
Trustworthy Distributed Usage Control
Enforcement in Heterogeneous

Trusted Computing Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

M.Sc.

Paul Georg Wagner
aus Karlsruhe

Tag der mündlichen Prüfung: 10.06.2024
Erster Gutachter: Prof. Dr.-Ing. habil. Jürgen Beyerer
Zweiter Gutachter: Prof. Dr.-Ing. Felix Freiling

Abstract

In the age of ubiquitous data acquisition, protecting local databases against
attacks and data theft is a preeminent challenge for many organizations and
businesses today. At the same time, being able to quickly establish collab-
orative data processing chains across multiple enterprises often becomes a
prerequisite for economic success. Since this usually includes sharing valu-
able business data with competing stakeholders, it is of utmost importance to
effectively secure any shared information against illegitimate use and theft,
especially when they are being processed in remote systems. In addition to
regulatory measures such as contractual obligations, non-disclosure agree-
ments, and security audits, this necessitates competent technical solutions as
well. Two powerful tools for achieving data security in such scenarios are dis-
tributed usage control and provenance tracking. Usage control mechanisms
allow to continuously safeguard critical data during their life cycle and proac-
tively restrict their usage to legitimate applications. Provenance tracking, on
the other hand, denotes the approach of recording the history of data trans-
missions and usages for later analysis and verification. A hitherto unsolved
challenge in applying these technologies to the use case of collaborative data
processing is how to properly enforce them against malicious tampering or
removal by data receivers. This task is complicated by the fact that the data
processing infrastructure is usually operated by the data receivers themselves,
who may have economic interests in bypassing issued usage restrictions or
provenance tracking.

To solve the described problem, this dissertation presents and evaluates a sys-
tem for trustworthy distributed usage control and provenance tracking in het-
erogeneous environments. The designed system is based on several trusted

i

Abstract

computing technologies responsible for transparently and continuously pro-
tecting the integrity and trustworthiness of its distributed components against
malicious manipulations and attacks. As core contribution, this thesis de-
scribes the design and implementation of a suitable system architecture for
distributed usage control and provenance tracking, which encompasses a con-
cept for the automated remote attestation and authentication of the required
distributed system components in a transitive fashion. By means of a compre-
hensive security analysis, we show that our concept can effectively establish
the identity and integrity of all participating system components. As a re-
sult, malicious manipulations or attacks against any part of the usage control
system invariably leads to the revocation of the granted usage rights. Further-
more, we also develop an extension for thewidespread policy language ODRL,
which allows to acquire provenance information directly via usage control
policies and subsequently leverage them for expressing new usage rules.

Further research contributions presented in this thesis pertain to the trusted
computing technologies necessary for securely operating the developed sys-
tem architecture. Since the infrastructure of distributed usage control systems
is usually provided by the participating stakeholders themselves, it is often in-
feasible to globally agree on a single system-wide technological foundation.
To alleviate this issue, we develop and evaluate a heterogeneous attestation
protocol capable of conducting remote attestations between Trusted Platform
Modules (TPMs), Intel SGX, and ARM TrustZone. Furthermore, we design
and analyze a novel TPM-based attestation protocol to attain the necessary
security goals for our system. Our protocol can establish mutually attested
and encrypted communication channels without being vulnerable to nonce-
data attacks by malicious system operators. In addition, we achieve support
for embedded platforms by implementing a suitable trusted boot process on
ARM TrustZone devices.

Finally, a trustworthy distributed usage control system must also give data
owners a notion to what degree the specified usage rules can in fact be en-
forced in the current application context. This primarily depends on the cur-
rent system state, the usage control components required for the enforcement

ii

Abstract

of the policy, as well as the deployed trusted computing technologies. In or-
der to give data owners a comprehensible assessment of the reached level of
protection, we develop a quantitative score that represents the ability of the
distributed system to successfully enforce usage control policies in its current
state. We conclude this thesis by validating the developed score, as well as
the entire implemented usage control system, using a practical application
scenario from the realm of smart manufacturing.

iii

Kurzfassung

Im Zeitalter der Datenverarbeitung stellt der Schutz der eigenen Datenbasis
gegen Angriffe und Datendiebstahl für viele Unternehmen eine zentrale
Herausforderung dar. Gleichzeitig sind unternehmensübergreifende Daten-
verarbeitungsketten im Zuge vernetzter Geschäftsprozesse jedoch immer
häufiger die Grundlage des wirtschaftlichen Erfolgs. Da in diesen Prozessen
wertvolle Geschäftsdaten bisweilen auch mit konkurrierenden Unternehmen
ausgetauscht werden müssen, ist es von elementarer Bedeutung, die miss-
bräuchliche Verwendung geteilter Daten selbst in fremden Systemen effektiv
zu verhindern. Hierzu sind neben organisatorischen Maßnahmen wie ver-
traglichen Vereinbarungen, Non-Disclosure-Agreements und Security-Audits
auch technische Lösungen nötig. Zwei wichtigeWerkzeuge zur Erhöhung der
Datensicherheit in diesen Anwendungsfällen sind verteilte Nutzungskontrol-
le und Provenance-Tracking. Nutzungskontrolle ermöglicht es, Daten auch
während ihrer Verarbeitung kontinuierlich zu überwachen und proaktiv auf
eine legitime Verwendung einzuschränken. In Ergänzung dazu bezeichnet
Provenance-Tracking den Ansatz, die Historie der erfolgten Datenverar-
beitung aufzuzeichnen und verifizierbar zu machen. Eine bislang ungelöste
Herausforderung bei der Anwendung dieser Technologien ist jedoch die
technische Durchsetzung der Kontrollmaßnahmen gegenüber bösartigen Da-
tenempfängern. Erschwert wird dies vor allem dadurch, dass die beteiligten
Systeme in der Regel von den Datenempfängern selbst betrieben werden und
diese motiviert sind, die Nutzungsregeln und das Provenance-Tracking durch
Manipulation der Schutzkomponenten zu umgehen.

Zur Lösung dieses Problems wird in der vorliegenden Dissertation ein
Gesamtsystem für vertrauenswürdige verteilte Nutzungskontrolle und
Provenance-Tracking in heterogenen Umgebungen konzipiert, realisiert und

v

Kurzfassung

evaluiert. Wesentlicher Bestandteil des entwickelten Systems sind mehrere
Trusted-Computing-Technologien, welche die Integrität und Vertrauenswür-
digkeit der verteilten Komponenten transparent und kontinuierlich gegen
Manipulationen und Angriffe schützen. Hierbei besteht der Kernbeitrag
dieser Arbeit aus dem Entwurf und der Implementierung einer geeigneten
Systemarchitektur für verteilte Nutzungskontrolle und Provenance-Tracking,
welche mittels eines transitiven Authentifizierungs- und Attestierungskon-
zepts die Identität und Integrität aller beteiligten Systemkomponenten
sicherstellt. Anhand einer umfangreichen Sicherheitsanalyse zeigen wir, dass
Manipulationen und Angriffe an sämtlichen Stellen des konzipierten Systems
zum Widerruf der erteilten Nutzungsberechtigungen führen. Zudem entwi-
ckeln wir eine Erweiterung der verbreiteten Policysprache ODRL, durch die
Provenance-Informationen direkt mittels Nutzungskontrollpolicies erhoben
und im Rahmen der Policyauswertung nutzbar gemacht werden können.

Weitere in dieser Arbeit erzielte Forschungsbeiträge betreffen die für den
sicheren Betrieb der entwickelten Systemarchitektur benötigten Trusted-
Computing-Technologien. Da die Infrastruktur verteilter Nutzungskontroll-
systeme in der Regel dezentral durch die beteiligten Unternehmen selbst
gestellt wird, ist es meist nicht möglich, sich auf eine einzige systemweit zu
verwendende Technologie festzulegen. Daher wird in dieser Arbeit ein he-
terogenes Attestierungsprotokoll entwickelt und evaluiert, das interoperable
Attestierungen zwischen Trusted Platform Modules (TPMs), Intel SGX und
ARM TrustZone ermöglicht. Um ein ausreichendes Schutzniveau für den
Anwendungsfall der verteilten Nutzungskontrolle zu erreichen, entwerfen
und analysieren wir außerdem ein neuartiges TPM-basiertes Attestierungs-
protokoll. Dieses kann beidseitig attestierte und verschlüsselte Kommuni-
kationskanäle aufbauen, ohne dabei anfällig für Nonce-Data-Angriffe durch
bösartige Systembetreiber zu sein. Zur Unterstützung eingebetteter Plattfor-
men realisieren wir darüber hinaus einen vertrauenswürdigen Boot-Prozess
für Geräte mit ARM-TrustZone-Technologie.

Schließlich muss ein vertrauenswürdiges Nutzungskontrollsystem Daten-
besitzern auch Rückmeldung darüber geben, inwieweit die spezifizierten
Nutzungsregeln im aktuellen Anwendungskontext tatsächlich durchgesetzt

vi

Kurzfassung

werden können. Dies hängt maßgeblich vom momentanen Systemzustand,
den zur Durchsetzung der Policy benötigten Nutzungskontrollkomponen-
ten, sowie den dort eingesetzten Trusted-Computing-Technologien ab. Um
eine nachvollziehbare Bewertung des erreichten Schutzniveaus abgeben zu
können, entwickeln wir im abschließenden Teil dieser Arbeit einen quanti-
tativen Score, welcher die Fähigkeit des verteilten Systems zur erfolgreichen
Durchsetzung der Nutzungskontrollpolicies im aktuellen Zustand repräsen-
tiert. Zur Validierung der entwickelten Methode, sowie des implementierten
Gesamtsystems, wird schließlich ein praktisches Anwendungsbeispiel aus
dem Bereich des Smart Manufacturing umgesetzt und evaluiert.

vii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor
Prof. Dr.-Ing. habil. Jürgen Beyerer for guiding the development of this dis-
sertation over the past five years. Without the constructive discussions and
helpful comments, this work would not have taken form. I am also grateful
to Prof. Dr.-Ing. Felix Freiling for taking an interest in my dissertation and
agreeing to assume the role of second reviewer.

Furthermore, I want to thank all my colleagues – both at Fraunhofer IOSB
and the Karlsruhe Institute of Technology – for creating the appreciative and
supportive work environment that I am fortunate enough to experience here
every day. On this note, I am especially grateful to Dr.-Ing. Pascal Birnstill
for mentoring me in my academic endeavors since their beginning. A special
thanks also goes to Dr.-Ing. Arno Appenzeller for sharing not just an office,
but the journey towards our doctorates as well.

Last, but certainly not least, I want to thank my family for their continuous
support and encouragement.

Karlsruhe, July 2024
Paul Georg Wagner

ix

Contents

Abstract . i

Kurzfassung . v

Acknowledgements . ix

1 Introduction . 1
1.1 Virtual Data Spaces 2
1.2 Towards Data Sovereignty 4
1.3 Research Gaps and Objective 6
1.4 Research Questions and Contributions 11

1.4.1 Usage Control and Provenance Tracking 12
1.4.2 Technical Enforcement 13
1.4.3 Estimating Trustworthiness 15

1.5 Thesis Outline 15

2 Preliminary Work 17
2.1 Distributed Usage Control 17

2.1.1 The XACML Architecture 20
2.1.2 Decentralized vs. Cross-Domain Usage Control . . 22
2.1.3 Policy Languages 24

2.2 Provenance Tracking 28
2.2.1 The PROV Model 29
2.2.2 System Architectures 30

2.3 Trusted Computing 32
2.3.1 Trusted Platform Modules 33
2.3.2 Trusted Execution Environments 38

xi

Contents

2.3.3 Remote Attestation Protocols 44

3 Concept and System Design 49
3.1 State of the Art 49

3.1.1 Certification Processes 50
3.1.2 Reputation Systems 51
3.1.3 Distributed Ledgers 52
3.1.4 Trusted Computing 53
3.1.5 Conclusion 55

3.2 Trustworthy System Design 56
3.2.1 Remote Attestation Concept 56
3.2.2 Distributed System Architecture 59
3.2.3 Policy Deployment 63
3.2.4 Policy Enforcement 67
3.2.5 Policy Update and Revocation 68
3.2.6 Provenance Collection 70
3.2.7 Attestation and Measurement Handling 71
3.2.8 Component Authentication and Provisioning . . . 75

3.3 Security Model 80
3.3.1 Protection Goals 80
3.3.2 Attacker Model 82
3.3.3 Trust Dependencies 85

3.4 Security Analysis 86
3.4.1 Attacks on Data and Policies 87
3.4.2 Attacks on Usage Control Components 91
3.4.3 Attacks on Provenance Tracking 95
3.4.4 Summary 97

3.5 Design Alternatives 98
3.6 Conclusion . 100

4 Technical Enforcement 103
4.1 Security Requirements 104
4.2 Using Trusted Platform Modules 106

4.2.1 Security Properties 107
4.2.2 Remote Attestation Protocols 109

xii

Contents

4.2.3 Attacks on Existing Protocols 113
4.2.4 The MSCP Protocol 116

4.3 Using Intel SGX 126
4.3.1 Security Properties 126
4.3.2 Remote Attestation Protocols 129

4.4 Using ARM TrustZone 132
4.4.1 Security Properties 133
4.4.2 Deployment of Usage Control Components 135
4.4.3 Conducting Both-World Measurements 138
4.4.4 Remote Attestation Protocols 146

4.5 Heterogeneous Remote Attestation 148
4.5.1 Additional Requirements 150
4.5.2 The EKEP Protocol 151
4.5.3 Achieving Heterogeneous Attestations 154
4.5.4 Protocol Evaluation 161

4.6 Design Alternatives 166
4.7 Conclusion . 168

5 A Trustworthy Distributed Usage Control Framework . . . 171
5.1 The DataSov Framework 171

5.1.1 System Architecture 172
5.1.2 Components and Service Definitions 174
5.1.3 Provenance Tracking and Dashboard 177
5.1.4 Implementation and Configuration 179
5.1.5 Integrated Rollback Protection 182

5.2 Remote Attestation in DataSov 185
5.2.1 Implementing Heterogeneous Attestation 185
5.2.2 Integrating Component Authentication 187
5.2.3 Authorizing Asserted Component Identities 189

5.3 A Policy Language for DataSov 192
5.3.1 The Open Digital Rights Language 193
5.3.2 Defining Information Sources 195
5.3.3 Supporting External Obligations 199
5.3.4 Representing Provenance Information 201

xiii

Contents

5.3.5 The DataSov Policy Decision Point 205
5.4 Conclusion . 207

6 Estimating Trustworthiness 209
6.1 Motivation and Requirements 210
6.2 Formal Model 214

6.2.1 Component Model 215
6.2.2 Attacker Model 217
6.2.3 Trust Model 218

6.3 A Trustworthiness Score 220
6.3.1 Usage Control Operations 220
6.3.2 Score Definition 223
6.3.3 Requirement Compliance 227
6.3.4 Probabilistic Interpretation 230

6.4 The DataSov Trust Dashboard 234
6.4.1 Dashboard Design 234
6.4.2 Representing Degrees of Belief 239
6.4.3 Baseline Trust Estimations 240

6.5 Conclusion . 248

7 Evaluation and Results 251
7.1 Example Scenario: Smart Manufacturing 251

7.1.1 Scenario Overview 252
7.1.2 System Deployment 253
7.1.3 Usage Control Policies 255

7.2 Performance Evaluation 259
7.2.1 Component Provisioning 260
7.2.2 Policy Deployment and Enforcement 261

7.3 Dashboard Evaluation 264
7.3.1 Collected Provenance Graphs 264
7.3.2 Configured System Model 266
7.3.3 Resulting Trustworthiness Scores 269

7.4 Conclusion . 279

8 Conclusion and Outlook 281

xiv

Contents

8.1 Summary . 281
8.1.1 Usage Control and Provenance Tracking 282
8.1.2 Technical Enforcement 283
8.1.3 Trustworthiness Estimation 284

8.2 Future Work . 285

Bibliography . 289

Own Publications . 333

Supervised Student Theses 337

List of Figures . 339

List of Tables . 343

Acronyms . 345

Appendix

A The IDSCP Handshake 351

B Formal Protocol Verification 353
B.1 The IDSCP Protocol 353
B.2 The MSCP Protocol 359
B.3 The EKEP Protocol 364

C The DataSov ODRL Profile 369

D Proof Sketches . 377

xv

1 Introduction

In the age of ubiquitous computing, data undoubtedly play an essential role
in the economic success of many business ventures.¹ While large tech com-
panies such as Google, Microsoft, and Amazon have innovated data-driven
business models for over two decades and are now among the world’s most
valuable public enterprises,² in recent years the opportunities of big data have
impacted many established business segments as well. Motivated by the ad-
vancement of digitization, computerization, and the expansion of digital in-
frastructures, more and more enterprises rely on data-driven and globally in-
terconnected value chains. Especially the possibility of using data analytics to
extract previously hidden knowledge from business data further incentivizes
the acquisition and management of large datasets.³

One domain increasingly reliant on automated data processing as a key fac-
tor for economic success is industrial production and smart manufacturing
[Win21]. Today, many production facilities are equipped with a multitude
of sensors capable of collecting data from all stages of a production process.
While still primarily used to monitor and control the operation of produc-
tion equipment as part of an industrial control network [Gal12], this infor-
mation can also be exploited to improve the efficiency of the production pro-
cesses and serve as basis for new and innovative business models. For ex-
ample, such data can help to design assembly lines in a more flexible, mod-
ular, and self-organizing way [Büt17, Bur17], improve logistical processes

¹ https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-
longer-oil-but-data (accessed on 12/08/2023).

² https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-
capitalization/ (accessed on 12/08/2023).

³ https://www2.deloitte.com/de/de/pages/trends/data-analytics.html (accessed on 12/08/2023).

1

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-capitalization/
https://www.statista.com/statistics/263264/top-companies-in-the-world-by-market-capitalization/
https://www2.deloitte.com/de/de/pages/trends/data-analytics.html

1 Introduction

[Ten14, Jun17, Gün17], and allow just-in-time delivery of production mate-
rials [Bub14, Tre17]. Furthermore, smart factories of the future will utilize
acquired production data to facilitate collaborative interaction between pro-
duction machinery and human operators [Tho17], as well as provide work-
ers with personalized assistance functions during challenging manufacturing
tasks [Jos17, Len20]. As a result of these developments, it is likely that both
the amount as well as the variety of data generated in smart manufacturing
applications will only grow in the future.

1.1 Virtual Data Spaces

Formany new and innovative data-driven services it is not sufficient tomerely
generate, process, and analyze data in the local application infrastructure. In-
stead, to fully exploit the potential of big data, a collaborative approach com-
bining data frommultiple different sources is necessary [Oli19]. In the context
of smart manufacturing, for example, collaborative predictive maintenance
requires the aggregation of process data from several companies operating
the same machinery [Jar19]. To facilitate data sharing across different ac-
tors in such scenarios, the concept of data spaces gained traction in recent
years [Ott22b]. In general, data spaces encompass organizational and techni-
cal means to bring data providers, data consumers, and analytics companies
together in a shared virtual data ecosystem. To achieve this, a data space in-
terconnects the databases of its participants via standardized interfaces and
providesmechanisms to automatically negotiate data exchanges [Ott18]. Usu-
ally, data space architectures rely on established cloud computing concepts,
while also adhering to decentralized data storage and peer-to-peer data ex-
changes as fundamental design principles [Pet22]. Furthermore, data spaces
often provide its participants integrated data analytics applications, as well as
a framework to ensure legal compliance of data exchanges [Nag22]. Figure 1.1
illustrates the concept of a decentralized data space infrastructure.

2

1.1 Virtual Data Spaces

Clearing
House

Connector Connector

Metadata Data Searches

Transactions Transactions

Broker

Figure 1.1: Concept of a decentralized data space. Brokers and clearing houses are responsible
for negotiating and invoicing data exchanges. Own illustration after [Opr22].

Currently, the International Data Space (IDS) is arguably the most notable im-
plementation of the data space concept [Pet22]. Under development since
2015, the IDS specifies a comprehensive information model together with a
standardized reference architecture for connector systems, which serve as
entry points into the virtual data space [Kir22, Ott19]. Today, there are sev-
eral actively maintained, open source, and IDS-compliant connector imple-
mentations available [Sch18a, Kir22, Kan22]. Building on the experiences
gained by the IDS, in 2020 the French andGermanMinistries for Economic Af-
fairs launched the GAIA-X project, aimed at developing a secure and privacy-
compliant European data space based on federated cloud computing infras-
tructures [Tar22, Ott22a].

A major challenge when implementing applications for collaborative data
processing is to achieve a level of security and privacy that is acceptable to all
data providers. Even though the mutual sharing of information is ultimately
beneficial for all participants as long as everyone acts in good faith, in general
companies are reluctant to disclose their own valuable data. This is because
as soon as data have been disclosed to a third party, the data owner is no
longer fully in control of it. For example, the data owner cannot be certain

3

1 Introduction

if the data receivers are taking sufficient measures to secure their local data
processing infrastructure against cyber-attacks and data theft. Furthermore,
there is always the danger of data receivers deliberately misusing shared data
for purposes other than previously agreed, since they usually pursue differ-
ent economic goals than the original data owner [Krä22]. Especially in the
realm of industrial production and manufacturing, companies regularly ab-
stain from data sharing approaches due to the risk of data theft [Usl22]. After
all, production data often allow the inference of details about the manufac-
turing process, such as the current equipment utilization. Since this can be
highly valuable information, especially for competitors, it must not fall into
the wrong hands. Additionally, data captured in smart manufacturing ap-
plications may also contain personally identifiable information about human
workers, for example video images or body poses. This presents an additional
privacy risk that must be adequately mitigated [Man19, Wag21b].

1.2 Towards Data Sovereignty

To address these issues concerning security and privacy, data spaces try to
achieve the goal of data sovereignty for their users [Jar19]. While there is cur-
rently no universally accepted definition of the term, data sovereignty is of-
ten regarded as empowering individual data owners, be it natural or juridical
persons, to execute their informational self-determination at all times [Jar19,
Opr22, Lau22]. Recently, Krämer et al. identified control and transparency
as two fundamental prerequisites for achieving data sovereignty [Krä22]. The
authors understand control as the ability of a data owner to grant or deny data
receivers access to their information, while they see transparency as the ability
of a data owner to ascertain information about the usage of their data and the
resulting profits. In general, there are two complementary approaches for im-
plementing control and transparency in virtual data ecosystems: regulatory
measures and technical measures. Currently, companies mainly rely on regu-
latory measures such as contractual obligations, non-disclosure agreements,
and security audits to ensure their data sovereignty in virtual ecosystems
[Opr22]. However, due to the high degree of automation in data processing,

4

1.2 Towards Data Sovereignty

regulatory measures alone are not flexible enough anymore for many mod-
ern use cases. Hence, virtual data spaces incorporate more andmore technical
measures to improve the level of data sovereignty.

One powerful technical measure to enhance data security in virtual data
spaces is usage control (UC). Usage control provides mechanisms to continu-
ously regulate and restrict the processing of sensitive data during their entire
life cycle [Par02]. In contrast to classical access control, UC can safeguard
critical information not only at the time of the initial data request, but also
before and afterwards. This allows data owners to define fine-grained rules
about both admissible and illegitimate data usage scenarios. These rules are
usually specified in form of usage control policies, which are distributed to
all applications and then continuously enforced at every point of the data
processing chain. In recent years, a lot of research has been conducted in the
field of usage control, mainly concerning usage control models, architectures,
and policy languages [Laz10, Aka22]. A major step forward was the devel-
opment of distributed usage control (DUC) by Pretschner et al. [Pre06, Kel13].
Distributed usage control allows to conduct usage control operations across
multiple networked computer systems, instead of just as a locally confined
security feature. Together with the fact that providing usage control tech-
nology encourages data sharing in collaborative environments [Opr21], this
makes distributed usage control a prime candidate for a technical measure
enhancing the level of data sovereignty in virtual data spaces [Opr22, Dui22].
Indeed, usage control mechanisms have already been included in some IDS
connector implementations as a central security feature [Ste21].

In addition to actively controlling information by enforcing usage rules, prove-
nance tracking is a technical measure that can provide transparency of data
usages in distributed systems. The term “provenance” originally describes
the tracing of the origin and ownership of historical artifacts and artworks
[Bun10]. In the field of data science, provenance tracking has since been es-
tablished as a method of recording the history of data generation, distribution,
and processing [Her17]. Provenance information can help data users to un-
derstand where a certain piece of data originated, how and by whom it was
created, and in what ways it has been processed and modified since [Zaf17].

5

1 Introduction

This makes provenance tracking useful for collaborative data spaces as well,
since it can reveal the distributed usages of shared data to the original data
owners and/or supervisory authorities [Ste21]. Especially when sharing per-
sonally identifiable information, as it is the case in many smart manufacturing
applications, being able to reliably track the provenance of data is necessary
to comply with data privacy laws [Ujc18, Bie21].

Implementing usage control and provenance tracking as technical measures
for data sovereignty requires the operation and configuration of suitable pro-
tection components in the data space infrastructure. These protection com-
ponents are responsible for distributing and enforcing usage control policies,
tracking data flows, and logging provenance information. As such, their cor-
rectness and integrity are crucial prerequisites for the secure operation of the
virtual data space. This directly leads to the question of how to secure the
deployed usage control and provenance tracking components against mali-
cious interference and manipulation. Since data spaces are a prime target for
cyber-attacks due to their high volume and quality of data, we must assume
that attackers constantly try to compromise the distributed data processing
components. Even worse, in many cases legitimate data receivers themselves
might have an interest in bypassing usage restrictions or preventing the col-
lection of provenance information on foreign data, for example when they
are collaborating with business competitors. Since in a decentralized data
space architecture all participants operate their own respective connectors
(see fig. 1.1), malicious data receivers could easily manipulate or switch off
usage control and provenance tracking components in order to siphon off
valuable data unchecked. Hence, to establish a trustworthy virtual data space,
we need technical measures that can actively enforce usage control and prove-
nance tracking even against potentially malicious data receivers.

1.3 Research Gaps and Objective

One type of technology that can provide the required security guarantees is
trusted computing. The idea behind trusted computing is to enhance the con-
fidentiality and integrity of critical software systems using hardware-based

6

1.3 Research Gaps and Objective

trust anchors [Yan20]. These trust anchors consist of tamper-resistant hard-
ware modules attached to the platform, which provide various security ser-
vices such as generating and managing cryptographic keys. Since these func-
tionalities are implemented exclusively in hardware, software-based attack-
ers (e.g., malware) cannot manipulate or steal protected information. A very
useful feature of many trusted computing technologies is remote attestation.
Remote attestation allows external parties to verify the integrity of a trusted
platform by retrieving and validating a list of fingerprints describing the soft-
ware stack currently executed on the platform. The list of fingerprints is au-
thenticated directly by the hardware-based trust anchor, which even platform
owners with physical access to the attestedmachine cannot easily manipulate.
Because of this property, remote attestation is an effective tool to prevent ma-
licious modifications of critical software, and hence has been suggested as a
mechanism to establish trust in virtual data spaces [Hub22].

Previous research into using trusted computing hardware to secure usage
control components is focused mainly on Trusted Platform Modules (TPMs)
[Zha08, Nei11b]. TPMs are specialized hardware security modules similar
to smart cards, which are already pre-installed in many modern computer
systems and can be used to perform attestations of remote software stacks.
Primarily due to their ubiquity and ease of use, data spaces increasingly rely
on TPMs as a means to secure the integrity of data protection components
[Sch18a, Ott19]. However, there are still some unsolved problems when using
TPMs for this purpose, especially when considering malicious administrators
as potential attackers [Wag19b, Wag20]. We explore these problems further
in chapter 4 of this thesis and develop an improved solution for TPM-based
remote attestations that can protect usage control components even against
malicious administrators. In addition, more modern trusted computing tech-
nologies such as Trusted Execution Environments (TEEs) should also be con-
sidered for this task. TEEs allow to run entire software stacks inside carefully
protected execution environments, and as such promise an increased level of
security compared to TPMs. Important TEEs available today are Intel’s Soft-
ware Guard Extensions (SGX), AMD Secure Encrypted Virtualization (SEV),
and ARM TrustZone. Even though Intel SGX has recently been proposed to
secure the enforcement of data protection policies in cloud infrastructures

7

1 Introduction

[Djo20, Mey21], to our knowledge there is currently no TEE-based solution
to protect distributed usage control and provenance tracking infrastructures.
We present a more detailed picture of the current state of the art and analyze
the scope and limitations of existing research in section 3.1 of this thesis.

A related challenge that has not been sufficiently researched yet is the ques-
tion of deploying trusted computing in heterogeneous environments. Due to
their heavy reliance on hardware-based trust anchors, trusted computing so-
lutions are often constrained to one specific hardware platform (e.g., Intel,
AMD, or ARM). As a result, usually only one single trusted computing tech-
nology is being considered as technical measure to secure the integrity and
confidentiality of data protection infrastructures. However, these technolo-
gies all have different benefits and drawbacks, and can hence provide security
in different areas of application [Sch22]. For example, implementing TPM-
based remote attestation is usually rather simple as it does not require any
modifications of existing application software, but on the other hand it can-
not provide equally high security guarantees as modern TEEs. Being able
to design distributed systems that rely on multiple trusted computing tech-
nologies to protect their components increases flexibility and allows for the
combination of technological benefits. Furthermore, especially in data space
scenarios with multiple participants, it might not even be feasible to unani-
mously agree on one single technology among all stakeholders. Finally, there
are often technical reasons for being committed to a certain trusted computing
technology as well. Especially in the field of production and smart manufac-
turing, devices are quite commonly designed as ARM-based embedded sys-
tems, while the backbone infrastructure still consists mostly of standard x86
servers. Deploying distributed usage control in such heterogeneous environ-
ments inevitably requires solutions to link together platforms using different
trusted computing technologies, e.g., ARM TrustZone and Intel SGX.

Another open question that has not been adequately researched so far con-
cerns the trustworthiness of distributed usage control and provenance tracking
systems. While it is clearly necessary to protect usage control and provenance
tracking components against malicious tampering using technical measures,
focusing on this aspect alone does not suffice in terms of trustworthiness.

8

1.3 Research Gaps and Objective

We also need to answer the question of how policy issuers can know that the
integrity of the remote usage control system has been verified and that it is
indeed capable of enforcing all deployed policies and/or tracking the prove-
nance of shared data. This primarily depends on the current protection state
of the distributed system as well as the deployed trusted computing technolo-
gies, since they may be unsuitable to protect the specific security interests of
the data owner. Besides these objective factors, the current level of trustwor-
thiness is also influenced by subjective aspects, such as the degree of trust
that the policy issuer places in certain trusted computing technologies or in
the participating stakeholders themselves. Since the state of a distributed
usage control system is dynamic and changes regularly, it is not feasible to
develop a usage control architecture that is secure and trustworthy for just
one particular use case. Instead, we must develop a method that can dynami-
cally assess the trustworthiness of a distributed usage control and provenance
tracking system in its current state from the point of view of (potential) data
providers, considering their specific usage control policies. The data providers
should then be given qualified feedback about the current trustworthiness as-
sessment to allow informed decisions regarding the sharing of valuable data.
To our knowledge, these questions have not been answered so far.

Finally, the approach of combining distributed usage control with provenance
tracking also requires more research. While there is previous work regarding
the architectural combination of these technologies [Bie13, Bie21], the ques-
tion of howprovenance tracking can be integrated into an actual usage control
enforcement process still remains open. Achieving this has some clear advan-
tages. First, it would allow provenance tracking to be mandated as part of
normal usage control rules. A data owner could specify that the usage of
a particular data asset is admissible only under the condition that the data
provenance is reliably tracked. The distributed usage control system is then
responsible for enforcing this obligation. Being able to manage provenance
tracking via policies would give much greater flexibility to the data owners
compared to tracking provenance either selectively on application level, or
globally for all processed data. Furthermore, a close integration of usage con-
trol and provenance tracking would also enable policy issuers to reference the
processing history of data assets for the specification of new usage rules. For

9

1 Introduction

example, a data owner may want to enforce the policy that the distribution of
certain data assets is allowed only if they have been previously anonymized.
Usage restrictions of this nature could be expressed much more easily with
direct access to the previously tracked provenance data.

Considering these research gaps, the main objective of this thesis is to develop
and evaluate a framework for trustworthy and distributed usage control and
provenance tracking, which can be securely operated in heterogeneous trusted
computing environments. We clarify our objective further by defining the
following five major goals for the framework.

Goal 1: The framework should give data providers the possibility to
monitor and control their data even when they are shared with
remote stakeholders. To achieve this, the framework should offer
distributed usage control mechanisms with integrated provenance
tracking capabilities. To maximize the framework’s utility, it should
support flexible and generic application scenarios, instead of being
designed for a singular purpose or use case.

Goal 2: The framework must include suitable protection mechanisms to
enforce usage control and provenance tracking on a technical level.
Malicious data receivers must not be able to manipulate the
enforcement of shared usage rules or disturb the tracking of data
provenance. We use trusted computing technologies as a building
block to achieve this.

Goal 3: The framework should support heterogeneous infrastructures.
Hence, it must not rely on just one platform and trusted computing
technology, but instead provide technological interoperability. To
realize use cases from the field of smart manufacturing, we require
support for TPMs, Intel SGX, and ARM TrustZone.

Goal 4: The framework should include a method to offer data providers
qualified feedback concerning the trustworthiness of the usage
control system in its current state.

Goal 5: The system performance should be sufficient to realize practical use
cases from the realm of smart manufacturing.

10

1.4 Research Questions and Contributions

1.4 Research Questions and Contributions

To achieve our objective of developing a trustworthy distributed usage con-
trol and provenance tracking framework that fulfills goals 1 to 5, we have to
address research questions in three different areas. First, we must define a dis-
tributed system architecture that (i) appropriately combines usage control and
provenance tracking, and (ii) is capable of enforcing these mechanisms even
against malicious system participants. Second, we need to identify trusted
computing technologies and develop corresponding remote attestation pro-
tocols that can achieve the security guarantees necessary to realize the de-
sired technical enforcement. Finally, we must develop a method to give data
providers quantitative feedback about the trustworthiness of the distributed
usage control system based on the adequacy of the deployed technologies.

Connector Connector

Usage Control &
Provenance Tracking

Trustworthiness
Estimation

Technical
Enforcement

Figure 1.2: Research areas addressed in this thesis.

Figure 1.2 illustrates these three areas of research in the application domain
of smart manufacturing, which we use to evaluate the developed framework.
In the remainder of this section, we refine the addressed research questions
and present the concrete research contributions accomplished in this thesis.

11

1 Introduction

1.4.1 Usage Control and Provenance Tracking

Developing a combined usage control and provenance tracking system that is
both distributed and trustworthy entails two major research questions. The
first one deals with the definition of a suitable distributed system architec-
ture that can provide the necessary security guarantees against potentially
malicious usage control participants.

Research Question 1: How can we monitor and control the usage of shared
data across multiple remote domains? How can shared usage control policies be
reliably enforced even in the presence of malicious data receivers?

We address this research question by designing a distributed usage control
architecture that leverages remote attestations to protect the integrity of the
usage control enforcement process against any outside influence. All further
requirements for the concrete system design are derived from the previously
determined goals 1 to 5.

Contribution RC1: We develop a conceptual system architecture for trust-
worthy distributed usage control enforcement. Our design proposal includes
a transitive remote attestation concept that protects the integrity of all sys-
tem components, as well as a hierarchical authentication scheme to prevent
the impersonation of usage control components. We show the usefulness of our
system design by conducting a comprehensive security analysis based on the
assumption of idealized remote attestation protocols.

The second research question to be addressed deals with the proper combina-
tion of provenance tracking and distributed usage control.

Research Question 2: How can we effectively obligate the collection of prove-
nance information with usage control policies? How can we utilize previously
collected provenance information in the specified usage rules?

We answer this question by conceptually integrating provenance tracking
into the distributed usage control enforcement process. Furthermore, we im-
plement our concept by extending the widely used Open Digital Rights Lan-
guage (ODRL) policy model [Ian18b] with provenance tracking capabilities.

12

1.4 Research Questions and Contributions

Contribution RC2: We develop an extension of the ODRL policy language
that allows policy issuers to manage provenance tracking in remote domains
and utilize the collected information in the usage control enforcement process.
We also implement and evaluate a corresponding Policy Decision Point (PDP)
capable of processing such policies.

1.4.2 Technical Enforcement

In the second part of this thesis, we solve the challenge of realizing a secure
technical enforcement of the defined usage control and provenance tracking
methods based on trusted computing mechanisms. To achieve this, two more
research questions must be addressed.

Research Question 3: How can we leverage trusted computing technologies
to enforce the correct behavior of usage control and provenance tracking com-
ponents? Which concrete remote attestation protocols can we use to securely
instantiate our distributed system design? Is the performance of those remote
attestation protocols sufficient for our purposes?

We answer this question by developing and evaluating protection concepts
for distributed usage control and provenance tracking infrastructures based
on TPMs, Intel SGX, and ARMTrustZone. Our analysis reveals two shortcom-
ings when using TPMs and ARM TrustZone as underlying trusted computing
technologies for our system architecture. First, we show that the existing
TPM-based remote attestation protocols currently used in virtual data spaces
are vulnerable against nonce-data attacks by malicious administrators, who
are the main adversaries in distributed usage control systems. Furthermore,
we also require a mechanism that allows to conduct integrity measurements
of dynamically loaded data processing applications in both the normal and the
secure world of ARM TrustZone devices. We contribute solutions to these is-
sues as part of our trustworthy usage control framework.

13

1 Introduction

Contribution RC3: We develop and evaluate a novel TPM-based remote
attestation protocol that uses a hardware-protected key exchange to establish
mutually attested and encrypted communication channels without being vul-
nerable to nonce-data attacks by malicious system administrators.

Contribution RC4: We implement and evaluate a trusted boot process for
ARM TrustZone platforms that uses a firmware-level TPM to conduct integrity
measurements of dynamically loaded applications in both worlds of the device.

The second relevant research question in this area concerns the protection of
distributed usage control and provenance tracking infrastructures in hetero-
geneous trusted computing environments.

Research Question 4: How can we conduct remote attestations in hetero-
geneous execution environments, i.e., between different trusted computing tech-
nologies? Are there significant performance overheads when using a heteroge-
neous remote attestation protocol compared to single-technology protocols?

We address this challenge by implementing a heterogeneous remote attesta-
tion protocol that bridges the technological gap between the three technolo-
gies used to protect our usage control and provenance tracking system.

Contribution RC5: We develop and evaluate a heterogeneous remote attes-
tation protocol that allows to establish mutually attested and encrypted com-
munication channels between TPM-protected software stacks, Intel SGX en-
claves, and ARM TrustZone devices.

Based on these contributions, we finally integrate all developed protection
concepts and attestation protocols into a combined framework for trustwor-
thy distributed usage control enforcement and provenance tracking.

Contribution RC6: We implement a combined usage control and prove-
nance tracking framework that supports TPMs, Intel SGX, and ARM TrustZone
to transparently verify the integrity of distributed system components and thus
enforce policy compliance on a technical level. We evaluate our framework in
terms of functionality and performance using an exemplary application sce-
nario from the realm of smart manufacturing.

14

1.5 Thesis Outline

1.4.3 Estimating Trustworthiness

The final part of this thesis is concerned with giving data providers qualified
feedback about the trustworthiness of the usage control system in its current
state. To achieve this goal, we must address another research question.

Research Question 5: How can the trustworthiness of a distributed usage
control system be estimated in relation to the policies that should be enforced,
from a particular data provider’s point of view?

The perceived level of trustworthiness largely depends on the current system
state, the usage control components required for the enforcement of the
analyzed policy, as well as the trusted computing technologies and remote
attestation protocols protecting them. Hence, we develop a method to derive
a quantitative estimation for the level of trustworthiness based on those
properties. This estimation can then be communicated to (potential) data
providers in order to support informed decisions about the disclosure of
usage-controlled critical data.

Contribution RC7: We define a trustworthiness score representing the abil-
ity of a distributed usage control system, which is protected by trusted comput-
ing mechanisms, to successfully enforce policies in its current state. We inte-
grate our score into a web-based trust dashboard, which is implemented as part
of our usage control and provenance tracking framework.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces
relevant preliminary work regarding usage control architectures, provenance
trackingmodels, and trusted computing technologies. In chapter 3 we provide
a brief overview of the current state of the art and then develop our concep-
tual system design for trustworthy distributed usage control enforcement and
provenance tracking. We also conduct a security analysis of the developed
proposal under the assumption of an idealized remote attestation protocol.

15

1 Introduction

Based on the gained insights, chapter 4 then discusses the benefits and draw-
backs of concrete technical protection mechanisms, namely Trusted Platform
Modules, Intel SGX, and ARM TrustZone. To meet the identified security re-
quirements, we develop a novel TPM-based attestation protocol that is not
vulnerable to nonce-data attacks, as well as a heterogeneous attestation pro-
tocol that can provide interoperability between all three considered trusted
computing technologies. Chapter 5 integrates all previous findings into a
trustworthy distributed usage control and provenance tracking framework,
and describes its implementation. Afterwards, in chapter 6, we develop and
evaluate a method to estimate the trustworthiness of distributed usage con-
trol systems. In chapter 7 we then demonstrate the feasibility of the developed
framework and evaluate its performance by implementing an example from
the application domain of smart manufacturing. Finally, this thesis closes in
chapter 8 with some concluding remarks and an outlook on future work.

16

2 Preliminary Work

This chapter introduces relevant preliminary work that this thesis builds on,
including distributed usage control (section 2.1), provenance tracking (sec-
tion 2.2), and trusted computing (section 2.3).

2.1 Distributed Usage Control

Usage control (UC) is a technology that allows the continuous monitoring and
safeguarding of data [Par02]. While classical access control mechanisms pro-
tect resources only until a requested operation is initially granted, usage con-
trol can restrict sensitive information even after it has been disclosed. Because
of this property, usage control can be seen as the evolution of classical access
control [Laz10]. The core model of usage control is UCONABC, developed by
Park and Sandhu [Par04]. UCONABC generalizes the classical attribute-based
access control model (ABAC), which defines acting agents (subjects) and sen-
sitive resources (objects) by associating themwith descriptive attributes. With
ABAC, access decisions are determined by evaluating the granted access rights
based on the current attribute values of the implicated subjects and objects
[Hu15]. This process is also called authorization. UCONABC expands this tra-
ditional model with the concepts of obligations and conditions. Obligations are
specific requirements that subjects must fulfill for the requested operation to
be granted. Conditions define environmental circumstances, independent of
subjects or objects, which need to be satisfied for a positive authorization. By
combining attribute-based authorizations (A) with obligations (B) and con-
ditions (C), UCONABC allows to specify flexible usage strategies, such as re-
stricting data usage to a certain time and location (condition), or demanding
the deletion of sensitive information after a certain time interval (obligation)

17

2 Preliminary Work

[Aka22]. Figure 2.1 illustrates the various parts of the UCONABC usage con-
trol model as specified by Park and Sandhu.

Subject
Attributes

Usage
Decisions

Object
Attributes

Subjects
(S)

Objects
(O)

Rights
(R)

Obligat-
ions (O)

Condit-
ions (C)

Authori-
zations

(A)

Figure 2.1: The UCONABC usage control model after Park and Sandhu [Par04].

Another novel facet of usage control is the concept of continuous enforcement
[Aka22]. In contrast to ABAC, usage control allows to continuously monitor
and safeguard protected objects not only at the time of the initial access, but
also during and after the subsequent data usage. UCONABC achieves this kind
of continuous enforcement by including a notion of consecutiveness in the
model. Authorizations, obligations, and conditions can be defined and evalu-
ated before (pre-), during (ongoing-), and after (post-) any data usage [Par04].
If the usage rules are violated at any of these points in time, continuous ac-
cess to the data will be revoked. Furthermore, subject and object attributes
can be updated at those times as well (attribute mutability). Continuous en-
forcement and attribute mutability allow the specification of very flexible and
fine-grained usage rules that can distinguish legitimate data processing sce-
narios from malicious data usages.

