-31	1 19:42:07Z 2024-05-25T00:00:00.000000Z			
6	21.T11148/2f314c8fe5fb6a0063a8	2024-05-31	1 19:42:07Z https://creativecommons.org/licenses/by/4.0/deed.en			
7	21.T11148/b8457812905b83046284	2024-05-31	1 19:42:07Z http://moldb.wishartlab.com/system/documents/files/000/035/104/originals/1354674735			
8	21.T11148/8710d753ad10f371189b	2024-05-31	1 19:42:07Z https://hmdb.ca/spectra/nmr_two_d/1591			
9	21.T11148/c83481d4bf467110e7c9	2024-05-31	1 19:42:07Z application/zip			
10	21.T11148/82e2503c49209e987740	2024-05-31	1 19:42:07Z { "sha256sum": "5174fd6992c4a6c1f718711a19d2c6314d6908402488a			
11	21.T11148/68aed8017b345bf87643	2024-05-31	1 19:42:07Z [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)			
12	21.T11148/1c699a5d1b4ad3ba4956	2024-05-31	1 19:42:07Z 21.T11148/fe078f6951993ca0b829			
13	21.T11148/6f0d1c34a6ab5d67049f	2024-05-31	1 19:42:07Z C5H9NO3			
100	HS ADMIN	2024-05-31	1 19:42:07Z handle=21.11152/USER01; index=300; [create hdl,delete hdl,create der admin,del admin,add admin,list]			

Enables machine-readability and interpretability

Tooling for Content Assessment

PID Information Record

Туре	Value
■ kernelInformationProfile	21.T11148/b9b76f887845e32d29f7
ateModified	2023-08-01T00:00:00+00:00
# checksum	{ "sha512sum": "f0a6e42dc67335e6857b
dateCreated	2023-02-07T00:00:00+00:00

https://kit-data-manager.github.io/fairdoscope/?pid=21.11152/b0b5de04-6e11-480b-ab66-2d4a5f42ea9e

Machine-Actionability as the Final Goal

- What do we need?
 - An entry point for the user
 - An infrastructure to implement the concept
 - Software to work with the components
 - A mechanism for machines to act on the components

NEP Virtual Access Services

- NMR Graph for retrieval of NMR spectra resources
 - A service to provide a unified search interface of NMR spectra data
- MRI Prediction tool for the prediction of Magnetic Resonance Image data (DICOM format)
 - A service that uses AI software to estimate experimental outcomes by existing results

NMR Graph Service - Motivation

- NMR spectra are provided in different formats, are distributed over different storage systems and described using different metadata schemas
- Relations to related digital resources like publications, metadata documents or software are not easily assessable
- A common representation of various NMR spectra enables a unified search interface at this level
- Discovery, evaluation and retrieval is facilitated

What is the Baseline?

 Certain types of metadata exists for all NMR spectra resources and is typically used for information retrieval

 This information can be unified and transferred into a machine-readable and interpretable format

We used the concept of FAIR Digital Objects (FDOs) to describe various NMR

spectra this way

Biological Magnetic Resonance Data Bank

Human Metabolome Database

Graph Format for Extended Usability

- FDOs are entities that contain reusable, interconnected elements
- A graph representation enables the assessment of contents these FDOs describe
- Assessment by graph queries using SPARQL

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX fdoo: <http://anonymized-namespace/FDO-Graph>

SELECT ?profile ?operation ?expectedOutput ?fdo
WHERE {
   VALUES ?profileName { "Profile1" "Profile2" ... }
    ?profile a fdoo:Profile ; rdfs:label ?profile .
   FILTER(?profileName IN (?profile))
   ?fdo a fdoo:FDO ; fdoo:hasProfile ?profile ;
   rdfs:label ?fdo .
   ?operation a fdoo:Operation ; fdoo:isOperationFor
   ?fdo ; rdfs:label ?operation .
   ?operation fdoo:returns ?attribute .
   ?attribute a fdoo:Attribute ; rdfs:label
   ?expectedOutput .
}
```

- Search interface for users (via the GUI) and query endpoint for machines
- Try it out:
 - Visit: https://metarepo.nffa.eu/start_query

MRI Prediction Tool - Motivation

- Magnetic Resonance Imaging is a measurement technique mostly known from medical imaging – also applied in the materials science field
- Measurements take long time
- Often, many measurement sequences are required for analytics
- The tissue contrast (T1, T2, PD) must be optimized

https://mriquestions.com/image-contrast-trte.html

Can be reduced by digital acquisition of estimated measurement results

The Approach

- Two main parameters that need to be adjusted TE and TR
- Instead of measuring each parameter setting, a minimum of required experimental data is collected and applied to an AI model
- Model predicts the image of an alternative parameter setting

CuSO₄ in Millimolar (mM)

T1- weighted - TE: 5 ms TR: 100 ms

T2- weighted - TE: 25 ms TR: 5000 ms

What is Possible?

- Currently, the model is specialized for a particular sample type
- Perspectives: prediction of images for a more versatile sample set
- Try it out:
 - Download a test file (DICOM format)
 - Visit: https://metarepo.nffa.eu/prediction