Pretschner et al. developed distributed usage control (DUC) as an important en-
hancement of the core usage control model [Pre06, Kel13]. Unlike UCONABC,
distributed usage control deals with use cases where critical data are being
transferred from a data provider to a remote data consumer. In such cases,

18

2.1 Distributed Usage Control

data owners specify their own preferences and requirements regarding the
usage of their data in the form of usage control policies. These policies are
then transmitted alongside the protected data to the remote receiver, where
the specified usage rules are being continuously enforced. Figure 2.2 illus-
trates this fundamental concept of distributed usage control.

2. Lookup

4. Enforcement

1. RequestUsage
Control

Apps

Policies

Data3. Data + Policies

Figure 2.2: The principle of distributed usage control. Own illustration after [Hil07a].

Distributed usage control distinguishes between a preventive and a reactive
type of enforcement [Pre09a]. Preventive usage control enforcement actively
supervises and filters data processing applications to inhibit illegitimate data
usages according to the specified policies. This requires installing capable en-
forcement mechanisms in the data processing applications on the receiver’s
side. However, preventive policy enforcement can be quite disruptive for
legacy applications and hence is not always feasible or desired. In contrast, re-
active usage control enforcement does not directly prevent policy violations,
but ensures that the policy issuer is notified about any digression. The data
owner can then react accordingly to the violation, for example by penalizing
the offending data receiver, demanding a proper compensation, or initiating
legal action. The challenge addressed in this thesis – establishing trustwor-
thiness in distributed usage control systems – is relevant for both of these
enforcement types. Preventive usage control enforcement requires mecha-
nisms allowing policy issuers to verify the remote data processing applica-
tions, while reactive enforcement requires a reliable back channel that cannot
be influenced or manipulated by the data consumer. However, most exist-
ing usage control frameworks rely on the preventive type of policy enforce-
ment. Since its development, the distributed usage control model has been

19

2 Preliminary Work

formalized [Hil07b, Pre08, Pre09b], extended by mechanisms for information
flow tracking [Pre11], aswell as extensively evaluated in practical applications
[Kel13, Bir16, Kel18]. As a result, this model today serves as the theoretical
baseline for implementing usage control in distributed systems.

2.1.1 The XACML Architecture

While UCONABC and the distributed usage control model can formally rep-
resent usage restrictions, these models do not yet consider the architectural
design of a usage control system capable of enforcing these restrictions. The
earliest implementations of usage control systems relied on a monolithic de-
sign approach, where a single protection component is responsible for mon-
itoring and supervising applications, evaluating and enforcing usage control
decisions, as well as managing the set of active policies [Agr07, Pre07]. How-
ever, such large monolithic system designs have quickly proven to be infea-
sible for more complicated applications in terms of flexibility and scalability.
Similar problems in the field of access control led to the development of the
XACML reference architecture. XACML (short for Extensible Access Control
Markup Language) is an OASIS standard for attribute-based access control
systems, which among other things includes an information model, an XML-
based policy language, and a corresponding reference architecture [OAS13].
Since usage control is a generalization of attribute-based access control, an ex-
tended variant of the XACML reference architecture is often adopted to imple-
ment (distributed) usage control systems [Jun14, Kel18, Mar19, Aka22]. This
XACML-based usage control architecture provides separation of concerns by
defining several independent components, each with a specific task in the
usage control system. The components are interacting via well-defined inter-
faces and continuously share information about the current state of the usage
control system. Usage control enforcement is then achieved by the collec-
tive effort of all involved system components. Figure 2.3 illustrates the com-
ponents of XACML-based usage control systems, as well as their individual
functions and interactions.

20

2.1 Distributed Usage Control

Application

PEP
Enforcement

Events

Decisions

Obligations

PDP
Decision

PIP
Information

PXP
Execution

Supervise

PAP
Administration

Attributes
Policies

Figure 2.3: An XACML-based usage control system architecture.

Policy Enforcement Point. The Policy Enforcement Point (PEP) is respon-
sible for enforcing usage restrictions and hence is one of the most important
components in the architecture. A PEP supervises data processing applica-
tions by anticipating and intercepting data usages, generating events describ-
ing the intercepted usages, and disseminating them into the usage control sys-
tem. Based on those events the system generates usage decisions, which are
then transmitted back and enforced by the PEP. Since enforcement points re-
quire far-reaching access to the protected data for their responsibilities, they
are usually implemented as part of the data processing applications them-
selves [Laz14, Bir16], as a proxymodule filtering data streams [Riz19, Mun20],
or as a low-level operating system module [Bai10, Kel18].

Policy Decision Point. The Policy Decision Point (PDP) is responsible for
generating the usage decisions that are enforced by a PEP. For this, the PDP
evaluates the received events against the set of currently active usage control
policies, and decides if the requested data usage is legitimate. In addition
to either granting or denying a particular data usage, the decision point can
also demand the requested usage to be modified or delayed before it can be
allowed [Jun14]. Like enforcement points, the PDP is amandatory component
in every usage control system. However, usually only a single PDP is used in
each usage control domain, whereas multiple PEPs can be deployed to enforce
the resulting decisions in the individual applications.

21

2 Preliminary Work

Policy Information Point. A Policy Information Point (PIP) is providing
decision points with additional information that is required for the evaluation
of usage control policies. This mainly includes subject and object attributes,
but also independent information such as database entries or environmental
properties. Information points have also been used to store a data flow model
that can be queried by decision points for alternative representations of the
data to protect [Kel13, Bir16]. PIPs are very useful as information sources
for complex usage control scenarios, but unlike PEPs and PDPs, they are not
mandatory components.

Policy Execution Point. A Policy Execution Point (PXP) is responsible for
executing obligations that are demanded during the evaluation of a usage con-
trol policy. For example, a PXP can be used to increase an access counter, log
the data usage, or send a notification to the original data owner before the
data usage is allowed. Like information points, PXPs are very useful com-
ponents when implementing complex data usage strategies, but they are not
mandatory components either.

Policy Administration Point. Finally, a Policy Administration Point (PAP)
manages and controls the set of active usage control policies. Usually, PAPs
offer a user interface that allows system administrators to check the currently
active policies and deploy or revoke them at the decision point. In distributed
usage control scenarios, PAPs may also receive and automatically deploy poli-
cies from remote data providers. Especially in the distributed case, this com-
ponent is sometimes referred to as a Policy Management Point (PMP) instead
[Jun14, Kel18].

2.1.2 Decentralized vs. Cross-Domain Usage Control

The XACML-based usage control architecture specifies a logical design for
distributed usage control systems, which encompasses several collaborating
components. However, the actual implementation and deployment of those
logical components is not addressed by the XACML standard. Sometimes the

22

2.1 Distributed Usage Control

different XACML components are realized as part of a usage control frame-
work running on one single computer system, receiving and enforcing dis-
tributed usage control policies [Bai10, Kel13]. In contrast, Kelbert et al. pro-
posed to implement distributed usage control systems in a fully decentralized
way, meaning that the different XACML components are realized as indepen-
dent (sub-)systems communicating with each other over the network [Kel14,
Kel15]. This has the main advantage of increased flexibility and scalability.
In some use cases a decentralized architecture is even required, for exam-
ple when enforcing usage control with PEPs located on multiple clients that
should be linked to the same decision point.

Decentralized

Centralized

Cross-DomainDomain-Local

Distributed
Usage Control

Local Usage Control

PDP

PIP

PEP

PEP

PXP

PAP

PDP

PIP

PXP

PEP

PEP

PDP

PIP

PXP

PEP

PEP

PEP

PDP

PIP PEP

PAP

Figure 2.4: Decentralized vs. cross-domain usage control.

23

2 Preliminary Work

In the scientific literature, the term distributed usage control is sometimes
used ambiguously tomean either usage control betweenmultiple participants,
or a usage control architecture implemented over multiple networked com-
puter systems. To clarify the terminology for the remainder of this work, we
will instead use the terms cross-domain and domain-local to refer to usage
control that is conducted between multiple participants or in a single domain,
respectively. As introduced by Kelbert et al., we use the terms decentralized
and centralized to refer to usage control architectures that encompass mul-
tiple networked components in contrast to a single computer system [Kel14,
Kel15]. We furthermore consider usage control to be distributed if it is both
decentralized and cross-domain. Figure 2.4 illustrates this terminology as it
is used in the remainder of this thesis.

2.1.3 Policy Languages

In addition to capable usage controlmodels and system architectures, the third
vital part of any usage control framework is the policy language adopted for
the specification of usage rules. The chosen language needs to be expressive
enough to adequately represent the desired usage restrictions, while simul-
taneously being suitable for the enforcement strategies supported by the im-
plemented usage control architecture. Over the years, several usage control
languages with different purposes and goals have been developed. Recently,
Akaichi and Kirrane compiled a comprehensive survey that includes a list
of all policy languages proposed so far [Aka22]. In this section, we briefly
present and compare a selection of the most important languages that are
suitable for the purposes of this thesis.

XACML. Since the XACML reference architecture serves as a basis formany
usage control systems (see section 2.1.1), its corresponding policy language
has also been adopted for usage control purposes. While originally devel-
oped for attribute-based access control, XACML already supports many fea-
tures necessary for a usage control policy language. For example, it allows the
specification of obligations and supports using PIPs as additional information

24

2.1 Distributed Usage Control

sources in the policy [OAS13]. However, attribute updates or the continuous
evaluation of conditions is not supported by XACML. Furthermore, specified
obligations can only be executed by the enforcement points themselves, not by
external PXPs. There are some Java-based implementations of XACML policy
decision points available, both as commercial¹ and open source² projects. To
make the XACML policy language compliant with the UCONABC usage con-
trol model, several extensions to the standardized language have also been
proposed [Col10, El 15, Di 18]. However, so far none of these extensions have
been fully implemented or widely adopted.

OSL. The Obligation Specification Language (OSL) has been developed by
Hilty et al. as a policy language specifically designed to express usage con-
trol requirements [Hil07b]. OSL employs the common event-condition-action
(ECA) pattern, which defines authorizations as a triple consisting of an event,
one or more conditions, and an action. Events are used to describe usage re-
quests, which are matched to OSL rules according to the unique event name.
The conditions of any matching OSL rules are then evaluated using the event
parameters. Only if the specified conditions are fulfilled, the associated action
is finally authorized. OSL has originally been specified in the logic language Z,
which allows to formally verify OSL rules against the underlying usage con-
trol model. However, implementation-level representations of OSL policies
are typically serialized as XML documents [Kum12, Wüc12].

ODRL. The Open Digital Rights Language (ODRL) is a comprehensive pol-
icy language that has been specified as a recommendation by the World Wide
Web Consortium (W3C) [Ian18b]. Originally developed for Digital Rights
Management (DRM) applications, ODRL now offers a generic and highly ex-
tensible usage control language. The official ODRL specification includes a
core information model, a vocabulary document, and several policy serializa-
tion syntaxes. ODRL policies are most often serialized in JSON-LD, but the

¹ https://www.axiomatics.com/ (accessed on 12/08/2023).
² https://github.com/authzforce/ (accessed on 12/08/2023).

25

https://www.axiomatics.com/
https://github.com/authzforce/

2 Preliminary Work

specification also supports XML as well as RDF, a resource description for-
mat. Similar in nature to XACML, ODRL allows the specification of rights,
conditions, and obligations under which the usage of digital resources may
be permitted or prohibited. However, unlike XACML, ODRL does not rely on
a specific reference architecture, which is why by default it does not support
the definition of external PIPs or PXPs. On the other hand, the advantages of
ODRL include its highly expressive nature, an extensible information model,
and a compact specification with clear semantics. Due to its status as a W3C
recommendation, ODRL can be seen as a de-facto industry standard for the
specification of digital rights. Consequently, ODRL has been chosen as the
default language to disseminate usage rules in the International Data Space
[Ste21]. Furthermore, there are also some projects implementing the ODRL
specification in Java¹ and JavaScript².

MyDataControl. MyDataControl is a Java-based distributed usage con-
trol framework developed by Jung et al. [Jun14, Jun22]. The framework
is designed after the XACML reference architecture and provides several
usage control components as standalone web services, alongside a dedicated
policy language. Like OSL, the MyDataControl policy language is based
on the event-condition-action pattern, which authorizes data usages by
evaluating policy conditions on the intercepted system events. In addition,
MyDataControl supports delaying and modifying events before they are
authorized. Since this language has been developed specifically for the
MyDataControl framework, it already includes comprehensive support for
both information and execution points. PIPs and PXPs can be directly ref-
erenced from policies, which allows the realization of complex data usage
restrictions. MyDataControl uses an XML-based policy representation and is
also considered in the International Data Space [Ste21]. However, while the
policy specification is publicly available,³ the corresponding decision point
implementation is closed source and held under a proprietary license.

¹ https://github.com/oeg-upm/licensius (accessed on 12/08/2023).
² https://github.com/nitmws/odrl-wprofile-evaltest1 (accessed on 12/08/2023).
³ https://developer.mydata-control.de/language/ (accessed on 12/08/2023).

26

https://github.com/oeg-upm/licensius
https://github.com/nitmws/odrl-wprofile-evaltest1
https://developer.mydata-control.de/language/

2.1 Distributed Usage Control

LUCON. Logic-Based Usage Control (LUCON) has been developed by
Schütte and Brost as a mechanism for restricting data flows in message-based
systems [Sch18b]. LUCON features a Domain Specific Language (DSL), which
can be used to control how data may be routed, combined, and processed
across distributed services. As such, LUCON is not a generic usage control
language and can only be applied sensibly in message-based environments.
Nevertheless, the LUCON language allows the specification of rights and obli-
gations that are matched against services and messages. Static and dynamic
data flow analyses of message routes are performed by compiling the LUCON
policies into first-order logic terms and evaluating them using Prolog. The
LUCON reference implementation is Java-based and has been integrated into
the Apache Camel message routing of the IDS-compliant Trusted Connector
[Sch18a]. As such it is available under the Apache 2.0 license.¹

Table 2.1: Comparison of usage control policy languages.

Name Purpose PIPs Obligations Serializing Code
XACML ABAC Yes PEP only XML Java
OSL UC No PEP only Z, XML None
ODRL DUC,

DRM
No PEP only JSON-LD,

XML, RDF
Java,
JavaScript

MyDataControl DUC Yes PXP XML Java
LUCON DUC Yes PEP only DSL Java

Table 2.1 provides a comparison of the discussed policy languages in terms
of capability and area of application. Due to the comprehensive nature of the
underlying framework, at the time of this thesis MyDataControl can be seen
as the state of the art policy language for distributed usage control. However,
since the associated reference implementation is not available as open source,
in this thesis we will focus on the ODRL policy language instead. Most impor-
tantly, ODRL provides an expressive and extensible usage control language
with a small overhead, which is convenient for our purposes. As a W3C rec-
ommendation, ODRL can also be considered an accepted industry standard.

¹ https://github.com/Fraunhofer-AISEC/trusted-connector (accessed on 12/08/2023).

27

https://github.com/Fraunhofer-AISEC/trusted-connector

2 Preliminary Work

In the course of this thesis, we extend ODRL with provenance tracking mech-
anisms and then use it to demonstrate our proof of concept for a trustworthy
distributed usage control system (see research contributions RC2 and RC6).

2.2 Provenance Tracking

Provenance data are a type of metadata that describe the history and evolution
of data sets. They usually include information about the processes, technical
entities, and people that have been involved in the acquisition and the usage
of data sets [Gro13]. Provenance information can be used to derive knowl-
edge about the origins of data and how they have been distributed, processed,
altered, and combined since their generation. This is useful to decide whether
certain information can be trusted and how theymay be integrated into larger
data sets. Provenance tracking is the concept of automatically capturing prove-
nance information in data processing systems. Provenance tracking is espe-
cially useful in areas of applicationwhere large amounts of data are being con-
tinuously evaluated [Her17]. For example, when conducting data-driven sci-
entific experiments (i.e., in the field of physics or biomedical research), prove-
nance tracking mechanisms can help to trace the origin and the subsequent
evaluation of scientific data [Bar18b, Car18]. This is a crucial requirement for
reliably identifying systematic or computational errors and achieving repro-
ducible scientific results [Sah19]. Furthermore, provenance tracking is use-
ful for maintaining database management systems [Bun06, Che09a], curat-
ing training data for machine learning models [Sou19, Wer22], and even for
detecting cyber-attacks by analyzing the provenance of security audit logs
[Bat19]. Another key area of application for provenance tracking is privacy
protection. Ujcich et al. show how provenance models can be used to ver-
ify compliance of data processing systems with European data privacy law
[Ujc18]. Bier leverages provenance tracking to implement a data protection
information system that can provide transparency for data subjects [Bie21].
Provenance tracking mechanisms have also been integrated into virtual data
space architectures [Ste21], where they keep a reliable log of conducted data

28

2.2 Provenance Tracking

transmissions and provide data owners with the information of where and
for what purpose their data are being used.

2.2.1 The PROV Model

Designing a system that can track and evaluate the provenance of data re-
quires a suitable provenance model as a logical foundation. The provenance
model defines how the collected provenance information should be repre-
sented, serialized, stored, and exchanged between computer systems. It is usu-
ally technology-independent and provides an abstract definition of the prove-
nance semantics. The current state of the art provenance model is the PROV
family [Gro13]. Standardized by the W3C in 2013, the PROV family consists
of several related documents giving both users and developers comprehensive
guidelines about how to specify, access, and interpret provenance informa-
tion. The core of the PROV family is the provenance data model (PROV-DM)
[Bel13]. PROV-DM defines a vocabulary together with a graph-based data
model that generically represents provenance information using three differ-
ent base classes and seven types of relations. Concrete instances of these
classes are represented as vertices in a provenance graph, while relations be-
tween two instances are represented as directed edges. Figure 2.5 shows the
base classes and relation types defined in the PROV-DM data model.

used

wasGeneratedBy

wasAttributedTo
wasAssociatedWith

ActivityEntity

Agent

wasDerivedFrom wasInformedBy

actedOnBehalfOf

Figure 2.5: The PROV-DM data model [Bel13].

29

2 Preliminary Work

The three base classes of PROV-DM are called entities, activities, and agents.
Entities are the “things” that the provenance should be collected of, for exam-
ple physical objects or digital assets such as data. They can be derived from
other entities, which is represented by the wasDerivedFrom relation. Activ-
ities describe generic processes that run for a certain duration, for example
a particular step in a data processing chain. Activities can generate and use
entities, which is represented by the wasGeneratedBy and used relations. Fi-
nally, the concept of agents is used to describe persons, organizations, or sys-
tems that are associated with certain entities and/or activities. An agent can
be the originator of an entity (wasAttributedTo) and bear some responsibility
for an activity (wasAssociatedWith). Agents can also delegate their author-
ity to other agents (actedOnBehalfOf). All elements of the PROV-DM model,
including the relations, can be described further by associating them with at-
tributes, such as the duration of an activity or the purpose of a data usage.
PROV-DM is a domain-agnostic model and meant to be extended by deriv-
ing new classes, relations, and attributes to better describe the semantics of
a particular use case. There are a number of PROV-DM extensions that are
covering various specific domains of provenance tracking, for example in big
data applications [Gao20] or to represent data privacy requirements [Ujc18].
The PROV family also specifies several serializations of the provenance data
model, including PROV-XML and a human-readable notation of provenance
information (PROV-N) [Gro13]. Furthermore, PROV includes a definition of
interfaces for the web-based lookup and retrieval of stored provenance infor-
mation (PROV-AQ). Because PROV is an expressive but also relatively light-
weight standard, which can be easily extended for the specific needs of many
different application domains, it serves as a foundation for most provenance
tracking systems today.

2.2.2 System Architectures

In addition to a data model and corresponding serialization schemes, imple-
menting provenance tracking in practice also requires the design of a suitable
system architecture. The system architecture defines bywhat technical means
and processes provenance information is collected, handled, and exploited.

30

2.2 Provenance Tracking

Provenance tracking systems usually distinguish three different phases of the
provenance life cycle [Zaf17, Bie21].

(i) Collection: As a first step, provenance information about the
supervised entities is generated and collected at the data processing
applications. This has to be done at a level of granularity that fits the
purpose of the respective provenance (e.g., files, tables, or individual
data items). Provenance collection can be conducted indirectly by
analyzing existing log files, or directly by including provenance
tracking modules into the used applications and operating systems.

(ii) Storage: Second, the collected provenance information must be stored,
either together with the original data or in separate databases.
Depending on the type of collected information, external provenance
storage is usually implemented using relational databases [Gla10],
tuple stores [Pat10], or graph databases [Geh12]. There are also
proposals that store provenance information using blockchains [Lia17,
Nei17], as well as using cryptographic solutions such as encryption
and group signature schemes [Asg11, Alh12].

(iii) Dissemination: Finally, suitable interfaces must be provided that allow
users to query and analyze the captured provenance data. This is
usually done using the query language of the respective database that
has been used for storage, such as SQL [Gla10] or SPARQL [Pat10].

Existing provenance tracking frameworks usually integrate these three
phases into a single monolithic system architecture [Hu20]. Inspired by the
concept of distributed usage control, Bier instead proposes a provenance
tracking architecture based on distributed system components [Bie21]. In
this system design, provenance information is collected by evaluating a
separately constructed data flow model. The provenance information is then
stored using a set of distributed Provenance Storage Points (ProSPs) and
disseminated by a Provenance Dissemination Point (ProDP). The advantage
of this approach is that it can be rather easily included in distributed usage
control architectures [Bie13]. Because of this, we adopt a simplified version
of Bier’s provenance tracking system design for this thesis (see section 3.2.2).

31

2 Preliminary Work

2.3 Trusted Computing

One cause of many security problems today is the fact that the software stack
running on computing devices (and by extension the device behavior) can be
modified rather easily at all times of the device’s life cycle. For example, as
soon as a device is infectedwithmalware, it can tamperwith the system’s con-
figuration and binaries to hide from detection while stealing user data from
the compromised device. To prevent this, there are many levels of software
isolation available on modern computer systems. Operating systems and hy-
pervisors are responsible for separating processes and virtual machines from
each other to prevent data leakage. However, since these isolation mecha-
nisms tend to be complex and have large attack surfaces, vulnerabilities are
fairly common and often quite dangerous [Tan19]. Furthermore, software-
based isolation mechanisms are also vulnerable against attackers with phys-
ical access to the device, since they can tamper with the installed operating
system or the device’s firmware. Especially if platform owners have to be
considered as potential attackers (like in the case of distributed usage con-
trol), another type of security feature is necessary.

The term trusted computing describes the concept of establishing trust in
computing devices by making the device behavior predictable and verifiable
[Wag18b]. This is achieved by installing specialized hardware modules as
trust anchors (also called roots of trust) to enhance the security and trust-
worthiness of a computing device. The rationale behind this is that hardware
– unlike software – cannot be easily modified, even with privileged and/or
physical access to the device. The hardware roots of trust are then used
as a building block to provide secure cryptographic functionalities such as
encryption and digital signatures. Most trusted computing devices are also
capable of using roots of trust to verify the software that is currently being ex-
ecuted on the protected system. This extends the initial trust that is placed in
the immutable hardware trust anchors to software components, for example
single processes or even the whole software stack. The entirety of the trusted
computing hardware and the protected parts of the software is then called a
Trusted Computing Base (TCB) [Tru19b, p. 21]. In recent years, the field of

32

2.3 Trusted Computing

trusted computing has been researched extensively both in academia and the
industry [Sch22]. Various trusted computing approaches and technologies are
available from different manufacturers, often pursuing contrasting protection
philosophies. In the remainder of this section, we give a brief introduction to
the most important trusted computing technologies used today.

2.3.1 Trusted Platform Modules

One of the first widely available trusted computing technologies was the
Trusted Platform Module (TPM). TPMs are tamper-resistant hardware chips
that provide computers with a cryptographic co-processor, similar to a smart
card. They allow the secure generation and storage of cryptographic keys
that can be used to encrypt confidential data and create digital signatures.
The TPM architecture and functionality is standardized by the Trusted
Computing Group (TCG), a non-profit organization consisting of security
experts from both academia and the industry.¹ The current version 2.0 of
the TPM specification has most recently been revised in November of 2019
and is publicly available [Tru19b]. The TPM 2.0 specification brought many
improvements over their predecessors and by now has been widely adopted
by TPM manufacturers and system integrators. However, TPM 2.0 devices
are not backwards compatible with earlier TPM versions. Since earlier TPM
versions are hardly ever used anymore, in this thesis we only deal with
TPMs in version 2.0.

Architecture. Hardware TPMs consist of a standard microcontroller archi-
tecture that includes main memory, I/O interfaces, and a central processing
unit responsible for executing the TPM functions. However, TPM chips also
contain several security-specific components [Wag18b]. This includes volatile
and non-volatile memory modules that are reserved for cryptographic pur-
poses such as key storage and session handling. An authorization component
is responsible for storing and evaluating policies that can be used to limit

¹ https://trustedcomputinggroup.org/ (accessed on 12/08/2023).

33

https://trustedcomputinggroup.org/

2 Preliminary Work

access to keys and other TPM objects. The TPM also contains separate en-
gines responsible for implementing hash functions, as well as symmetric and
asymmetric cryptography. This type of modular architecture yields algorithm
agility, which is a major improvement of TPM 2.0 over previous versions. The
idea behind algorithm agility is to separate TPM functionality from the used
cryptographic mechanisms. It allows TPMusers to select from awide range of
implemented cryptographic algorithms, instead of being limited to predefined
algorithms for certain purposes. While the TCG defines a core set of manda-
tory algorithms that a TPM must support, manufacturers are free to imple-
ment additional algorithms as well. For a full description of the TPM 2.0 ar-
chitecture, we refer the reader to the TPM specification documents [Tru19b].

Key Management. A core functionality of Trusted Platform Modules lies
in the generation, management, and usage of cryptographic keys. For this,
each TPM is provisioned with a set of unique platform secrets, which are not
known to anyone and cannot be read out of the TPM chip. These secrets are
used internally to derive deterministic primary keys, which can be certified
by the TPM manufacturer. This certification proves to a TPM user that the
primary keys indeed belong to a genuine TPM and are protected by it. Since
they are deterministic, the primary keys should not be used directly to encrypt
or sign data. Instead, the primary keys are used as roots of a key hierarchy
[Art15]. Each new cryptographic key that the TPM generates is wrapped (i.e.,
encrypted) by a parent key in order to securely store it outside the TPM. To use
a wrapped key, it first needs to be loaded into the TPM’s protected memory,
where it gets decrypted by its respective parent key. This allows the TPM to
manage a virtually unlimited number of cryptographic keys with very little
internal memory. The memory regions that are used to store platform secrets
and loaded private keys are completely isolated and can only be accessed by
the TPM itself. This is commonly referred to as a Root of Trust for Storage (RTS).
The RTS can protect both confidentiality and integrity of stored information.
A TPM distinguishes primary keys for different purposes, such as for storage,
endorsement, and to control the platform firmware. It also associates a set of
attributes with each generated key, which can be used to control properties

34

2.3 Trusted Computing

like the key’s migratability, duplicability, and its access control policy. A full
description of the TPM key management is given in [Tru19b].

Integrity Measurement. Trusted Platform Modules can also be used to
measure the integrity of the software stack that is being executed on a com-
puter system. This is achieved by collecting fingerprints of loaded binaries
and configuration files in form of hash digests. These digests are called
measurements and together represent the entire software state of a trusted
platform. Integrity measurements allow platform owners to verify that
the executed software is indeed benign and has not been misconfigured or
infected by malware. Two challenges have to be solved in order to conduct
secure and trustworthy integrity measurements.

(i) The list of collected measurements must be stored completely isolated
from the measured software.

(ii) The measurement process may not be influenced or manipulated by
anyone outside the TPM trust anchor.

If this were not ensured, malicious software could hide from detection either
by removing the suspicious fingerprints from the stored measurements, or by
preventing its own measurement in the first place. However, the TPM takes
care of both of those requirements.

Platform Configuration Registers. To securely store integrity measure-
ments, the TPM provides special-purpose volatile memory called the Platform
Configuration Registers (PCRs). The PCRs are part of the TPM’s Root of Trust
for Storage and hence cannot be directly accessed from outside the TPM.¹
The PCRs are initialized to either all zeros or all ones at every system restart
and cannot be cleared or reset during the system operation. Since the TPM
only allows to add but not delete digests in the PCRs, they can be used to
store a sequence of measurements without risking manipulation by malicious
software. However, the TPM only allocates a very limited amount of secure

¹ Because the PCRs are not confidential, the RTS only protects their integrity.

35

2 Preliminary Work

memory for the PCR banks. To ensure that each PCR can attest to a virtu-
ally unlimited number of measurements, its entries are recursively chained
together using a cryptographic hash function 𝐻. The only way to change the
value of a specific PCR is to invoke its extend operation. This operation adds
a new measurement digest 𝑑 to the 𝑘-th PCR by calculating

𝑃𝐶𝑅[𝑘] ≔ 𝐻(𝑃𝐶𝑅[𝑘] ‖ 𝑑).

The resulting PCR value depends on not just the newly added digest 𝑑, but all
the previously added digests already included in the old PCR value as well.
Since this hashes together all measured digests, the individual measurement
values have to be stored in an external measurement log. Measurement verifi-
cation is then performed by recalculating the intermediate hash values using
all logged measurement digests and comparing the final value with the value
stored inside the respective PCR.That way an attacker is still unable to tamper
with the externally stored measurement log, since any modification of mea-
surements would lead to a PCRmismatch. Following the concept of algorithm
agility, the TPM allows its users to choose which hash algorithm should be
used for 𝐻. Since the various hash functions use different digest sizes, TPMs
often contain multiple PCR banks with different word lengths. Furthermore,
each PCR bank usually contains at least 24 registers to allowmultiple indepen-
dent measurement processes and simplify the verification of PCR contents.

Trusted Boot. Populating the PCRs with trustworthy measurements that
could not have been manipulated by malicious software is the responsibil-
ity of a trusted boot process. Trusted boot¹ is not to be confused with secure
boot, which is a security feature that checks digital signatures of boot load-
ers. Trusted boot, on the other hand, defines a measurement process that
consecutively loads boot stages and extends their digests to the PCRs before
executing them. This load-measure-execute sequence starts at a tiny bit of
trustworthy code called the Core Root of Trust for Measurement (CRTM), which

¹ Sometimes the term measured boot is used instead.

36

2.3 Trusted Computing

is the very first part of the firmware that gets loaded and executed by the pro-
cessor during system start. Beginning with the CRTM, each subsequent boot
stage is then responsible for measuring the next boot stage, all the way up
to the operating system and the user applications. This establishes a chain
of trust (CoT) rooted in the CRTM that extends over all measured software
components. Malicious software in any stage of the boot processes cannot
hide from this chain of measurements without first compromising the initial
CRTM code. The CRTM together with the freshly initialized processor forms
the Root of Trust for Measurement (RTM). If the RTM is trusted, then all subse-
quently loaded software included in the chain of trust can be trusted as well.
The actual boot measurements of the firmware and operating systemmodules
are extended into PCRs 0 to 9. Measuring the user applications is then the re-
sponsibility of a kernel-level Integrity Measurement Architecture (IMA), which
usually extends its measurements to PCR 10. Figure 2.6 illustrates this pro-
cess and the resulting chain of trust. A more detailed picture of a TPM-based
trusted boot process with IMA support is given in [Wag18b].

TPM Extend

Measure & Execute

Boot
Loader

Application

Application

Application

Operating
System

IMA

PCR 0-9 PCR 10

BIOS /
UEFI

CRTM

Figure 2.6: The TPM-based trusted boot process. Own illustration after [Wag18b].

In conclusion, even though TPMs have been around for over two decades, they
are still very important security modules and are widely used in a multitude
of different applications. Because of this, in the remainder of this thesis we
build on TPMs as one of the key technologies to protect distributed usage
control architectures.

37

2 Preliminary Work

2.3.2 Trusted Execution Environments

Even though TPMs allow the measurement and verification of a protected
system’s software stack, they do not provide any security guarantees for the
code itself while it is being executed. Trusted Execution Environments (TEEs)
fill this gap by enhancing the trusted computing concept with the possibility
of cryptographically isolating software while it is running. TEEs can be dis-
tinguished by the scope of the provided isolation, which directly corresponds
to the size of their TCB. Process-based TEEs allow to run (parts of) single pro-
cesses in encrypted containers, which are usually called enclaves. VM-based
TEEs cryptographically protect different virtual machines from each other,
while other TEEs provide one or more secure worlds or realms for the ex-
ecution of privileged software. In the remainder of this section, we briefly
introduce and motivate the most important Trusted Execution Environments.
A full list of currently available hardware-based TEEs has recently been com-
piled by Schneider et al. [Sch22].

2.3.2.1 Intel Software Guard Extensions

Intel’s Software Guard Extensions (SGX) are a set of processor instructions ex-
tending the classical x86 architecture with a process-based Trusted Execution
Environment [Cos16a]. SGX allows untrusted processes to launch isolated
enclaves inside the normal address space using the new ECREATE processor in-
struction. These enclaves consist of encrypted memory pages, which are only
readable in plain-text by a genuine SGX processor. The SGX processor then
uses hardware-based access control mechanisms to prevent any untrusted
code from accessing enclave memory, and it clears all remaining secret in-
formation from the CPU before untrusted code is executed again. This allows
the SGX processor to completely isolate the executed enclaves from the rest of
the computer system and protect the confidentiality of enclave data as well as
the integrity of trusted code. Other system processes, privileged software like
the operating system, and even platform owners with physical access to the
system cannot read out any enclave memory or manipulate its trusted code
base. The untrusted processes can interact with secure enclaves only via an

38

2.3 Trusted Computing

interface defining explicit enter and exit calls. The EENTER processor instruc-
tion is used to put the SGX processor into the protected enclave mode and
transfer control authority to the trusted code. The EEXIT instruction hands
the control flow back to the untrusted process. The TCB of SGX enclaves is
very small compared to TPMs, because it only contains the enclave code along
with the SGX processor itself. On the other hand, SGX processors are much
more complex than TPM chips, which drastically increases the attack surface
and has led to vulnerabilities such as address-translation and cache attacks
[Fei21]. The principle architecture of SGX enclaves is illustrated in fig. 2.7. A
full architectural description of SGX is given by Costan andDevadas [Cos16a].

Untrusted

TrustedSGX Processor

Operating System

Application

Enclave

EENTER

EEXIT

ECREATE

Figure 2.7: The SGX enclave architecture. Own illustration after [Bre18].

Since SGX enclaves are always launched by untrusted processes, the integrity
of an enclave needs to be verified before it can be trusted. SGX achieves this
with a measurement process that automatically establishes the enclave’s code
identity. This process uses a hash chaining approach similar to the TPM-based
integrity measurement (see section 2.3.1). However, instead of using a set of
PCR registers to represent the entire system configuration, SGX uses a sin-
gle enclave measurement digest (MRENCLAVE) to describe the code identity of a
running enclave. The MRENCLAVE value is constructed during the launch of an
enclave by a sequence of EADD and EEXTEND processor instructions. First, the
EADD instruction is used to load and encrypt the next enclave page from un-
trusted memory. This instruction also appends the page metadata to MRENCLAVE

39

2 Preliminary Work

by calculating the SHA-256 hash digest of its concatenation with the previous
measurement value. Afterwards, a number of EEXTEND instructions are used
to measure the page’s memory content in the same way. This measurement
sequence is then repeated for every page of the enclave’s memory image. The
final MRENCLAVE value uniquely represents the entire initial memory image of
the executed enclave. Figure 2.8 illustrates this measurement process. Besides
the measurement value, an SGX enclave is also represented by the MRSIGNER

value. This value identifies the authority that digitally signed the loaded en-
clave image, which is usually the enclave author. It is used to authenticate
keys that securely provision secret data into the enclave during runtime.

SHA-256

MRENCLAVE0

Page
Metadata

EADD

SHA-256

MRENCLAVE1

Data &
Location

SHA-256

MRENCLAVE2

Data &
Location

...

EEXTEND EEXTEND

Figure 2.8: The SGX enclave measurement process [Les16].

Intel SGX has been released in 2015 as part of the Skylake processor architec-
ture.¹ In 2021, Intel shifted the SGX technology away from consumer CPUs to
the Xeon product line of server processors [Rao22], where it is available ever
since. Furthermore, Intel recently expanded their security portfolio by intro-
ducing a new TEE technology called Trust Domain Extensions (TDX). While
the core functionality of TDX is very similar to SGX, it integrates with In-
tel’s virtualization technology to provide VM-based instead of process-based
isolation [Int23b]. However, Intel has announced that they will keep sup-
porting both SGX and TDX for confidential cloud computing use cases in the
future [Rao22].

¹ https://ark.intel.com/content/www/us/en/ark/products/series/88392/6th-generation-intel-
core-i7-processors.html (accessed on 12/08/2023).

40

https://ark.intel.com/content/www/us/en/ark/products/series/88392/6th-generation-intel-core-i7-processors.html
https://ark.intel.com/content/www/us/en/ark/products/series/88392/6th-generation-intel-core-i7-processors.html

2.3 Trusted Computing

2.3.2.2 AMD Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a virtualization-based TEE technology
developed by AMD for their product line of x86-based processors. Similar to
Intel TDX, AMD SEV cryptographically isolates virtual machines from each
other by transparently encrypting their main memory with a VM-specific en-
cryption key [Kap21]. The resulting TCB contains the AMD processor along
with the entire virtual machine, including the virtualized operating system.
This has the advantage of making software deploymentmuch easier compared
to Intel SGX, since existing software must not be modified to be used in SEV-
protected environments [Mof18]. However, including an entire operating sys-
tem in the TCB greatly increases the available attack surface and the likeli-
hood of vulnerabilities in the trusted code. On the other hand, the underlying
VM hypervisor is not part of the TCB and must not be trusted [Kap21]. SEV-
protected virtual machines can also choose to keep certain memory pages un-
encrypted in order to communicate with other VMs or the hypervisor. AMD
SEV was introduced in 2016 and has since been updated with additional se-
curity features including memory integrity protection [AMD20a] and data
leakage prevention [Kap17]. A comprehensive description of the AMD SEV
architecture and API can be found in [Kap21, AMD20b].

2.3.2.3 ARM TrustZone

ARM TrustZone is a TEE technology that has been introduced in 2004 for
the Armv6-A application processor family [Pin19]. Since then, it has been
adopted for the ARM Cortex-M microprocessor profile as well, albeit with a
slightly different internal design than the original Cortex-A version. As it has
been around for a while, many security features in the embedded and mo-
bile sector are based on TrustZone, including the Samsung Knox¹ technology

¹ https://docs.samsungknox.com/admin/fundamentals/whitepaper/the-samsung-knox-
platform/ (accessed on 12/08/2023).

41

https://docs.samsungknox.com/admin/fundamentals/whitepaper/the-samsung-knox-platform/
https://docs.samsungknox.com/admin/fundamentals/whitepaper/the-samsung-knox-platform/

2 Preliminary Work

and the Android secure operating system¹. ARM TrustZone achieves soft-
ware isolation by partitioning the entire protected system into a normal world
and a secure world. Hardware-based access control is used to prevent normal
world code from accessing any resources assigned to the secure world, in-
cluding main memory and I/O devices [Pin19]. However, unlike AMD SEV,
TrustZone does not support the transparent encryption of memory pages that
are mapped to the secure world. The normal world is called the Rich Execu-
tion Environment (REE), while the secure world implements the TEE. The new
security state introduced by TrustZone is orthogonal to existing privilege lev-
els, most importantly to the processor’s kernel-mode and user-mode [Li19].
Both the normal and the secure world operate completely independently of
each other and have their own stack of firmware, boot loader, operating sys-
tem, and applications. The operating system used in the secure world is called
trusted operating system and is significantly smaller and less complex than the
rich operating system running in the normal world. This reduces the attack
surface on the Trusted Applications (TAs) running in the secure world. Fig-
ure 2.9 illustrates the ARM TrustZone architecture on a high level. A more
detailed description can be found in the TrustZone specification documents
for the respective processor architecture [ARM20].

ARM Secure Processor

Partition Manager

Trusted OS

Trusted Applications

Hypervisor

Rich OS

App App

Rich OS

App App

Normal World Secure World

UntrustedTrusted

Figure 2.9: The ARM TrustZone architecture [ARM20].

¹ https://source.android.com/docs/security/features/trusty (accessed on 12/08/2023).

42

https://source.android.com/docs/security/features/trusty

2.3 Trusted Computing

Since TrustZone utilizes a simplified trusted operating system with a small
footprint, the secure world Trusted Applications running on top of it usu-
ally are not as complex as legacy applications. However, TrustZone TAs are
still more capable and easier to implement than SGX enclaves, which receive
no operating system support at all. As a result of this, TrustZone’s Trusted
Computing Base is bigger than the TCB of an SGX enclave, but still smaller
than the TCBs of entire virtual machines protected by AMD SEV. Unlike In-
tel SGX and AMD SEV, but rather similar to TPMs, TrustZone also supports
a specific boot process tailored to establish trust in the secure firmware and
operating system [ARM21b]. This process is called Trusted Board Boot (TBB)
and is closely related to the secure boot concept on x86 systems. During a
Trusted Board Boot, the secure firmware verifies the digital signatures of all
boot loader stages and the trusted operating system before executing them.
However, the TrustZone architecture currently does not include native sup-
port for conducting integritymeasurements of executed TrustedApplications.
As this is a prerequisite for our use case, in section 4.4 we discuss how com-
prehensive integrity measurements can still be achieved on ARM TrustZone
platforms. Recently, ARM presented the specifications of a new TEE technol-
ogy for Armv9-A called the Confidential Computing Architecture (CCA). ARM
CCA extends the TrustZone architecture by introducing multiple realms on
top of the existing secure world [Li22]. That makes it possible to dynamically
isolate multiple Trusted Execution Environments from each other, instead of
having all critical software running in a single secure world. In addition, CCA
will include support for native measurements of the trusted applications run-
ning inside the different realms.

2.3.2.4 RISC-V Physical Memory Protection

In 2017, a security extension called Physical Memory Protection (PMP) has been
specified for the RISC-V processor architecture [Wat17, Che22]. PMP imple-
ments a hardware-based access control mechanism for memory pages similar
to the memory protection unit used in ARM TrustZone. The PMP mechanism
can be used to isolate software from each other, and several proposals lever-
age it as a memory protection unit to define process-based TEEs for RISC-V

43

2 Preliminary Work

architectures [Cos16b, Wei19, Lee20, Fen21]. Furthermore, it is also possible
to use PMP to conduct and verify integrity measurements of isolated process
memory [She21]. However, due to being an open source instruction set ar-
chitecture, TEEs based on RISC-V are being considered mostly in academia
and are currently not very widespread in the industry.

2.3.3 Remote Attestation Protocols

Automatically measuring the software stack executed on a trusted comput-
ing platform can prevent malware or malicious system users from tampering
with critical applications unnoticed. However, for many applications it is not
sufficient to verify the resulting integrity measurements just locally. For ex-
ample, platform ownersmight want to dynamically provision critical data into
trusted software stacks over the internet. This requires a mechanism that can
be used to check the state of a specific trusted computing platform without
being physically present. This concept is called Remote Attestation (RAT). Re-
mote attestation protocols can be used to verify conducted integrity measure-
ments from outside the trusted platform itself. The trusted platform under test
is usually called a prover or attester, while the remote party is called a verifier.
Figure 2.10 illustrates the fundamental procedure of a remote attestation.

RAT
Service

Application

RAT
Service

TPM/TEE

1. Random Nonce

2. Quote + Signature

3. Validation 4. Encrypted Channel

TTP

Verifier Prover

Figure 2.10: The concept of remote attestation protocols.

44

2.3 Trusted Computing

First, the verifier sends a randomly drawn, unique nonce to the prover as
a challenge. The prover then creates a report attesting to the current plat-
form state (usually called a quote), which contains at least the received nonce,
the platform measurements, and possibly also other platform information de-
pending on the used trusted computing technology. The created quote is
signed by the trusted platform with an attestation key, which certifies that
the generated quote is a genuine attestation report representing the prover’s
current platform state. The signed quote is then transmitted back to the veri-
fier, where it can be validated in two steps. First, the quote signature must be
validated to establish the authenticity of the report. The nonce contained in
the received quote must also match the previously provided challenge to pre-
vent a malicious prover from reusing old reports. Second, the verifier can ex-
tract the platform measurements from the authenticated quote and use them
to assess the integrity of the attested platform, usually by comparing the mea-
sured binary fingerprints to known good values. Depending on the use case,
these known good values are either provided directly by the application de-
veloper or get provisioned via an external measurement repository such as
a Trusted Third Party (TTP). In addition to the remote attestation step, most
protocols also establish an encrypted channel between the verifier and the at-
tested trusted platform, for example by integrating the attestation into a TLS
handshake [Kna18].

The exact remote attestation process, as well as the content and structure of
the quote, differs for every trusted computing technology. TPMs use a quote
structure that includes a selection of PCR digests for the attestation. These
quotes are signed with a restricted attestation key that can only be used for
TPM-internal data structures. Since the TPM-based integrity measurement
process includes the entire system software (see section 2.3.1), attestation pro-
tocols usually transmit the quote together with the collected measurement
logs. The verifier can authenticate the measurement logs by using them to
recalculate the PCR values and comparing the results with the attested PCR
digests in the quote. The authenticated measurement logs then give an over-
view of all software that is running on the attested TPM-protected system. A
more detailed picture of the TPM-based remote attestation process is given
later in section 4.2.2. SGX-based reports, on the other hand, mainly include

45

2 Preliminary Work

the MRENCLAVE and MRSIGNER values, as well as additional information about the
SGX platform capabilities and the initial enclave configuration. SGX reports
are signed by a special quoting enclave with a secret attestation key that never
leaves the protected enclaves. The verification process is then similar to TPM-
based remote attestation. However, since single enclaves are much simpler
entities than entire software stacks, separate measurement logs are not re-
quired. Besides remote attestation, the SGX architecture also offers a local
attestation process. Local attestation is basically a simplified version of re-
mote attestation, where SGX reports are authenticated locally using the SGX
instruction set instead of the attestation key in the quoting enclave. More
information about the SGX-based attestation protocols is given later in sec-
tion 4.3.2. AMD SEV and RISC-V based TEEs also define similar remote attes-
tation protocols. Since ARM TrustZone does not natively support integrity
measurements, no standard remote attestation protocol exists on that plat-
form. However, there are some proposals that migrate TPM-based remote
attestation protocols to TrustZone platforms [Wan20].

One major challenge in defining a secure remote attestation protocol is to
properly link the attestation keys used to sign quotes with the trusted plat-
form itself. For this, all attestation keys need to be rooted in the trusted hard-
ware, and there must be a way for verifiers to authenticate them as genuine.
The trust anchor required for this is called the Root of Trust for Reporting (RTR).
Different trusted computing technologies vary in the way the RTR is imple-
mented. TPMs use attestation keys derived in the endorsement hierarchy,
which can be directly authenticated as genuine using an endorsement certifi-
cate provided by the platform manufacturer. Intel SGX instead defines a pro-
visioning process that establishes certified attestation keys at local quoting
enclaves. Verifiers can ensure the authenticity of the presented attestation
keys by validating their certificates with a trust anchor at Intel. However,
directly connecting attestation keys to a specific trusted platform also has
privacy implications that need to be addressed. If there is a way to deduce
information about the identity of the attested platform from the public part of
the used attestation key, the privacy goal of unlinkability would be violated.
A cryptographic solution supported by both TPMs and Intel SGX is to gener-
ate attestation keys using group signature schemes [Bri10]. Another way of

46

2.3 Trusted Computing

resolving this issue is to introduce a privacy broker as an additional level of
indirection. The privacy broker is assumed to be trusted and can remove the
direct link between an attestation key and the trusted platform by providing
an intermediate attestation certificate.

Finally, there are also some remote attestation concepts that are not based
on trusted computing hardware at all. Since this area of research mostly
considers very resource-constrained IoT devices and embedded systems, it
is also called device attestation. Software-based device attestation techniques
measure certain device responses that are prone to subtle changes when the
device is modified, for example response timings for different inputs [Ses04,
Li10, Dus20]. The advantage of this approach is that it does not require any
hardware-based trust anchors, but the resulting protocols are suitable only
for limited use cases. Hardware-based device attestation mechanisms, on the
other hand, often utilize Physically Unclonable Functions (PUFs). The output
values of PUFs are susceptible to minor flaws during the manufacturing pro-
cess of the physical devices and cannot be easily predicted. Because of this,
PUFs are physically linked to a specific device and cannot be copied or trans-
ferred. A number of device attestation protocols exploit this property to re-
motely measure the memory contents of embedded devices [Sch11, Kon14,
Ama20, Qur21]. The drawback of this attestation technique is that it is device-
specific and usually does not offer any Trusted Execution Environments.

Table 2.2 provides an overview of the currently used trusted computing tech-
nologies and their capabilities. In this thesis, we focus on TPMs, Intel SGX,
and ARM TrustZone to protect distributed usage control and provenance
tracking infrastructures. At the time of this thesis, these three technologies
are the most widespread of all and cover all necessary requirements for im-
plementing trustworthy distributed usage control. AMD SEV is a VM-based
technology mainly designed to protect virtual machines in cloud computing
applications, which can be cumbersome to use for the protection of small
distributed usage control components. Intel TDX and ARM CCA have only
been announced recently and are not yet widely available in practice. RISC-V
based TEEs are used mainly in academia, while device attestation techniques
focus only on very resource-constrained devices.

47

2 Preliminary Work

Table 2.2: Comparison of trusted computing technologies.

Name Isolation Attestation TCB Domain Year
TPM 2.0 None Remote Large Universal 2014
Intel SGX Process Local, Remote Small Server 2015
Intel TDX VM Remote Large Server 2023
AMD SEV VM Remote Large Desktop,

Server
2016

ARM TrustZone Realm None¹ Medium Embedded,
Mobile

2004

ARM CCA Realm Remote Medium Embedded,
Mobile

2022

RISC-V (PMP) Process Remote Medium Embedded,
Mobile

2017

Device Attest. None Remote Large Embedded -

¹ Remote attestation is possible with a firmware-level TPM [Wan20].

48

3 Concept and System Design

This chapter presents a generic design for a trustworthy distributed usage
control and provenance tracking system. Section 3.1 provides an overview of
the current state of the art regarding trustworthy usage control and prove-
nance tracking infrastructures. In section 3.2 we propose a suitable remote
attestation concept for decentralized usage control architectures and present
our trustworthy system design. Section 3.3 provides an attacker and a trust
model for the described attestation concept, on which we subsequently base
the security analysis of our system design (section 3.4). Finally, in section 3.5
we discuss some possible design alternatives, before ending the chapter with
a brief conclusion.

Some of the results presented in this chapter have been partially published
in previous research papers. In [Wag19b] we analyzed the challenges and
security requirements of distributed usage control systems that are protected
by trusted computing technologies. Furthermore, in [Wag21a] we discussed
possible system architectures for joint usage control and provenance tracking
systems, and evaluated existing attack vectors.

3.1 State of the Art

In this section we provide an overview of existing proposals to ensure the
trustworthiness of usage control and provenance tracking systems, and dis-
cuss their limitations. We identify four different technical approaches to es-
tablish trust in and protect the integrity of usage control and provenance
tracking components.

49

3 Concept and System Design

3.1.1 Certification Processes

A relatively simple method of establishing trust in usage control and prove-
nance tracking components is to define a suitable certification process. This
works by having a trusted Certification Authority (CA) evaluate the software
components and the operational environment of a usage control and prove-
nance tracking system. If the evaluation result is positive, the CA issues a dig-
itally signed certificate asserting the security compliance of the system. This
certificate usually includes information about the system operator’s identity,
the operated components, and the applied security mechanisms to protect the
system infrastructure. Potential data providers can then verify the certificate
to decide if the remote system is trustworthy and sufficiently protected before
authorizing a data transfer to it. The certificate also authenticates the public
key that data providers can use to securely communicate with the certified
usage control and provenance tracking system. One example of such a certi-
fication process is implemented by the International Data Space (IDS) [Ste19].
The IDS certification process establishes confirmed and verifiable information
about IDS connector systems and the companies operating them [Hub22]. It
also ensures that certified IDS connectors correctly implement the IDS stan-
dards, including usage control and provenance tracking.

While certification is a relatively simple solution from a technical point of
view, there are some clear disadvantages of this approach. First, a certifica-
tion process assumes the existence of a global Certification Authority that is
known and trusted by all system participants. This is not always the case, es-
pecially in decentralized and distributed environments. Furthermore, the ex-
act evaluation process used by the CA must be specified in detail and agreed
upon by all participants to make the resulting certificate meaningful and de-
scriptive. This usually requires a standardized reference model describing the
expected features and behavior of system components, which is not always
available either. Finally, this approach only asserts the system integrity at
the time of the certification. As soon as the system becomes operational, its
integrity can no longer be enforced. Hence system operators could get com-
placent over time and deviate from the required security procedures, or even
willingly manipulate components that have already been certified.

50

3.1 State of the Art

3.1.2 Reputation Systems

While certification ensures the initial trustworthiness of system components
by organizational and cryptographic means, reputation systems instead focus
on deriving the trustworthiness of system components based on their behav-
ior. To achieve this, reputation systems continuously collect direct and indi-
rect evidence about the past behavior of system components [Has17]. The col-
lected evidence is then used to calculate an aggregated reputation score that
gives users an estimation about the reliability and integrity of the different
system components. This mechanism has been proposed for establishing trust
in usage control systems. Yang and Cemerlic integrate a Dirichlet-based rep-
utation system into the UCONABC usage control model [Yan09]. This allows
participants to join the usage control system only if their reputation is high
enough. Alnemr et al. introduce the concept of reputation objects for usage
control, which allows to specify and evaluate reputation in specific contexts,
instead of globally [Aln10]. Baldini et al. [Bal13] and Neisse et al. [Nei15]
present usage control frameworks for “Smart City” applications, which in-
clude a trust model based on reputation evidence. Finally, Truong et al. de-
scribe a comprehensive trust service platform for usage control systems that
includes collected reputation evidence and trust recommendations, as well as
knowledge based on evaluations conducted by trust brokers [Tru16a].

Even though the presented proposals provide a notion of reputation and trust
in usage control systems, several issues still remain unsolved. One issue of
using reputation systems for trust estimations is that they require a signif-
icant amount of input data to make any prediction with acceptable reliabil-
ity. However, especially in distributed usage control systems it is necessary
to conduct sufficient integrity verifications before any valuable data are be-
ing released. Furthermore, most reputation systems rely on receiving binary
assessments (cooperates vs. defects) about the behavior of supervised compo-
nents. However, for many usage control operations it is unclear how an hon-
est component could be distinguished from a malicious one purely based on
their responses. Finally, reputation systems do not achieve a continuous en-
forcement of correct system behavior either. Malicious system owners could

51

3 Concept and System Design

simply manipulate a well-reputed system component after the critical data
have already been released.

3.1.3 Distributed Ledgers

Another useful tool for securing usage control and provenance tracking ap-
plications are blockchain-based distributed ledgers. Distributed ledgers es-
sentially provide a decentralized database that cannot be manipulated against
the majority of honest ledger participants. This property can be exploited to
secure the integrity and trustworthiness of collected provenance information
without having to resort to a centralized trusted authority. In recent years,
there have been many proposals for blockchain-based provenance tracking
frameworks that are focusing on different application scenarios. Neisse et al.
propose a provenance tracking framework that is based on the Ethereum dis-
tributed ledger, which allows to log the sharing and usage of personal data
across different domains [Nei17]. Liang et al. implement blockchain-based
provenance tracking for files stored in cloud environments [Lia17]. Cui et al.
use the Hyperledger platform to track the provenance of electronic parts for
trustworthy supply chains [Cui19]. Ramachandran and Kantarcioglu imple-
ment a provenance tracking framework for scientific data by defining a dis-
tributed voting process based on the Ethereum ledger [Ram18]. Sigwart et al.
[Sig19] and Javaid et al. [Jav18] rely on Ethereum-based smart contracts to
implement provenance tracking frameworks for IoT use cases.

While these proposals show that blockchain-based methods are useful to pro-
tect the integrity of provenance information, there are also drawbacks with
this approach. Distributed ledgers only ensure that the provenance informa-
tion is not being maliciously manipulated after it has been stored, but they
cannot enforce the correct collection of the provenance data in the first place.
Also, distributed ledgers are by nature a public data structure, which results in
confidentiality issues especially when collecting the provenance of personally
identifiable information. Such applications require the additional definition of
suitable anonymization strategies, which can protect the confidentiality of the
tracked data without destroying important provenance information.

52

3.1 State of the Art

Even though not as useful as for provenance tracking, blockchain-based
mechanisms can also help to secure usage control applications. Cirillo et al.
propose a usage control framework that relies on the Hyperledger platform
to synchronize and record policies as well as usage control decisions be-
tween multiple parties [Cir20]. This enhances the transparency of the usage
control system by making usage control decisions verifiable for the policy
issuer. However, the framework still does not provide any technical enforce-
ment of the recorded usage control decisions. Furthermore, logging every
usage control operation on the distributed ledger results in an increased
enforcement latency.

3.1.4 Trusted Computing

The main drawback of the proposals discussed so far is that they do not pro-
vide any mechanisms to reliably detect and prevent the manipulation of crit-
ical system components by malicious operators. To fix that, trusted comput-
ing has been proposed as a technical measure to protect the integrity of usage
control and provenance tracking infrastructures. Most existing solutions rely
on Trusted Platform Modules (TPMs) for this task. Kyle and Brustoloni im-
plement a TPM-protected usage control module for the Linux kernel [Kyl07].
They utilize the Linux kernel IMA for integrity measurements and provide
data confidentiality by encrypting the file system with a key sealed to the
TPM. However, their proposal only focuses on a centralized usage control
model with a monolithic system architecture. Agreiter et al. [Agr07] and
Zhang et al. [Zha08] propose TPM-protected usage control systems capable
of cross-domain XACML policy enforcement. For this, Agreiter et al. rely
on Java-based communication gateways, while Zhang et al. conduct usage
control enforcement by transforming received XACML policies to low-level
SELinux policies. Both proposals use a centralized usage control architecture
and do not specify any suitable remote attestation protocols. Neisse et al.
propose a TPM-protected usage control framework that provides enforce-
ment of OSL policies both inside a message broker and at operating system
level [Nei11b, Nei11a]. The authors also specify a remote attestation pro-
tocol for TPM 1.2, but still rely on a centralized usage control architecture.

53

3 Concept and System Design

More recently, the International Data Space (IDS) reference architecture re-
lies on TPMs as a hardware-based trust anchor to protect the integrity of IDS
connector systems, which usually include both usage control and provenance
tracking components [Ott19]. The IDS specifies a TPM-based remote attesta-
tion protocol that provides encrypted and mutually attested communication
channels for IDS connectors of the highest security level [Bro22]. This pro-
tocol is used to validate the integrity of IDS connector systems and transmit
both usage control policies and shared data over a secure channel. However,
as we show in chapter 4, there are still some unsolved security issues when
using this approach to protect distributed usage control systems against po-
tentially malicious administrators.

Besides applying TPMs to usage control systems, there are also some propos-
als that instead focus on Intel SGX as a protection mechanism. Birell et al.
propose the enforcement of usage control policies with monitoring compo-
nents that are implemented as SGX enclaves [Bir18b]. The authors define
three possible system architectures that place the policy enforcement either
directly at the data source, remotely at the data processing applications, or at a
delegated monitoring component. However, the proposal does not make use
of the standard XACML-based distributed reference architecture and instead
proposes monolithic enclaves that enforce pre-provisioned policies. Djoko
implements an SGX-based usage control framework for cloud storage systems
[Djo20]. This proposal defines a logic-based formal policy language that oper-
ates on subject and object attributes. It also follows a centralized usage control
approach that implements the enforcement point, information point, and de-
cision point all inside a single enclave. In contrast, Meyer zum Felde et al.
propose a fundamentally different approach to usage control enforcement in
SGX-based environments [Mey21]. The authors define a multi-enclave ar-
chitecture allowing data owners to approve customized code templates that
are instantiated by data consumers. Remote attestation is utilized to verify
the integrity of a central management enclave, which then locally attests the
consumer’s data processing enclaves. Critical data is only released to the at-
tested enclaves if the instantiated code templates match the measurements as
approved by the data provider.

54

3.1 State of the Art

Trusted computing has also been proposed to protect provenance tracking
infrastructures from malicious tampering. Lyle and Martin describe how
TPM-based attestation can be used to ensure the integrity of applications that
are collecting provenance data [Lyl10]. In contrast to most TPM-protected
usage control systems, the conducted attestations are not immediately val-
idated. Instead, the generated quotes and the respective measurement logs
are stored together with the collected provenance information for later veri-
fication. Demsky uses TPM-based remote attestation to secure a provenance
tracking framework that applies binary-rewriting to automatically track data
flows across multiple applications [Dem11]. Taha et al. apply TPM-based re-
mote attestation to protect the integrity of the “Progger” provenance logging
tool [Tah15]. Finally, Kaaniche et al. propose a provenance tracking architec-
ture that relies on Intel SGX enclaves for the provenance collection, and on
the blockchain-based Hyperledger platform for provenance storage [Kaa20].

3.1.5 Conclusion

In conclusion, there are several approaches to protect the integrity and en-
sure the trustworthiness of usage control and provenance tracking infras-
tructures. However, existing proposals still have clear limitations in terms
of their scope and security guarantees. Using certification processes or rep-
utation systems has the major drawback that the achieved integrity protec-
tion cannot be guaranteed against malicious system operators. Even though
blockchains can provide a decentralized database without the need for a single
trust anchor, which has been proven useful for provenance storage, they can-
not enforce the proper collection of provenance data. Hence, in recent years
trusted computing emerged as themost promising approach for protecting us-
age control and provenance tracking systems. Today, most existing solutions
rely on TPM-based remote attestation, including the prominent International
Data Space. While there are also a few SGX-based proposals, so far the focus
is only on a centralized notion of usage control. To our knowledge there is
currently no general solution for a trustworthy distributed usage control and
provenance tracking system.

55

3 Concept and System Design

3.2 Trustworthy System Design

In this section we build on the presented research to develop a system de-
sign for trustworthy distributed usage control and provenance tracking that
is based on trusted computing technologies. For this, we first propose a suit-
able remote attestation concept for distributed usage control systems. Then
we present our conceptual system design and describe the necessary inter-
actions between the components. Finally, we discuss the proper handling of
measurements during remote attestation and develop a concept for provision-
ing and authenticating components in distributed usage control systems.

Unlike the previous proposals presented in section 3.1.4, we keep our system
design independent of specific trusted computing technologies by assuming
an ideal remote attestation protocol that can protect the integrity of usage
control components and the confidentiality of transmitted data. Later, in
chapter 4 of this thesis, we discuss the application of specific trusted comput-
ing technologies and resolve the remaining security issues that occur when
using concrete remote attestation protocols.

3.2.1 Remote Attestation Concept

Using trusted computing to secure the integrity and trustworthiness of usage
control and provenance tracking requires a suitable remote attestation con-
cept. How this attestation concept looks like depends primarily on the cho-
sen usage control approach. The existing proposals presented in section 3.1.4
all follow a centralized usage control approach. Since in this case all usage
control components are deployed on a self-contained computer system, the
necessary remote attestation concept is rather straightforward. As fig. 3.1 il-
lustrates, the data provider can simply perform a single remote attestation
of the entire usage control system whenever critical data should be shared.
After verifying the attested system measurements, data and corresponding
usage control policies can be transmitted to the remote system.

56

3.2 Trustworthy System Design

1. Remote Attestation

Attestation
Service

Apps
2. Data + Policies

PDP

PIP PXP

App & PEP

Figure 3.1: Remote attestation of a centralized usage control system.

Adistributed usage control system, on the other hand, relies on a decentralized
system architecture (see section 2.1.2). To establish trust in such a usage con-
trol system, we need to define a remote attestation concept that allows the
verification of multiple components at once. In principle there are two dif-
ferent approaches to achieve this. Figure 3.2a shows the en-block attestation
strategy for decentralized usage control systems. For this, the data provider
must remotely attest all systems that are running usage control components
required for the enforcement of the desired policies. Only if all attestations are
successful and the attested measurements have been correctly verified, data
and protection policies may be transmitted to the respective components. The
advantage of this approach is that the resulting trust dependencies are rather
simple. The data providers themselves directly verify the integrity and trust-
worthiness of all remote usage control components. However, there are also
two issues with this solution. First, the data providers performing the attesta-
tions need to knowwhich usage control components (and by extension which
systems) are in fact required for the enforcement of their particular policies.
Since data providers usually only communicate with the applications that re-
ceive the shared data, they do not have any background knowledge about the
topology of the decentralized usage control system. Second, with this attes-
tation concept the data provider only verifies the integrity of all participating
usage control components. It remains unclear to the data provider if the com-
munication between those remote usage control components is secure as well.

57

3 Concept and System Design

Data
Provider

App

PEP

PXP

PIP

PDP

RAT

RAT

RAT

RAT

(a) Using en-block attestations

Data
Provider

App

PEP

PXP

PIP

PDP

RAT

RAT RAT

RAT

(b) Using transitive attestations

Figure 3.2: Remote attestation of a decentralized usage control system.

Thealternative is to establish an attestation concept that uses transitive remote
attestations, as is depicted in fig. 3.2b. Using trusted computing to create tran-
sitive trust relationships has been introduced by Kuntze and Schmidt for the
use case ofmobile device authentication [Kun06]. We propose using transitive
remote attestations to protect the individual components of distributed usage
control systems. With such a transitive attestation concept, the data provider
only attests the very first contacted remote usage control component. This is
usually an enforcement point attached to a data processing application. The
attested component then transitively performs its own remote attestations of
all additional usage control components that are required for the current task.
For example, an enforcement point needs to attest the decision point that it
uses for policy evaluation. The decision point in turn may attest additional

58

3.2 Trustworthy System Design

information points and/or execution points, depending on what the evalu-
ated policy dictates. This establishes a transitive chain of trust that spans the
remote usage control system and is always rooted at the data provider. The
advantage of this attestation concept is that the initial attester does not need
to know which specific usage control components (e.g., PIPs and PXPs) exist
and are required for the current operation. Instead, they only need to estab-
lish trust in the first component of the usage control operation, which then
performs subsequent attestations as required. This approach also solves the
second issue of the en-block attestation concept, since the transitive attesta-
tions between remote usage control components already provide the required
secure communication channels. The drawback of this concept is that the re-
sulting trust dependencies are more complicated than with en-block attesta-
tions. Still, due to the clear advantages we rely on transitive attestations for
our trustworthy usage control system design. We identify the resulting trust
dependencies and discuss the security of this solution in sections 3.3 and 3.4.

3.2.2 Distributed System Architecture

We base our distributed usage control system design on the XACML reference
architecture as introduced in section 2.1.1. To achieve trustworthy usage con-
trol enforcement and provide provenance tracking capabilities, we extend the
XACML base architecture with four additional components. Figure 3.3 shows
the resulting system architecture.

Policy Retrieval Point. Similar to the MyDataControl framework [Jun14,
Jun22], we include dedicated Policy Retrieval Points (PRPs) into our system
design. Our PRPs are responsible for managing and securely storing the cur-
rently active usage control policies. Furthermore, they retrieve policies that
have been transmitted from remote usage control participants alongside the
shared data. During enforcement, decision points can query their PRP for
all policies that are associated with the data in question, and hence need to
be evaluated. A detailed view of the policy deployment, enforcement, and
management process is provided in the following sections 3.2.3 to 3.2.5.

59

3 Concept and System Design

App

Policy

PEP PDP

PRP

PIP

PXP

ProSP
Provenance

Supervise
Policy

Policy

Decision

Events

Actions

Info

Provenance

Fingerprints

Measurement Store Certification Authority

Certificates

Figure 3.3: Design of a trustworthy usage control and provenance tracking system.

Provenance Storage Point. In order to support provenance tracking in
conjunction with distributed usage control, our system architecture provides
Provenance Storage Points (ProSPs). Originally proposed by Bier [Bie21],
ProSPs are responsible for receiving and storing provenance information
that has been collected from data processing applications. We adopt this
approach, but additionally integrate the provenance tracking directly into the
usage control enforcement process. This is achieved by designing our ProSP
to receive provenance information through usage control obligations that
are executed by a PXP (see fig. 3.3). That way the collection of provenance
information can be regulated with usage control policies. Alternatively,
the provenance collection can also be triggered directly by the applications
via their respective enforcement points. In addition, the provenance data
collected at the ProSP can be referenced in usage control policies via an
information point. This allows data providers to specify usage rules that are
conditional on the provenance history of controlled data items. The exact
method of provenance collection and policy evaluation in our system design
is presented in section 3.2.6.

Measurement Store. Furthermore, we introduce the concept of Measure-
ment Stores (M-Stores) in our proposed system design. The M-Store is not

60

3.2 Trustworthy System Design

a dedicated usage control or provenance tracking component. Instead, the
M-Store is responsible for managing and providing trustworthy fingerprints
that are used during the validation of conducted remote attestations between
the system components. A detailed discussion about the management and
dissemination of trustworthy system fingerprints, as well as the deployment
of multiple M-Stores for different trust domains, is given in section 3.2.7.

Certification Authority. In addition to conducting remote attestations, a
trustworthy distributed usage control system also requires mechanisms to
identify and authenticate individual system components. To achieve this, we
employ a Public Key Infrastructure (PKI) consisting of multiple Certification
Authorities (CAs). The CAs are responsible for provisioning certificates that
uniquely identify and authenticate system components during usage control
operations. We motivate the use of a PKI and present a suitable component
certification and authentication scheme for distributed usage control systems
in section 3.2.8.

The design presented in fig. 3.3 only shows the logical system components and
their interactions with each other. However, these components must also be
instantiated and deployed on actual computer systems. In this regard, we do
not make any assumptions about the concrete deployment of the usage con-
trol components. Since our system design is decentralized in nature, each
component can be independently deployed on separate computer systems, or
multiple components together on one machine. In addition to decentralized
component deployment, our distributed system architecture allows multiple
stakeholders to operate independent usage control systems consisting of the
components illustrated in fig. 3.3. To facilitate data sharing, our design al-
lows to seamlessly interconnect these individual usage control systems. This
allows the use of PIPs and PXPs from other stakeholders to receive policy in-
formation and execute obligations across domain boundaries. We call the set
of all instantiated and deployed usage control components that are operated
by a certain stakeholder in their own infrastructure a usage control domain. A
single usage control domain typically includes multiple instances of enforce-
ment points, information points, and execution points. While there is usually

61

3 Concept and System Design

just one decision point per usage control domain, in some cases the operation
of multiple PDPs can be advantageous. For example, a stakeholder could op-
erate more than one PDP for scalability purposes, or to support the evaluation
of multiple policy languages. However, we assume the deployment of exactly
one ProSP and PRP at each usage control domain to avoid the fragmentation
of provenance information and deployed policies. Figure 3.4 gives an example
of a distributed usage control system with two usage control domains.

App

PEP

PIP

App

PEP

ProSP

PRP

PDP

UC Domain A UC Domain B

PRP

PDP

PXP

Figure 3.4: Example of a distributed usage control system instantiation with two usage control
domains. Remote attestations between the components are not shown.

Furthermore, we employ transitive remote attestations to protect the pro-
posed system design against malicious tampering by dishonest component
operators. The transitive attestation concept is implemented by having all
system components automatically conduct attestations whenever they need
to communicate with another system component. This includes the initial
transmission of policies and data, as well as all subsequent communication re-
garding usage control and provenance tracking operations. The expected sys-
temfingerprints of trustworthy code bases are provided by localMeasurement
Stores, which are then compared with the attested measurements. Together,
the conducted attestations establish trust in the integrity of the distributed us-
age control and provenance tracking system. In addition to verifying the code
integrity of the distributed system, certificates are used to authenticate indi-
vidual components during the usage control enforcement. For the conceptual

62

3.2 Trustworthy System Design

system design, we abstract from concrete trusted computing technologies by
assuming the use of an ideal remote attestation protocol that is capable of
establishing secure channels between the attested system components. We
assume that the established secure channels perfectly protect confidentiality
and integrity against both external attackers and malicious component oper-
ators. In section 3.4 we show that the presented architecture cannot be ma-
nipulated under these assumptions, which establishes the soundness of our
system design. Naturally, for the actual deployment of a trustworthy usage
control and provenance tracking system, concrete technologies and remote
attestation protocols must still be specified. We discuss the options for con-
crete attestation technologies and protocols, as well as their limitations and
the resulting security guarantees, in the next chapter.

In the remainder of this section, we describe the various system operations
and the necessary interactions between system components in greater detail.
The concrete implementation of the designed components, as well as the spec-
ification of a policy language for joint usage control and provenance tracking,
is presented later in chapter 5.

3.2.3 Policy Deployment

In principle there are two different philosophies of handling the deployment
of usage control policies [Mio19]. With a traditional deployment concept,
policies are transmitted directly to a decision point and are valid for the en-
tire usage control domain. This means that whenever an enforcement point
requests a usage decision, all deployed policies are evaluated against the ob-
served event. The decision is then derived from the subset of matching poli-
cies. A prominent example for a usage control system that uses this deploy-
ment concept is the MyDataControl framework [Jun14, Jun22]. The advan-
tage of a traditional policy deployment is that it keeps the number of required
policies low. This is because it allows the specification of general usage rules
for certain types of data, instead of individual data sets. However, the main

63

3 Concept and System Design

drawback of this approach is the unclear relation between the protection poli-
cies and the shared data. For one, this makes the automated sharing of pro-
tected data difficult. For each data set that should be transferred to a remote
domain, the data owner needs to identify and re-deploy the subset of policies
that are relevant for the protection of this particular data set. Information
flow tracking has been proposed to mitigate this problem, since it allows to
specify policies that can be evaluated independently of a concrete data rep-
resentation [Pre11]. However, this complicates both the policy deployment
and enforcement process. Furthermore, in terms of protecting distributed us-
age control enforcement against malicious influences, the traditional policy
deployment approach can also lead to security issues. We elaborate on this
point later in our security analysis (see section 3.4.1).

A different deployment philosophy that has recently gained traction is rely-
ing on sticky policies [Mio19]. Sticky policies are directly attached to data and
are always transmitted alongside them throughout the entire data life cycle.
This makes data transfers between different usage control domains much eas-
ier, since there is already a direct association between the data asset and the
relevant protection policy. As a result, the sticky policy concept is especially
well suited for distributed use cases with a high number of data transfers.
Furthermore, this concept simplifies conflict handling during policy evalua-
tion, since usually only one sticky policy must be considered for each asset.
On the other hand, using sticky policies has the disadvantage of having to
declare separate and independent policies for each data asset. This results in
a larger number of policies that need to be managed and transferred (policy
duplication). Dynamic policy updates also become more difficult with this
approach. Nevertheless, since sticky policies are better suited for distributed
use cases, and are beneficial from a security standpoint (see section 3.4.1), we
integrate a sticky policy concept into our system design. We leverage the PRP
to create a level of indirection that alleviates problems such as policy dupli-
cation. In addition, using sticky policies over traditional policy deployments
allows us to design stateless decision points, which is advantageous in terms
of flexibility and scalability. As a result, instead of having to manage a set
of active usage control policies at the PDP, our decision points dynamically
receive the policies for each asset from the querying PEPs themselves.

64

3.2 Trustworthy System Design

Besides adequately distributing policies, a trustworthy usage control system
must also ensure the integrity of policies during transmission. Once again,
there are two ways of achieving this using remote attestations. A straight-
forward option is to protect the integrity of policies by deploying them over
secure, attested channels. For this, a policy issuer performs a remote attes-
tation of the receiving component, validates the platform measurements, and
then transfers the policies over the attested channel. The attestation protocol
ensures that a malicious attacker cannot modify the policy during transfer.
Afterwards, the attested trusted computing platform is responsible for pro-
tecting the integrity of the deployed policies during enforcement. Since here
the policies are deployed over secure channels, we call this method in-band
policy deployment. The alternative to in-band deployment is to transfer poli-
cies over other, non-attested channels (out-of-band deployment). In that case,
the integrity of the policies cannot be directly ensured at the time of the de-
ployment. Instead, the receiving system must now include the deployed poli-
cies in the local platform measurements (usually of the PDP). The data owner
can then later verify the policy integrity by conducting a remote attestation
and checking the measurements at the time of the data transfer. There are
examples for both approaches in existing usage control systems. Kyle and
Brustoloni [Kyl07], as well as Agreiter et al. [Agr07], use in-band policy de-
ployment over TPM-attested channels. Zhang et al. [Zha08] and Neisse et al.
[Nei11b] use an out-of-band policy deployment approach, which separately
authenticates the policies over the platform measurements. However, out-of-
band policy deployment has the drawback of being rather inflexible, especially
when many policies need to be authenticated. It also makes the revocation of
deployed policies difficult, since platform measurements can usually only be
extended, but not deleted. For these reasons, and because we transmit data
and policies together anyway due to the sticky policy approach, we use in-
band deployment for our system design.

Figure 3.5 illustrates the resulting policy deployment and data transmission
process across two usage control domains, as it is implemented in our pro-
posed system design. First, the data provider attests and authenticates the
remote application that should receive the protected information. This en-
sures that the receiving application is trustworthy and will itself perform the

65

3 Concept and System Design

required remote attestations of subsequent usage control components in a
transitive manner. Then, both the data and the associated policy are trans-
ferred over the attested channel. Usually, the attestation and data transmis-
sion is initiated directly by a local application that wants to share data with a
service in the remote domain. The remote application then derives a unique
asset ID to identify the received data in the local usage control domain. The
exact format of this asset ID usually depends on the policy language. For
example, ODRL uses Internationalized Resource Identifiers (IRIs) to uniquely
identify assets [Ian18b]. The receiving application then forwards the trans-
ferred policy to the enforcement point, which stores it at the local PRP and
obtains a unique policy ID in return. This policy ID may be a randomly drawn
UUID or a cryptographic hash of the policy’s textual representation. Finally,
the enforcement point saves the association between the data asset and its
policy as the tuple (𝑎𝑖𝑑, 𝑝𝑖𝑑). The stored policy ID is later used to identify
the policy during the enforcement process (see section 3.2.4).

data, policy

App PEP PRP

deploy(aid, policy)

store(policy)

Save (aid, pid)

pid

successsuccess

Derive asset id

attest & auth

attest & auth

attest & auth

App

Figure 3.5: Sequence diagram of a cross-domain policy deployment.

Figure 3.5 shows how policies and data are transferred between applications
in different usage control domains. This process can be simplified when shar-
ing data internally between applications of the same usage control domain.
In that case no explicit policy transfer is necessary, because the policy is al-
ready known at the local PRP. Instead, only the policy ID must be given to
the enforcement point of the receiving application.

66

3.2 Trustworthy System Design

getPolicyId(aid)

App PEP App PEP

deploy(aid, pid)

Save (aid, pid)
success

pid

data, aid, pid

success

Figure 3.6: Sequence diagram of a domain-internal policy deployment. Remote attestations be-
tween components are not shown.

Figure 3.6 shows this process of domain-internal policy deployment. Since in
our system design all communicating components always authenticate each
other and conduct (mutual) remote attestations, in the following sections we
condense the sequence diagrams by omitting the explicit depiction of these
steps. We describe the details of the remote attestation and authentication
procedure in sections 3.2.7 and 3.2.8, respectively.

3.2.4 Policy Enforcement

After the successful deployment of policies in remote usage control domains,
the specified usage rules must be enforced on the shared data. Figure 3.7 illus-
trates how this process works in our proposed system design. The application
that has been remotely attested by the data owner during data transmission
is now responsible for notifying its enforcement point about any data usages
that take place. This is done by disseminating event objects, which usually
contain the name of the event together with parameters that are describing
the data usage. The data assets involved in the event are referenced by their
unique asset ID. The enforcement point now identifies the (sticky) policy that
protects the asset and notifies the decision point about the event. The deci-
sion point then uses the policy ID to retrieve the relevant policy from the local
PRP and evaluates it against the intercepted event. During policy evaluation,
the decision point may contact PIPs for parameter evaluation and PXPs for
the execution of obligations. The details of these lookups, especially which

67

3 Concept and System Design

parameters and actions can be referenced, is mostly application-specific. We
give concrete examples of supported PIP and PXP lookups later in section 5.3.
Note that the decision point is stateless in our design, unlike when following a
centralized usage control approach, which has benefits in terms of scalability
and security (see section 3.4). Once the policy has been successfully evaluated,
the decision point transmits the resulting decision back to the enforcement
point. Now the PEP either grants, denies, or modifies the event to meet the
specified usage restrictions. If any step of this enforcement process fails, for
example because a PXP execution or a remote attestation is unsuccessful, the
failure gets forwarded all the way to the enforcement point, which then denies
the data usage by default. Note that fig. 3.7 only shows the general sequence
of the policy enforcement. We give more detailed information regarding the
concrete implementation of the policy evaluation and enforcement process as
part of our framework description in chapter 5.

notify(aid, event)

App PEP PDP PRP

modified event

notify(pid, event)
getPolicy(pid)

PIP PXP

policy

success
decision

evaluate(name)

parameter

execute(action)

Lookup policy id

Figure 3.7: Sequence diagram of a policy enforcement. Remote attestations between compo-
nents are not shown.

3.2.5 Policy Update and Revocation

Besides deploying protection policies to remote usage control domains, data
owners also require mechanisms to update the set of usage rules and revoke
policies that grant access to previously shared data. In a traditional policy de-
ployment model this is normally achieved with Policy Administration Points

68

3.2 Trustworthy System Design

(PAPs), which first authenticate the original policy issuers and then dissem-
inate policy updates or revocation requests in the usage control domain. In
case of a sticky policy model, however, updates and revocations need to be
handled differently. Since sticky policies are always directly associated with
a data asset, policy revocation is achieved by requesting the deletion of the
shared data from the receiver’s systems. This process is illustrated in fig. 3.8.

delete(aid)

App PEP PRP

revoke(aid)

delete(pid)

success

successsuccess

Delete asset

Lookup policy id

Delete (aid, pid)

App

Figure 3.8: Sequence diagram of a policy revocation. Remote attestations between components
are not shown.

The original policy issuer (i.e., an application of the data provider) transmits
a deletion request containing the relevant asset ID to the data receiver. The
application on the data receiver’s side then deletes the identified asset and
revokes the deployed policy by notifying both its PEP and the local PRP. If
the original policy permitted the re-distribution of the shared data to other
endpoints or even an entirely different usage control domain, this data dele-
tion process can also be requested transitively across multiple applications.
If the policy should be updated instead of revoked, the data owner can then
re-deploy the asset after its deletion with a modified policy as previously il-
lustrated in fig. 3.5. Note that the contacted application in fig. 3.8 cannot deny
compliance with the deletion request, since it has already been remotely at-
tested and deemed trustworthy during the previous policy deployment. How-
ever, a malicious data receiver could still block the deletion request at a net-
work level. Similar issues are well-known also in the traditional policy de-
ploymentmodel. We discuss this further in our security analysis in section 3.4.

69

3 Concept and System Design

A special case of updating policies is the re-distribution of data with a mod-
ified set of rules. This is useful if a data provider wants to share information
with a certain application using a relatively light rule set, but enforce much
stronger usage restrictions when the asset is disseminated further to other
applications or domains. To realize this, the deployed policy needs to con-
tain event modification rules (cf. fig. 3.7) that cause the enforcement point to
attach a new policy, before allowing the transfer of the asset to further data
receivers. We explain the concrete mechanism that our usage control frame-
work provides for this later in section 5.3.3.

3.2.6 Provenance Collection

One goal of our system architecture is to integrate provenance trackingmech-
anisms into the usage control enforcement process. Bier proposed to use dedi-
cated Provenance Storage Points (ProSPs) to store the provenance information
collected in one usage control domain [Bie21]. We build on this approach and
employ ProSPs with a similar function in our design as well. The ProSP de-
signed by Bier collects provenance information from a data flow model that
is being provided by a PIP specifically implemented for this purpose. Since in
our system design we rely on a sticky policy concept associating each data as-
set with its own usage rules, we do not require a dedicated data flow model as
part of the usage control enforcement. Furthermore, our goal is to give data
providers direct control over the tracking of their shared data by means of
the deployed protection policies. Hence, we need to perform the provenance
tracking on the level of usage permissions specified in the deployed policies,
as opposed to the level of data flows. This requires a ProSP design that is
integrated into the normal usage control enforcement process.

Figure 3.9 shows how we accomplish this in our system architecture. Prove-
nance information can be sent to a ProSP either directly by the data processing
applications, or indirectly via the evaluation of usage control policies. Inte-
grating provenance tracking into the usage control enforcement process has
the advantage of keeping the data processing applications independent from
the provenance tracking mechanisms.

70

3.2 Trustworthy System Design

PDP PXP

execute(provenance)

PIP ProSP

success

provenance

getProvenance()

provenance

evaluateProvenance()

storeProvenance(provenance)

success

Figure 3.9: Sequence diagram of a provenance collection. Remote attestations between compo-
nents are not shown.

As fig. 3.9 illustrates, we use PXP actions to populate the ProSP with prove-
nance information during policy evaluation. This allows data owners to spec-
ify usage control obligations that are updating the provenance stored at the
ProSPwhenever a data usage is permitted. If the provenance collection should
be enforcedwithout any usage control restrictions, the data owner can just de-
ploy policies that unconditionally allow all data usages. In that case the used
PEP does not even require the capability of enforcing usage control decisions.
For the provenance collection it is sufficient to only observe the occurring
data usage events. Figure 3.9 also shows how the collected provenance in-
formation can be retrieved back from the ProSP to be referenced in usage
control policies. We use PIPs to make the collected provenance available at
the decision point during policy evaluation. This allows data owners to spec-
ify usage restrictions that are based on the origin and history of data assets.
We present a concrete policy scheme that integrates this type of provenance
collection and retrieval into the ODRL usage control language in section 5.3,
and give concrete application examples in chapter 7.

3.2.7 Attestation and Measurement Handling

Our proposed system design uses transitive remote attestations to check the
integrity of all distributed system components that are relevant for the current
usage control operation. As presented in section 2.3.3, a remote attestation
protocol provides the verifier with a set of cryptographically signed platform

71

3 Concept and System Design

measurements that describe the software stack as well as the used platform
configuration of a remote prover. To confirm that the remote platform has
not beenmaliciously modified, the verifier needs to compare the attestedmea-
surements with known good values describing a legitimate software stack. As
mentioned before, our usage control system design is independent of concrete
trusted computing technologies and remote attestation protocols. Neverthe-
less, we still need to specify how each distributed usage control component
knows the list of trustworthy platform measurements that should be used to
verify the conducted remote attestations. This is especially challenging with a
transitive remote attestation scheme, because all of the attestations belonging
to a transitive attestation chainmust be verified against a list of measurements
that is considered trustworthy by the original data provider.

A simple solution to provide verifiers with trustworthy measurements of re-
mote software stacks is to include them into the Trusted Computing Bases,
e.g., by directly compiling the expected measurements into the deployed bi-
naries. This solution allows to conduct transitive remote attestations, because
the list of trustworthy measurements is itself part of the trusted software
stack. Hence, verifiers can check that a remotely attested component also uses
trustworthy measurements when conducting subsequent attestations further
down the attestation chain. However, the main drawback of this solution is its
low flexibility and scalability, especially in distributed systems. Updating the
implementation of even a single system component would change the list of
measurements and hence require a re-deployment of all system components.
Even more importantly, in our use case the code identities of components like
enforcement points are often not yet known at the time of system deployment.
Furthermore, this solution is not suitable for applications that require support
for bi-directional remote attestations, because it would create circular depen-
dencies between the trusted software stacks [Che20]. Due to these issues, di-
rectly incorporating trustworthy measurements into the system components
is not a suitable solution for a distributed usage control system design.

We solve these problems by incorporating Measurement Stores (M-Stores)
into our usage control system design. An M-Store is a repository of trust-
worthy platform measurements that system components can access to verify

72

3.2 Trustworthy System Design

remote attestations. Instead of concrete measurements, system components
now only have to include an M-Store certificate in their trusted software
stacks, which is used for authenticating the correct M-Store during attes-
tation. This introduces a level of indirection that solves the problems with
scalability and circular dependencies between software stacks. Measurement
repositories are sometimes designed as globally trusted, external parties that
disseminate whitelisted measurements provided by system manufacturers
[Sch16]. However, using a single system-wide M-Store is not realistic in
distributed usage control systems due to the many different participants
and stakeholders. It also has the disadvantage of adding an additional trust
anchor. To avoid this, we instead design our Measurement Stores to be op-
erated by individual system participants in their own usage control domain.
These local M-Store instances then only offer platform measurements that
are considered trustworthy in that particular usage control domain. This
way no additional global trust anchor is necessary. In practice, usage control
participants will populate their local M-Stores with signed component finger-
prints provided by the system manufacturer. Nevertheless, participants could
also use approaches such as reproducible builds to determine trustworthy
component fingerprints independently.

Since every domain has a local M-Store instance, relying on fixed M-Store
certificates integrated into the trusted software stacks is now too rigid for our
application. Instead, one option is to use the more flexible component config-
uration to set up a list of M-Store network URLs for each domain, as well as
corresponding certificates for authentication. However, in that case the initial
verifier at the root of the transitive attestation chain still has to explicitly check
that each subsequently attested component is using a correctly configured
M-Store for fingerprint validation. Alternatively, the M-Store identity that is
deemed trustworthy by the initial verifier can also be directly forwarded to all
subsequent components in the transitive attestation chain. This allows to val-
idate all participating components with the “correct” (i.e., local) Measurement
Store, while avoiding additional communication and configuration overhead.
Figure 3.10 shows how a remote attestation process using this verification
method looks like for the example of a cross-domain policy deployment.

73

3 Concept and System Design

App M-Store App PEP

success

validate(measurement)

Check quote

attestation()

measurement, quote

Check quotevalidate(measurement)

success

measurement, quote

attestation()

data, policy, M-Store identity

success

Figure 3.10: Sequence diagram of a transitive remote attestation during policy deployment. The
establishment of a secure channel is not shown.

First, the initial verifier (in this case the data provider’s application) requests
the attestation of the remote component (i.e., the receiver’s application). Dur-
ing the attestation, the prover transmits its platform measurements and a
signed quote to the verifier. The verifier then checks the received quote and
contacts the M-Store in the local usage control domain to validate the attested
measurements. Once the attested channel is established, the verifier relays
the used M-Store identity to the attested prover, in this case together with the
data and the deployed policy. The transmitted M-Store identity consists of the
used M-Store certificate and its URL. The remote component then requests its
own attestation for the next component in the transitive attestation chain,
in this case the remote enforcement point. However, the resulting enforce-
ment point measurements are now also validated using the initial M-Store in
the data provider’s domain, instead of the receiver’s local M-Store. By transi-
tively relaying the M-Store identity, the initial data provider can specify what
M-Store should be used for the entire attestation chain, even if the attestations
are actually verified in the remote domain. This ensures that all conducted re-
mote attestations are verified with measurements that are trustworthy from
the original data provider’s point of view.

74

3.2 Trustworthy System Design

Note that fig. 3.10 illustrates the remote attestation process on a conceptual
level only. For example, the establishment of the attested secure channel be-
tween verifier and prover is not shown. We present the concrete design and
implementation of the heterogeneous remote attestation protocol that pro-
tects our proposed usage control system later in chapter 5.

3.2.8 Component Authentication and Provisioning

Remote attestations allow to measure and verify the code bases and config-
urations of usage control components. However, this alone is not sufficient
to achieve a trustworthy distributed usage control system. We must also be
able to uniquely identify and authenticate individual system components. For
example, during policy evaluation a PDP has to retrieve information from a
particular PIP instead of just any PIP with a valid code base. Hence, we need
to complement the attested code identities of usage control components with
unique component identities that can be used to authenticate particular compo-
nent instances. This problem of identifying and authenticating system compo-
nents has not yet been fully solved in the existing proposals for trustworthy
usage control architectures (see section 3.1). However, the MyDataControl
framework uses unique component IDs to distinguish specific usage control
components from each other. These IDs are registered at a central Policy
Management Point (PMP), which can subsequently be queried for connection
details of any usage control component [Jun14]. While this solves the prob-
lem of component identification, it does not yet provide a suitable authentica-
tion mechanism that protects against malicious component operators in dis-
tributed usage control scenarios. For example, a malicious system participant
could easily operate multiple instances of a particular PIP and alternatingly
register them at the PMP under the same component ID.¹ This would allow
the malicious participant to bypass policy restrictions that rely on the state of
a particular PIP, for example stored access counters.

¹ At the time of this thesis, the MyDataControl API allows to update registered PIPs. See:
https://management.dev.mydata-control.de/swagger-ui/index.html#/Components/updatePip
(accessed on 12/08/2023).

75

https://management.dev.mydata-control.de/swagger-ui/index.html#/Components/updatePip

3 Concept and System Design

To prevent these types of vulnerabilities in distributed usage control systems,
we include a dedicated component authentication scheme in our trustworthy
system design. There are three main requirements for this scheme.

(i) Component identification: Each system component must have an
unambiguous and discernable component identity in addition to its
code identity.

(ii) Component authentication: Each component identity must be
cryptographically verifiable by other components. No attacker may
fabricate or take over a remote component identity.

(iii) Component uniqueness: Provisioned component identities must be
unique to a single component instance.

To achieve the first requirement, we adopt a similar approach as the
MyDataControl framework and identify each deployed component instance
by associating it with a Uniform Resource Identifier (URI). This component
URI is then used to unambiguously reference individual usage control com-
ponents both in protection policies and in system configurations. Usually,
component URIs are assigned according to a hierarchical and descriptive
naming scheme (i.e., as URNs). However, for convenience purposes the iden-
tifiers can also be chosen equal to the components’ network locators (i.e., the
URLs). This has the benefit of allowing users to directly reference network
endpoints in configurations and usage control policies. We fulfill the second
requirement of cryptographic authentication by provisioning all usage con-
trol components with digital certificates. Digital certificates are signed data
structures that bind cryptographic public keys to certain identity information.
In our case, a certificate attests to a specific component identity by certifying
the component’s URI. To prevent attackers from forging certificates, their
authenticity must be ensured. This could be done by using a centralized
trusted party similar to the MyDataControl PMP, which is responsible for
binding component URIs to authentication keys. However, for scalability
purposes we use a hierarchical Public Key Infrastructure (PKI) instead. PKIs
are the most widely used method to issue and verify certificates. Figure 3.11
illustrates how we use a PKI to certify distributed usage control components.

76

3.2 Trustworthy System Design

Root CA

Domain CA
uri:alice

Certify Certify

Certify Certify

PEP
uri:alice:pep

PDP
uri:alice:pdp

PIP
uri:alice:pip

PEP
uri:bob:pep

PDP
uri:bob:pdp

Domain CA
uri:bob

Figure 3.11: Hierarchical PKI with two usage control domains.

ThePKI consists of a tree of Certification Authorities (CAs), which are respon-
sible for verifying certificate requests and issuing certificates that are signed
with the CA’s private key. The root CA is located at the base of this tree and
must be trusted by all participants. In our case, the root CA does not directly
issue signed certificates for usage control components. Instead, it certifies in-
dividual domain CAs, which are operated locally by the various usage control
system participants. Each domain CA is then in turn responsible for certifying
the usage control components of one particular usage control domain. That
way new usage control components can be certified locally without having to
communicate with the root CA. Furthermore, domain CAs establish a hierar-
chical naming scheme by enforcing that every certified component identifier
must either be prefixed by the local domain name (if URNs are used), or that
its host name is part of the local sub-domain (if URLs are used). Components
can then be authenticated by verifying the component’s certified URI as well
as the certificate chain to the root CA.

Finally, the third requirement demands the uniqueness of provisioned compo-
nent identities. This means that a certificate for a particular component URI
must be issued to exactly one component instance and may not be used by
any other component for authentication (not even by one with the same code
base). While this property is usually not relevant for standard PKIs, in our case
the uniqueness of component identities is necessary to ensure proper policy
enforcement. If multiple component instances could authenticate themselves
under the same URI, the evaluation of policies would not be well-defined any-
more. We solve the problem of component uniqueness by implementing the
domain CAs such that they issue the certificate for a certain component URI

77

3 Concept and System Design

only once. For this, the domain CA remembers all issued certificates and de-
nies any further certificate requests for the same URI by any other component.
Only the original certificate holder is allowed to request a new certificate for
that particular URI, e.g., when the old certificate expires. The same policy is
also used by the root CAwhen certifying domain CAs to ensure the operation
of a single CA in each usage control domain. Furthermore, to prevent mali-
cious system participants from bypassing these certification rules, we protect
the local domain CAs with trusted computing technologies as well. During
the initial registration process, the root CA remotely attests each domain CA
before issuing the intermediate certificate, to ensure that the domain CA prop-
erly enforces the uniqueness property. Finally, all certified components are
required to keep the private key associated with the issued certificate confi-
dential by protecting it with the underlying trusted computing technologies.

Figure 3.12 illustrates the resulting certificate provisioning and subsequent
component authentication process. Whenever a domain CA launches for the
first time, it generates a new asymmetric key pair (sk, pk) together with a
Certificate Signing Request (CSR) for this key pair, which contains the local
domain URI as well as the newly created public key. Usually the CSR is self-
signed to provide a proof of private key possession. The domain CA then
transmits the generated CSR to the root CA in order to acquire a signed cer-
tificate. This is done over an attested channel to ensure the integrity of the
domain CA, and to verify that the private key associated with the CSR is in-
deed being protected by a TCB. The root CA then checks that the received
CSR does not violate the uniqueness rule, i.e., that no CA already exists for
this particular usage control domain. Only if this is successful, the root CA
issues a new certificate for the requested usage control domain, which is dig-
itally signed with the root CA’s private key. Now the local domain CA is
ready to itself provision usage control components using the same basic pro-
cess. For this, all components that are deployed in this usage control domain
also create new asymmetric key pairs and transmit corresponding CSRs con-
taining their respective component URI to the domain CA over an attested
channel. The domain CA then checks the received certificate requests and
the uniqueness of their URIs in the same manner as before. Additionally, the
domain CA also enforces a hierarchical naming scheme by verifying that the

78

3.2 Trustworthy System Design

requested URI indeed belongs to its usage control domain, before issuing a
component certificate that is digitally signed with the domain CA’s private
key. Once all usage control components have requested their individual cer-
tificates, the provisioning process of the new usage control domain is com-
plete. Now any (local or remote) usage control component can authenticate
another component using a simple challenge-response protocol. For this, the
requester transmits a random challenge to the peer and expects a signature
under a valid component certificate in return. By verifying the certificate
chain to the root CA, the component’s URI can be authenticated.

PDP Root-CAPIP CA

launch(uri)

Create (sk, pk)

Check uri uniqueness

certificate(uri)

Attestation

launch(uri:pip)

Create (sk, pk)

signature, certificate

Challenge c

Sign c with sk

Verify signature
Verify certificate chain
Verify certificate uri

CSR(uri, pk)

Check uri prefix
Check uri uniqueness

certificate(uri:pip)

Attestation

CSR(uri:pip, pk)

Figure 3.12: Sequence diagram of certificate provisioning and component authentication.

Note that the sequence diagram in fig. 3.12 shows the proposed provision-
ing and authentication process of usage control components on a conceptual
level only. In our proof of concept implementation, presented later in chap-
ter 5, we use a dedicated communication protocol that combines both remote
attestation and component authentication into a single handshake.

79

3 Concept and System Design

3.3 Security Model

After presenting the concept for a trustworthy distributed usage control and
provenance tracking system, in the remainder of this chapter we discuss the
security aspects of our proposal. In this section we establish our security
model by identifying the protection goals that our system design should fulfill
and developing a suitable attacker model. We furthermore discuss what trust
dependencies exist between the usage control components, which need to be
covered by remote attestations for all system operations.

3.3.1 Protection Goals

The main responsibility of our system proposal is to enforce deployed usage
control policies on shared data assets and track the provenance of data usages
across domains. We identify a total of five protection goals that need to be
fulfilled in order to achieve this task. Most importantly, data owners expect
the system to protect the confidentiality of their shared data assets against
any unauthorized use. Data confidentiality must be achieved against both
external adversaries as well as legitimate data receivers trying to circumvent
the imposed usage restrictions. It also requires the prevention of any unau-
thorized data transfers outside the distributed usage control system, where
the deployed usage rules can no longer be enforced. Besides data confiden-
tiality, in many applications the integrity of shared data must be protected as
well. For example, if data owners share their information with a remote sys-
tem in order to collaboratively train a common machine learning model, they
have a clear interest in preventing any unauthorized modifications of their
data in the remote domain. To what extent and purposes confidentiality and
integrity of shared data must be protected depends on the concrete use case
and is individually specified for each data asset by its respective usage control
policy. In addition to confidentiality and integrity, the main protection goal
concerning provenance tracking is transparency. Transparency is achieved if
data owners are reliably notified of any permitted usages of their data in re-
mote domains by the provenance tracking modules. Furthermore, the system
must ensure that data receivers cannot credibly deny any of the logged data

80

3.3 Security Model

usages later on. This protection goal is commonly called non-repudiation. Fi-
nally, the systemmust also ensure the availability of the collected provenance
data for later validation by the data owners.

Besides the main protection goals concerning the entire usage control and
provenance tracking system, we can also identify additional component-level
protection goals. This is useful for analyzing the security of single system
components in greater detail. Table 3.1 gives an overview of these component-
level protection goals. Most importantly, all system components have to pro-
tect the code integrity of their own software stack. This protection goal ensures
that the components always behave as expected during the system operation.
While this has been an a-priori assumption in many previous solutions, in
our proposal we enforce this protection goal by utilizing remote attestation
as a technical measure. In addition to code integrity, the individual system
components must also protect the confidentiality and integrity of usage con-
trol metadata to various degrees. Both PEPs and PDPs mainly have to ensure
the integrity of the usage events and decisions that they process. Otherwise,
an adversary could tamper with the usage control system by influencing the
captured events or the resulting decisions. The confidentiality of usage events
may also be a required protection goal, for example in scenarios where the in-
formation about data usages is itself valuable. Since policies are usually not
confidential, it is sufficient for PRPs to only protect their integrity. Similarly,
PIPs also need to protect the integrity of their stored information, as it is used
for evaluating policies. Whether the stored information is also confidential
depends on the specific use case. In contrast, PXPs usually do not store any
confidential information and mainly require code integrity to ensure that all
obligated actions are executed correctly. However, depending on the specific
application, they may also retain data that is of interest to a usage control
participant, for example process log files. In that case the PXP must ensure
that this information cannot be manipulated (i.e., provide data integrity), and
additionally protect its integrity against deletion. Finally, ProSPs always need
to protect the stored provenance information against both malicious tamper-
ing as well as unauthorized deletion. Similar to PEPs and PDPs, ProSPs may
also be required to protect the confidentiality of the stored provenance data,
if the information about particular data usages is considered secret.

81

3 Concept and System Design

Table 3.1: Component-level protection goals.

Component Confidentiality Integrity
Data Code Data Deletion

Applications
Enforcement Points
Decision Points
Retrieval Points
Information Points
Execution Points
Provenance Storage Points

Note that achieving the component-level protection goals listed in table 3.1 is
a required, but not a sufficient precondition for a secure overall system pro-
viding the described main protection goals. For example, in order to achieve
a transparent distributed usage control and provenance tracking system, it is
necessary to use ProSPs that are capable of protecting the integrity of both
code and data, as well as preventing unauthorized data deletion.

3.3.2 Attacker Model

Besides defining the required protection goals, we also need to specify what
types of attackers we expect on our proposed usage control and provenance
tracking system.

For our security analysis we distinguish three types of attacker goals.

• Curious attacker: This attacker intends to break data confidentiality
by accessing protected data outside the usage restrictions specified by
the data owner. The attacker can achieve this goal either by breaking
the policy protection or by extracting the data from the usage control
system altogether. In cases where the information about data usages
itself is considered confidential, we also assume that the attacker
wants to capture provenance information and usage events.

82

3.3 Security Model

• Modifying attacker: This attacker intends to manipulate the
protected data without detection, thereby breaking the protection goal
of data integrity. Furthermore, the modifying attacker also aims to
tamper with captured provenance data in order to hide or forge
illegitimate data usages. This breaks the protection goals of
transparency and non-repudiation.

• Destructive attacker: Unlike modifying attackers, this attacker
intends to to destroy protected information rather than tamper with it.
As before, this attacker can target both shared data as well as the
captured provenance tracking information. Hence, this attacker
breaks the protection goals of availability and transparency.

In addition to the attacker intentions, we also distinguish three levels of at-
tacker capabilities.

• Network attacker: This attacker has access to the network that the
usage control components use to exchange information. Hence, a
network attacker can read, intercept, and modify all traffic between
usage control components, but does not have any access to the
applications and system components themselves.

• Software attacker: This attacker has software-level access to the
devices that operate applications and usage control components. A
software attacker can inspect unencrypted data and launch new
processes, but has no privileged access to the device.

• Privileged attacker: This attacker has privileged access to the devices
that operate applications and usage control components. A privileged
attacker is in complete control of the executed software stack and also
has physical access to the device. Usually, privileged attackers are
malicious component administrators. However, we assume that even
such privileged attackers cannot tamper with the hardware-based
trust anchors introduced by trusted computing technologies.

Based on this definition of attacker goals and capabilities, our attacker model
consists of four different types of adversaries that we expect on distributed

83

3 Concept and System Design

usage control and provenance tracking systems. External attackers include all
adversaries outside the actual usage control system. These adversaries only
have access to the network and generally act as both curious and destruc-
tive attackers, since they want to steal valuable data and/or cause damage
by deleting them. However, external attackers usually have no incentive to
specifically modify protected data. Curious users are system-internal adver-
saries that are mainly interested in accessing protected data outside their us-
age restrictions. Unlike external attackers, they have software-level access
to some of the system components, most often the data processing applica-
tions. Curious users generally have no interest in manipulating or deleting
data assets. However, they might try to manipulate protection components
in order to bypass the usage control protection. In contrast to curious users,
malicious users also have an interest in modifying or destroying information
stored in the system. For example, disgruntled employees could try to tam-
per with usage-controlled information in order to sabotage data processing
applications. Furthermore, malicious users may try to modify or delete cap-
tured provenance information in order to cover up illegitimate data transfers
or usages. However, just like curious users, they still only have restricted
attacking capabilities on the device. User-space malware can be seen as a
special type of curious/malicious user with similar motivations and capabili-
ties. Finally, component administrators are the most capable adversaries that
we expect on distributed usage control and provenance tracking systems. As
privileged attackers, they may tamper with all usage control components un-
der their control to try and bypass remote usage restrictions on shared data.
We assume that system administrators act on behalf and in the interest of
their respective employers. Hence, they constitute malicious adversaries only
against the interests of other usage control system participants. As such, com-
ponent administrators are motivated to break the confidentiality of shared
data, but usually have no interest in deleting or manipulating the received
information. However, they still act as both modifying and destructive at-
tackers against the collected provenance information describing the usages
of shared data in their domain.

84

3.3 Security Model

3.3.3 Trust Dependencies

As third part of the security model, we identify the existing trust dependen-
cies between usage control and provenance tracking components. This is es-
pecially important when using a transitive attestation concept, in order to de-
termine which remote attestations are required during the system operation.
Figure 3.13 shows the identified trust dependencies as a directed graph.

active

passive

PEP

App

PDP

notify

notify

PRP

PIP

PXP

ProSP

deploy
retrieve

store

execute

evaluate retrieve

store

store

Figure 3.13: Trust dependencies between system components. Dependencies to the Measure-
ment Store and CAs are not shown.

In general, we distinguish between active and passive trust dependencies. Ac-
tive trust dependencies directly correspond to the usage control functions that
have been illustrated in fig. 3.3. Each time one component requires the sup-
port of another component to accomplish its tasks, the resulting trust depen-
dency must be authenticated and covered by a transitive remote attestation.
For example, an enforcement point must trust its decision point to provide
correct usage decisions, while the decision point itself depends on the sub-
sequent execution points and information points. In contrast to active trust
dependencies, passive dependencies are necessary in cases where a contacted
component has to trust the requester, instead of the other way around. Hence
passive trust dependencies point in the other direction, against the flow of the
usage control operations. For example, an execution point needs to know that
a requested action indeed originates from a legitimate decision point as part
of a policy evaluation process. Otherwise an attacker could contact the PXP to
execute any arbitrary actions in the usage control system. Similarly, ProSPs
need to determine that the receiver of requested provenance information is in

85

3 Concept and System Design

fact a trustworthy PIP, whichwill not disclose or abuse the requested informa-
tion. In the implemented systemwe use bi-directional remote attestations and
certificate-based authentication to cover these types of passive trust depen-
dencies. Furthermore, all usage control and provenance components always
have an active trust dependency to the local Measurement Store used for fin-
gerprint validation, as well as to their respective domain CAs. To simplify
fig. 3.13, these dependencies are not explicitly shown in the illustration.

3.4 Security Analysis

In this section we conduct an informal security analysis of our proposed usage
control and provenance tracking system design. Our methodology is to estab-
lish the soundness of the design proposal under the assumption that the sys-
tem components are protected by idealized Trusted Computing Bases (TCBs).
Hence, we build our security analysis on four main assumptions.

(i) We assume that all system components (i.e., the data processing
applications as well as the usage control and provenance tracking
components) are implemented correctly and are free of bugs. This
includes the assumption that the enforcement points can reliably
intercept data usages and that the applications do not disclose any
received information unless permitted by a usage control policy.

(ii) We assume all system components to be secured by a trusted
computing technology that protects the code integrity of their TCBs,
as well as the confidentiality and integrity of the processed data
against all attackers. We also assume the used trusted computing
technologies to protect the state integrity of components against all
adversaries (i.e., to prevent rollback, reset, and duplication attacks).

(iii) We assume an idealized remote attestation protocol that protects the
confidentiality and integrity of transmitted data against all attackers
by establishing encrypted, bi-directionally attested, and
replay-protected communication channels.

86

3.4 Security Analysis

(iv) We assume that all existing trust dependencies between system
components, as identified in fig. 3.13, have been authenticated and are
covered by the conducted remote attestations.

In the remainder of this section, we identify the attack vectors on distributed
usage control and provenance tracking systems, andmotivate why our system
design achieves the required protection goals under the presented attacker
model given the assumptions (i) to (iv). Naturally, real-world remote attes-
tation protocols and trusted computing technologies cannot perfectly guar-
antee the security of a TCB and the data processed on it. We investigate the
application of various concrete trusted computing technologies to protect our
proposed system design, as well as the resulting security implications and
limitations, in the next chapter.

3.4.1 Attacks on Data and Policies

First, we consider direct attacks on the data and protection policies that are ex-
changed between distributed usage control components. These attacksmainly
concern the confidentiality and integrity of usage-controlled data, as well as
the transparency of provenance information captured in remote domains via
the deployed usage control policies.

Data Interception Attacks. The simplest way of gaining illegitimate ac-
cess to protected data is with an interception attack. There are generally
two places where attackers could intercept shared data. External attackers
have access to the network traffic between the system components. How-
ever, the remote attestation protocol prevents data interception during trans-
fer by establishing secure communication channels between the applications.
Internal adversaries, such as malicious users or administrators, additionally
have access to the devices receiving the protected data. Still, direct access to
the shared information is not possible because we assume that the deployed
trusted computing technologies protect the confidentiality and integrity of
all data transmitted to these devices.

87

3 Concept and System Design

Policy Suppression and Modification Attacks. Breaking the confiden-
tiality and integrity of shared data can also be achieved by suppressing or
modifying the deployed usage control policies. There are several ways for
an attacker to achieve this. First, an external attacker could try to suppress
the deployment of a policy by simply blocking the network packets contain-
ing the policy during the deployment step. The motivation behind this attack
is that if the usage control policy is completely removed during transfer, any
data access would be granted without usage restrictions in the remote system.
This attack vector also concerns the protection goal of transparency, because
blocked policies could contain usage rules that include provenance tracking
obligations. However, our system design is not susceptible to this type of sup-
pression attack, because we always transfer policies and data together over a
single attested and encrypted connection (sticky policy concept). Assuming
the security of the underlying communication channel, removing policies in
that way is not possible without blocking the entire data transfer. Further-
more, any failures during the subsequent policy deployment process with the
remote PRP (cf. fig. 3.5) will be signaled back to the trustworthy (i.e., attested)
enforcement point, which reacts by denying any usage requests for this data.
Another possible attack vector concerns the malicious modification of usage
control policies. For example, an external attacker could try to add compre-
hensive usage permissions to policies during transfer, and hence indirectly
gain access to protected data against the wishes of the data owner. However,
modifying usage control policies during transfer is not feasible either, since
they are directly deployed by the data owners and are once again protected by
the remote attestation protocol during their transition through the entire us-
age control system. Finally, even internal attackers are unable to tamper with
policies that are already stored at the PRP, since their integrity is secured by
the deployed trusted computing hardware.

Policy DeploymentMisdirection Attacks. A related but muchmore subtle
attack vector to suppress the deployment of policies exploits the distributed
nature of the system architecture. Most usage control architectures offer ded-
icated policy deployment functionalities for data owners. For example, the
MyDataControl distributed usage control framework provides interfaces at

88

3.4 Security Analysis

the PDP for data owners to deploy their policies in anticipation of any data
transfers [Jun14, Jun22]. The problem with this approach is that it separates
the policy deployment and the subsequent data transmission into two inde-
pendent operations. This makes it difficult for the data owner to know at
the time of data transmission, if the remote enforcement point indeed com-
municates with the same decision point that has previously been used for the
policy deployment. Amalicious system administrator could trick data owners
into deploying their policies at a different (albeit legitimate and attested) PDP,
which does not serve the enforcement points in question. As a result, even a
successful and remotely attested policy deployment may not ensure that the
protection policy is adhered to. While this attack vector is certainly relevant
for traditional distributed usage control systems, we completely avoid this
issue by leveraging a sticky policy concept in our system proposal. Jointly
transferring data together with their policies by design avoids any ambiguity
for data owners between the target of the policy deployment and the target
of the data transfer. As a result, in our distributed usage control system the
deployed policies always reach the correct PDP/PRP.

Policy Enforcement Prevention Attacks. In addition to suppressing or
manipulating usage control policies, attackers can also try to disrupt the
policy enforcement process. Since a policy enforcement operation requires
the collaboration of multiple distributed usage control components, attackers
may impede the enforcement process by tampering with the network traffic
between them. A successful policy enforcement prevention attack would
break the protection goals of data confidentiality and integrity, as well as
transparency. There are several ways in which adversaries can exploit this
attack vector. One option is to outright block important messages during the
policy enforcement process. External attackers could inhibit the event noti-
fication messages between the PEPs and the PDP, or the policy transmission
from the PRP to the PDP. They could also prevent the PXP from receiving
obligated actions. However, in either case our design is not susceptible to
blocked messages, because our enforcement points inhibit the usage of data
by default if the communication with any required usage control component
fails (cf. section 3.2.4). Another attack option would be to modify messages

89

3 Concept and System Design

during policy enforcement instead of blocking them. Suitable candidates for
this would be the decision being returned from the PDP to the enforcement
points, or any requested information from the PIPs. Similar to the already
mentioned policy modification attacks, this is prevented by the integrity
protection features of the used remote attestation protocol. However, in
addition to preventing direct message manipulation, it is crucial that the
remote attestation protocol also protects against message replays. Otherwise,
an attacker could inject a previously captured ALLOW decision into the network
traffic for a new event notification. In the next chapter we ensure that the
used real-world remote attestation protocols provide suitable integrity pro-
tection mechanisms including replay protection. Finally, a third viable attack
vector is to redirect the network messages concerning policy enforcement to
other legitimate endpoints. For example, an external attacker could intercept
the policy lookup requests transmitted by a PDP and forward them to another
(unmodified) retrieval point in order to influence the enforcement process.
Similarly, event notifications transmitted by PEPs could be redirected to a
different PDP, or information requests and obligated actions to different PIPs
and PXPs. However, our system design is robust against such redirection
attacks. Redirecting event notifications to different PDPs has no impact on
the enforcement process anyway, because we designed our decision points
to be stateless. Any redirection of policy lookups to a different PRP than
originally used by the decision point will be detected, because the unique
policy ID demanded in the request will not be known to another retrieval
point. Finally, requests to PXPs and PIPs cannot be redirected either, because
these components are uniquely identified and authenticated by the URI ref-
erenced in the respective policy (cf. section 3.2.8). In all cases, the redirection
attempt will be detected as an authentication failure and signaled back to the
enforcement point, which denies further data usages by default.

Policy Revocation Prevention Attacks. Similar to the suppression of pol-
icy deployments, an attacker could also try to prevent policy revocations.
This is a relevant attack vector because policies might contain usage permis-
sions in addition to usage restrictions. Hence, an external or internal attacker

90

3.4 Security Analysis

could be motivated to maliciously prevent updates or revocations of permis-
sive policies. The easiest way for an attacker to achieve this is to sever the
network connection between the data processing applications and the remote
data owner. That way no policy update requests can reach the remote us-
age control domain. Attacks of this nature are usually mitigated by enforcing
a heartbeat protocol during enforcement. If no connection with the origi-
nal data owner can be established after a certain amount of time, all further
data usages are inhibited by default. However, in practice such a heartbeat
solution tends to be complicated and error prone. Even innocent and tran-
sient network disconnects would lead to data locks, which could seriously
hamper the legitimate use of data in productive scenarios. Furthermore, at-
tackers could exploit such a heartbeat solution to execute denial-of-service
attacks on the distributed usage control system. Finally, the damage potential
of this attack vector is also rather limited. Even if policy updates and revoca-
tions are completely prevented, the usage control system will keep enforcing
the original usage rules on the protected data. The protection policy cannot
be removed without a legitimate policy update request by the original data
owner (cf. section 3.2.5). Because of these reasons, we choose not to include
a heartbeat solution to prevent this type of attack in our proof of concept
implementation (see chapter 5).

3.4.2 Attacks on Usage Control Components

Besides targeting network traffic such as transmitted policies and data, attacks
on the usage control components themselves must also be considered.

Component Manipulation Attacks. While external attackers are limited
to intercepting network traffic, internal attackers such as malicious users or
administrators have the opportunity to directly manipulate usage control
components. This can be achieved by tampering with the deployed appli-
cation binaries that are implementing the usage control functionality. For
example, malicious users could try to remove the enforcement points bound

91

3 Concept and System Design

to data processing applications in order to bypass the usage control enforce-
ment. Component administrators could also manipulate the implementation
of the local decision point to always return ALLOW decisions if usage restrictions
of remote data providers are concerned. In general, successfully manipulat-
ing the implementation of usage control components could break all of the
protection goals identified in section 3.3.1. We prevent these manipulation
attacks in our system design by applying trusted computing hardware and
remote attestation protocols to protect the code integrity of the entire usage
control system. As described in section 3.2.1, we use a transitive attestation
concept to detect any malicious manipulations of usage control components.
Two aspects are important for a secure realization of this attestation concept.
First, it must be ensured that all necessary attestations are being conducted
during the system operation. We identified the required attestation targets
by analyzing the trust dependencies between distributed usage control com-
ponents (see fig. 3.13). Furthermore, in our proof of concept we enforce the
integrity verification of all usage control components by implementing a
communication protocol that transparently conducts bi-directional remote
attestations (see chapter 5). Second, it is important to ensure that attestation
failures are always reliably forwarded back to the beginning of the respective
attestation chain, i.e., to the data provider during policy deployment and to
the PEP during policy enforcement. There the failed attestations must be
handled accordingly. A data provider reacts to attestation failures by denying
the policy and data transfer (cf. section 3.2.3), while enforcement points deny
the data usage in such cases (cf. section 3.2.4).

In addition, internal attackers could also try tomanipulate policy enforcement
by tampering with the configuration of a usage control component instead of
its software stack. For example, the configuration of a decision point includes
the URI of the retrieval point that should be used. To prevent the manipu-
lation of component configurations, we always include the configuration in
the attested TCB as well. This is feasible, because component configurations
usually do not change very often. Finally, we also need to consider the pos-
sibility of attackers manipulating component code or configurations after the
initial chain of remote attestations has been conducted. For example, a com-
ponent administrator could manipulate a decision point after a remote data

92

3.4 Security Analysis

provider has already verified the usage control system and disclosed critical
data during the policy deployment step. These type of attacks are known
as Time-of-Check Time-of-Use (TOCTOU) attacks [Bra08]. Even though the
used trusted computing technologies can offer a various degree of protection
against TOCTOU attacks, we also consider this issue in our system design.
For one, we attest the relevant usage control components not just at the time
of the initial policy deployment, but also later during the policy enforcement
process (cf. section 3.2.4). Furthermore, our system also intermittently con-
ducts re-attestations during the policy enforcement to ensure that the dis-
tributed system is still in a correct state. If any of those attestations fail, the
responsible enforcement point falls back to a safe state by denying any data
usages. More details about the implementation of re-attestation in our proof
of concept is discussed later in section 5.2.1.

Component Impersonation Attacks. In addition to manipulating the soft-
ware stack of deployed components, the impersonation of legitimate compo-
nent identities must also be considered as an attack vector. For example, an
attacker could launch a new PIP instance with a valid code base and then use it
to inject invalid information in the policy enforcement process. As discussed
in section 3.2.8, this type of attack is prevented by our component authen-
tication scheme. All usage control components are identified by their URI
and authenticated using a signed certificate. Domain CAs issue certificates
for each URI exactly once, so new component instances cannot impersonate
an already existing component identity. Furthermore, the private keys as-
sociated with legitimate certificates are protected by the original component
instances and are not available outside their TCBs.

Component Reset Attacks. A related attack vector concerning the in-
tegrity of usage control components are reset attacks. Instead of launching
and provisioning a new component instance as part of an impersonation at-
tack, a malicious administrator could also try to reset an existing component
back to a fresh state. Depending on the system implementation, this may
be achieved as easily as by deleting the locally saved state blob of a usage

93

3 Concept and System Design

control component and then triggering a reboot. A successful reset attack on
an existing usage control component could once again severely impact the
usage control enforcement process. For example, the attacker could mount
this attack against a PIP to get rid of unfavorable attribute values, or even
remove entire policies by attacking a PRP. Fortunately, reset attacks are
prevented by our component authentication scheme as well. This is because
resetting a component back to a completely fresh state also removes the
private keys that have been certified during the component provisioning
step. As a result, the attacked component loses its unique certificate identity
and cannot participate in the usage control enforcement any longer. This
ultimately causes the enforcement points to deny any requested data usage
by default. Naturally, this argument assumes that the component’s TCB
cryptographically protects the component state in a way that makes selective
data removal impossible. We ensure this property in our proof of concept
implementation (see chapter 5).

Component Rollback and Duplication Attacks. Besides resetting an ex-
isting usage control component entirely, internal adversaries could also try
to roll back the state of a component to an earlier (albeit legitimate) version.
For example, if a policy limits data usages based on an access counter stored
inside a PIP, malicious users or administrators could bypass this restriction
by rolling back the PIP to a previous state with a lower counter. Similarly,
attackers could also try to duplicate the PIP instance and then bypass the ac-
cess counter restriction by routing update messages to one instance and read
requests to the other [Mat17]. Another interesting target for rollback and du-
plication attacks are the domain CAs. If an attacker could duplicate or reset a
domain CA to an earlier state, multiple certificates for the same URI could be
generated. Unlike with reset attacks, our component authentication scheme
alone does not effectively protect against the rollback and duplication of com-
ponent states. This is because both the component certificate as well as its
sealed private key remain intact during the rollback and duplication process.
Preventing this type of attack is the responsibility of the underlying trusted
computing technology that is protecting the integrity of usage control compo-
nents. Existing trusted computing technologies offer various primitives that

94

3.4 Security Analysis

can be used to detect both rollbacks and duplications of sealed data [Mat17].
For the security analysis of our system design, we hence assume that the used
trusted computing technologies provide a suitable level of protection against
these attacks. In the following chapter we analyze to what extent the concrete
trusted computing technologies used for our system implementation can in
fact achieve this requirement. Furthermore, in chapter 5 we also develop a
combined solution for duplication and rollback protection (RBP) and include
it in our distributed usage control framework.

3.4.3 Attacks on Provenance Tracking

Finally, attackers can also target the provenance tracking capabilities of our
distributed usage control system design.

Provenance Suppression Attacks. The provenance tracking components
included in our usage control system design are responsible for logging the
history of data usages. As such, they ensure the protection goals of trans-
parency, non-repudiation, and availability. In order to disturb the provenance
tracking process, network attackers can block the provenance updates that are
transmitted throughout the distributed system. This can be achieved either
by severing the connection to the ProSPs, or by intercepting the provenance
obligation messages to the PXPs if the provenance tracking is controlled by a
usage control policy (cf. section 3.2.6). However, our system design protects
against these provenance suppression attacks. In both cases the enforcement
points that initiated the provenance updates will notice the failed communi-
cation with either the ProSP or the PXP. As a result, the PEPs will deny the
requested data usage by default. Hence it is ensured that no data usages can
occur without the proper tracking of data provenance, should it be mandated.

Provenance Deletion Attacks. Besides suppressing provenance update
messages, internal attackers such as component administrators can also
delete captured provenance information at their own ProSPs. Similarly,
malicious administrators could remove stored log messages at local PXPs that

95

3 Concept and System Design

have been executed as policy obligations. Protecting against such deletion
attacks is difficult, especially when dealing with internal attackers. The
integrity protection functionalities of the used trusted computing technology
do not prevent these attacks. Even though sealed data cannot be read or mod-
ified outside the TCB, internal attackers with access to the platform storage
can always delete it. Rollback protection primitives can help to detect the
data deletion, but the captured information will still be irreversibly destroyed,
thereby breaking the protection goals of transparency, non-repudiation, and
availability. There are some previous proposals to mitigate deletion attacks
on provenance data. Bier distributes captured provenance information across
multiple stakeholders by using Provenance Dissemination Points (ProDPs)
in addition to the local ProSPs [Bie21]. As presented in section 3.1.3, several
provenance tracking systems instead rely on distributed ledgers for this task.
While these solutions solve the problem of deletion attacks, they also add a
layer of complexity and performance overhead to the provenance tracking. In
our system design, we choose a simpler approach to deal with this challenge.
We do not try to prevent the deletion of provenance information in poten-
tially hostile environments or disseminate threatened data across multiple
stakeholders, but instead store them inside a trusted domain where no de-
structive attackers are expected in the first place. For example, if we fear that
a remote participant will delete the captured provenance information about
our shared data, we use a protection policy that demands the use of a ProSP
in our own trusted domain. Similarly, we can also demand the use of a local
PXP if we expect destructive attackers on the remote PXPs. The trustworthy
usage control system is then responsible for enforcing this policy. While
this approach greatly simplifies the handling of captured provenance data
and avoids complicated dissemination techniques, it requires data providers
to consciously choose which usage control components to use. To facilitate
this, we must enable policy authors to easily determine if a certain policy
can fulfill its protection goals, or if it relies on PXPs or ProSPs in a dangerous
domain. We solve this issue in chapter 6 of this thesis by developing a
trustworthiness score that can fulfill this requirement. Later, in chapter 7,
we then evaluate the effectiveness of the developed score to identify system
states that are vulnerable to provenance deletion attacks.

96

3.4 Security Analysis

3.4.4 Summary

Our design proposal for distributed usage control and provenance tracking
relies on trusted computing as building block to establish a trustworthy in-
frastructure. In this section we showed that our design is robust against the
expected attacks on such a distributed infrastructure. The integrity of all dis-
tributed components, as well as their individual configuration, is secured by a
transitive remote attestation concept. Any direct network interception of data
and policies is prevented by establishing secure communication channels be-
tween attested endpoints. Our design proposal is also robust against attackers
that are blocking the network messages during usage control enforcement or
provenance tracking. Such attacks always result in the affected enforcement
points denying the usage of the concerned data by default.

Table 3.2: Summary of identified attack vectors and mitigations.

Attack Attacker Protection Goals¹ Mitigation
C I T N A

Data Interception All RAT, TCB
Policy Blockage All Deny usage
Policy Modification Internal RAT, TCB
Deployment Misdirection Admin Sticky policy
Enforcement Blockage All Deny usage
Enforcement Modification All RAT
Enforcement Redirection All Authenticat.
Revocation Prevention All None
Component Manipulation Internal RAT, TCB
Component Impersonat. Admin Authenticat.
Component Reset Admin Authenticat.
Component Rollback Internal TCB, RBP
Provenance Suppression All Deny usage
Provenance Deletion Admin Trust domain

¹ Confidentiality, Integrity, Transparency, Non-repudiation, Availability.

97

3 Concept and System Design

Furthermore, we apply a PKI-based component authentication scheme to pre-
vent impersonation and message redirection attacks. Finally, deletion attacks
targeting stored provenance and logging information are prevented by allow-
ing data providers to move this information into trusted domains. Table 3.2
summarizes all identified attack vectors and the implemented mitigations.

3.5 Design Alternatives

In this section we briefly discuss the advantages and drawbacks of possible
design alternatives regarding two specific sub-problems of the trustworthy
distributed usage control architecture presented in this chapter.

Alternative policy enforcement methods. In section 3.2.3 we motivated
the advantages of the sticky policy concept for our trustworthy usage control
infrastructure. Consequently, our resulting system design relies on the joint
deployment of assets together with associated usage control policies, which
are then evaluated at a stateless Policy Decision Point before each data usage.
However, the sticky policy concept can also be implemented in alternative
ways. One possibility is to leverage cryptographic means for this purpose
[Mio19]. Technologies such as attribute-based (ABE) and identity-based (IBE)
encryption schemes allow data owners to encrypt both the critical data, as
well as their policies, with a special key that is bound either to certain domain-
specific attributes or some identity information [Mio19]. A receiving system
can then decrypt the information together with the usage rules only if these
additional key constraints are met. Furthermore, there are also specialized
techniques for the enforcement of sticky usage control policies available. The
Degree (D°) system provides a domain-specific programming language, which
allows to embed usage control policies directly into executable files [Bru18].
When the resulting D° binaries are executed, they dynamically enforce the
defined usage restrictions on the processed data during runtime [Bru21]. One
advantage of these approaches is their relative simplicity compared to a ded-
icated usage control system stack. On the downside, however, they usually

98

3.5 Design Alternatives

offer limited flexibility and suffer from a reduced expressiveness of the sup-
ported policy languages. By linking together applications and usage rules,
programming-based enforcement approaches such as D° also require the de-
ployment of separate application binaries for each usage control scenario, as
well as re-compilations on policy updates. Using cryptographic mechanisms,
on the other hand, does not consider the problem of providing a trustworthy
execution environment for secure policy evaluation and enforcement. Our
approach avoids these issues by using a standard – albeit extended – decision
point implementation (see section 5.3), which is then protected by trusted
computing hardware against manipulations and attacks.

Consolidation of code and component identities. In section 3.2.8 we de-
scribe an authentication scheme for our distributed usage control architec-
ture, which introduces certificate-based component identities in addition to
the remotely attested code identities. While this design choice appropriately
separates the concerns of two different authentication goals, it is also possi-
ble to consolidate both identities into a single entity. For example, this can be
achieved by including not only the component URI, but also an attestable de-
scription of the component’s TCB into the provisioned certificate. Since our
domain CAs conduct explicit remote attestations during the certificate provi-
sioning anyway, we can add this to our system design rather easily. When
additionally provisioning the component private keys as implicit attestation
keys (see section 4.2.2 for more details), both identities could even be simul-
taneously verified by authenticating the component against the resulting cer-
tificate. The main advantage of this approach is that it saves the additional
challenge-response handshake, which separately authenticates the compo-
nent identity during the establishment of the secure communication channel
(see fig. 3.12). However, as we will describe later in section 5.2, the secure
communication protocol used in our proof of concept is designed to support
multiple endpoint identities anyway. As a result, this modification would not
significantly improve either our system architecture or its implementation.
In addition, combining both identities would also complicate the provision-
ing and update process of component certificates. Because of these reasons,
we keep both identities conceptually separated in our proof of concept.

99

3 Concept and System Design

3.6 Conclusion

In this chapter we achieved research contribution RC1 by presenting and an-
alyzing a technology-independent design for a trustworthy distributed usage
control and provenance tracking system. Our design is centered around a
sticky policy concept to avoid any ambiguity between the targets of policy
deployments and data flows. Furthermore, we integrate provenance tracking
into the usage control enforcement process by leveraging ProSPs as additional
distributed system components. Our system design also includes several pro-
tection mechanisms ensuring the reliable enforcement of shared usage rules
even against malicious component operators in remote domains. Most im-
portantly, we propose a transitive remote attestation concept that dynami-
cally verifies the code integrity of all relevant usage control and provenance
tracking components. The established transitive attestation chains are always
rooted either at the original data provider, or at enforcement points request-
ing a usage decision or provenance operation. In addition, to prevent ad-
versaries from influencing the usage control enforcement by impersonating
system components, we also include a certificate-based component authenti-
cation scheme in our design. If either the remote attestation or authentication
of any required system component fails, the responsible enforcement points
will always fall back to denying the requested data usages by default.

In the second part of this chapter, we conducted a comprehensive security
analysis of the developed system design. In our analysis, we first identified
five main protection goals that the usage control and provenance tracking
system should fulfill, as well as four additional protection goals for individ-
ual system components. Furthermore, we presented an attacker model that
distinguishes external network attackers from internal attackers of various
capabilities, such as curious/malicious users and component administrators.
During our security analysis we found that the confidentiality and integrity
of shared data is threatened mainly by message interception and blockage at-
tacks on the usage control and provenance tracking process. Furthermore,
the required protection goals are also jeopardized by adversaries manipulat-
ing or impersonating system components. We show that our system design is

100

3.6 Conclusion

robust against these attacks by virtue of the proposed attestation and authen-
tication concept, as well as the underlying trusted computing technologies.
However, due to the limited attack vector and the drawbacks of countermea-
sures, we choose not to mitigate the malicious prevention of policy revoca-
tions. Finally, destructive attackers such as component administrators could
subvert the protection goals of transparency, non-repudiation, and availabil-
ity by deleting stored provenance information. Since a technical protection
measure proves difficult, we mitigate this attack vector by moving imperiled
components, such as ProSPs and PXPs, into trusted domains. Later, in chap-
ters 6 and 7 of this thesis, we also develop and evaluate a trustworthiness es-
timation method that allows policy issuers to verify the effectiveness of this
mitigation against deletion attacks in the current system state.

To summarize, in this chapter we laid the conceptual foundation for our de-
sired trustworthy usage control and provenance tracking framework by de-
veloping and evaluating an appropriate distributed system design. Since our
proposal allows the realization of flexible and generic use cases while protect-
ing the shared data against attacks even in remote domains, we have achieved
goal 1 of the thesis objective. However, so far we kept our system design
independent of concrete trusted computing technologies and conducted our
security analysis under the assumption of an idealized remote attestation pro-
tocol. Hence, we still need to identify to what extent real remote attestation
protocols and their underlying trusted computing technologies fulfill the se-
curity requirements that are necessary to reliably protect our system design.
Most importantly, the used trusted computing technologies must be able to
protect the confidentiality and integrity of data on the trusted platform. Fur-
thermore, as we discussed in our security analysis, our design also requires
suitable mechanisms to prevent rollback and duplication attacks. The remote
attestation protocol must be able to establish mutually attested and encrypted
communication channels that offer strong replay protection. In the follow-
ing chapter we instantiate our proposed remote attestation concept with real
trusted computing technologies and attestation protocols, concretely TPMs,
Intel SGX, and ARM TrustZone.

101

4 Technical Enforcement

In this chapter we develop technical mechanisms that are suitable to enforce
distributed usage control and provenance tracking based on trusted comput-
ing technologies. For this, in section 4.1 we identify the security requirements
that both the remote attestation protocols as well as the underlying trusted
computing technologies need to fulfill. In sections 4.2 to 4.4 we then discuss
the security properties of TPMs, Intel SGX, and ARM TrustZone, and analyze
the existing proposals for remote attestation protocols on these platforms. We
uncover that the currently used TPM-based remote attestation protocols have
security issues when protecting distributed usage control infrastructures. To
mitigate this, we develop and evaluate a remote attestation protocol that con-
ducts a TPM-internal key exchange. Furthermore, we also describe a trusted
boot process for ARM TrustZone platforms that allows to conduct measure-
ments both in the normal and the secure world of the device. In addition,
enforcing usage control and provenance tracking in distributed environments
requires a remote attestation protocol that allows to interconnect trusted plat-
forms that are protected by different technologies. To accommodate this, in
section 4.5 we extend an existing key exchange protocol with support for het-
erogeneous remote attestations. Finally, in sections 4.6 and 4.7 we discuss
some alternative attestation approaches and close with a brief conclusion.

Some of the contributions presented in this chapter have been partially pub-
lished in previous research papers. In [Wag18a] we analyzed the capabili-
ties and limitations of TPMs and Intel SGX to enforce usage control policies.
In [Wag20] we presented a first version of our remote attestation protocol
featuring a TPM-internal key exchange. Finally, in [Wag22c] we presented
an initial concept for a heterogeneous remote attestation handshake between
TPMs and Intel SGX enclaves.

103

4 Technical Enforcement

4.1 Security Requirements

During the security analysis of our proposed system design (see section 3.4),
we made several idealizing assumptions regarding the technical protection
mechanisms that our remote attestation concept relies on. In this section
we translate these assumptions into concrete security requirements for the
used remote attestation protocols, as well as the underlying trusted comput-
ing technologies. These security requirements must be fulfilled in order to
sufficiently protect the usage control and provenance tracking components of
our distributed system design against the identified attack vectors. We have
already described the attacker model for our scenario in section 3.3.2. Most
importantly, the strongest adversary expected to try and break the presented
security requirements are malicious component administrators.

First, we identify five security requirements T1 to T5 for the underlying
trusted computing technologies.

(T1) Code integrity: The trusted computing technology must offer a
measurement process that unambiguously establishes the code identity
of the Trusted Computing Base (TCB). Furthermore, there must be a
mechanism to protect the integrity of the measured code identity
against malicious tampering by internal attackers. This serves as the
technological basis for the remote attestation.

(T2) Data protection during storage: The trusted computing technology
must be able to protect the confidentiality and integrity of data that are
stored outside the TCB (e.g., on the file system).

(T3) Data protection during processing: The trusted computing
technology must be able to protect the confidentiality and integrity of
data while they are being processed on the trusted platform.

(T4) Duplication protection: The trusted computing technology must
offer mechanisms to detect or prevent the duplication of the trusted
platform and its protected components.

104

4.1 Security Requirements

(T5) Rollback protection: The trusted computing technology must offer
mechanisms to detect or prevent the rollback of the trusted platform
and its protected components.

Furthermore, we define five additional security requirements R1 to R5 for the
remote attestation protocols. As described in section 2.3.3, remote attesta-
tions are conducted between two network endpoints. During the attestation
process, the prover endpoint relies on the underlying trusted hardware to con-
vince the verifier of its TCB integrity. There are some commonly used secu-
rity requirements for remote attestation protocols available in the literature
[Wag20, Ban21], which we adopt and extend for our use case.

(R1) TCB authentication: The code identity of the attested TCB must be
unambiguously determined during the attestation handshake. No
adversary (be it external or internal) must be able to impersonate or
forge the code identity of a particular TCB. The authentication
property convinces a verifier of the attested platform’s code base.¹

(R2) Mutual attestation: A single protocol handshake must be able to
authenticate both endpoints simultaneously.

(R3) Replay protection: The attestation protocol must ensure the
freshness of the conducted attestation by preventing dishonest provers
from replaying previously intercepted information.

(R4) Secure channels: The attestation protocol must protect the
confidentiality and integrity of transmitted data against interception
and malicious tampering by internal attackers. This is usually achieved
by establishing a shared secret between both endpoints that is bound
to the authenticated code identities (i.e., that is known only to the
mutually attested TCBs).

(R5) Forward secrecy: Disclosing a long-term secret used to authenticate
the attestation and/or the secure channels must not compromise
previously established shared secrets.

¹ Note that we do not see the validation of the authenticated code identity (i.e., the authorization
of an attested TCB) as part of the attestation protocol.

105

4 Technical Enforcement

In the following sections we discuss what mechanisms and functions are re-
sponsible to fulfill the requirements T1 to T5 on trusted platforms based on
TPMs, Intel SGX, and ARM TrustZone, respectively. Furthermore, we ana-
lyze to what extent the existing remote attestation protocols can fulfill the
requirements R1 to R3. Note that we do not yet analyze published attacks
on the security properties promised by the different trusted computing tech-
nologies. We discuss this later in chapter 6 as part of our trustworthiness es-
timation method. The concrete application of these mechanisms and remote
attestation protocols to implement a trustworthy usage control and prove-
nance tracking system is described in chapter 5.

4.2 Using Trusted Platform Modules

As introduced in section 2.3.1, Trusted Platform Modules (TPMs) are tamper-
resistant hardware modules that are available on many computer systems to-
day. TPMs serve as hardware-based trust anchors and offer a wide variety
of different cryptographic functionalities, including remote attestation. Since
TPMs are passive co-processors instead of complete execution environments,
attesting the integrity of TPM-protected software stacks does not require any
modifications to the legacy applications. Because of this, TPMs are a conve-
nient technology for securing distributed usage control and provenance track-
ing systems. However, as we see in the remainder of this section, there also
are some drawbackswhen using TPMs for this purpose. In this sectionwe first
discuss the security properties of TPMs and identify to what extent they fulfill
our requirements. Then we give an overview of existing TPM-based remote
attestation protocols and point out their limitations, especially in the light
of nonce-data attacks. Finally, we present and evaluate a novel attestation
protocol that further improves the achieved security properties of TPM-based
remote attestation. For additional information about the TPM structures and
commands referenced in this section, we refer the reader to the respective
specification documents [Tru19c, Tru19d].

106

4.2 Using Trusted Platform Modules

4.2.1 Security Properties

Code integrity. As described earlier in section 2.3.1, TPMs allow to securely
collect integrity measurements of the software stack that is being executed
on the local platform. While the TPM does not actively conduct these mea-
surements itself, its Platform Configuration Registers (PCRs) can be used to
protect the measurement integrity against internal attackers. Even malicious
component administrators cannot influence this measurement process, be-
cause it is rooted in the trustworthy hardware. Furthermore, they cannot
tamper with the measurements after their collection, since the PCRs can only
be extended with further entries (cf. TPM2_PCR_Extend). Together, these proper-
ties of the PCRs are sufficient to ensure code integrity (requirement T1).

Data protection during storage. TPMs allow to securely store confidential
information in such a way that they can be decrypted only by the trusted
platform itself. This concept is also called sealing. Sealing can be achieved by
using the TPM’s enhanced authorization capabilities to create cryptographic
keys that are bound to certain PCR values (cf. TPM2_PolicyPCR). These keys can
then only be used on platforms that are in a pre-defined, trustworthy state.
This allows to protect the confidentiality and integrity of data that is stored
outside the TCB (requirement T2).

Data protection during processing. TPMs are passively used hardware
modules, which do not offer a dedicated Trusted Execution Environment.
Hence, TPMs cannot isolate user software or its data from the rest of the sys-
tem during processing. This results in a very large TCB, which includes the
firmware, the operating system, and all executed applications. Because of
this, TPMs can protect data confidentiality and integrity during processing
(requirement T3) only in the sense that we can exclude malicious software on
the trusted platform (cf. code integrity). However, data are being processed in
plain text on the trusted platform, which results in lower security guarantees
and additionally requires a-priori trust in the processing hardware (e.g., the
CPU and main memory).

107

4 Technical Enforcement

Duplication protection. A naive duplication of a single usage control com-
ponent on the trusted platform itself is not feasible due to the conducted in-
tegrity measurements. Since the TCB on TPM-protected platforms encom-
passes all executed applications, any duplicated entity will be detected during
the attestation. However, the duplication of single components (or even the
entire system) to another physical platform must also be prevented. This can
be achieved by protecting the component states using sealing keys that have
the fixedTPM attribute set. This prevents the sealing key (and by extension the
component states) from being duplicated to other TPM-protected platforms
using the TPM2_Duplicate command (requirement T4).

Rollback protection. TPMs offer non-volatile (NV) memory storage that
can be used for rollback protection. The simplest solution to prevent roll-
backs on a trusted platform is to use monotonic counters. These counters are
stored in NV memory and may only be updated using the TPM2_NV_Increment

command. The TPM does not allow to directly set or reset the counter, and
its value is preserved through reboots. Hence, a component can protect its
sealed state against rollbacks by including the current value of a monotonic
counter and updating it each time the state changes. When the component is
(re-)launched, it unseals its state and checks if the included value still matches
the monotonic counter at the TPM. This allows the component to detect if it
has been launched with an old state. The downside of this approach is that
only a limited amount of NV memory is available on the TPM chip and it
has a tendency to wear out quickly [Seg16, pp. 168–169]. Furthermore, this
approach is not resilient against system crashes, because the counter update
and storage process is not an atomic operation. If the platform crashes be-
tween the NV memory update at the TPM and the respective update in the
sealed state, the protected component cannot be launched again. To solve
this issue, instead of using monotonic counters, Parno et al. propose to store
chains of state hashes inside the NV memory [Par11]. This allows to keep a
log of all state updates, which in case of crashes can be used to recover from
inconsistent states. With TPM 2.0, these hash chains can be created using
the TPM2_NV_Extend command, which works very similar to the PCR extend op-
eration. The downside of this approach is that it requires the validation of

108

4.2 Using Trusted Platform Modules

the entire hash chain instead of just one counter. Strackx et al. improve on
this proposal by using additional guarded memory to avoid the expensive NV
memory writes during state update [Str14]. However, the required guarded
memory is usually only available on custom-tailored hardware platforms. Fi-
nally, Strackx and Piessens also propose another rollback protection method,
which provides crash resilience even with monotonic counters by implement-
ing them in a way that requires only single bit-flips [Str16]. To summarize,
even though TPM-protected trusted platforms do support rollback protection
(requirement T5), its correct implementation requires some care.

4.2.2 Remote Attestation Protocols

Besides discussing the security properties of the TPM itself, wemust also iden-
tify suitable TPM-based remote attestation protocols. More concretely, we re-
quire an attestation protocol that fulfills the identified requirements R1 to R5
and that provides its security guarantees not just against network attackers,
but also against internal adversaries such as malicious users or component
administrators. As introduced in section 2.3.3, remote attestation protocols
allow external verifiers to authenticate a trusted platform’s code identity. In
case of TPMs, the attestable code identity of a trusted platform is represented
by its PCR values. Generally, TPMs offer two different variants to attest to
code identities [Tru19a]. Implicit attestation leverages a signature key that is
bound to a certain set of PCRs (e.g., using the TPM2_PolicyPCR command). If a
trusted platform is able to provide a valid signature of a given challenge under
this key, then a remote verifier implicitly knows about the prover’s PCR state.
Since implicit attestation uses bound signature keys, it is mainly suitable for
cases where the trustworthy platform states do not change very often, and
user data need to be signed anyway. However, most remote attestation pro-
tocols instead use explicit attestation by leveraging the TPM2_Quote command.
This command creates a signed attestation report (i.e., a quote), which explic-
itly includes a digest of the current PCR values. As such, the created quote
serves as cryptographic proof of the attested platform’s current software state
to remote verifiers. However, for explicit attestation to work it must be en-
sured that the attestation key used to sign quotes has the restricted attribute

109

4 Technical Enforcement

set. This makes the attestation key usable only on TPM-internal data struc-
tures, which prevents a malicious prover from using the TPM to create valid
signatures over forged PCR digests.

Since TPMs have been around for a while, there are several proposals for
TPM-based remote attestation protocols on offer. The earliest proposals for
attestation protocols focus exclusively on reporting the integrity of remote
software stacks [Sai04, Cok11]. For this basic attestation concept, the net-
work endpoints simply exchange and then validate the generated quotes (cf.
fig. 4.1a). This mutually authenticates the TCBs of both participating end-
points (requirements R1 and R2). Furthermore, the exchanged quotes also
contain randomly drawn nonces for freshness (requirement R3). While this
attestation approach is very straightforward, it has been found to be vulnera-
ble against masquerading attacks [Stu06]. In addition, these protocols do not
establish any encrypted communication channels between the attested end-
points at all (requirements R4 and R5), and hence are not suitable for our use
case. In response to these issues, Stumpf et al. proposed to establish secure
channels by conducting an ephemeral Diffie-Hellman key exchange (DHKE)
that is bound to the attested platform’s code identity [Stu06]. This is achieved
by concatenating the generated Diffie-Hellman public keys¹ with the received
nonce, and using the result as qualifying data for the quote (cf. fig. 4.1b). Both
endpoints can then verify that the received public key has indeed been created
on a trusted platform with the attested PCR values, which prevents adver-
saries from intercepting the key exchange. Finally, the authenticated DHKE
establishes a shared secret between the attested platforms, which can then be
used to derive a symmetric session key. Since the Diffie-Hellman public keys
are freshly drawn for each attestation, this approach solves the problem of
both secure channel establishment and forward secrecy (requirements R4 and
R5). Because of these benefits, a few other attestation protocols have since
been based on this proposal as well [Stu08, Gre11, Akr16].

¹ In this thesis we refer to the disclosed and retained parts of the generated Diffie-Hellman tuple
as public and private keys, respectively. This is in accordance with the terminology recom-
mended by NIST [Bar18a, pp. 2–13]. The Diffie-Hellman public and private keys are not to be
confused with the symmetric shared secret Z that is established by the key exchange.

110

4.2 Using Trusted Platform Modules

Alice Bob

Nonce nA

nB, quote(nA)

quote(nB)

Verify quote Verify quote

(a) Basic integrity reporting

Alice Bob

nA, pkA

nB, pkB, quote(H(nA || pkB))

quote(H(nB || pkA))

Establish shared secret Z

skA

skB

Verify quote Verify quote

(b) Explicit Diffie-Hellman key exchange¹

Alice Bob

ClientHello, nA

ServerHello, nB

Certificate, quote(H(nA || certB))

Certificate, quote(H(nB || certA))

Verify quote Verify quote

(c) Integration into TLS

Alice Bob

Establish TLS connection

Nonce nA

nB, quote(H(nA || certA))

quote(H(nB || certB))

Verify quote Verify quote

Encrypted

(d) Post-connection linkage

Figure 4.1: Concepts of TPM-based remote attestation protocols.

To simplify the use of TPM-based remote attestation, several authors propose
to integrate attestation evidence into a TLS handshake (cf. fig. 4.1c). This has
the benefit of leveraging the underlying encryption and integrity protection
of the standard TLS protocol. Goldman et al. [Gol06] and Aziz et al. [Azi14]
propose to link the TLS certificates used for the establishment of secure chan-
nels to the attestation key with the help of external Certification Authorities.
Similarly, Gasmi et al. [Gas07] and Armknecht et al. [Arm08] use a modified
TLS handshake that leverages an asymmetric TPM key, which is sealed to
the current platform state and authenticated by an external CA. Cheng et al.
[Che09b] propose to link the TLS handshake to the attested platform by hash-
ing the TLS pre-master secret into the quote. However, this has the downside

¹ We denote the private and public Diffie-Hellman keys of a party A as skA and pkA, respectively.
This is to abstract from a concrete key agreement scheme, e.g., (sk, pk)≔ (x, gx mod p) for Finite
Field Diffie-Hellman and (sk, pk)≔ (d, dG) for Elliptic Curve Diffie-Hellman (see [Bar18a]).

111

4 Technical Enforcement

of not providing forward secrecy (requirement R5). Lan et al. [Lan14] propose
to link a TLS handshake to the trusted platform by extending the TLS proto-
col transcript into the PCRs. This has the drawback of changing the PCRs for
every conducted attestation, and it also requires a modified TLS handshake.
More recently, Walther et al. developed the RATLS protocol [Wal22], which
adopts a TLS v1.3 handshake and links the established channel to the attested
platforms by including the local TLS certificates into the quotes. Furthermore,
Zhou and Zhang [Zho10] propose to use a password-based authentication
scheme to establish secure channels in remote attestation protocols.

Finally, Brost develops the International Data Space Communication Protocol
(IDSCP), which leverages a different method of linking TLS certificates to the
attested code identities [Bro22]. The idea behind IDSCP is to first open amutu-
ally authenticated and encrypted TLS connection between both endpoints us-
ing a standard TLS handshake. Then the endpoints exchange their nonces and
validate their quotes over the encrypted channel itself. To link the underly-
ing TLS session with the attested platforms, each endpoint hashes the remote
TLS certificate received during the handshake into their quote (cf. fig. 4.1d).
During validation, the endpoints check that the received quote contains both
the expected nonce and the hash of their own TLS certificate. This protects
against man-in-the-middle attacks by ensuring that the attested peer is using
the right TLS certificate for the channel authentication. The advantage of this
post-connection certificate linkage is that it does not require any modifica-
tion of the underlying TLS handshake. Furthermore, unlike the previously
presented proposals, the IDSCP protocol implementation is publicly available
under the Apache license.¹

To summarize, there have been several proposals for TPM-based remote at-
testation protocols over the recent years. The most promising candidate for
our purposes is IDSCP, because it is already actively used to protect usage
control infrastructures in virtual data spaces.² However, as we see in the next
section, there are still some open security issues that need to be solved.

¹ https://github.com/industrial-data-space/idscp2-jvm (accessed on 12/08/2023).
² https://github.com/Fraunhofer-AISEC/trusted-connector (accessed on 12/08/2023).

112

https://github.com/industrial-data-space/idscp2-jvm
https://github.com/Fraunhofer-AISEC/trusted-connector

4.2 Using Trusted Platform Modules

4.2.3 Attacks on Existing Protocols

In this section we discuss two attack vectors on TPM-based remote attesta-
tion protocols, which are especially relevant when protecting distributed us-
age control components. In combination, we find these attack vectors to be
insufficiently addressed by the existing proposals.

Attacks by internal adversaries. Most proposed remote attestation pro-
tocols use the common Dolev-Yao threat model, which considers network at-
tackers capable of intercepting and tampering with any transmitted messages.
Under this attacker model, the goal of a remote attestation protocol is to pre-
vent an adversary controlling the network from impersonating a trusted plat-
form. However, in the case of distributed usage control we also have to deal
with internal attackers such as malicious users and component administra-
tors, who are motivated to bypass the enforcement of usage rules. These
internal attackers are more powerful than network attackers, because they
have complete access to the trusted platforms and must be assumed to know
any long-term secrets that are not protected by the TPM, such as TLS private
keys and passwords. Internal attackers can use these long-term secrets to in-
tercept some of the proposed protocol handshakes, or outright decrypt the
communication between the attested trusted platform and the remote veri-
fier. More concretely, the proposals by Cheng et al. [Che09b], Goldman et al.
[Gol06], and Aziz et al. [Azi14] allow internal attackers to passively intercept
data transmitted over the attested channel by decrypting the TLS pre-master
secret during the protocol handshake. IDSCP [Bro22] and RATLS [Wal22]
instead use TLS handshakes with perfect forward secrecy, but only authenti-
cate the long-term TLS certificates over the quotes, and are hence vulnerable
to man-in-the-middle attacks by internal adversaries with knowledge of the
corresponding TLS private keys. Finally, the proposal by Zhou and Zhang
[Zho10] is susceptible to a man-in-the-middle attack that uses the long-term
passwords to authenticate an internal adversary. Those approaches that use
only TPM-internal long-term secrets [Gas07, Arm08] or rely exclusively on
ephemeral keys [Stu06, Stu08, Gre11, Akr16] are not vulnerable to this attack.

113

4 Technical Enforcement

Nonce-data attacks. Another threat that must be considered when using
TPMs to protect trustworthy distributed usage control infrastructures are
nonce-data attacks. Nonce-data attacks exploit the improper use of a quote’s
qualifying data for key authentication [Seg16, pp. 144–146]. Zhou and Zhang
describe how this issue can lead to man-in-the-middle attacks in scenarios
where trusted platforms are colluding with network attackers [Zho10]. In
the case of distributed usage control enforcement, we face a scenario where
a variant of this attack is applicable. This is because we must assume that
trusted platforms may include additional attestation endpoints, for example
as part of third-party data processing applications running on the usage-
controlled trusted platforms. These attestation endpoints can be exploited
as oracles providing quotes for arbitrary qualifying data. Figure 4.2 shows
how a nonce-data attack can be mounted against the enforcement step of a
distributed usage control system in such a scenario. We show the attack on
an IDSCP handshake,¹ since it is the most recent attestation protocol that is
being actively operated in usage controlled environments. However, earlier
attestation protocols using qualifying data for key authentication, i.e., [Stu06,
Stu08, Che09b, Gre11, Akr16], are also vulnerable to this attack.

PEP Attacker App PDP

quote(H(nPEP || certPEP))

Establish TLS connection

Nonce nPEP

Nonce H(nPEP || certPEP)

quote(H(nPEP || certPEP))

Verify quote
notify(pid, event)

allow

certPEP certA
certPDP

Figure 4.2: A nonce-data attack on IDSCP during usage control enforcement. Only one half of
the mutual attestation is shown.

¹ The complete IDSCP protocol is described in [Bro22]. For convenience purposes, we provide
the relevant excerpt of an IDSCP handshake in appendix A.

114

4.2 Using Trusted Platform Modules

In this example, a data receiver intends to intercept the communication be-
tween a PEP and its PDP in order to bypass usage restrictions. For this, the
attacker first establishes a TLS connection and then intercepts the PEP’s nonce
during the subsequent IDSCP handshake. Since the attacker uses an untrusted
platform, a valid quote cannot be generated locally. Instead, the attacker cal-
culates the hash of the intercepted nonce and the PEP’s TLS certificate, and
then uses the resulting digest as a nonce for a separate attestation request
to the third-party application running on the same platform as the PDP. The
contacted application then uses the TPM on the local platform to create a
quote that includes the forwarded hash digest as qualifying data. Note that
this hash digest is indistinguishable from a randomly chosen nonce. Finally,
the attacker forwards the received quote to the PEP and completes the IDSCP
handshake. During quote validation, the PEP checks if the received quote is
signed by the correct TPM and if it includes the expected PCR values. Further-
more, the quote must contain the expected nonce and the local TLS certificate
(cf. fig. 4.1d). Since all of this is true, the PEP accepts the established TLS
channel and the attacker is considered to be authenticated. Now the attacker
can easily bypass any usage rules by answering all evaluation requests with
an ALLOW decision. Note that for this attack to succeed, we do not even need
to assume an internal attacker with access to the TLS long-term secrets. The
attacker can just use any valid TLS certificate certA, which is accepted by the
PEP, to establish the initial communication channel and execute the attack.
However, if we do assume that an internal attacker has access to the TLS pri-
vate keys of the PEP, the attack becomes even easier. Such an attacker could
impersonate the PEP to the PDP and thus receive a valid quote from the orig-
inal PDP during the normal IDSCP handshake. This quote can then be used
to complete the IDSCP handshake with the original PEP. In that case we do
not even require a secondary attestation endpoint for the attack to succeed.

Table 4.1 gives a complete overview of the discussed protocols and their limi-
tations. To summarize, most existing protocols are not suitable for protecting
distributed usage control systems, because they are vulnerable either to man-
in-the-middle attacks by internal adversaries, or to nonce-data attacks. Be-
cause of this, we still need to define a suitable TPM-based remote attestation
protocol that can be used to protect our trustworthy usage control design.

115

4 Technical Enforcement

Table 4.1: Overview of TPM-based remote attestation protocols.

Proposal R1 R2 R3 R4 R5 Remarks
Sailer et al. [Sai04] 3 7 3 - - No key exchange
Goldman et al. [Gol06] 3 7 3 7¹ 7

Stumpf et al. [Stu06, Stu08] 3 7 3 7² 3

Gasmi et al. [Gas07] 3 3 3 3 3 TPM 1.2 only
Armknecht et al. [Arm08] 3 3 3 3 3 TPM 1.2 only
Cheng et al. [Che09b] 3 7 3 7¹,² 7

Zhou and Zhang [Zho10] 3 3 3 7¹ 7

Coker et al. [Cok11] 3 7 3 - - No key exchange
Greveler et al. [Gre11] 3 3 3 7² 3

Aziz et al. [Azi14] 3 3 3 7¹ 7

Lan et al. [Lan14] 3 7 3 3 3

Akram et al. [Akr16] 3 3 3 7² 3

IDSCP [Bro22] 3 3 3 7¹,² 3

RATLS [Wal22] 3 3 3 7¹ 3

4.2.4 The MSCP Protocol

In this section we present the Mutually-Attested Secure Communication Proto-
col (MSCP) as our proposal for a TPM-based remote attestation protocol that
fulfills all identified security requirements R1 to R5, and hence is suitable for
protecting distributed usage control systems. The MSCP protocol comes in
two variants with different advantages and drawbacks. In order to avoid the
presented security pitfalls of earlier proposals, we need to address two chal-
lenges. First, in order to prevent man-in-the-middle attacks by internal ad-
versaries, we need to avoid any (long-term) secrets stored outside the TPM.
Second, we need to properly bind the ephemeral keys that establish the en-
crypted channel to the attested code identities, such that it is not susceptible
to nonce-data attacks. We achieve both challenges by leveraging the crypto-
graphic primitives that TPM 2.0 provides for key agreement purposes.

¹ Vulnerable to man-in-the-middle attacks by internal adversaries.
² Vulnerable to nonce-data attacks.

116

4.2 Using Trusted Platform Modules

Protocol description. We assume that prior to the start of the protocol, both
participants have taken ownership of their respective TPMs and created a
Storage Root Key (SRK), as well as an Attestation Key (AK) together with a
corresponding certificate. TheAK certificates are usually provisionedwith the
help of a trusted CA [Tru21b], but this process is out of scope for the MSCP
protocol. Table 4.2 shows the MSCP protocol messages between two com-
munication endpoints 𝐴 and 𝐵. Note that the terminology used in table 4.2
closely follows the TPM 2.0 specification [Tru19c, Tru19d].

Table 4.2: The MSCP remote attestation protocol.

Initiation phase
𝐴, 𝐵 ∶ 𝑑ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← TPMT_PUBLIC(decrypt, KEY_SCHEME_ECDH)
𝐴 → 𝐵 ∶ Non-predictable nonce 𝑁𝐴 and PCR selection 𝑃𝐶𝑅𝑆𝑒𝑙𝐴 (1)
𝐴 ← 𝐵 ∶ Non-predictable nonce 𝑁𝐵 and PCR selection 𝑃𝐶𝑅𝑆𝑒𝑙𝐵 (2)

Attestation phase
𝐴 ∶ 𝑑ℎ𝐴 ← TPM2_Create(𝑠𝑟𝑘𝐴, 𝑃𝐶𝑅𝑆𝑒𝑙𝐵, 𝑑ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
𝐴 ∶ (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐴, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐴) ← TPM2_CertifyCreation(𝑎𝑘𝐴, 𝑑ℎ𝐴, 𝑁𝐵)
𝐴 → 𝐵 ∶ 𝑎𝑘𝐶𝑒𝑟𝑡𝐴, 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐, (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐴, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐴) (3)

𝐵 ∶ 𝑑ℎ𝐵 ← TPM2_Create(𝑠𝑟𝑘𝐵, 𝑃𝐶𝑅𝑆𝑒𝑙𝐴, 𝑑ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
𝐵 ∶ (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐵, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐵) ← TPM2_CertifyCreation(𝑎𝑘𝐵, 𝑑ℎ𝐵, 𝑁𝐴)

𝐴 ← 𝐵 ∶ 𝑎𝑘𝐶𝑒𝑟𝑡𝐵, 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐, (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐵, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐵) (4)
Verification phase

𝐴 ∶ Verify (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐵, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐵) is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐵
𝐴 ∶ Verify 𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐵 contains expected PCRs, 𝑁𝐴, and 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐
𝐴 ∶ 𝑍 ← TPM2_ECDH_ZGen(𝑑ℎ𝐴, 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐) (5)

𝐵 ∶ Verify (𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐴, 𝑐𝑒𝑟𝑡𝑆𝑖𝑔𝐴) is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐴
𝐵 ∶ Verify 𝑐𝑒𝑟𝑡𝐼𝑛𝑓𝑜𝐴 contains expected PCRs, 𝑁𝐵, and 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐
𝐵 ∶ 𝑍 ← TPM2_ECDH_ZGen(𝑑ℎ𝐵, 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐) (6)

𝐴 ↔ 𝐵 ∶ Establish encrypted channel using shared secret 𝑘 ≔ 𝐾𝐷𝐹(𝑍)

During the initial phase of the protocol, both participants create and exchange
random nonces, as well as a selection of the PCRs that they want to verify
(1,2). In the remainder of the handshake, we leverage the Elliptic Curve Diffie-
Hellman (ECDH) key agreement functionalities provided by the TPM to es-
tablish an ephemeral shared secret between both participants. Furthermore,

117

4 Technical Enforcement

we conduct the mutual attestation by directly associating the ECDH key pairs
created by the TPM with the current values in the PCRs registers, instead of
signing them using the TPM2_Quote command. This can be done by calling the
TPM_Create command with an ECDH key template, as well as the PCR selection
requested by the peer [Tru19d, pp. 44–47]. Note that setting the decrypt flag
in the key template is necessary for the TPM to create ephemeral ECDH key
pairs that can be used for a key agreement scheme [Tru19c, p. 143]. We then
use the TPM_CertifyCreation command to generate a certificate for the created
ECDH public key, which now includes the received nonce, as well as the key’s
creation data containing the current PCR values [Tru19d, pp. 149–150]. This
certificate is signed by the attestation key and serves the purposes of (i) at-
testing to the platform’s PCR values, and (ii) authenticating the created ECDH
public key by binding it to the attested platform. The attestation phase is con-
cluded by mutually exchanging the AK certificates, the created ECDH public
keys, and the ECDH certificates authenticating them (3,4). Finally, both par-
ticipants verify that the received ECDH certificate is correctly signed under
the remote attestation key. Furthermore, the certificate must contain the ex-
pected nonce, the expected PCR values, and the received ECDH public key.
If the verification is successful, the received public key is correctly bound to
the attested platform and can be used to calculate the shared secret 𝑍 using
the TPM2_ECDH_ZGen command [Tru19d, pp. 94–95] (5,6). After applying a key
derivation function (KDF), the determined shared secret can be used as seed
for an authenticated encryption layer between both endpoints. Note that the
MSCP handshake only specifies how to establish a mutually attested, shared
secret between two TPM-protected platforms. The underlying transport se-
curity is not part of the protocol and should be realized using open source
and well-reviewed cryptographic libraries.

Security discussion. The proposed MSCP protocol fulfills the security re-
quirements defined in section 4.1. Most importantly, the protocol handshake
includes an ephemeral ECDH key exchange to establish a shared secret be-
tween the attested endpoints. The key agreement is conducted by the TPM
itself and the ephemeral Diffie-Hellman private keys never leave the protected

118

4.2 Using Trusted Platform Modules

hardware. Furthermore, we authenticate the ECDH keys by signing them di-
rectly with the attestation key using TPM2_CertifyCreation. This cryptograph-
ically binds the key exchange to the trusted platform. Since the attestation
key never leaves the TPM, even internal attackers cannot intercept the hand-
shake by forging a key signature. Hence the requirement of secure channel
establishment is fulfilled (R4). Furthermore, the ephemeral ECDH key ex-
change also achieves perfect forward secrecy (R5). As a result, assuming that
the used transport encryption engine is secure, confidentiality and integrity
of transmitted data is ensured even against internal attackers with access to
long-term secrets. Themutual attestation and authentication of the endpoints’
TCBs (R1 and R2) is achieved by associating the ECDH keys with the platform
PCR values at the time of their creation. For this, we configure the TPM2_Create

command to include the requested PCR values into the creation data field¹ of
the generated ECDH keys. Then the TPM2_CertifyCreation command not only
signs the public parts of the ephemeral ECDH keys, but the associated PCR
values as well. Since the attestation key is unknown even to internal attack-
ers, the mutual attestation cannot be forged in our scenario either. Finally, the
proposed handshake includes fresh nonces to prevent replay attacks against
both the key exchange and the mutual attestation (R3). However, besides pro-
tecting the handshake itself, it is also necessary to prevent replay attacks on
the data that is subsequently transmitted over the established secure channel
(e.g., ALLOW decisions). This can be achieved by using an authenticated trans-
port encryption such as AES-GCM [Jim22]. In addition to fulfilling the given
requirements, MSCP also avoids the vulnerabilities identified in earlier pro-
posals. Man-in-the-middle attacks by internal adversaries are not feasible, be-
cause the protocol handshake does not rely on any long-term secrets such as
TLS certificates. MSCP is also not susceptible to nonce-data attacks, because
it does not authenticate the ephemeral keys by hashing them into the quote.

To verify that our proposal is indeed secure against these attacks and ful-
fills our security requirements, we formally validated the protocol with the
Tamarin protocol prover [Mei13]. The formal verification shows that MSCP

¹ See also [Tru19b, p. 182] and [Tru19c, p. 159] for more details about the contents and structure
of the creation data field that is associated with TPM objects.

119

4 Technical Enforcement

fulfills the protocol requirements R1 to R5. Furthermore, we explicitly mod-
eled the nonce-data attack vector by introducing a quote oracle that gives
attackers signed quotes for arbitrary attacker-chosen qualifying data. This
allows us to recreate the nonce-data attack on IDSCP as depicted in fig. 4.2
with the theorem prover, and show that by contrast MSCP is not vulnerable
in this scenario. The details of the formal verification, as well as the complete
protocol formalizations, are given in appendices B.1 and B.2. In summary,
MSCP avoids the issues of earlier proposals and as such is suitable to pro-
tect distributed usage control infrastructures. It also provides a rather sim-
ple handshake with just three TPM commands per endpoint. However, the
downside of conducting TPM-internal key exchanges is the expected perfor-
mance overhead, since asymmetric cryptographic operations (e.g., an ECDH
key generation) are usually much slower on hardware TPMs than most CPUs.

Protocol variants. To provide a protocol alternative that avoids these par-
ticularly slow TPM operations, we also define a variant of MSCP that uses
an externally conducted ECDH key agreement, instead of the previous TPM-
internal one. This means that the ephemeral ECDH key pairs are not cre-
ated by the TPM using the TPM2_Create command anymore, but are instead
generated by a software library running on the much faster CPU. However,
this once again opens up the challenge of properly binding the ECDH pub-
lic keys to the attested platform. Since attestation keys are restricted to only
sign TPM-internal objects, we cannot use the TPM2_CertifyCreation command
to directly certify ephemeral keys that have been created outside of the TPM.
As we have seen earlier, previous proposals such as IDSCP are vulnerable
against nonce-data attacks due to an improper binding of the secure channel
to the attested platform (see fig. 4.2). To prevent such vulnerabilities against
nonce-data attacks, we authenticate the TPM-external key agreement using
the PCRs instead of the quote’s qualifying data. Table 4.3 shows the result-
ing MSCP protocol sequence using a TPM-external key agreement. During
the attestation phase, a software library (e.g., OpenSSL) is used instead of the
TPM to create new ephemeral ECDH key pairs (1,3). We then link the created
ephemeral public keys to the attestation identity by extending their SHA-256
hash digests into the PCRs (2,4). We choose PCR 16 for this purpose, because

120

4.2 Using Trusted Platform Modules

it is one of the few PCRs that can be reset to zero before the extension [Seg16,
p. 210]. This allows us to keep sequential handshakes independent from each
other. It also avoids interfering with the platform integrity measurements,
which are usually conducted using PCRs 0 to 10. We then use the TPM2_Quote

command to sign the PCRs with the attestation key, thereby attesting to the
platform state, as well as achieving the desired ECDH key binding. During
the verification phase, the received ECDH public keys are authenticated by
comparing their hash with the contents of the quoted PCR 16. Once the key
agreement is completed by the software library (5,6), the shared secret can be
used to establish a secure channel between the attested platforms.

Table 4.3: MSCP variant with TPM-external key agreement.

Initiation phase
𝐴 → 𝐵 ∶ Non-predictable nonce 𝑁𝐴 and PCR selection 𝑃𝐶𝑅𝑆𝑒𝑙𝐴
𝐴 ← 𝐵 ∶ Non-predictable nonce 𝑁𝐵 and PCR selection 𝑃𝐶𝑅𝑆𝑒𝑙𝐵

Attestation phase
𝐴 ∶ 𝑑ℎ𝐴 ← ECDH_Create() (1)
𝐴 ∶ TPM2_PCR_Reset(16)
𝐴 ∶ TPM2_PCR_Extend(16, SHA256(𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐)) (2)
𝐴 ∶ 𝑞𝑢𝑜𝑡𝑒𝐴 ← TPM2_Quote(𝑎𝑘𝐴, 𝑁𝐵, 𝑃𝐶𝑅𝑆𝑒𝑙𝐵 ∪ {16})
𝐴 → 𝐵 ∶ 𝑎𝑘𝐶𝑒𝑟𝑡𝐴, 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐, 𝑞𝑢𝑜𝑡𝑒𝐴

𝐵 ∶ 𝑑ℎ𝐵 ← ECDH_Create() (3)
𝐵 ∶ TPM2_PCR_Reset(16)
𝐵 ∶ TPM2_PCR_Extend(16, SHA256(𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐)) (4)
𝐵 ∶ 𝑞𝑢𝑜𝑡𝑒𝐵 ← TPM2_Quote(𝑎𝑘𝐵, 𝑁𝐴, 𝑃𝐶𝑅𝑆𝑒𝑙𝐴 ∪ {16})

𝐴 ← 𝐵 ∶ 𝑎𝑘𝐶𝑒𝑟𝑡𝐵, 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐, 𝑞𝑢𝑜𝑡𝑒𝐵
Verification phase

𝐴 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝐵 is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐵
𝐴 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝐵 contains expected PCRs, 𝑁𝐴, and 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐
𝐴 ∶ 𝑍 ← ECDH_ZGen(𝑑ℎ𝐴, 𝑑ℎ𝐵.𝑝𝑢𝑏𝑙𝑖𝑐) (5)

𝐵 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝐴 is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐴
𝐵 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝐴 contains expected PCRs, 𝑁𝐵, and 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐
𝐵 ∶ 𝑍 ← ECDH_ZGen(𝑑ℎ𝐵, 𝑑ℎ𝐴.𝑝𝑢𝑏𝑙𝑖𝑐) (6)

𝐴 ↔ 𝐵 ∶ Establish encrypted channel using shared secret 𝑘 ≔ 𝐾𝐷𝐹(𝑍)

121

4 Technical Enforcement

Like MSCP with TPM-internal key establishment, this protocol variant also
fulfills all of our security requirements and is not vulnerable against nonce-
data attacks or man-in-the-middle attacks by internal adversaries (see ap-
pendix B.2 for the formal verification). Furthermore, it has the benefit of
leveraging the greater computational power of the CPU for the expensive
ECDH key agreement. It also allows to choose from a wider variety of elliptic
curves than what is usually implemented in the hardware TPM. However, by
conducting the key exchange outside the TPM, we no longer profit from the
secure hardware to protect the ECDH private keys. Note that since these are
ephemeral keys instead of long-term secrets, this does not cause a vulnerabil-
ity to the previously described attacks by internal adversaries. Nevertheless,
we now must ensure that the used software library properly implements this
key agreement, which increases the size of the TCB.We also need to make the
additional assumption that the trusted software stack does not allow external
adversaries to extend PCR 16 with arbitrary data. The result of these con-
siderations is a trade-off between leveraging the secure TPM hardware to its
full extent and using the improved performance of the CPU. We evaluate and
compare the performance of bothMSCP protocol variants later in this section.

Finally, another design alternative would be to not conduct a dedicated ECDH
key exchange at all, but instead create self-signed TLS certificates at both end-
points and authenticate them using the presented mechanisms. Because TLS
since version 1.3 always conducts ephemeral key exchanges anyway [Res18],
this solution would essentially just add another level of indirection. While the
protocol variant using PCR 16 to authenticate the public keys can be modi-
fied rather easily to accommodate this, supporting TPM-internal keys would
require a TPM-aware TLS implementation. Since we later integrate the mutu-
ally attested key exchange of MSCP into a heterogeneous attestation protocol
anyway (see section 4.5), we choose to not include TLS in our proposal.

Protocol implementation and evaluation. We implemented and evalu-
ated both proposed variants of MSCP in Java using the Microsoft TSS.MSR¹

¹ https://github.com/microsoft/TSS.MSR (accessed on 01/23/2024).

122

https://github.com/microsoft/TSS.MSR

4.2 Using Trusted Platform Modules

API for TPM 2.0. To provide a usable MSCP protocol stack and achieve real-
istic handshake connection times, we integrated our attestation protocol into
standard Java TCP sockets. When a new TCP connection is established be-
tween client and server, our implementation automatically conducts the at-
testation handshake and validates the received attestation evidence. For the
ECDH ephemeral key agreementwe use theNIST P-256 elliptic curve, because
its support is mandated by the TPM 2.0 profile specification [Tru20]. After a
successful attestation, all communication over the attested sockets is transpar-
ently encrypted using a 128 bit AES session key derived from the established
shared secret with the PBKDF2 key derivation function. Our complete code is
available online for verification purposes.¹ Furthermore, to allow for a com-
parison with existing proposals, we also implemented some of the previous
attestation protocols discussed in section 4.2.2. In total, we implemented and
evaluated six different attestation protocols.

1) Uni-directional attestation using TPM2_Quote without key establishment.

2) Bi-directional attestation using TPM2_Quote without key establishment.

3) Bi-directional attestation using TPM2_Quote over a TLS channel. The
TLS certificates are authenticated by hashing them into the quote.
This is the attestation mechanism used by IDSCP [Bro22].

4) Bi-directional attestation using TPM2_Quote with a dedicated
Diffie-Hellman key exchange. The key exchange is authenticated by
hashing the ephemeral public keys into the quote. This is the
attestation mechanism used by the protocols that are based on the
proposal by Stumpf et al. [Stu06, Stu08, Gre11, Akr16].

5) MSCP with a TPM-external Diffie-Hellman key exchange as defined in
table 4.3. The key exchange is authenticated by extending the
ephemeral public keys into PCR 16.

6) MSCP with a TPM-internal Diffie-Hellman key exchange as defined in
table 4.2. The key exchange is authenticated by certifying the
ephemeral public keys directly with the attestation key.

¹ https://gitlab.cc-asp.fraunhofer.de/tpm-20-commons/tpm-java (accessed on 12/08/2023).

123

https://gitlab.cc-asp.fraunhofer.de/tpm-20-commons/tpm-java

4 Technical Enforcement

0

200

400

600

800

1000

1200

UNI BID BID-SSL BID-DH MSCP (Ext) MSCP (Int)

C
o

n
n

ec
ti

o
n

 t
im

e
[m

s]

PCR Operations TPM Quoting TPM Key Exchange Non-TPM n=100

249 (±19)

497 (±20) 502 (±24) 508 (±21)
570 (±21)

1150 (±37)

(a) Using Infineon SLB9670 on a Thinkpad T480s, 16GB RAM, Windows 10

0

200

400

600

800

1000

1200

UNI BID BID-SSL BID-DH MSCP (Ext) MSCP (Int)

C
o

n
n

ec
ti

o
n

 t
im

e
[m

s]

PCR Operations TPM Quoting TPM Key Exchange Non-TPM n=100

259 (±24)

515 (±35) 511 (±29) 515 (±34)
574 (±31)

816 (±30)

(b) Using Intel PTT on an i7-9700KF server, 32GB RAM, Windows 10

Figure 4.3: Mean connection times for TPM-based remote attestation protocols in milliseconds.
The standard deviation is given in brackets.

Figure 4.3a shows the mean connection times over 100 handshakes using the
widespread Infineon SLB9670¹ TPM 2.0 hardware module. As we can see, the
majority of the connection time is expended for creating the attestation evi-
dence using TPM2_Quote. We used an RSA 2048 bit attestation keywith SHA-256

¹ https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-
security-solutions/optiga-tpm/slb-9670vq2.0/ (accessed on 12/08/2023).

124

https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/

4.2 Using Trusted Platform Modules

digests for all of our tests, which brings the complete handshake time for a bi-
directional remote attestation to around 500 milliseconds. Our MSCP proto-
col variant with TPM-external key establishment takes about 60 milliseconds
longer than the previous proposals using a Diffie-Hellman key exchange. This
is because we require one additional TPM2_PCR_Reset and TPM2_PCR_Extend oper-
ation for each endpoint during the attestation. Finally, the MSCP handshake
with TPM-internal key establishment takes about twice as long as with exter-
nal key establishment. This is due to the overhead for creating and loading
the ephemeral ECDH keys using TPM2_Create, as well as the final calculation
of the shared secret using TPM2_ECDH_ZGen. Even though the internal key es-
tablishment avoids additional PCR operations, using the TPM for this task is
much slower than using the CPU. In addition to the Infineon TPM, we also
conducted a performance evaluation using Intel’s Platform Trust Technology¹
(PTT). Intel PTT includes a TPM 2.0 implementation that is integrated into
many current processors, making it a very widespread TPM module as well.
As fig. 4.3b shows, on this platform the attestation protocols produce results
that are generally comparable to the Infineon TPM, mainly due to similar ex-
ecution times of the underlying TPM operations. However, the performance
of the MSCP protocol with internal key exchange is noticeably improved by
over 300 milliseconds compared to the previous configuration. This is caused
by a lower overhead for the TPM-managed ephemeral key exchange, which
is most likely the result of a more efficient internal implementation.

To conclude, our results show a noticeable performance impact on the attesta-
tion when using the TPM itself to conduct the ephemeral Diffie-Hellman key
exchange. Given that hardware TPMs are much slower than CPUs especially
for asymmetric cryptography, this is not unexpected. However, depending
on the required frequency of re-attestation, the increased latency may still be
acceptable for the benefit of protecting the key exchange with the secure TPM
hardware. Alternatively, the MSCP protocol variant with external key estab-
lishment achieves a comparable performance to the previous proposals, with
the added benefit of not being vulnerable to nonce-data attacks anymore.

¹ https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-
security-platform-trust-technology-white-paper.pdf (accessed on 12/08/2023).

125

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf

4 Technical Enforcement

4.3 Using Intel SGX

The Intel Software Guard Extensions (SGX) are a trusted computing technol-
ogy for Intel’s product line of server CPUs. In contrast to TPMs, Intel SGX is
designed as a dedicated Trusted Execution Environment (TEE). SGX enclaves
are completely isolated from the rest of the system, including the operating
system and other user applications (see section 2.3.2). Because of this, SGX
enclaves achieve a much smaller TCB than TPM-protected systems, which is
a clear security advantage. Hence, SGX is a good candidate to protect the in-
tegrity of usage control and provenance tracking components. In this section
we discuss the security properties of SGX enclaves and show that they fulfill
our requirements. We furthermore give an overview of existing proposals for
SGX-based attestation protocols.

4.3.1 Security Properties

Code integrity. As described further in section 2.3.2, SGX processors auto-
matically conduct integrity measurements when launching enclaves. This is
done by hashing the loaded memory pages of the enclave via the EADD and EEX-

TEND processor instructions (see fig. 2.8). Because of this, the resulting enclave
measurement value (i.e., MRENCLAVE) uniquely represents the initial state of the
enclave including its code and data. This value is securely stored inside the
enclave’s internal data structures and can only be altered by the processor’s
SGX implementation [Cos16a, p. 59]. Hence, the MRENCLAVE value is suitable to
ensure code integrity (requirement T1).

Data protection during storage. Like TPMs, SGX enclaves also support
sealing of confidential data to the TCB. For this, SGX processors allow en-
claves to derive a unique sealing key using the EGETKEY instruction. This key is
derived by the processor from the local platform secrets. It also includes the
enclave measurements that have been collected during launch. Hence, this
key is unique for the local platform and can only be calculated by that specific
enclave itself. Alternatively, the EGETKEY instruction can also derive a sealing

126

4.3 Using Intel SGX

key from the MRSIGNER value. This results in a sealing key that is accessible to
all enclaves signed with the same signing key, which is useful for provision-
ing secrets to multiple enclaves at once. However, unlike TPMs, SGX does not
allow to arbitrarily create new sealing secrets. Instead, if multiple different
sealing keys are required, a nested encryption approach is chosen. For this,
the enclave internally generates new cryptographic keys for the required pur-
poses, and then seals the respective private keys with the symmetric sealing
key retrieved by EGETKEY. All in all, SGX enclaves can protect the confidential-
ity and integrity of data that is stored outside the TCBs (requirement T2).

Data protection during processing. Besides sealing, SGX enclaves also of-
fer strong protection of data confidentiality and integrity during processing.
This is due to the complete isolation of executed enclaves from the rest of the
system. While SGX enclaves are being executed, the SGX processor is respon-
sible for preventing any non-enclave code from accessing the processed data.
If the enclave’s memory pages are evicted from the processor cache, they are
automatically encrypted with a processor-internal secret key. Furthermore,
there is no way for other code to directly call into an enclave, including priv-
ileged components such as the operating system. Any communication with
the enclave can only be conducted over well-defined interfaces using the EEN-

TER and EEXIT instructions (see section 2.3.2). Because of this, each enclave can
decide for itself under which conditions information may be released outside
the TCB. Hence, the SGX architecture by design protects data confidentiality
and integrity even during processing (requirement T3).

Duplication and rollback protection. SGX prevents the duplication of
launched enclaves to other platforms by ensuring that sealed enclave states
can only be read by one particular SGX processor containing the original plat-
form secrets. However, enclaves can still be duplicated by simply creating
multiple instances of a single enclave image on one platform. With the same
memory image, these enclave instances will all have the same MRENCLAVE mea-
surement value, and hence have access to the same sealed data. This would al-
low attackers to duplicate launched enclaves together with their sealed states,

127

4 Technical Enforcement

and henceforth operate multiple independent instances of deployed compo-
nents. In the case of distributed usage control this could lead to serious secu-
rity issues, for example when multiple independent CA enclaves for the same
domain URI exist (see section 3.4.2). To mitigate this problem, local enclave
duplication (requirement T4) can be detected using monotonic counters. Sim-
ilar to TPMs, such hardware counters can only be increased and hence allow
enclaves to detect if there are other active instances present on the platform
that are operating on the same counter. However, unlike in TPMs, the sup-
port of monotonic counters is not guaranteed in all SGX processors, because
it requires additional non-volatile memory banks in the hardware [Mat17].
Furthermore, monotonic counters are known to have issues with wear and
performance as well [Mat17]. Besides duplication, SGX must also be able to
protect against rollback attacks (requirement T5). Since this is a similar is-
sue as duplication, it can also be detected using monotonic counters [Str16].
Furthermore, there are also proposals for rollback protection on SGX-based
platforms that do not have access to monotonic counters. Strackx et al. miti-
gate the lack of monotonic counters by leveraging an external TPM together
with some additional guarded memory [Str14]. The drawback of this solution
is that it increases the size of the TCB by depending on TPM functionality, and
still requires special hardware. Matetic et al. instead propose to use a cluster
of enclaves storing integrity information about states [Mat17]. This allows
to implement an all-or-nothing rollback policy in the cluster without addi-
tional hardware requirements. However, this solution requires a sufficiently
large number of identical enclave instances, which must be assumed to not be
attacked all at once. This is not necessarily the case in distributed usage con-
trol scenarios. Finally, Brandenburger et al. propose to store state integrity
information at the clients of services running inside enclaves [Bra17a]. This
proposal also considers duplication attacks, but has the drawback of requiring
state-aware enclave clients. To summarize, SGX natively offers only limited
support for duplication and rollback protection using monotonic counters.
Because of this, rollback protection on SGX is usually done with the help of
external trust anchors such as TPMs, other enclave instances, or clients.

128

4.3 Using Intel SGX

4.3.2 Remote Attestation Protocols

Similar to TPMs, SGX-based architectures also provide the possibility to re-
motely verify the integrity of executed enclaves. The most basic primitive
for SGX-based attestation is the EREPORT processor instruction. The EREPORT in-
struction can be used to conduct an attestation between two enclaves that are
running on the same platform (i.e., local attestation). This instruction gen-
erates an attestation report, which attests to the code base of the currently
executed enclave by including its MRENCLAVE and MRSIGNER measurement values,
as well as information about the local SGX platform. Furthermore, to prevent
enclaves from forging measurements, the attestation report is symmetrically
signed with a processor-internal report key. Just like the sealing key, this re-
port key is derived from the platform secrets, as well as the measurements
of the target enclave that should receive the generated attestation report for
verification. The target enclave can then use the EGETKEY instruction to recover
the report key and thus validate the signature of the received attestation re-
port, which authenticates the TCB of the attested enclave (requirement R1).
However, this attestation procedure only works between enclaves that are
running on the same physical platform, because otherwise the EREPORT and
EGETKEY instructions will not use the same platform secrets and hence derive
different report keys.

To allow the verification of attestation reports also by external and non-SGX
platforms (i.e., remote attestation), the SGX architecture relies on the concept
of quoting enclaves. Quoting enclaves are responsible for transforming SGX
attestation reports into universally verifiable quotes. For this, a quoting en-
clave first conducts a local attestation of the target enclave that should be
remotely verified. If the local attestation is successful, the quoting enclave
signs the created attestation report with an asymmetric attestation key that
has been previously provisioned to the SGX platform. The resulting quote
is then transferred to the remote platform, where the quote signature can be
verified using the public part of the attestation key. Depending on the type
of the used attestation key, two variants of SGX-based remote attestation can
be distinguished. The first attestation variant supported by SGX was the En-
hanced Privacy ID (EPID) group signature scheme [Bri10]. EPID attestation

129

4 Technical Enforcement

keys are created locally on the SGX platform, and are then linked to a signa-
ture group by conducting a key joining protocol with a provisioning service
centrally operated by Intel. The resulting attestation keys allow quoting en-
claves to anonymously sign attestation reports, which can later be verified
using a common public key for the entire group. The benefit of such a group
signature scheme is that the created attestations cannot be traced back to in-
dividual SGX processors. However, since validating EPID signatures requires
support of the Intel Attestation Service (IAS), it also introduces an additional
trust anchor at Intel. In later versions of SGX, Intel introduced theData Center
Attestation Primitives (DCAP), which allows platform owners to host their own
attestation infrastructure [Sca18]. DCAP supports the use of custom quoting
enclaves that generate traditional asymmetric attestation keys. The generated
attestation keys are authenticated with a platform certification key that is de-
rived from the local SGX platform secrets. The platform certificate in turn is
signed with a root key managed by Intel, to endorse that the certification key
is indeed protected by a genuine SGX platform.

While EPID and DCAP specify the process that generates, provisions, and au-
thenticates attestation keys, we still need to define a remote attestation pro-
tocol that is capable of establishing mutually attested, secure communication
channels. Several remote attestation protocols have been proposed since SGX
was introduced. Aublin et al. [Aub17] propose to establish standard TLS con-
nections between SGX enclaves. While this creates encrypted channels, it
does not bind them to the enclave identities and hence does not conduct a re-
mote attestation (requirements R1 and R2). Chen et al. [Che19b] instead pro-
pose a dedicated Diffie-Hellman key exchange between remote SGX enclaves,
which is authenticated by the signed attestation report. The Intel SDK [Int23a,
p. 118] also includes an example implementation for a similar attestation pro-
tocol. However, since both solutions focus on provisioning secrets to enclaves
after they are deployed, these proposals do not support mutual attestation (re-
quirement R2). Knauth et al. [Kna18] develop RA-TLS, which achieves remote
attestation by linking TLS endpoints inside SGX enclaves to their respective
attestation evidence. For this, each enclave generates new self-signed TLS
certificates at every startup. The generated certificates are authenticated by

130

4.3 Using Intel SGX

including their fingerprints into the signed attestation reports. For conve-
nience, the attestation reports are then embedded into the TLS certificates as
a custom X.509 extension. This proposal supports mutual attestation and pro-
vides secure channels as well as replay protection (requirements R1 to R4).
Forward secrecy can also be guaranteed if the underlying secure channel uses
TLS in version 1.3 (requirement R5). RA-TLS has been adopted for some SGX
frameworks as well, most prominently Gramine [Gra22]. Furthermore, King
andWang proposedHTTPA, which similarly integrates SGX-based attestation
into HTTPS instead of TLS [Kin21]. However, this proposal establishes ses-
sion keys by transmitting encrypted secrets instead of using an ephemeral key
exchange, which is why it does not support forward secrecy (requirement R5).

Most recently, Google developed the Enclave Key Exchange Protocol (EKEP)
[Asy21a]. EKEP is the standard attestation protocol for the Asylo¹ SGX frame-
work. It is based on Google’s Application Layer Transport Security (ALTS)
protocol, which is itself a modified TLS implementation used by Google for
secure RPC communication in their data centers [Gha17]. Themain advantage
of EKEP over previous proposals is that it guarantees mutual attestation and
forward secrecy (requirements R2 and R5) by conducting a dedicated Diffie-
Hellman key exchange, which is authenticated by the signed attestation re-
port. Hence it fulfills all our requirements from section 4.1. The security of
EKEP has also been formally verified using ProVerif [Roe22]. Furthermore,
EKEP allows to transparently conduct both local and remote attestation us-
ing the same protocol handshake. An open source protocol implementation of
EKEP is available on Github under the Apache license.² This implementation
integrates into Google’s gRPC remote procedure call library, which makes it
particularly suitable for our use case of distributed usage control.

As table 4.4 shows, there are several proposals for SGX-based remote attesta-
tion protocols on offer that fulfill our requirements. We choose to build our
proof of concept on EKEP, because it is suitable for our use case and can also
be extended into a heterogeneous remote attestation protocol (see section 4.5).

¹ https://asylo.dev/ (accessed on 12/08/2023).
² https://github.com/google/asylo (accessed on 12/08/2023).

131

https://asylo.dev/
https://github.com/google/asylo

4 Technical Enforcement

Table 4.4: Overview of SGX-based remote attestation protocols.

Proposal R1 R2 R3 R4 R5
Aublin et al. [Aub17] 7 7 3 3 3³
Chen et al. [Che19b] 3 7 3 3 3

Intel SDK [Int23a, p. 118] 3 7 7 3 3

RA-TLS [Kna18, Gra22] 3 3 3 3 3³
HTTPA [Kin21] 3 3 3 3 7

EKEP [Asy21a] 3 3 3 3 3

4.4 Using ARM TrustZone

As introduced in section 2.3.2, TrustZone is a security extension of the ARM
processor architecture that partitions the system into a normal world (REE)
and a secure world (TEE). Both worlds have their own independent firmware,
operating systems, and applications. Furthermore, platform resources such
as main memory and I/O devices can also be divided up between both
worlds. This allows to isolate security critical Trusted Applications (TAs)
from the Rich Execution Environment and its often large attack surface.
While TrustZone is not as comprehensive as other TEEs such as Intel SGX,
it is still a very useful and widespread security technology on embedded
platforms, where both SGX and hardware TPMs are usually not available.

In this section we first discuss the security properties of ARM TrustZone de-
vices and point out existing limitations regarding the requirements for our
usage control system design. Then we show in what ways usage control com-
ponents can be deployed on TrustZone-protected devices and present a solu-
tion to achieve platform measurements in both the rich and the trusted en-
vironment. Finally, we discuss the existing proposals for remote attestation
protocols on TrustZone platforms and propose a solution that is suitable for
our proof of concept.

³ Forward secrecy is guaranteed only if TLS v1.3 is used.

132

4.4 Using ARM TrustZone

4.4.1 Security Properties

The ARM TrustZone technology itself comprises of the secure processor
and the trusted firmware for the respective architecture, such as TF-A¹
for Armv7-A and Armv8-A class processors. However, leveraging the
TrustZone technology for TEE functionalities still requires a comprehensive
software stack that builds on the secure processor and its firmware. The
most widespread framework for implementing Trusted Applications on ARM
TrustZone devices is OP-TEE². OP-TEE provides a secure operating system
for the trusted world, as well as two APIs that facilitate the implementa-
tion of Trusted Applications. The TEE Internal Core API [Glo21] defines
the main interfaces that Trusted Applications need to implement, and also
provides them with several support functions such as storage access and
cryptographic operations. In addition, the TEE Client API [Glo10] provides
interfaces that allow to manage the implemented TAs from the normal world.
It also includes functions to share information between the REE and the
TEE over well-defined communication interfaces. Furthermore, the OP-TEE
implementation provides several TrustZone-specific security features that
are relevant for our use case.

Data protection during storage. While the TF-A trusted firmware itself
does not provide any sealing functionalities, TrustZone devices may include
a set of factory-programmed secret keys that are only accessible from inside
the TEE. OP-TEE can use these platform secrets to derive several device- and
TA-specific symmetric encryption keys [OP-19a]. These keys can then be used
to seal critical data and application states to the trusted platform. Sealed data
blobs can be stored either in the REE file system, or in a dedicated eMMCmem-
ory storage if the trusted device provides it. However, unlike TPMs and SGX
processors, TrustZone devices are not required to include any hardware-based
platform secrets. If no platform secrets are available, OP-TEE will instead
use a constant seed for deriving the sealing keys [OP-19a], which is insecure.

¹ https://trustedfirmware-a.readthedocs.io/en/latest/ (accessed on 12/08/2023).
² https://optee.readthedocs.io/en/latest/ (accessed on 12/08/2023).

133

https://trustedfirmware-a.readthedocs.io/en/latest/
https://optee.readthedocs.io/en/latest/

4 Technical Enforcement

Hence, TrustZone can achieve data protection during storage (requirement
T2) only if the used device provides hardware-based platform secrets.

Data protection during processing. Like Intel SGX, TrustZone offers a
dedicated Trusted Execution Environment (TEE).This means that the Trusted
Applications running in the secure world are completely independent from
the rich operating system and the rest of the REE. OP-TEE provides access
to the TAs from the normal world via session-based communication chan-
nels. REE applications can use these sessions to invoke commands at the
TAs. However, they have no direct influence over the execution of code in
the secure world. Since TrustZone relies on hardware-based access control
instead of memory encryption for the isolation, it is also possible to define
shared memory between the REE and TEE that can be used for data exchange.
Furthermore, unlike SGX enclaves, TrustZone TAs are full processes that are
managed by the trusted operating system. While this allows TAs to rely on
the trusted OS for support, it also results in a much larger TCB than when
using SGX. Nevertheless, TrustZone devices still offer protection of critical
data in the secure world during processing (requirement T3).

Rollback and duplication protection. Rollback protection on TrustZone
devices is implemented using a Replay Protected Memory Block (RPMB). An
RPMB provides non-volatile memory that can be accessed only after proper
authorization. For this, OP-TEE derives a unique authorization key from the
platform secrets and programs it into the RPMB controller [OP-19a]. Since
this key is only available inside the TEE, no untrusted code can read out or
modify the RPMB memory. OP-TEE uses a correctly configured RPMB to
keep track of the version numbers of loaded TAs [OP-19b]. This protects the
TA images against rollback attacks. Furthermore, the RPMB can be used to
protect sealed data against rollback attacks as well. However, just like the
platform secrets, TrustZone devices are not required to provide an RPMB.
Without it, no secure rollback protection is possible (requirement T5). Fur-
thermore, OP-TEE offers no dedicated protection mechanisms against TA du-
plication (requirement T4).

134

4.4 Using ARM TrustZone

Code integrity. Finally, there is the open question of achieving code in-
tegrity on TrustZone platforms (requirement T1). Themain goal of TrustZone
is to define a TEE for operating Trusted Applications in a secure environment.
However, TrustZone does not provide native support for measuring the in-
tegrity of trusted platforms. To resolve this, Raj et al. propose a firmware-level
TPM (fTPM) for TrustZone devices [Raj16]. fTPM is a software implementa-
tion of the TPM 2.0 reference architecture, which can be executed as a TA
service in the secure world of a TrustZone device. As such, it can simulate
a TPM to both the REE and TEE, which allows us to use the PCR registers
of the fTPM module as Roots of Trust for Storage and Reporting. During its
operation, fTPM is protected by the TEE against malicious influence and tam-
pering. Obviously, the fTPM implementation also requires hardware-based
platform secrets, as well as a suitable RPMB, to securely implement the TPM
standard [Raj16]. But even with these hardware-based trust anchors, fTPM
cannot reach the same level of security as hardware TPMs, because it has a
larger attack surface. Nevertheless, due to the lack of native solutions, us-
ing an fTPM module is currently the best option to make the code base of
TrustZone platforms remotely verifiable. However, simply deploying fTPM as
a Trusted Application does not automatically achieve code integrity. We still
need to define a suitable measurement process that collects software finger-
prints and establishes a comprehensive chain of trust rooted in the hardware-
based trust anchor of the TrustZone platform. How to do that also depends
on the scope of the TCB that should be protected. We discuss the caveats
of conducting fTPM-based integrity measurements on TrustZone devices and
develop a suitable solution for our use case in the remainder of this section.

4.4.2 Deployment of Usage Control Components

When using TPMs or Intel SGX to protect distributed usage control infras-
tructures, the scope of the usage control enforcement directly corresponds to
the respective TCB. In case of TPMs, usage control components run as normal
processes in the user space and are verified by the conducted integrity mea-
surements (cf. fig. 4.4a). With SGX, the usage control components instead run
as enclaves that are isolated from untrusted parts of the system (cf. fig. 4.4b).

135

4 Technical Enforcement

PDP
Process

App
Process

Operating System

Bootloader

Processor TPM

TCB

(a) Protected by TPMs

TCB

PDP
Enclave

App
Enclave

Operating System

Bootloader

SGX Processor

TCB

(b) Protected by SGX enclaves

Rich OS

Bootloader

ARM Secure Processor

TF-A

OP-TEE

PDP
TA

App
TA

Other
Processes

TCB

(c) Protected by TrustZone TEE

TCB

Rich OS

Bootloader

ARM Secure Processor

TF-A

OP-TEE

fTPM
TA

PDP
Proc

App
Proc

PDP
TA

(d) Protected by fTPM

Figure 4.4: TCBs of deployed usage control components.

However, when using TrustZone we have two options regarding the deploy-
ment of usage control components, each achieving a different degree of isola-
tion. One possibility is to conduct the usage control enforcement completely
inside the TEE. This means that the usage control components must be exe-
cuted as Trusted Applications, which have the advantage of being completely
isolated from the normal world. As shown in fig. 4.4c, the resulting TCB en-
compasses only the secure world including the trusted firmware, the trusted
operating system, and the TAs. The downside of this approach is that it re-
quires to implement the data processing applications as TAs as well. Since
TAs are meant to be small service daemons such as cryptographic modules,
this is often not feasible. Especially legacy applications requiring support of
the normal world operating system cannot easily be implemented as TAs. To
address this problem, we can design the software stack to allow usage control
enforcement in the REE as well. In this case the data processing applications
are running as normal world processes, with the usage control components

136

4.4 Using ARM TrustZone

being located either in the REE or the TEE. This solution has the obvious dis-
advantage of not leveraging the TEE isolation for the data processing appli-
cations any longer. However, we can still protect the integrity of the us-
age controlled software stack by relying on the fTPM module as trust anchor
in the secure world. As shown in fig. 4.4d, the resulting TCB then encom-
passes all required TEE components, including fTPM, as well as the complete
software stack of the normal world. Furthermore, using fTPM allows us to
leverage TPM-specific functionality in the REE, such as restricted signature
keys, non-volatile memory, and monotonic counters. Because fTPM adheres
to the TPM 2.0 specification, this approach greatly simplifies the implemen-
tation of remote attestation, as well as duplication and rollback protection on
TrustZone platforms. On the downside, the data processing applications can
no longer be isolated from the normal world operating system. Just as when
using classical TPMs, security vulnerabilities in the normal world operating
system could now be exploited to tamper with the usage control enforcement.
As a result, the security guarantees of this solution are lower than when only
protecting the software stack inside the TEE.

Nevertheless, since REE-based usage control components greatly increase en-
forcement flexibility, we consider both deployment variants useful for our sys-
tem design. However, there are still some open questions about how fTPM
can be used to protect the integrity of software stacks residing in both the
REE and the TEE. For this we require an integrity measurement process that
spans both the normal and the secure world. While the TF-A trusted firmware
already provides a proof of concept for conducting fTPM-based integrity mea-
surements of the secure world boot stages [ARM21a], we still need to config-
ure a suitable normal world trusted boot process as well. Furthermore, since
static boot-time integrity measurements are not sufficient for our use case,
we must also enable dynamic load-time measurements of user applications
both in the normal and the secure world. In the remainder of this section,
we show how to define a suitable trusted boot process for TrustZone devices
that establishes a chain of trust rooted in the ARM trusted firmware, while
measuring the code integrity of both REE and TEE applications.

137

4 Technical Enforcement

4.4.3 Conducting Both-World Measurements

In this sectionwe show how integritymeasurements can be conducted in both
the normal and the secureworld of TrustZone platforms. Asmotivated earlier,
we achieve this by relying on an fTPM module running as a Trusted Appli-
cation to establish a Root of Trust for Storage and Reporting. Our goal is to
measure both the normal world applications as well as the TAs running in the
secure world. Furthermore, a chain of trust spanning the complete TCB must
be established, which includes the boot loaders and the operating systems of
both worlds (cf. fig. 4.4d). The defined measurement process will then serve
as the foundation for a TrustZone-based remote attestation protocol, which
we discuss in the final section of this chapter. In the remainder of this section,
we first introduce the default secure boot process of ARM TrustZone devices
and present the existing support in the TF-A trusted firmware for measur-
ing the integrity of the secure world boot stages. Then we show how this
process can be extended to conduct load-time measurements in the normal
world of TrustZone devices using the classical Integrity Measurement Archi-
tecture (IMA) of the Linux kernel. To reach our goal of measuring the entire
TCB of TrustZone platforms, we also develop a solution for conducting mea-
surements of dynamically loaded Trusted Applications in OP-TEE. Finally, we
evaluate the proposed boot process by discussing the resulting chain of trust
as well as the expected performance impact.

Note that the proof of concept presented in this section has been developed
by Amblank and Wagner as part of a supervised Bachelor’s thesis [Amb22].

Trusted Board Boot. The default secure boot process for Armv7-A and
Armv8-A class processors is called Trusted Board Boot (TBB). TBB is imple-
mented as part of the TF-A trusted firmware, and leverages the TrustZone
hardware to authenticate boot images during device startup [ARM21b]. For
this, the TBB boot process sequentially verifies the digital signatures of all
boot loader stages, including the trusted operating system, before executing
them. The signatures of the loaded boot images are validated using a certifi-
cate chain that is rooted in an immutable public key called Root of Trust Public

138

4.4 Using ARM TrustZone

Key (ROTPK), which is burnt into the device during provisioning. Only the
original platform owner knows the corresponding private key and can sign
firmware images that the device will accept during boot. Figure 4.5 shows
the principal flow of the Trusted Board Boot process. A complete description
is given in the official TF-A documentation [ARM21b]. The very first boot
loader stage that is loaded from ROM and executed on the device is called
BL1. The only responsibility of BL1 is to load the next boot loader stage
(BL2) and verify its signature using the ROTPK. BL2 then loads the secure
world firmware (BL31), as well as the trusted operating system (BL32), and
hands over control of the secure world to it. Finally, BL2 loads and executes
the normal world boot loader (BL33), which initializes the boot process of
the normal world operating system. Both secure world boot images (BL31
and BL32) are authenticated using the Trusted World Public Key (TWPK),
which is itself signed by the ROTPK. Similarly, the normal world boot loader
(BL33) is signed with a Non-trusted World Public Key (NWPK). By sequentially
verifying all boot image signatures, TBB can extend the initial trust placed
in the read-only BL1 and ROTPK to the entire firmware as well as the secure
world operating system.

BL33
REE Boot Loader

BL31 & BL32
TEE BL & OS

BL1
ROM

BL2
TF-A

Extend

Load &
Measure

fTPM
PCR 0

ROTPK TWPK NWPK

Verify

Sign Sign

Verify

Load &
Measure

Load &
Measure

Verify
CRTM

Figure 4.5: Measured Trusted Board Boot process using fTPM.

Measuring the boot process. Trusted Board Boot uses digital signatures to
protect the firmware of TrustZone devices against unintended modifications
caused by compromised devices or malware infections. However, this alone
is not sufficient to prevent malicious platform owners from tampering with
the code base of a trusted device. This is because platform owners must be as-
sumed to control the ROTPK private key, which can be used to sign new boot

139

4 Technical Enforcement

images. To protect the integrity of a TrustZone-based software stack even
in such scenarios, we need to conduct integrity measurements of the loaded
boot images and establish a chain of trust that can later be remotely attested.
Fortunately, the ARM trusted firmware supports the extension of TBB with
fTPM-based integrity measurements. This allows us to execute a measured
TBB boot process on TrustZone platforms. The full description of this pro-
cess is given in the official TF-A documentation [ARM21a]. During measured
TBB the BL1 and BL2 boot stages not only verify the digital signatures of
loaded images, but also write their fingerprints into a TPM event log. This log
follows the standard EFI event log format as specified by the TCG [Tru16b],
and is stored in secure memory to prevent tampering by unmeasured code.
As shown in fig. 4.5, once the fTPM module is loaded it extends the collected
event log into PCR 0, which makes all loaded boot images verifiable using an
fTPM-based remote attestation. While this measurement process is very sim-
ilar to the classical trusted boot using hardware TPMs (see section 2.3.1), on
TrustZone platforms we also have to include the fTPM module as part of the
initially trusted Core Root of Trust for Measurement (CRTM). This is because
we obviously cannot use fTPM to measure its own software integrity. Alter-
natively, trust into fTPM could be bootstrapped by having the BL1 boot stage
directly load and authenticate the fTPM image. However, to our knowledge
this is not yet included in the ARM trusted firmware at the time of this thesis.

Measuring normal world applications. The integrity measurements con-
ducted by the modified TBB boot process end at the normal world boot loader
(BL33). However, to also protect usage control components running in the
normal world, we need to extend the fTPM measurements to the REE as well.
Since conducting integrity measurements during boot is well-supported with
classical hardware TPMs, we can largely rely on existing implementations
to achieve this. First, we need to include a normal world boot loader that
supports measured boot using fTPM.The TBB reference implementation uses
TianoCore EDK2 and Grub as normal world boot loaders [ARM21a]. For our
proof of concept, we replaced these modules with the U-Boot¹ universal boot

¹ https://u-boot.readthedocs.io/en/latest/index.html (accessed on 12/08/2023).

140

https://u-boot.readthedocs.io/en/latest/index.html

4.4 Using ARM TrustZone

loader, which already provides support for fTPM-based measured boot ac-
cording to the TCG EFI protocol specification [Tru16b]. This allows us to
configure U-Boot to measure and launch the REE Linux kernel as an UEFI
payload. Following the TCG firmware specification [Tru21a], U-Boot uses
the PCR registers 2 and 4 to measure the UEFI drivers and payloads, respec-
tively. Furthermore, in order to prevent measurement gaps, we also configure
U-Boot to disable the boot command line. All in all, this extends the chain of
trust from the ARM trusted firmware to the normal world operating system.
Finally, the REE Linux kernel includes the Integrity Measurement Architec-
ture (IMA), which we can use to conduct load-timemeasurements of launched
user-space applications. By default the Linux IMA extends its measurements
into PCR 10. Song et al. recently proposed to use a dedicated Trusted Appli-
cation running in the secure world to collect and store the measurements of
the normal world Linux IMA [Son22]. However, we find it more convenient
to simply use fTPM as Root of Trust for Storage for the IMA as well. Fortu-
nately, the Linux kernel already provides a driver¹ for fTPM. This allows us to
extend the established chain of trust rooted in BL1 and fTPM over the normal
world boot loader (BL33) all the way up to the user-space applications run-
ning in the REE. One remaining issue with the integration of the Linux IMA
is that both the normal and secure world boot processes are running indepen-
dently once the BL2 stage relinquishes control of the processor. As a result,
the fTPM Trusted Application might not yet be available when the Linux IMA
is initialized. While this issue could likely be resolved by delaying the IMA
PCR extensions until the fTPM driver is available, we consider modifying the
Linux kernel in such a way as beyond the scope of this work.

Measuring secure world applications. Finally, in order to achieve a mea-
sured boot process that is suitable for our use case, we also need to enable the
load-time integrity measurement of Trusted Applications in the secure world.
As illustrated in fig. 4.5, the chain of trust that TBB establishes in the secure
world ends at the trusted operating system (BL32). We use OP-TEE as trusted

¹ https://www.kernel.org/doc/html/v6.7/security/tpm/tpm_ftpm_tee.html (accessed on
01/21/2024).

141

https://www.kernel.org/doc/html/v6.7/security/tpm/tpm_ftpm_tee.html

4 Technical Enforcement

operating system, which is essentially a modified Linux kernel that has been
stripped down in complexity to reduce its attack surface. The simplest way
to include OP-TEE Trusted Applications into the established chain of trust
is to compile them as early TAs. Early TAs are directly linked into a special
section of the OP-TEE boot image, and as such are loaded and executed auto-
matically as soon as the trusted OS launches [OP-19b]. Since this makes early
TAs a part of the BL32 boot image, they are already included in the measure-
ments conducted by BL2 during the Trusted Board Boot process (cf. fig. 4.5).
However, compilation as early TA is feasible only for applications that almost
never change, since every update of an early TA requires flashing the entire
device boot image. Because of this, most OP-TEE Trusted Applications are
realized as file system TAs. Just like normal world applications, these TAs are
compiled into standalone binaries, which are then stored (either encrypted or
unencrypted) in the REE file system [OP-19b]. The OP-TEE Client API can
then be used to load the stored TA binaries from the file system and execute
them in the secure world. Unfortunately though, OP-TEE does not natively
support the measurement of dynamically loaded TAs.

To provide a comprehensive measured boot process for TrustZone platforms,
we extend OP-TEE with a simple Integrity Measurement Architecture for the
secure world. We achieve this by hooking into the ree_fs_ta_read method of
the OP-TEE trusted OS, which is part of the TA loading routines, and extract-
ing a digest of every TA image that OP-TEE loads from the file system. This
digest is then passed to a dedicated IMA module, which we implemented as
an early TA. To communicate with this IMA TA, we can conveniently use the
tee_ta_invoke_command method provided by the OP-TEE kernel. Our IMA then
assembles a new TPM command description in binary format, which uses the
TPM2_PCR_Extend function to extend the received measurement digest into PCR
12. This TPM command is then issued to fTPM using the TEE_InvokeTACommand

method of the TEE Internal Core API. Finally, our IMA also keeps a measure-
ment log of the extended digests, which normal world applications can query
for attestation purposes via a dedicated TA command. Figure 4.6 illustrates
how we achieve conducting integrity measurements of dynamically loaded
Trusted Applications in OP-TEE. Together with the static measurement of
early TAs, this includes all secureworld applications into the established chain

142

4.4 Using ARM TrustZone

of trust. Since our IMAmodule is integrated into OP-TEE as an early TA itself,
it is also measured during the Trusted Board Boot as part of BL32.

OP-TEE

ree_fs_ta_read()

IMA TA

measureLoadedTA(digest)
via tee_ta_invoke_command

fTPM TA

TPM2_PCR_Extend(12, digest)
via TEE_InvokeTACommand

appendMeasurementLog(entry)
via TEE_WriteObjectData

success

success
success

Figure 4.6: Conducting load-time integrity measurements in OP-TEE.

One technical difficulty to overcome when implementing a secure world IMA
is that the fTPM TA by default only accepts a single OP-TEE communica-
tion session. If this session is already occupied by the fTPM REE driver, the
TEE_InvokeTACommand shown in fig. 4.6 fails. Extending IMA measurements via
the TBB event log in the securememory is also not possible, because fTPM im-
mediately reads and extends this log during initialization. There are two possi-
ble solutions for this problem. One option is to redirect the secure world IMA
measurements via the normal world fTPM driver, instead of directly commu-
nicating with the fTPM TA. However, this exposes the TA measurements to
the REE and hencemuddies the chain of trust. Instead, we implement our IMA
to act as a proxy for the fTPM TA, which accepts multiple OP-TEE sessions
and simply forwards the received TPM commands. We then let the normal
world fTPM driver communicate with the fTPM TA via our new IMA module
by swapping out the TA’s UUID in the fTPM driver configuration.

Implementation and evaluation. To demonstrate the feasibility of this so-
lution, we implemented and evaluated a proof of concept for the described
both-world measured boot process on TrustZone platforms. Our proof of con-
cept is based on the Trusted Board Boot reference implementation with fTPM

143

4 Technical Enforcement

support, which has been provided by ARM as part of the OP-TEE framework.¹
Figure 4.7 illustrates the complete chain of trust for our proposed measured
boot process. In contrast to classical measured boot processes with hardware-
based TPMs, whenmeasuring TrustZone platforms the resulting chain of trust
is split between the normal and the secure world. The CRTM of our proof of
concept consists of the BL1 image stored in the device’s ROM, as well as the
fTPM module. From there, the standard Trusted Board Boot process estab-
lishes trust in the secure world firmware and operating system (i.e., OP-TEE),
as well as the normal world boot loader (i.e., U-Boot). Extending the chain of
trust from U-Boot further to the REE Linux kernel achieves the required boot-
time measurements in both worlds. Regarding load-time measurements, we
use a dedicated IMA in each world to measure the integrity of dynamically
loaded (trusted) applications. As a result, the proposed measured boot pro-
cess spans over the entire software stack in both the normal and the secure
world, and hence is suitable to protect the integrity of usage control enforce-
ment infrastructures on ARM TrustZone platforms. Our complete proof of
concept implementation and its documentation is publicly available.²

BL32
OP-TEE

BL31
TF-A

Apps
REE

IMA
OP-TEE

Apps
TEE

fTPM

PCR 2-4PCR 0 PCR 10 PCR 12

Normal World

Secure World
Extend

Load &
MeasureBL1

ROM

BL2
TF-A

IMA
Linux

BL33
U-Boot

Load &
Measure

Load Measure

Measure
Load &
Measure

Extend

Extend

Figure 4.7: Complete chain of trust for both-world measurements on TrustZone platforms.

Finally, we also tested and evaluated the performance of this measured boot
process with the widely used ARM Fixed Virtual Platforms³ (FVP) simulator.

¹ https://github.com/OP-TEE/build/blob/master/fvp.mk (accessed on 12/08/2023).
² https://gitlab.cc-asp.fraunhofer.de/rafft (accessed on 12/08/2023).
³ https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms (ac-
cessed on 12/08/2023).

144

https://github.com/OP-TEE/build/blob/master/fvp.mk
https://gitlab.cc-asp.fraunhofer.de/rafft
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms

4.4 Using ARM TrustZone

FVP allows to conduct functionally accurate simulations based on detailed
platform models of the various ARM processor architectures. We used the
standard Armv8-A foundation model for our tests. Figure 4.8 shows the boot
times of a non-measured secure boot process compared to conducting both-
world measurements using fTPM. On average, the measured boot process
takes about 15 seconds longer than the default boot process. This ismainly due
to the overhead for calculating image fingerprints, as well as the delay caused
by fTPM having to update the PCR values in the secure memory. Never-
theless, even though the performance impact is noticeable, using a measured
boot process on TrustZone platforms is still suitable for our purposes. This is
the case especially since the additional overhead influences only the boot and
load times, but not the performance of the measured applications themselves.

n=10

0

10

20

30

40

50

60

Secure Boot Measured Boot

B
o

o
t

ti
m

e
[s

] 38.3 (±0.5)

53.6 (±0.6)

Figure 4.8: Mean TrustZone boot times in seconds using FVP with the Armv8-A model. The
standard deviation is given in brackets.

To conclude, we have demonstrated that conducting both-world integrity
measurements using fTPM is feasible on TrustZone platforms. While fTPM
offers less security guarantees than hardware-based TPMs and requires ad-
ditional security features such as an RPMB and platform secrets [Raj16], it is
currently the best option to achieve comprehensive platform measurements
on TrustZone devices. For the remainder of this section, we are left to discuss
how we can remotely attest to the integrity measurements, which have been
collected by the measured boot process and are stored inside fTPM.

145

4 Technical Enforcement

4.4.4 Remote Attestation Protocols

Since ARM does not provide a native mechanism for remotely attesting
TrustZone devices, in recent years several custom attestation protocols
have been proposed for this purpose. While some of the proposals rely on
fTPM as Root of Trust for Storage and Measurement, others use different
attestation techniques. In any case, we require a remote attestation protocol
that supports both-world measurements and fulfills the previously identified
requirements R1 to R5. In this section, we discuss the existing proposals
for remote attestation of TrustZone devices and identify a viable solution
for our use case.

Shepherd et al. [She17] propose a remote attestation protocol for ARM Trust-
Zone platforms that supports both uni- and bi-directional attestations be-
tween OP-TEE Trusted Applications. Furthermore, the attestation protocol
uses a generic Diffie-Hellman key exchange to establish secure channels be-
tween attested devices. However, this proposal leaves open the question
of how to create concrete platform measurements that should be attested.
While the authors propose to verify TA binaries using an otherwise unspec-
ified trusted measurer, integrity measurements of the normal world are not
supported. Since in our use case we need to authenticate the entire usage-
controlled TCB instead of just the Trusted Applications, this proposal does
not completely fulfill requirement R1. Ahn et al. [Ahn20] leverage the Sam-
sung Knox technology to define a remote attestation protocol for smartphone
devices. While Samsung Knox is based on ARM TrustZone, it is a proprietary
technology and requires additional trust in the Samsung Knox attestation in-
frastructure. Furthermore, this proposal does not support the establishment of
secure channels to the attested devices (requirement R4). Wang et al. [Wan20]
propose a uni-directional remote attestation protocol for TrustZone devices
that relies on fTPM instead of Samsung Knox as trust anchor. Unlike the
previous protocols, this proposal uses a probe-based integrity measurement
architecture to dynamically attest normal worldmemory contents during run-
time. However, this measurement process requires binary rewriting of the
normal world applications. Furthermore, this proposal does not include a key
agreement process and hence cannot be used to establish encrypted channels

146

4.4 Using ARM TrustZone

to attested software stacks (requirement R4). Ling et al. [Lin21] propose a
remote attestation architecture for TrustZone platforms that supports page-
based memory integrity measurements of normal world processes. For this,
the authors implement a dedicated TA that periodically measures the memory
pages of code segments loaded by the normal world operating system. While
this proposal supports encrypted channels using a standard TLS connection,
the attestation protocol does not link the used TLS certificates to the attes-
tation identities. This makes the protocol vulnerable to man-in-the-middle
attacks (see section 4.2.3). Furthermore, the protocol does not support mutual
attestations. Finally, Ménétry et al. [Mén22] recently developed a runtime
environment for WebAssembly-based Trusted Applications on TrustZone de-
vices, which also includes a remote attestation protocol. The authors use a
dedicated TA to load and measure WebAssembly applications in the secure
world. The proposed remote attestation protocol establishes secure channels
using an ephemeral Diffie-Hellman key exchange that is bound to the attested
code identities. Furthermore, the protocol supports both TA-to-TA attestation
as well as external (i.e., uni-directional) verification of TA identities. However,
similar to the proposal by Shepherd et al., this remote attestation protocol is
designed to verify only individual TAs and is hence not feasible for conduct-
ing normal world measurements. Since we need to authenticate the complete
software stack of a TrustZone device for the application of distributed usage
control, this proposal does not completely fulfill our requirement R1 either.

Table 4.5: Overview of remote attestation protocols for TrustZone devices.

Proposal R1 R2 R3 R4 R5 Remarks
Shepherd et al. [She17] 7¹ 3 3 3 3

Ahn et al. [Ahn20] 3 3 3 7 - Only Samsung Knox
Wang et al. [Wan20] 3 7 3 7 - Memory attestation
Ling et al. [Lin21] 3 7 3 7 - Memory attestation
Ménétry et al. [Mén22] 7¹ 3 3 3 3 Only WebAssembly
MSCP (using fTPM) 3 3 3 3 3

¹ Only supports measurement of individual TAs.

147

4 Technical Enforcement

Table 4.5 gives an overview of the discussed proposals for remote attesta-
tion protocols on ARM TrustZone platforms. In summary, none of the pre-
vious proposals fully support our requirements. In addition to the proposals
specifically designed for TrustZone, we can also adapt existing remote attesta-
tion protocols designed for hardware-based TPMs. This is especially practical
when relying on fTPM as RTS and RTM on the TrustZone device anyway. In
that case we can leverage the both-world measured boot process described in
the previous section to populate the fTPM platform registers, and then use a
classical TPM-based attestation protocol to make the resulting PCR values re-
motely verifiable. Since we have already developed theMSCP protocol to pro-
tect distributed usage control infrastructures (see section 4.2.4), we can rely on
it to verify the integrity of TrustZone devices as well. As shown previously,
MSCP fulfills all of our requirements regarding remote attestation protocols.
Hence, we can safely use an MSCP protocol instance that is backed by the
fTPM module to attest to the PCR fingerprints of a TrustZone device, which
represent the state of both the normal world and the secure world. A further
benefit of this approach is that it already ensures protocol compatibility be-
tween TPM-protected platforms and TrustZone devices, which simplifies the
challenge of specifying a heterogeneous remote attestation protocol.

4.5 Heterogeneous Remote Attestation

In the previous sections we used TPMs, Intel SGX, and ARM TrustZone to
develop remote attestation mechanisms that are suitable for protecting the
integrity of distributed usage control infrastructures. Now we are left with
the challenge of conducting heterogeneous remote attestations between these
technologies as well. In order to design a comprehensive and trustworthy
distributed usage control system, it is essential to support the integrity ver-
ification of remote software stacks independently of the underlying trusted
computing technologies. However, this issue has only recently become a
topic of interest both in academia and the industry [Ott23, Int23c]. To our
knowledge, at the time of this thesis there is no suitable attestation protocol
available that can provide cross-technology integrity verification of trusted

148

4.5 Heterogeneous Remote Attestation

platforms protected by TPMs, Intel SGX, and ARM TrustZone. While the ID-
SCP attestation protocol introduced in section 4.2.2 also offers support for
AMD SEV in addition to TPMs [Bro22], as we have shown in section 4.2.3 this
protocol is vulnerable to attacks by internal adversaries when used to protect
distributed usage control infrastructures. Very recently, Ott et al. proposed an
attestation framework that supports TPMs, AMD SEV, and the ARM Platform
Security Architecture [Ott23]. Furthermore, in 2022 Intel announced Project
Amber¹. The goal of Project Amber is to provide a confidential computing
framework for the Intel ecosystem, which simplifies the development cycle
of TEE-based cloud applications. This framework will also include a univer-
sal and technology-independent remote attestation service. However, Project
Amber will initially be limited to Intel’s SGX and TDX technologies [Int23c].
Finally, a similar approach has also been taken by Google with the Enclave
Key Exchange Protocol (EKEP) [Asy21a]. As introduced in section 4.3.2, EKEP
is the default attestation protocol for the Asylo framework. Asylo also has the
goal of providing a technology-independent development environment for
TEE-based applications. Because of this, the design of EKEP has been kept
largely independent of a concrete TEE provider. However, currently EKEP is
usable only for SGX-based local and remote attestation. Since the EKEP spec-
ification is publicly available and has already been formally verified [Roe22],
we choose to adapt it for our use case instead of developing a dedicated het-
erogeneous attestation protocol from scratch.

In the remainder of this section, we specify and evaluate a heterogeneous re-
mote attestation protocol that is suitable for our trustworthy distributed us-
age control framework. For this, we first identify additional requirements that
such a heterogeneous attestation protocol needs to fulfill. Then we extend the
existing EKEP protocol with heterogeneous attestation capabilities between
TPMs, SGX, and ARM TrustZone platforms. Finally, we evaluate the resulting
protocol regarding security and performance.

¹ https://projectamber.intel.com/ (accessed on 12/08/2023).

149

https://projectamber.intel.com/

4 Technical Enforcement

4.5.1 Additional Requirements

Our goal is to achieve a heterogeneous remote attestation protocol that allows
the transparent integrity verification of software stacks protected by different
trusted computing technologies. For this, in addition to the previously spec-
ified generic protocol requirements R1 to R5, we define three more require-
ments H1 to H3 that are specific to heterogeneous attestation protocols.

(H1) Heterogeneous attestations: A single instance of a heterogeneous
attestation protocol must be able to deal with different trusted
computing technologies on both endpoints. In order to realize
distributed usage control scenarios, we require support for at least
TPMs, Intel SGX, and ARM TrustZone. Furthermore, the protocol
must be able to represent generic code identities independently of the
underlying trusted computing hardware. For example, Intel SGX uses
enclave fingerprints while TPMs and (fTPM-based) TrustZone
platforms are represented by specific PCR values. Nevertheless, after a
successful protocol handshake the individual code identities of both
sides have to be mutually verified regardless of their representation.

(H2) Mechanism negotiation: The heterogeneous attestation protocol
must support the automatic and transparent negotiation of the
attestation mechanisms that should be used for the handshake.
Classical attestation protocols implicitly know the attestation
mechanism that is used by the remote peer. However, a heterogeneous
attestation protocol must have the ability to explicitly negotiate the
attestation mechanisms used by both endpoints during the protocol
handshake. This is necessary to allow both peers to adequately
validate the received attestation evidence.

(H3) Hardware agnosticism: Finally, the heterogeneous attestation
protocol definition must be kept agnostic of the underlying trusted
computing hardware. This means that there should be a common
handshake sequence that is independent of the used attestation
mechanisms. Only the exchanged attestation evidence itself should be
hardware specific. This simplifies the protocol definition, improves

150

4.5 Heterogeneous Remote Attestation

flexibility, and ensures extensibility with additional trusted computing
technologies in the future. Furthermore, the protocol should also be
designed and implemented in a platform-independent fashion, in order
to support heterogeneous attestations of a wide variety of different
system architectures.

4.5.2 The EKEP Protocol

As previously mentioned, we build the heterogeneous attestation protocol
for protecting the integrity of our distributed usage control system on the
EKEP handshake. EKEP is used as an SGX-based remote attestation protocol
in Google’s Asylo framework [Asy21a]. Since EKEP is essentially a modi-
fied version of the ALTS transport encryption protocol, its main task is to
establish mutually authenticated and encrypted communication channels. To
achieve this, the EKEP handshake by default includes an ephemeral ECDH
key exchange between the channel endpoints. However, unlike other trans-
port encryption protocols such as TLS, EKEP does not determine by what
exact mechanisms this key exchange should be authenticated. Instead, EKEP
transmits generic assertions between the channel endpoints, which must be
individually interpreted by the specific protocol implementation. In essence,
EKEP assertions are cryptographic proofs of endpoint identities, which may
be based on classical CA-issued certificates as well as attestation information.
Furthermore, EKEP includes a mechanism for negotiating the types of asser-
tions that should be exchanged during a handshake. This allows EKEP to
support both local and remote SGX-based attestations in a single protocol in-
stance. However, these properties also make EKEP a very good starting point
for implementing a heterogeneous attestation protocol.

In this sectionwe give a brief overview of the EKEP handshake, before describ-
ing how we adapt it to support heterogeneous attestations between TPMs, In-
tel SGX, and ARM TrustZone platforms. The complete protocol specification
of EKEP can be found in [Asy21a].

151

4 Technical Enforcement

The EKEP handshake. The EKEP handshake consists of three phases and a
total of sixmessages between client and server. Figure 4.9 gives an overview of
the protocol sequence. The first step of the handshake is the PRECOMMIT phase.
In this phase, both the client and the server exchange fresh nonces and agree
on the cipher suites as well as the assertion mechanisms that should be used
in the remainder of the handshake. For this, the client initially sends a list
of mechanisms that it can offer and a list of mechanisms that it is willing to
accept from the server. The server then selects a suitable subset from the list of
requested mechanisms and transmits them to the client as the server’s offers.
Similarly, an acceptable subset of the client’s offers is selected as the server’s
requests. That way client and server negotiate a list of assertion mechanisms
that is acceptable for both sides. If no agreement can be reached (i.e., if one
of the subsets is empty), the handshake terminates.

Client Server

nonceC, offersC, requestsC

Select suitable
mechanisms

nonceS, offersS, requestsS

PRECOMMIT

dhPubKeyC, assertionsC

dhPubKeyS, assertionsS

ID

proofOfKeyC

proofOfKeyS

FINISH

Create assertions and
DH key for requestsS

Create assertions and
DH key for offersS

Generate shared secret

Generate shared secret

Figure 4.9: Overview of the EKEP protocol handshake. Own illustration after [Asy21a].

The second protocol phase then establishes the identities of both endpoints
and conducts the ephemeral key exchange (ID phase). For this, both peers
create new ephemeral Diffie-Hellman key pairs according to the previously
negotiated cipher suite. Furthermore, the endpoints also generate the asser-
tions that have been agreed on during the PRECOMMIT phase. To prevent man-
in-the-middle attacks, these assertions must be bound to both the generated
ephemeral keys and the previously exchanged nonces. EKEP then serializes

152

4.5 Heterogeneous Remote Attestation

the generated assertions into byte blobs and transmits them to the remote
peer for verification. Finally, the last two messages of the handshake are re-
sponsible for establishing the encrypted channel (FINISH phase). First, both
endpoints use the authenticated Diffie-Hellman keys to generate a shared se-
cret and derive a symmetric session key. To provide a proof of key ownership,
both endpoints also exchange a symmetric signature of the protocol transcript
under the session key. Once these final checks have been completed success-
fully, the session key is used to establish a transparent, authenticated encryp-
tion layer based on 128 bit AES-GCM.

Supported assertion authorities. As shown in fig. 4.9, the EKEP hand-
shake exchanges attestation information in the form of binary assertions. To
manage the types of usable assertions over multiple handshakes, EKEP intro-
duces the concept of assertion authorities. An assertion authority is identified
by a unique name and is associated with a compatible assertion generator
and verifier [Asy21a]. EKEP endpoints use these generators and verifiers to
create and validate assertion objects that are transmitted during the protocol
handshake. At the time of this thesis, EKEP supports three different assertion
authorities. First of all, EKEP endpoints can assert their identity by proving
ownership of a certificate. Similarly to common TLS certificates, these cer-
tificates are usually authenticated by a Public Key Infrastructure. However,
EKEP does not require the certificate identities to be bound to the endpoint’s
network address or host name. This allows for a flexible, certificate-based au-
thentication of EKEP endpoints. Furthermore, since EKEP is an SGX-based
remote attestation protocol, it also includes assertion authorities for the local
and remote attestation of SGX enclaves. Local SGX assertions mainly consist
of the attestation report that is being created by the EREPORT SGX instruction.
However, EKEP also includes a unique attestation domain identifier into local
assertions, in order to distinguish different physical SGX platforms from one
another. Remote SGX assertions consist of a signed data structure, which in-
cludes the attested enclave identity and the cryptographic signature created
by the SGX quoting enclave. Since the EKEP protocol relies on the DCAP at-
testation primitives [Asy21c], endpoints can furthermore specify the accept-
able intermediate certificates for the attestation key. The EKEP verifier then

153

4 Technical Enforcement

validates the specified certificate chain to the root certificate provided by Intel.
Finally, EKEP supports two different quoting enclaves that can act as asser-
tion generators when conducting remote attestations. Endpoints can either
use the official quoting enclave by Intel, or rely on the more comprehensive
Assertion Generator Enclave (AGE) that is included in the Asylo framework.

In the end, the concept of transmitting assertions during EKEP handshakes
allows endpoints to transparently authenticate each other using either
certificates or SGX enclave identities. Furthermore, the flexible design of
EKEP makes it possible to easily configure SGX enclaves for both uni- and
bi-directional, as well as local and remote attestation scenarios.

4.5.3 Achieving Heterogeneous Attestations

As we have seen, the EKEP protocol currently understands only SGX-based
attestation evidence. Our goal is to extend EKEP with support for heteroge-
neous attestations across TPMs, SGX, and ARM TrustZone platforms.

Adding support for TPM 2.0 assertions. To support remote attestations
between SGX enclaves and TPM-protected platforms, we need to specify an
assertion generator for EKEP that is capable of creating and serializing TPM-
based quotes. Furthermore, we also require a corresponding verifier that
parses the received assertion blobs, extracts the original quotes, and finally
validates the asserted TPM-based identities. This allows us to leverage the ex-
isting negotiationmechanism of EKEP to establish connections between TPM-
protected systems and SGX enclaves. One pitfall to consider in this endeavor
is the proper binding of the ephemeral Diffie-Hellman public keys established
by EKEP to the TPM-specific assertions. By default, EKEP authenticates the
ephemeral public keys exchanged in the PRECOMMIT messages by hashing them
(together with the protocol transcript that includes the received nonce) into
the qualifying data used for the SGX attestation reports.¹ However, as we

¹ See the EKEP handshaker implementation at https://github.com/google/asylo/blob/master/
asylo/grpc/auth/core/client_ekep_handshaker.cc#L465 (accessed on 12/08/2023).

154

https://github.com/google/asylo/blob/master/asylo/grpc/auth/core/client_ekep_handshaker.cc#L465
https://github.com/google/asylo/blob/master/asylo/grpc/auth/core/client_ekep_handshaker.cc#L465

4.5 Heterogeneous Remote Attestation

have shown in section 4.2.3, binding an ephemeral key to a trusted platform by
hashing it into a TPM-based quote can lead to vulnerabilities against nonce-
data attacks. This is because on TPM-protected systemswe need to assume the
existence of a secondary attestation endpoint that attackers can use to gener-
ate a valid quote for arbitrary qualifying data. A single SGX enclave, on the
other hand, does not give out any other valid attestation reports for externally
chosen qualifying data. As a result of this, naively including heterogeneous
attestation into EKEP by relying on the built-in method for ephemeral key
authentication leads to an insecure protocol implementation.

dhPubC, dcapAssertionC

dhPubS, mscpAssertionS

ID

Client Server

nC, oC ={sgx, dcap}, rC ={dcap, mscp}

nS, oS ={mscp}, rS ={dcap}

PRECOMMIT

Q-Enclave TPM

H(nS || dhPubC)

Generate DH key

dcapAssertionC

TPM2_Create(ECDH)

dhS, dhPubS

TPM2_CertifyCreation(nC)

mscpAssertionS

TPM2_DH_ZGen(dhPubC)

shared secret
Generate

shared secret

Figure 4.10: Heterogeneous remote attestation between TPMs and SGX enclaves using EKEP.
The FINISH phase of the handshake is omitted.

We solve this issue by adding the complete MSCP handshake, as presented in
section 4.2.4, to the EKEP protocol. This way the ephemeral Diffie-Hellman
keys are properly authenticated even on TPM-based platforms, using either
the PCRs (in case of TPM-external key establishment) or a dedicated key cer-
tification (in case of TPM-internal key establishment). Figure 4.10 shows the
resulting handshake between an SGX enclave and a TPM platform using the
MSCP variant with internal key establishment. During the PRECOMMIT phase
of EKEP, both endpoints exchange their random nonces and negotiate the
heterogeneous attestation mechanisms. Typically, SGX enclaves offer both
local SGX reports and DCAP remote attestation evidence, while TPM-based

155

4 Technical Enforcement

endpoints can only offer MSCP assertions. After the negotiation, both peers
generate their respective ephemeral ECDH key pairs and the corresponding
remote assertions. For this, as implemented in the EKEP handshaker, the SGX
endpoint contacts the local quoting enclave and uses a hash of the received
nonce together with the ephemeral public key as qualifying data. The TPM
endpoint instead calls TPM2_Create to generate its ephemeral ECDH key pair
and TPM2_CertifyCreation to generate a remote assertion of the platform iden-
tity that is bound to both the received nonce and the created ephemeral key (cf.
section 4.2.4). Finally, the handshake is completed by calculating the shared
secret. While the SGX enclave can do that using the existing EKEP implemen-
tation, the TPM endpoint instead relies on the TPM2_ECDH_ZGen command.

One remaining technical issue when integratingMSCP into EKEP using TPM-
internal key establishment, as shown in fig. 4.10, is the compatibility of the
elliptic curves and cipher suites used for the key agreement. Most hard-
ware TPMs only implement the common NIST P-256 and P-384 elliptic curves
[Che23, pp. 10–12], because they are mandated by the TPM 2.0 platform pro-
file [Tru20, p. 18]. EKEP, on the other hand, relies on the more modern
Curve25519 [Lan16] for the ephemeral ECDH key exchange.¹ To ensure that
the heterogeneous attestation endpoints always find a common elliptic curve
for the key agreement, the NIST curves would have to be integrated into the
EKEP implementation as well. Since EKEP includes cipher suite negotiation
during the protocol handshake anyway, this integration is not a major prob-
lem. Alternatively, to avoid such compatibility issues altogether, we can also
use the MSCP variant with external key establishment for the heterogeneous
attestation. This handshake variant follows the same principle as shown in
fig. 4.10, but uses TPM2_Quote instead of TPM2_CertifyCreation to generate the
MSCP remote assertion (cf. section 4.2.4). This has the benefit of easier proto-
col integration, because it allows us to re-use the key establishment functions
already available in EKEP. However, we still need to ensure the proper au-
thentication of the generated ephemeral ECDH keys on the TPM platform by
extending them into PCR 16, in order to prevent nonce-data attacks.

¹ See https://github.com/google/asylo/blob/master/asylo/grpc/auth/core/ekep_crypto.cc (ac-
cessed on 01/22/2024).

156

https://github.com/google/asylo/blob/master/asylo/grpc/auth/core/ekep_crypto.cc

4.5 Heterogeneous Remote Attestation

Adding support for TrustZone assertions. Integrating MSCP remote as-
sertions into the EKEP protocol stack allows us to establish mutually veri-
fied communication channels between SGX enclaves and TPM-protected plat-
forms. Since we rely on an fTPM-based trusted boot process to measure the
integrity of ARM TrustZone devices (see section 4.4), the described protocol
modifications can principally be used to conduct heterogeneous attestations
of TrustZone endpoints as well. However, there are some caveats to consider.
As discussed previously in section 4.4.2, we can distinguish two different us-
age control deployment scenarios on TrustZone devices. In most cases, our
data processing applications (i.e., the remote attestation endpoints) will re-
side in the normal world of TrustZone. For such REE-based endpoints we can
simply re-use the described MSCP protocol implementation, since the fTPM
TA can be accessed over the same interface as a normal hardware TPM by
means of a normal world kernel module¹. However, one important difference
of usingMSCPwith a TrustZone-protected fTPMmodule instead of hardware
TPMs is that the resulting assertions represent the software stack of both the
normal and the secure world of the device. This is because in order to properly
secure our usage control infrastructure, we always need to conduct integrity
measurements of both the REE and the TEE applications (see section 4.4.3).

In those cases where we want to use MSCP to connect to data processing ap-
plications that are running inside the secureworld (i.e., the TEE) of TrustZone,
some additional issues must be considered. First, the communication between
a TEE-based assertion generator and the fTPM module must be achieved dif-
ferently. Since the secure world operating system does not provide the usual
TPM command interface on kernel level, we now need to communicate with
the fTPM module directly using the TEE_InvokeTACommand function provided by
the OP-TEE Internal Core API [Glo21, pp. 101–102]. Furthermore, there is
also the open question of how to distinguish attestation endpoints inside the
TEE from those running in the normal world of the TrustZone platform. Since
the fTPM module must be available in the normal as well as the secure world,
both REE and TEE applications can use it to generate valid quotes that are

¹ https://github.com/OP-TEE/build/blob/master/br-ext/package/linux_ftpm_mod_ext/linux_
ftpm_mod_ext.mk (accessed on 12/18/2023).

157

https://github.com/OP-TEE/build/blob/master/br-ext/package/linux_ftpm_mod_ext/linux_ftpm_mod_ext.mk
https://github.com/OP-TEE/build/blob/master/br-ext/package/linux_ftpm_mod_ext/linux_ftpm_mod_ext.mk

4 Technical Enforcement

signed by the fTPM-managed attestation key. As a result, fTPM-based as-
sertions alone do not reveal if the used communication endpoint is located
inside the normal or the secure world of the attested platform. However, this
distinction is relevant for the verifier because the TrustZone TEE obviously
offers better isolation than the REE (cf. figs. 4.4c and 4.4d).

This issue can be solved by introducing an additional authentication mecha-
nism to the generated MSCP assertions, which relies on non-fTPM keys that
are not accessible outside the secure world. The best option for such an au-
thentication is to leverage the TA-specific symmetric keys, which OP-TEE
derives from the TrustZone platform secrets for the purpose of providing se-
cure storage [OP-19a]. Since these keys are unique for each TA and are only
available inside the TEE, they could be used to generate a symmetric HMAC
signature of the transmitted EKEP challenge in addition to the actual attesta-
tion evidence generated by fTPM. The resulting assertion would then prove
to the verifier not only that the attested endpoint is located on a TrustZone
platform with a certain software stack, but also that the secure channel ter-
minates inside the TEE instead of the REE. Unfortunately, to our knowledge
OP-TEE currently does not provide the necessary APIs for Trusted Applica-
tions to directly derive such HMAC keys from the platform secrets in the user
space of the secure world. This makes it difficult to implement such an HMAC
authentication without deeper changes of the OP-TEE trusted operating sys-
tem. Due to these additional complications, in this thesis we limit our proof of
concept to REE-based heterogeneous communication endpoints on TrustZone
devices, and leave the implementation of TEE endpoints for future work.

Implementation. Finally, we also implemented and evaluated our pro-
posed EKEP-based heterogeneous remote attestation handshake. For this
we mainly added the described assertion generators and verifiers for the
MSCP assertion authority to the EKEP protocol implementation. However,
since EKEP by default only supports SGX-based remote attestation, this also
required the definition of new TPM-based data structures to be transmitted
during the ID phase of the handshake (cf. fig. 4.10). More concretely, we
defined data structures that can represent TPM-based platform identities, as

158

4.5 Heterogeneous Remote Attestation

well as the corresponding remote assertions corroborating these identities.
During the EKEP handshake, these representations are serialized and trans-
mitted as binary data blobs. Just like the SGX-based data types already used
in EKEP, we rely on the Protobuf¹ library for the definition and serialization of
these new data types. Listing 4.1 shows the TpmIdentity and TpmRemoteAssertion

data structures that are used by our MSCP assertion generator and verifier.

Listing 4.1: TPM-based assertion and identity description for EKEP.

1 syntax = "proto2";

2

3 // A high -level representation of the identity of a TPM machine.

4 message TpmIdentity {

5 // The TPM system fingerprint. Required.

6 optional string system_fingerprint = 1;

7 // The TPM system's PCR values as hex strings. Required.

8 map<int32 , string > system_pcrs = 2;

9 // The stored IMA measurement logs. Optional.

10 repeated string sml_entries = 3;

11 }

12

13 // A high -level representation of a TPM ECDH key certification.

14 message TpmKeyCertification {

15 bytes cert_info = 1;

16 bytes cert_data = 2;

17 }

18

19 // A cryptographically verifiable TPM remote assertion.

20 message TpmRemoteAssertion {

21 // The asserted TPM identity , including the PCR values. Required.

22 optional TpmIdentity identity = 1;

23 // The signed attestation information over the TPM identity.

24 // Can be a TPM quote or an ECDH key certification. Required.

25 oneof attestation_info {

26 bytes quote = 2;

27 TpmKeyCertification key_cert = 3;

28 }

29 // The certificate of the used attestation key. Required.

30 optional bytes attestation_cert = 4;

31 // Proof of TEE residency. Optional.

32 optional bytes proof_of_tee = 5;

33 }

¹ https://protobuf.dev/ (accessed on 12/08/2023).

159

https://protobuf.dev/

4 Technical Enforcement

Lines 4 to 11 of listing 4.1 define the TPM-based identity of an attested plat-
form. The TPM identity includes the list of attested PCR values and a unique
system fingerprint, which we calculate as the SHA-256 digest of the used at-
testation key. Furthermore, the assertion generator also has the option to
include the collected measurement logs into the identity description. This
avoids the need to separately transmit them to the verifier for integrity vali-
dation. Lines 20 to 33 define the TPM-based remote assertion that is transmit-
ted during the ID phase of the handshake. In addition to the asserted platform
identity, this data structure also includes the attestation evidence as gener-
ated by the TPM. Depending on the used MSCP variant, this consists of either
a TPM quote (in case of external key establishment) or a key certification
blob (in case of internal key establishment). In both cases the used attesta-
tion public key is included in the form of a verifiable certificate. Finally, in
preparation of supporting TEE-based endpoints in the future, the assertion
description also reserves a field for the additional symmetric signature prov-
ing TEE residency on TrustZone platforms.

We implemented the MSCP assertion generator and verifier modules for
EKEP in C++. The resulting code is available online.¹ To connect the asser-
tion generator to the local platform TPM and validate the resulting attestation
evidence, we used the Microsoft TSS.MSR² software stack. Furthermore, we
also patched our MSCP assertion verifier into the Asylo framework to allow
existing SGX enclaves the heterogeneous attestation of remote TPM and
TrustZone platforms. However, as mentioned before, so far our implemen-
tation supports only REE-based endpoints on TrustZone platforms. Also
note that the resulting heterogeneous handshake encompasses only the
cryptographic validation of the asserted platform identities, i.e., the PCR
values themselves. We discuss how to validate the legitimacy of the attested
PCR values later as part of chapter 5.

¹ https://gitlab.cc-asp.fraunhofer.de/datasov/lib/-/tree/master/smarttc (accessed on 12/08/2023).
² https://github.com/microsoft/TSS.MSR (accessed on 01/23/2024).

160

https://gitlab.cc-asp.fraunhofer.de/datasov/lib/-/tree/master/smarttc
https://github.com/microsoft/TSS.MSR

4.5 Heterogeneous Remote Attestation

4.5.4 Protocol Evaluation

To evaluate the proposed heterogeneous remote attestation protocol, we first
conduct a brief security analysis and then determine the handshake latencies
that can be achieved using the different trusted platforms.

Security discussion. The modified EKEP handshake fulfills all security re-
quirements that we expect from a generic remote attestation protocol. It is
capable of mutually authenticating remote trusted platforms by exchanging
and verifying attestation evidence (requirements R1 and R2). Furthermore,
since EKEP always conducts a dedicated ECDH key agreement, it also estab-
lishes encrypted communication channels with perfect forward secrecy (re-
quirements R4 and R5). Since the protocol relies on AES-GCM as an authenti-
cated encryption mechanism for the channel communication, it can also pro-
tect the integrity of exchanged data against replay attacks (requirement R3).
Regarding the additional requirements for heterogeneous attestation proto-
cols, our proposal can transparently authenticate trusted platforms based on
TPMs, Intel SGX, and ARM TrustZone (requirement H1). For the mechanism
negotiation (requirement H2) we rely on the PRECOMMIT phase already defined
by EKEP. Finally, the protocol handshake is also agnostic of the underlying
hardware, since the different assertion types are serialized and transmitted as
generic binary blobs (requirement H3).

We also considered the formal verification of our heterogeneous attestation
protocol. The EKEP protocol handshake itself has already been formally ver-
ified by Roeder et al. using ProVerif [Roe22]. Their model of EKEP repre-
sents the entire protocol flow, including the key establishment phase, and
can prove the security properties of (mutual) authentication and perfect for-
ward secrecy. In their formal model, Roeder et al. abstract from concrete
remote attestation mechanisms by representing trusted identities using se-
cret HMAC keys. The protocol then creates valid attestation evidence only
if each endpoint can prove its identity by providing a symmetric signature
under these platform secrets. While this adequately models the SGX-based
attestation process using a quoting enclave, it does not fit our TPM-based

161

4 Technical Enforcement

attestation mechanism. On TPM platforms, the attestation report is usually
signed directly by the TPM instead of first being authenticated via a quot-
ing enclave. To accommodate this difference, we updated the existing formal
model of EKEP and included a dedicated TPM assertion generator that di-
rectly signs attestation evidence. Furthermore, we also included a new rule
that extends the attacker model by providing TPM-based quoting oracles. As
previously discussed in section 4.2.4 for the protocol formalization of MSCP,
such a rule is necessary to be able to detect possible vulnerabilities against
nonce-data attacks. By verifying the resulting formal protocol model using
ProVerif, we show that our inclusion of heterogeneous attestations into EKEP
does not break the protocol’s security guarantees. We present and discuss
our concrete modifications of the existing formal model of EKEP in greater
detail in appendix B.3.

Protocol performance. To evaluate the performance of the implemented
remote attestation protocol, we conducted several tests of the connection la-
tencies using different platform configurations.

n=100

STM32MP157C-DK2Thinkpad T480sHP 250 G8

0

50

100

150

200

250

300

350

400

450

SGX (loc) SGX (uni) SGX (bi) TPM (uni) TPM (bi) fTPM (uni) fTPM (bi)

C
o

n
n

ec
ti

o
n

 t
im

e
[m

s]

25 (±3)

72 (±2)

106 (±7)

423 (±3)

211 (±2)
196 (±4)

12 (±1)

Figure 4.11: Mean connection times for TPM-, SGX- and TrustZone-based remote attestations in
milliseconds. The tests have been executed on the indicated evaluation platforms.
The standard deviation is given in brackets.

162

4.5 Heterogeneous Remote Attestation

Figure 4.11 shows the results for TPM-, SGX-, and TrustZone-based remote
attestations with a sample size of n=100. The first three tests have been exe-
cuted on an HP 250 G8 (i7-1065G7, 8GB RAM, Ubuntu 22.04) using the SGX
hardware in release mode. As we can see, an SGX local attestation takes
about 12 milliseconds to complete, while an SGX remote attestation requires
25 milliseconds uni-directionally and 72 milliseconds bi-directionally. This
overhead is caused by the additional communication with the quoting en-
clave and the creation of the asymmetric signature by the SGX remote as-
sertion generator. We executed our tests for the TPM-based attestation on
a Thinkpad T480s (i7-8550U, 16GB RAM, Ubuntu 22.04) using the on-board
Infineon SLB9670¹ hardware TPM 2.0. The TPM-based assertions are gener-
ated according to the MSCP protocol with external key establishment. As ex-
pected, in this configuration the attestations take much longer due to the rel-
atively slow TPM hardware. A TPM-based EKEP handshake takes about 211
milliseconds uni-directionally and 423 milliseconds bi-directionally, which is
still adequate for our purposes. Finally, we also evaluated the remote attesta-
tion of TrustZone devices using the MSCP protocol together with fTPM. We
executed these tests in the normal world of an STM32MP157C-DK2² prototyp-
ing board. This board features an ARM Cortex-A7 32 bit microprocessor that
fully implements TrustZone.³ With this setup, we find that the remote attes-
tations can be conducted about twice as fast as when using hardware TPMs.
Generating fTPM-based assertion evidence on the test platform takes about
106 milliseconds uni-directionally and 196 milliseconds bi-directionally. Note
that this performance improvement compared to hardware TPMs is consis-
tent with the original fTPM evaluation results by Raj et al. [Raj16]. However,
for this we operated fTPM as a dedicated normal world service⁴ instead of
an OP-TEE TA⁵. Running fTPM as the latter resulted in increased attestation

¹ https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-
security-solutions/optiga-tpm/slb-9670vq2.0/ (accessed on 12/08/2023).

² https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf (accessed on 12/21/2023).
³ https://www.st.com/resource/en/datasheet/stm32mp157c.pdf (accessed on 12/21/2023)
⁴ https://github.com/microsoft/ms-tpm-20-ref/tree/main/TPMCmd/Simulator (accessed on
12/25/2023).

⁵ https://github.com/microsoft/ms-tpm-20-ref/tree/main/Samples/ARM32-FirmwareTPM
(accessed on 12/25/2023).

163

https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf
https://www.st.com/resource/en/datasheet/stm32mp157c.pdf
https://github.com/microsoft/ms-tpm-20-ref/tree/main/TPMCmd/Simulator
https://github.com/microsoft/ms-tpm-20-ref/tree/main/Samples/ARM32-FirmwareTPM

4 Technical Enforcement

times of about 1.1 seconds uni-directionally and 2.1 seconds bi-directionally.
While some additional overhead is to be expected due to the necessary context
switches between the REE and TEE, this significant deterioration in the fTPM
performance stands in contrast to the results given in [Raj16]. Hence, we con-
clude that this issue is likely caused by an unoptimized build process when
integrating the fTPM application into OP-TEE. Furthermore, we noted that
the normal world fTPM service uses OpenSSL as underlying cryptographic
library, while the OP-TEE build relies on WolfSSL¹ instead. This difference
may also contribute to the observed performance discrepancy. In any case,
we consider the optimization of the fTPM build process for OP-TEE as out of
scope for this work.

In addition to the single-platform test cases, we also evaluated the perfor-
mance of the implemented protocol when using it to heterogeneously at-
test TPM-protected systems, SGX enclaves, and ARM TrustZone devices. To
achieve this, we connected the three presented evaluation platforms to a com-
mon network and executed the attestation protocol over Gigabit Ethernet.
Figure 4.12 shows the mean connection times of the implemented heteroge-
neous attestation protocol for all three technological combinations.

n=100

0

50

100

150

200

250

300

350

TPM + SGX TPM + fTPM SGX + fTPM

C
o

n
n

ec
ti

o
n

 t
im

e
[m

s]

239 (±2)

183 (±25)

310 (±23)

Figure 4.12: Mean connection times for heterogeneous remote attestations in milliseconds. The
tests have been executed on the same platforms as shown in fig. 4.11. The standard
deviation is given in brackets.

¹ https://www.wolfssl.com/ (accessed on 01/14/2024).

164

https://www.wolfssl.com/

4.5 Heterogeneous Remote Attestation

As we can see, the execution times for (bi-directional) heterogeneous remote
attestations largely follow the previously determined (uni-directional) attes-
tation times for the individual technologies (cf. fig. 4.11). Hence, a hetero-
geneous attestation between the TPM-based and SGX-based evaluation sys-
tem takes about 239 milliseconds, while the attestation between the TPM and
the TrustZone device requires 310 milliseconds. With 183 milliseconds, only
the attestation between the TrustZone device and the SGX enclave requires a
bit more time than the individual uni-directional attestations would suggest.
This is likely caused by the necessary verification of the SGX-based assertion
evidence on the relatively slow TrustZone board. Nevertheless, all heteroge-
neous attestations still execute fast enough for our purposes.

To conclude, in our evaluation we showed that the performance of the devel-
oped heterogeneous remote attestation protocol is sufficient for our use case
of securing distributed usage control infrastructures. As expected, we found
that generating assertions on SGX platforms is much faster than when using
hardware TPMs. Still, our EKEP-based implementation of the MSCP hand-
shake for attesting TPM-protected systems performs better than the previ-
ously described Java version of the protocol (cf. fig. 4.3). This is likely due to
the more efficient implementation using C++ instead of the Java Crypto API.
In addition, we showed that generating fTPM-based assertions on ARMTrust-
Zone platforms is also faster than using hardware TPMs, which is consistent
with the original fTPM evaluation results [Raj16]. The improved performance
of fTPM compared to hardware TPMs can be explained by the use of a full ap-
plication processor with access to fast memory. As a result, the efficiency
of fTPM-based remote attestation directly depends on the capabilities of the
underlying microprocessor. Because of this, our evaluation results are not
representative for other ARM TrustZone devices. However, since the used
STM32MP157C-DK2 board is an older model with a relatively weak proces-
sor, we can still conclude that the implemented heterogeneous remote attes-
tation protocol is fast enough for our purposes. We evaluate the connection
latencies in a complete distributed usage control scenario later in chapter 7.

165

4 Technical Enforcement

4.6 Design Alternatives

This section briefly discusses the advantages and drawbacks of two alterna-
tive approaches in designing remote attestation protocols that can protect
distributed usage control infrastructures.

Using implicit remote attestation. The attestation protocols developed
and presented in this chapter all leverage explicit attestation to establish the
code identity of remote endpoints. This means that they explicitly generate
cryptographic proof of their code identity during each attestation handshake,
for example using TPM2_Quote on TPM-protected systems or the EREPORT instruc-
tion (plus a signature from the quoting enclave) on SGX processors. However,
remote attestations can also be conducted implicitly. As mentioned briefly in
section 4.2.2, during an implicit attestation the used cryptographic key itself
serves as proof of platform integrity. To achieve this, a TPM-based attesta-
tion key can be bound to the desired platform state using the TPM2_PolicyPCR

command [Tru19d, p. 230]. SGX platforms, on the other hand, do not offer
a specific implicit attestation functionality. Instead, implicit attestation can
be achieved by initially provisioning some secret key material to an enclave
via an explicitly attested channel, which is then sealed locally to the enclave
identity. If a remote endpoint can subsequently authenticate itself using the
previously provisioned secret, the enclave’s code identity can be implicitly
deduced without requiring another explicit remote attestation using EREPORT.

The main advantage of implicit over explicit attestation lies in its greater flex-
ibility. For example, implicit attestation supports the use of encryption keys
instead of signature keys as proof of platform integrity, which then allows
to directly decrypt critical data with a private key that is usable only on a
genuine trusted platform. Depending on the use case, this may save the need
for establishing additional attested and encrypted communication channels.
However, using implicit attestation also increases the scope and complexity of
the attestation key provisioning process. Furthermore, since an implicit attes-
tation key is cryptographically bound to the platform state, it must be updated
each time the (legitimate) code base changes. While TPMs offer non-brittle

166

4.6 Design Alternatives

PCRs [Art15, pp. 34–35] to somewhat alleviate this issue, on SGX platforms
such convenience functions are not available. Hence, updating SGX enclaves
would require either the provisioning of a completely new implicit attesta-
tion key, or the implementation of a dedicated update mechanism to re-seal
the previously provisioned key on the fly. Due to these drawbacks, and since
classical explicit remote attestation is sufficient to protect distributed usage
control systems, we avoid the additional overhead of implicit attestations.

Communication via domain sockets. The heterogeneous remote attesta-
tion protocol described in section 4.5.3 allows to establish attested commu-
nication channels between different trusted computing platforms. This in-
cludes conducting local instead of remote attestations if two communicating
SGX enclaves are running on the same processor. However, due to the lack
of a dedicated execution environment, TPM-based platforms have no concept
analogous to local attestation. Because of this, two usage control components
running on the same TPM-protected system will always conduct a full re-
mote attestation over the network stack to communicate. From a performance
standpoint it could be beneficial to allow such components a more direct way
of communication, for example via the system memory. In Unix-based en-
vironments this can be achieved rather easily by configuring the use of Unix
domain sockets (UDS). Domain sockets can be used just like normal network
sockets, except they transparently route the transmittedmessages through the
inter-process communication (IPC) layer of the kernel instead of the network
stack. Because domain sockets can only be used to communicate locally, and
since the TCBs of TPM-protected platforms consist of the entire system any-
way, it may also be possible to safely omit the overhead of the attested and en-
crypted communication channel in these cases. However, this optimistically
assumes that it is not feasible for a privileged attacker, for example a malicious
administrator, to intercept the communication over domain sockets without
impacting the platformmeasurements. Furthermore, the performance benefit
of this modification would be limited to the initial attestation of new system
components, since afterwards we can cache the established communication
channels anyway (see section 5.2). Because of these drawbacks, we do not
adopt the use of domain sockets for our proof of concept.

167

4 Technical Enforcement

4.7 Conclusion

In this chapter we analyzed the capabilities of TPMs, Intel SGX, and ARM
TrustZone to fulfill the security requirements necessary for our distributed
usage control and provenance tracking system. Our analysis shows that ex-
isting TPM-based attestation protocols currently used in virtual data spaces
are vulnerable against nonce-data attacks by malicious component adminis-
trators, who are the most capable adversaries expected in our system. To
solve this issue, we proposed the use of a TPM-internal key exchange for es-
tablishing attested communication channels, and developed a corresponding
protocol called MSCP. Our security analysis of MSCP, which includes a for-
mal protocol verification using the Tamarin theorem prover, shows that the
protocol effectively mitigates the issue of nonce-data attacks. To evaluate the
performance of our protocol, we implemented it in a Java-based environment.
Our results show that the TPM-internal key exchange causes a significant
performance overhead compared to existing protocols. However, this can be
alleviated by authenticating the key exchange with a resettable PCR register,
while still retaining security against nonce-data attacks. In summary, these
results constitute our research contribution RC3.

Furthermore, we also implemented a proof of concept for a trusted boot pro-
cess on ARM TrustZone platforms that supports conducting load-time in-
tegrity measurements of applications in both the normal and the secure world
of the device (research contribution RC4). As final contribution in this chap-
ter, we designed a heterogeneous remote attestation protocol (research contri-
bution RC5). We achieved this by building on the existing EKEP protocol for
SGX environments and extending it with TPM-based attestation evidence de-
signed according to our MSCP protocol. We integrated our proposal into the
Asylo trusted computing framework and evaluated the performance of the re-
sulting heterogeneous attestation protocol by connecting Intel SGX enclaves,
endpoints protected by hardware TPMs, and fTPM-based ARMTrustZone de-
vices. Our results show that the heterogeneous attestation does not cause any
significant overhead compared to single-technology variants, and as such is
feasible for our application scenario.

168

4.7 Conclusion

To conclude, in this chapter we developed the necessary technical measures
to enforce distributed usage control and provenance tracking even against
privileged adversaries in remote systems. As such, we achieved goal 2 of the
overall thesis objective. In addition, we also developed a solution for applying
these technical measures in heterogeneous trusted computing environments,
which achieves goal 3 as well. With these results, we have now collected all
building blocks that are necessary to implement a trustworthy distributed us-
age control and provenance tracking framework. However, our analysis also
showed that the rollback prevention mechanisms provided by the considered
trusted computing technologies are difficult to apply to our system. Hence
we will also design a simple, dedicated rollback protection feature as part of
our system implementation in the next chapter.

169

5 A Trustworthy Distributed Usage
Control Framework

In this chapter we consolidate the research contributions achieved so far by
describing our concrete proof of concept implementation for a trustworthy
distributed usage control and provenance tracking system. Our implemented
framework is called DataSov.

We begin in section 5.1 with a description of the DataSov framework’s fun-
damental architecture and design. In section 5.2 we then show how our pro-
posed component authentication and remote attestation scheme is integrated
into the framework. Finally, section 5.3 presents a suitable usage control pol-
icy language for DataSov. For this, we extend the core information model
of the widely used Open Digital Rights Language (ODRL) with support for
external data sources and execution points. Our custom ODRL profile also al-
lows the representation of provenance tracking information in usage control
policies. We close this chapter in section 5.4 with a brief conclusion.

5.1 The DataSov Framework

In this sectionwe present our proof of concept framework for trustworthy dis-
tributed usage control and provenance tracking called DataSov. The DataSov
framework is built on our proposed usage control system architecture and the
corresponding authentication and attestation concept as presented in chap-
ter 3. We also utilize the technical protection mechanisms based on TPMs,
Intel SGX, and ARM TrustZone developed in chapter 4.

171

5 A Trustworthy Distributed Usage Control Framework

5.1.1 System Architecture

In section 3.2 of this thesis, we described the necessary components for a trust-
worthy distributed usage control system, as well as their specific interactions.
The DataSov framework is the implementation of this proposed concept. As
illustrated in fig. 5.1, our framework consists of five main modules.

DataSov Framework

Applications

Components

PDP

PRP

PIP

ProSP

PXP

Launchers

TPM
Launcher

SGX
Launcher

TrustZone
Launcher

API

Controlling

PEP

Dashboard

Monitor

Commons

Trusted Computing Library

Attestation Authentication

Users CAs

Figure 5.1: Overview of the DataSov framework architecture.

First, the DataSov API contains interfaces and classes that are necessary to in-
tegrate distributed usage control and provenance tracking into existing data
processing applications. This mainly includes the DataSov Policy Enforce-
ment Point (PEP), as well as common data types and structures that are used
to interact with the framework. In addition, DataSov also provides several
modules for the purpose of controlling the framework functionalities. This in-
cludes monitoring components that supervise the usage control enforcement
and provenance tracking process, as well as a web-based dashboard that gives
users feedback about the current system state and the collected provenance
graphs. DataSov also includes default implementations for the Certification
Authorities (CAs), which are necessary to securely provision new component
instances and facilitate our proposed component authentication scheme.

At the heart of the DataSov framework lie the core components. These com-
ponents implement the usage control and provenance tracking capabilities as

172

5.1 The DataSov Framework

described in section 3.2. This mainly includes our customized ODRL Policy
Decision Point (PDP), as well as a Policy Retrieval Point (PRP) and a Prove-
nance Storage Point (ProSP). We also include default implementations for
Policy Information Points (PIPs) and Policy Execution Points (PXPs), which
provide several basic functionalities. However, these components can also
be extended with additional application-specific functions. Furthermore, the
launcher module provides a suite of applications that facilitate the launch of
DataSov components on different trusted computing platforms. As motivated
in chapter 4, we support the execution of our usage control and provenance
tracking components on TPM-protected systems, as well as inside Intel SGX
enclaves and on ARM TrustZone devices. The DataSov launchers start the
core components as individual server instances that are protected by the re-
spective trusted computing technology. This design simplifies the deploy-
ment of the framework, because it decouples the functionality of the core
components from their concrete execution context as separate applications
on a trusted platform.

Finally, all DataSov components rely on a trusted computing library that im-
plementsmost of the technical protectionmechanisms developed in chapter 4.
This mainly includes the heterogeneous remote attestation protocol and the
component authentication scheme that is used to achieve secure communica-
tion channels between the distributed system components. In addition, this
library also provides the core components with a persistence layer that in-
cludes a simple rollback protection mechanism. The idea behind this per-
sistence layer is to offer DataSov components convenience methods for se-
curely saving their individual states, while abstracting from the concrete and
technology-dependent sealing functionalities used for the data encryption (cf.
chapter 4). However, as of the time of this thesis, sealing is not yet fully im-
plemented in the DataSov framework.

In the remainder of this section, we present a more detailed overview of the
services that realize trustworthy usage control and provenance tracking in
our proof of concept framework. We also give some insight into the design of
the included protection mechanism against rollback attacks.

173

5 A Trustworthy Distributed Usage Control Framework

5.1.2 Components and Service Definitions

The design of the DataSov framework follows a distributed and service-
oriented system architecture. All usage control and provenance tracking
components are realized as independent services that are communicating
with each other over the network. This allows us to dynamically deploy
usage control components over multiple physical platforms and domains.
To facilitate the network communication between distributed system com-
ponents, the DataSov API defines service interfaces for all components, as
well as common messages and data types that are exchanged by the services.
Figure 5.2 gives an overview of the most important service interfaces and
messages that are used in the DataSov framework. We discuss the concrete
implementation of these services later in section 5.1.4.

<<Message>>

Event

String action
Integer timestamp
Map<String, Param> params

<<Service>>

Policy Decision Point

notify(event, capability, policyId)
: Decision, List<ExecuteDemand>

<<Enum>>

Decision

DENY = 0
ALLOW = 1
MODIFY = 2

<<Service>>

Policy Retrieval Point

store(policy) : PolicyId, PolicyType
retrieve(id) : String, PolicyType
delete(id) : Bool

<<Service>>

Policy Information Point

evaluate(method, params)
: Param

<<Message>>

Param

ParamType type
Object value

<<Service>>

Policy Execution Point

execute(demand, event) : Bool

<<Enum>>

PolicyType

UNKNOWN = 0
ODRL = 1
XACML = 2

<<Message>>

ExecuteDemand

String name
Map<String, Param> params

<<Message>>

PolicyId

String uri

<<Class>>

Policy Enforcement Point

deploy(assetId, policy) : Bool
declare(assetId, policyId) : Bool
revoke(assetId) : Bool
getPolicy(assetId) : PolicyId
intercept(assetId, event) : Bool

Capability capability
Map<AssetId, PolicyId> assets

<<Message>>

Capability

List<String> actions
Bool intercepting

<<Enum>>

ParamType

INTEGER = 0
STRING = 1
DOUBLE = 2
LIST = 3
MAP = 4

Figure 5.2: Overview of messages and service definitions concerning usage control in the
DataSov framework.

The main entry point into the DataSov framework is the interface of the Pol-
icy Enforcement Point (PEP). The DataSov PEP is not a dedicated network
service, but instead a small C++ code module that can be compiled into legacy

174

5.1 The DataSov Framework

data processing applications in order to enable support for usage control and
provenance tracking. The PEP’s main responsibility is to provide the legacy
application with a simple interface for connecting to the distributed usage
control system and requesting usage decisions. As such, it assembles notifi-
cations about occurring data usages and handles the subsequent communica-
tion with the policy retrieval and decision points. Before it can be used, each
PEP needs to be set up with its capability definition. The capability defini-
tion includes a list of action names, for which this PEP can generate usage
notifications. It furthermore includes the information if this PEP is capable of
actively intercepting data usages, or if it can merely observe usages for prove-
nance tracking. Afterwards, the PEP interface provides two methods that can
be used to enable usage control enforcement and provenance tracking on the
application’s data. The deploy method attaches a new policy to a certain data
asset that is processed in the application, in accordance with the previously
motivated sticky policy concept. When this method is called, the PEP an-
nounces the new policy in the distributed usage control system and stores the
association between the asset and the deployed policy in a local map. If a pol-
icy has already been deployed in the local usage control domain, the declare

method can be used instead, which just creates the association between asset
and the existing policy inside the PEP. Together, these two methods imple-
ment the concepts of cross-domain and domain-internal policy deployment,
as introduced in section 3.2.3. Finally, the intercept method notifies the usage
control system of an attempted data usage. The PEP then contacts the local
decision point to request an evaluation of the relevant policy under the inter-
cepted event context. The event context is automatically assembled from the
name of the intercepted action, together with a set of parameters that further
describes the data usage. Once the decision point has reached its verdict re-
garding the attempted data usage, the PEP module enforces the decision by
either allowing, denying, or modifying the intercepted event accordingly.

Unlike enforcement points, the Policy Decision Point (PDP) is a dedicated
service that provides its interface over the network. DataSov PDPs imple-
ment the notify method, which is called by enforcement points in order to
evaluate a policy under a certain event context. This method also accepts a
PEP capability definition, which is then used to determine remedies that must

175

5 A Trustworthy Distributed Usage Control Framework

be executed if the decision cannot be enforced at the enforcement point (cf.
section 5.3.1). Ultimately, the PDP returns a decision message that either al-
lows or denies the data usage, which the PEP subsequently enforces. It is
also possible to request the modification of certain event parameters before
the event can be allowed. In that case a list of execute demands is returned
alongside the decision. Execute demands are always identified by a name and
may also contain additional parameters. The enforcement point must then
successfully exercise all received execute demands before the data usage may
be allowed. Later, in section 5.3.3, we show how PEP execute demands can
be expressed as usage control obligations in ODRL policies. However, the
DataSov framework is designed to be generally agnostic regarding the used
policy languages. As a result, we can operate multiple decision points sup-
porting different policy languages in our usage control domain. The advan-
tage of policy agnosticism is that it allows us to individually express different
types of usage rules for different applications and use cases. We achieve this
by adhering to the sticky policy concept (i.e., one policy per asset), as well
as by using a system design that keeps the defined data types and messages
independent from a particular policy language. Furthermore, we use retrieval
points that are capable of automatically determining the policy types of the
stored usage rules. This allows the enforcement points to choose a correct
decision point instance that is capable of evaluating the policy for the current
asset. Currently, the DataSov framework includes only one type of decision
point, which implements our custom ODRL policy language profile (see sec-
tion 5.3). However, by re-implementing the PDP service interface, DataSov
can be easily extended with support for additional policy engines.

Finally, the rules evaluated at the decision point may also contain references
to Policy Information Points (PIPs) and Policy Execution Points (PXPs). In
DataSov, information points are realized as services that provide the evaluate

function. This function accepts a method identifier and a list of parameters
as input values. Both of these properties are taken from the evaluated policy
by the decision point. The PIP then determines the value of the requested at-
tribute and returns it to the decision point as a parameter message. Similarly,
DataSov execution points offer the execute function, which takes an execute
demand together with the current event context as input parameters. The

176

5.1 The DataSov Framework

PXP returns true if the requested demand has been executed successfully. If
a demand could not be executed successfully, the decision point will treat the
corresponding usage control obligation as not fulfilled and hence deny the
usage request. The DataSov framework includes default implementations for
both information and execution points, which support all methods that are
defined as part of our custom ODRL policy profile (see section 5.3). However,
since the DataSov framework is meant to be adapted for a wide variety of ap-
plications, users can easily add support for additional methods by extending
the respective component service interfaces.

5.1.3 Provenance Tracking and Dashboard

In addition to distributed usage control, the DataSov framework also provides
support for provenance tracking on the protected data assets. As motivated in
section 3.2.6, our system design does not require a dedicated data flow model
as basis for the provenance tracking, unlike the previous proposal by Bier
[Bie21]. Instead, we implement the collection of provenance data directly via
usage control obligations. The advantage of this approach is that it allows
data owners to explicitly specify the desired provenance tracking semantics
alongside the data asset’s usage rules, instead of having to implicitly inte-
grate them into the data processing applications. Furthermore, being able
to reference provenance information in policies facilitates the expression of
usage restrictions that are based on a data asset’s processing history. Never-
theless, we still leverage the concept of Provenance Storage Points (ProSPs)
to retain the provenance information that has been collected in a particular
usage control domain.

Figure 5.3 shows the messages and service interfaces that are used to imple-
ment provenance tracking in DataSov. Each DataSov ProSP offers two meth-
ods that can be used to access the provenance. The store operation takes
a provenance information object and merges it into the current provenance
state. The retrieve operation returns the requested parts of the current prove-
nance state. These methods are called during policy evaluation by execution
points and information points, respectively. In section 5.3.4 we show how

177

5 A Trustworthy Distributed Usage Control Framework

this form of provenance tracking can be controlled using obligations and con-
straints in ODRL policies. The stored provenance information itself is struc-
tured according to the W3C PROV data model [Bel13]. We identify each en-
tity, activity, and agent with a unique URI. Furthermore, each provenance
instance and relation can be associated with a class type and a list of generic
properties. This enables policy issuers to build provenance graphs using any
custom classes or relation types, instead of just the base types defined in the
PROV data model (see section 2.2.1).

<<Service>>

Provenance Storage Point

store(provenance) : void
retrieve(filter) : Provenance

<<Message>>

Provenance
List<ProvInstance> entities
List<ProvInstance> activities
List<ProvInstance> agents
List<ProvRelation> relations

<<Service>>

Monitor

store(state) : void
retrieve(void) : State

<<Message>>

State
URI domain
List<PolicyId> policies
List<Component> components
List<Attestation> attestations
List<Provenance> provenance

<<Message>>

ProvInstance
URI instance
String type
List<Object> properties

<<Message>>

ProvRelation
Pair<URI, URI> relation
String type
List<Object> properties

<<Message>>

Component
URI uri
String type
List<Component> dependencies

<<Message>>

Attestation
Component verifier
Component prover
String mechanism
Integer timestamp

Figure 5.3: Overview of the messages and service definitions concerning provenance tracking
in the DataSov framework.

After collecting and storing information about the usage history of monitored
data assets, a provenance tracking system should also allow its users to query
and analyze the captured information. In the DataSov framework, we imple-
ment this provenance dissemination stepwith additionalmonitor components
and a dedicated dashboard. As fig. 5.3 shows, the DataSov monitors are ser-
vices tasked with aggregating and disseminating information about the cur-
rent state of the usage control system. Each monitor is associated with a
single usage control domain and collects several pieces of information from
the DataSov components running in that domain. The collected information
include provenance data from the local ProSP, additional runtime informa-
tion about the usage control components, the conducted remote attestations,

178

5.1 The DataSov Framework

and the deployed policies. In aggregated form, this information represents
the current state of a particular usage control domain. While monitor compo-
nents are implemented as network services, the DataSov dashboard is instead
realized as a standalone web application. Dashboards are responsible for pro-
viding the DataSov users with feedback about the current state of the usage
control and provenance tracking system. As such, they connect to one or
more monitors and periodically retrieve the state information from multiple
usage control domains that are of interest. The received state information
is then integrated and visualized using a graphical user interface. Among
other things, the dashboard provides information about the currently active
usage control components, the deployed policies, and the provenance graphs
of shared data assets. Figure 5.4 shows a screenshot of the DataSov dash-
board displaying a small exemplary provenance graph. The visualization of
the provenance graphs largely follows the illustrations defined in the PROV
data model [Bel13]. Entities are represented as ellipses, activities as boxes,
and agents as triangles. Relations are shown as labeled edges between the in-
stances. With this depiction of the collected provenance graphs, the DataSov
framework allows data providers to retrospectively review the usage and pro-
cessing history of their shared data assets.

5.1.4 Implementation and Configuration

As a standalone web application, we realized the DataSov dashboard in
JavaScript using Node.js together with the ReactJS ecosystem. In contrast,
all of our distributed usage control and provenance tracking components are
implemented in C++ as gRPC¹ services. gRPC is a cross-platform Remote
Procedure Call (RPC) library developed by Google, which allows to define
and connect services over the network. This library follows a client/server
architecture and includes a compiler that generates code stubs for the custom
gRPC message and service definitions. To transparently include hetero-
geneous attestation and authentication between DataSov components, we
extended the implementation of the underlying communication channels

¹ https://grpc.io/ (accessed on 12/08/2023).

179

https://grpc.io/

5 A Trustworthy Distributed Usage Control Framework

Fi
gu

re
5.
4:

Sc
re
en

sh
ot

of
th
e
D
at
aS

ov
pr

ov
en

an
ce

da
sh

bo
ar
d.

180

5.1 The DataSov Framework

provided by gRPC. Details about the realization of our remote attestation
and authentication concept in DataSov are given later in section 5.2. We
utilize the Bazel¹ build tool to compile our DataSov components for the
different supported trusted computing platforms. Bazel by design always
performs full dependency builds, which simplifies the deployment of the
DataSov components, since the resulting binaries do not depend on any
system libraries. We build the TPM-protected DataSov components as native
C++ applications using the TSS.MSR² software stack by Microsoft to con-
nect to the platform TPMs. Furthermore, our components can be built as
SGX enclaves using the build chain provided in the Asylo framework. The
resulting SGX enclave images are then loaded, configured, and executed by
a dedicated launcher application. Crucially though, the component server
is always located inside the SGX enclave, so as to ensure that the commu-
nication endpoints are terminated inside the enclave. Finally, we leverage
the ARM toolchain provided in the OP-TEE environment to cross-compile
DataSov for ARM TrustZone devices as well. More concretely, we provide
build configurations for both the Raspberry Pi 3 and the STM32MP157C-DK2³
TrustZone development board. For convenience purposes, our build process
generates ready-to-use device images that contain the compiled binaries of
all DataSov components. The code of the DataSov framework including all
necessary build files is available online.⁴

The DataSov framework allows to dynamically deploy usage control and
provenance tracking components on multiple devices, as required for the
given application scenario. The only step necessary to set up a new compo-
nent is to enroll a component certificate for the authentication scheme (see
section 3.2.8). For this purpose, each DataSov component offers a provisioning
mode that acquires such a certificate from the local domain CA. Unlike with
most existing distributed usage control frameworks, no central registration,
management, or lookup services are required. In terms of configuration,

¹ https://bazel.build/ (accessed on 01/23/2024).
² https://github.com/microsoft/TSS.MSR (accessed on 01/23/2024).
³ https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf (accessed on 12/21/2023).
⁴ https://gitlab.cc-asp.fraunhofer.de/datasov (accessed on 12/08/2023).

181

https://bazel.build/
https://github.com/microsoft/TSS.MSR
https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf
https://gitlab.cc-asp.fraunhofer.de/datasov

5 A Trustworthy Distributed Usage Control Framework

every component must be set up with their unique component URI, as well
as the trusted root certificate for the component authentication scheme.
Some components also require to specify the URIs of dependent services
that should be used during operation. For example, PEPs are configured
with a list of decision point URIs that determine which component should
be contacted for policy evaluation, depending on the encountered policy
language. Similarly, PDPs are configured with the URI of the local retrieval
point. However, the URIs used to contact PIPs, PXPs, and ProSPs are never
fixed in the component configuration. Instead, the decision point takes these
URIs directly from the evaluated policy (see section 5.3). Finally, each com-
ponent configuration is measured as part of the TCB to prevent undetected
tampering by malicious system operators.

5.1.5 Integrated Rollback Protection

Authenticating distributed usage control components and verifying the in-
tegrity of their code bases with remote attestations is a central security mech-
anism of our trustworthy usage control framework. However, protecting the
integrity of component states is equally important for a reliable usage control
enforcement process (cf. section 3.4). This is because stateful components,
such as PIPs and ProSPs, provide information that is relevant for the evalua-
tion of usage control policies, and hence can influence usage control decisions.
Take for example a PIP storing an access counter, which gets updated during
the life cycle of a usage-controlled data asset. If a malicious platform owner
could reset the PIP back to an earlier state with a lower counter value, active
usage restrictions on that data asset may be violated as a result. To prevent
such types of attacks, we need to integrate a rollback protection (RBP) mech-
anism for component states into the DataSov framework.

As a first step towards an effective rollback protection, we design each
DataSov component to hold all information relevant for the usage control
enforcement inside a single dedicated state object. This includes data such as
the deployed usage control policies (PEPs and PRPs), information used during
the policy evaluation (PIPs), collected provenance information (ProSPs), but

182

5.1 The DataSov Framework

also the component private keys that have been generated during the provi-
sioning process (see section 3.2.8). In addition, each state object is associated
with a unique version number, which is automatically incremented at every
state update. We define these state objects as nested Protobuf¹ messages,
which allows us to easily serialize component states into binary blobs. Now
the question remains of how to protect the integrity of these serialized state
objects in the DataSov framework, such that malicious state rollbacks are
reliably detected and hence cannot negatively influence the usage control
enforcement process. There are principally two ways of implementing such
a mechanism. First, as discussed in chapter 4, we can rely on the underlying
trusted computing technologies to provide hardware mechanisms that allow
us to detect rollbacks of usage control state objects when they are loaded.
The most promising hardware feature for this are monotonic counters. By
updating a monotonic counter each time the component state changes, and
then including it in the persisted state object (e.g., as the unique version
number), the integrity of the state object becomes locally verifiable. To detect
rollback attacks, we simply have to check if the version number of a loaded
state object still matches the monotonic counter. While this is a relatively
simple and commonly used solution for rollback detection, it also comes with
some major drawbacks. Most importantly, monotonic counters are usable on
TPM-protected systems (cf. TPM2_NV_Increment) and some TrustZone devices
(using an RPMB memory module), but are generally not available on SGX
platforms [Mat17]. In addition, there are known issues with both perfor-
mance [Mat17], as well as increased wear of non-volatile memory [Seg16,
pp. 168–169] when using monotonic counters for rollback protection. Finally,
relying on specific trusted computing hardware for rollback protection also
complicates the integration of new trusted computing technologies into our
framework in the future. Because of these issues, we choose to implement the
rollback protection mechanism in DataSov in a manner that is independent
of the underlying trusted computing technologies.

The alternative way of realizing rollback protection is by means of a centrally
trusted service. We implement this approach by introducing the state store as

¹ https://protobuf.dev/ (accessed on 12/08/2023).

183

https://protobuf.dev/

5 A Trustworthy Distributed Usage Control Framework

a new component in the DataSov framework. The state store is responsible
for keeping track of individual component states and ensures their integrity
throughout the operation of the usage control system. During the provision-
ing phase, all stateful DataSov components register their individual compo-
nent URI at the state store. The state store authenticates the components
and their respective URIs via their individual component certificates (see sec-
tion 3.2.8). During the subsequent component operation, for every update of
the persisted state, the components calculate cryptographic hash digests of
both the current and the new state, and send these digests to the state store.
The state store then validates that the reported state digest still matches the
deposited digest for this component, before updating it to the new value. If
the validation fails, the component is notified over the encrypted channel and
consequently terminates itself, which in turn invalidates any usage rules that
rely on the manipulated component. Since any external modification of the
locally persisted state will invalidate the digest deposited at the state store,
and only the legitimate component is able to authenticate itself at the state
store, this mechanism effectively prevents rollback attacks. Recovering from
a detected rollback attack is possible either by restoring the original compo-
nent state, or by enrolling a new component identity and updating the af-
fected policies. Note that allowing recovery via a simple component reset is
infeasible for our purposes, since reverting to an empty state could also lead
to undesired side-effects during policy evaluation. For instance, in the previ-
ously mentioned example the access counter at the PIP would be reset to zero,
which again could lead to policy violations.

The major advantage of using a central state store for rollback protection is
that it works independently of any trusted computing technology, and hence
offers a common mechanism that is accessible to all stateful DataSov compo-
nents, regardless of their deployment. However, even though the state store
does not save any secrets, the integrity of the deposited digests must still be
ensured for the rollback protection to be reliable. Because of this, we assume
the state store to be a trusted and globally available party in our proof of con-
cept. Alternatively, the state store could also be realized as a distributed ledger
over all participants of the usage control system. While this avoids the need

184

5.2 Remote Attestation in DataSov

for an additional trust anchor in the system, it also adds another layer of com-
plexity. We leave the further exploration of this possibility for future work.

5.2 Remote Attestation in DataSov

In this section we discuss the inner workings of the remote attestation and
component authentication methods as they are included in DataSov.

5.2.1 Implementing Heterogeneous Attestation

As presented in the previous section, we implement the core components
of our DataSov framework in the form of gRPC services. Besides offering
Remote Procedure Call (RPC) functionalities, the gRPC library also handles
the serialization and transmission of corresponding service requests and
responses over the network. Hence, to achieve a trustworthy distributed
usage control and provenance tracking framework, we need to integrate our
findings and developments regarding remote attestation and secure com-
munication channels (see chapter 4) into the gRPC stack. Fortunately, the
gRPC library is designed with the concept of independent channel providers,
which decouple the implemented services from the underlying network
transport layer. This allows us to implement a customized gRPC channel
provider for DataSov, which establishes encrypted communication between
the framework components based on heterogeneous remote attestation, as
well as our component authentication scheme. More concretely, we build
the secure gRPC channel provider for the DataSov framework on the Enclave
Key Exchange Protocol (EKEP). EKEP is used in the Asylo trusted computing
framework for SGX-based local and remote attestation [Asy21a]. Since Asylo
is also a gRPC-based framework, the existing EKEP implementation already
provides a protocol handshaker, as well as a corresponding encryption layer
for gRPC communication channels. As presented in section 4.5, we achieve
support for heterogeneous remote attestations in DataSov by extending
the EKEP protocol implementation with assertion generators and verifiers
for TPM-protected platforms and fTPM-based ARM TrustZone devices.

185

5 A Trustworthy Distributed Usage Control Framework

One technical issue that occurred during our implementation was that the
SGX-based assertion generators included in EKEP cannot be compiled for
non-SGX platforms. We resolved this by creating a fork of the underlying
EKEP implementation and selectively patching out SGX-only libraries when
compiling the gRPC communication stack for TPM-protected endpoints or
TrustZone devices. The resulting heterogeneous remote attestation library
for gRPC communication channels is implemented in C++. Additionally,
the DataSov framework also contains Java wrappers for the default C++
library using the Java Native Interface (JNI). This makes our attestation and
authorization framework usable in Java-based environments as well, which
simplifies the integration of legacy applications into the distributed usage
control framework. The complete code of our gRPC attestation library is
available online as part of DataSov.¹

Besides implementing a gRPC channel provider that supports heterogeneous
remote attestations, we also need to consider how attestations can be properly
configured in the DataSov framework. Most importantly, users have to decide
how often attestations should be conducted between components. Since the
gRPC channel concept decouples the establishment of network connections
from the actual RPC calls, an already attested communication channel can
be reused for an arbitrary number of service requests. However, indefinitely
reusing a once attested channel increases the risk of encountering Time-of-
Check Time-of-Use (TOCTOU) issues by missing updates of the remote com-
ponent’s active code base. This is an issue especially with trusted platforms
that allow dynamic runtime measurements, e.g., when using TPMs together
with the Linux kernel IMA. To prevent this, component re-attestations could
be enforced proactively by establishing new gRPC channels for every single
service request. However, this would result in an unreasonably high con-
nection overhead and is usually not necessary, especially in scenarios with a
large number of requests. As middle ground we implement a channel man-
ager in DataSov, which allows users to flexibly configure the desired fre-
quency of component re-attestations depending on the application scenario.
Our channel manager caches successfully attested gRPC channels that have

¹ https://gitlab.cc-asp.fraunhofer.de/datasov/lib/-/tree/master/smarttc (accessed on 12/08/2023).

186

https://gitlab.cc-asp.fraunhofer.de/datasov/lib/-/tree/master/smarttc

5.2 Remote Attestation in DataSov

been established with remote DataSov components, and then automatically
reuses them for subsequent requests. The channel manager can be configured
to keep attested channels open either indefinitely, or for a certain period of
time. By default, the DataSov components use a cache timeout of 60 seconds.
After a cache timeout, the channel is closed and an automatic re-attestation
takes place for the next connection. We examine the resulting communication
round-trip times with a distributed usage control example both using cached
and non-cached channels later in chapter 7.

5.2.2 Integrating Component Authentication

In addition to the heterogeneous attestation, we also need to automatically
authenticate the DataSov components over the established gRPC channels,
in order to prevent component impersonation attacks. As described in sec-
tion 3.2.8, our proposed authentication scheme provisions component cer-
tificates via a hierarchical PKI. These certificates can then be used to unam-
biguously identify and authenticate each component via a unique URI. We
integrate this certificate-based component authentication scheme into the de-
scribed gRPC channel implementation for DataSov. To achieve this integra-
tion, we extend the EKEP protocol definition with the concept of DataSov
component identities, in addition to the previously described code identities
that facilitate the heterogeneous attestations. Component identities are repre-
sented by the unique component URI together with the signed certificate that
has been provisioned for this URI. Furthermore, we add a suitable assertion
generator and corresponding verifier to the customized EKEP protocol hand-
shake, which use a simple challenge-response protocol to perform the cryp-
tographic authentication of claimed component identities (cf. section 3.2.8).

Listing 5.1 shows the Protobuf messages used to exchange component identi-
ties and assertions as part of the gRPC channel establishment in the DataSov
framework. Lines 4-9 contain the data structure representing the identity of
a DataSov component, which consists of its URI and the corresponding com-
ponent certificate. Lines 12-21 then define the assertion that is exchanged

187

5 A Trustworthy Distributed Usage Control Framework

during the gRPC channel establishment to authenticate a particular compo-
nent identity. For this, the asserted component uses its private key to sign the
challenge transmitted by the verifier, which includes the nonce for freshness
and a digest of the verifier’s ephemeral Diffie-Hellman public key. Finally, the
assertion also includes the complete certificate chain to the root CA.

Listing 5.1: DataSov component assertion and identity description for EKEP.

1 syntax = "proto2";

2

3 // A high -level representation of the identity of a DataSov component.

4 message ComponentIdentity {

5 // The component URI. Required.

6 optional string uri = 1;

7 // The component certificate. Required.

8 optional Certificate cert = 2;

9 }

10

11 // A cryptographically verifiable component assertion.

12 message ComponentAssertion {

13 // The asserted DataSov component identity. Required.

14 optional ComponentIdentity identity = 1;

15 // The challenge requested by the verifier. Required.

16 optional bytes challenge = 2;

17 // The signature of the challenge under the component key. Required.

18 optional bytes signature = 3;

19 // The certificate chain for the component. Required.

20 optional CertificateChain cert_chain = 4;

21 }

Conducting assertions of component identities as shown in listing 5.1 unam-
biguously authenticates a network peer as a specific DataSov component. Us-
age control components can then validate that they are communicating with
the correct peers by checking the authenticated URI. Since EKEP supports
the exchange of multiple assertions in a single protocol handshake, we can
configure the channel establishment in DataSov to always use the assertion
providers for both heterogeneous attestation and component authentication.
This allows us to simultaneously verify the code integrity as well as the usage
control identity of remote DataSov components during the establishment of
a single gRPC communication channel.

188

5.2 Remote Attestation in DataSov

5.2.3 Authorizing Asserted Component Identities

Finally, our custom gRPC channel implementation for DataSovmust also inte-
grate suitable methods for authorizing the asserted code bases and component
identities. Thismeans that DataSov componentsmust be able to specify which
peer identities are required and acceptable for each established gRPC channel.
If the remote target does not provide proper assertions for the expected iden-
tities, the connection is unauthorized and must be closed. Typically, the au-
thorization of code identities is done by comparing the attested TCB measure-
ments with a set of expected (golden) values that the remote peer is supposed
to have. Similarly, for the authorization of component identities we compare
the asserted URI with the expected identifier of the target component.

Since EKEP is an SGX-based remote attestation protocol, it already offers fea-
tures to authorize the code identities of remote SGX enclaves over gRPC chan-
nels. For this, the protocol uses Access Control Lists (ACLs) that can be at-
tached to a gRPC channel context [Asy21b]. ACLs allow users to define a list
of acceptable enclave identities that the network peer on this particular chan-
nel must successfully assert, in order to be considered authorized for commu-
nication. These ACLs are defined as Protobuf messages, which can be serial-
ized into a human-readable text format for editing. Furthermore, individual
ACLs can also be combined using boolean predicates to define complex au-
thorization policies for a gRPC channel [Asy21b]. ACLs mainly consist of the
expected peer identity together with a set of matching rules that determine
which parts of the asserted enclave identity must match the expected iden-
tity description. This identity matching approach allows users to define au-
thorization policies that only partially compare the properties of the asserted
identities. For example, SGX-based enclave identities can be authorized by
comparing the values of either the MRENCLAVE or the MRSIGNER field (or both). On
the technical side, this concept is implemented using various identity expecta-
tion matchers, which evaluate the asserted identities against the active ACLs.
The identity matchers are automatically called by the gRPC channel imple-
mentation as soon as a remote assertion is received and validated. To support
channel authorization based on TPM code identities and DataSov component
identities, we implement suitable ACL definitions and corresponding identity

189

5 A Trustworthy Distributed Usage Control Framework

expectation matchers. Listing 5.2 shows the Protobuf messages defining the
ACL format for TPM-based code identities.

Listing 5.2: ACL data structures for TPM-based identity expectations and matching.

1 syntax = "proto2";

2 message TpmPcrMatchSpec {

3 // The list of PCR registers to match.

4 repeated int32 system_pcrs = 1;

5 }

6 message TpmSmlMatchSpec {

7 // Treat expected measurement log as a blacklist instead of whitelist.

8 optional bool blacklist = 1;

9 }

10

11 // Specification of which fields from `TpmIdentity ` to match.

12 message TpmIdentityMatchSpec {

13 // Selection between PCR matching and measurement log matching. Required.

14 oneof TpmIdentityMatchMode {

15 TpmPcrMatchSpec pcr_match_spec = 1;

16 TpmSmlMatchSpec sml_match_spec = 2;

17 }

18 }

19

20 // A verifier's expectation of a `TpmIdentity `.

21 message TpmIdentityExpectation {

22 // Reference identity matched against the target identity per `match_spec `. Required.

23 optional TpmIdentity reference_identity = 1;

24 // Specification of which properties from the target identity to match. Required.

25 optional TpmIdentityMatchSpec match_spec = 2;

26 }

Lines 21-26 define the main ACL data structure consisting of the TPM-based
reference identity (cf. listing 4.1), as well as the identity matching specifier.
We support two types of TPM identity matching. If the identity matching is
conducted directly on the PCR values, then the ACL allows to filter the in-
dividual registers and banks to be compared (lines 2-5). However, this type
of matching is suitable only for (relatively) static code bases, to avoid an ex-
cessively large list of expected PCR values. The other implemented identity
matching type uses the IMA measurement log that is optionally included in
the TPM-based code identities. This matching is performed by comparing all
entries in the measurement log of the peer’s asserted identity with the entries
specified in the ACL’s reference measurement log. For this comparison, the

190

5.2 Remote Attestation in DataSov

reference measurement log can be used either as whitelist or as blacklist (lines
6-9) and may also contain regular expressions.

Similarly, we also implement the ACL definition and identity matcher for the
DataSov component identities. These ACLs allow to authorize remote compo-
nents via their unique URI. Listing 5.3 shows the Protobuf messages defining
this ACL format. We support URI matching both as exact string as well as
using a regular expression (lines 3-10), allowing for the authorization of a set
of acceptable components via a single ACL.

Listing 5.3: ACL data structures for DataSov component identity expectations and matching.

1 syntax = "proto2";

2 // Specification of which fields from `ComponentIdentity ` to match.

3 message ComponentIdentityMatchSpec {

4 enum UriMatchType {

5 EXACT_URI = 1;

6 REGEX_URI = 2;

7 }

8 // Type of the URI matching. Required.

9 optional UriMatchType match_uri = 1;

10 }

11

12 // A verifier's expectation of a `ComponentIdentity `.

13 message ComponentIdentityExpectation {

14 // Reference identity matched against the target identity per `match_spec `. Required.

15 optional ComponentIdentity reference_identity = 1;

16 // Specification of which properties from the target identity to match. Required.

17 optional ComponentIdentityMatchSpec match_spec = 2;

18 }

Finally, we can use the boolean ACL predicates to combine our authorization
rules regarding the expected code bases and component identities into a sin-
gle channel policy. This avoids the need to “manually” check the asserted
component URI at every location in the code where remote components are
called. As described in section 3.2.7, we then distribute the resulting ACLs
specifying the expected code and component identities via our Measurement
Store (M-Store) concept. Hence, DataSov components do not have to be de-
ployed with a set of fixed ACLs for one application, but can instead pull them
dynamically from the local M-Store. A reference implementation for the M-
Store component is also provided in the DataSov framework.

191

5 A Trustworthy Distributed Usage Control Framework

5.3 A Policy Language for DataSov

In this sectionwe present a policy language that is suitable for our trustworthy
usage control and provenance tracking framework. As mentioned earlier, the
DataSov framework is generally policy-agnostic and can be used with any
type of decision point. However, there are some requirements that a usage
control policy language should fulfill in order to be useful in DataSov.

(P1) Distributed usage control: The policy language should allow the
definition of rich and expressive usage rules on digital assets that are
distributed across multiple stakeholders. This necessitates the
expression of issuer and subject of usage rules, and may even include
mechanisms for policy negotiation and agreement.

(P2) General-purpose language: The policy language should be
applicable to generic use cases instead of being domain specific. This is
usually achieved by defining an extensible information model that
describes the semantics of expressed usage rules.

(P3) External information sources: Since DataSov implements a usage
control system that is both distributed and decentralized (see
section 2.1.2), we require policy support for external information
sources (i.e., PIPs). This means that the policy language must allow the
definition of parameter lookups at remote repositories. Furthermore, to
prevent malicious interference in the policy evaluation process, the
language must also allow issuers to define the concrete component
identities of information sources in the policy.

(P4) PXP obligations: Besides supporting external information sources,
the policy language must also allow the specification of obligations
that should be executed on remote PXPs. Once again, policy issuers
must be able to specify the concrete component identities of the
execution points that should be used, so as to avoid component
impersonation during the usage control enforcement process.

(P5) Representation of provenance information: Finally, a policy
language suitable for DataSov must be able to represent provenance

192

5.3 A Policy Language for DataSov

information. This allows policy issuers to both manage the desired
provenance tracking as part of the policy enforcement, as well as
referencing the usage history of data as constraints in usage rules.

In section 2.1.3 we presented a comparison of the most important usage con-
trol languages at the time of this thesis. Of those options, we rely on the
OpenDigital Rights Language (ODRL) as default policy scheme in theDataSov
framework, mainly due to its widespread use and recommendation by the
W3C. However, the core ODRL vocabulary does not allow to specify external
information sources, PXP obligations, or provenance tracking information,
and hence does not yet fulfill all of our requirements regarding a suitable pol-
icy language. Hence, in the remainder of this section, we first introduce ODRL
in greater detail and then extend its core information model with a special-
ized ODRL profile, which allows policy issuers to reference external PIPs and
PXPs, as well as represent provenance information in usage control policies.
Finally, we also describe our implementation of a Policy Decision Point that
can evaluate the newly specified ODRL profile for the DataSov system.

5.3.1 The Open Digital Rights Language

ODRL is a rights expression language that has been standardized as a W3C
recommendation in 2018. The ODRL standard consists of a semantic informa-
tionmodel [Ian18b], a corresponding vocabulary [Ian18a], and several options
for serialization, most notably the JSON-LD format. While originally devel-
oped in the context of digital rights management, ODRL has recently received
attention as a policy language for distributed usage control as well [Keb18].
In general, ODRL focuses on expressing usage semantics for digital assets in
a technology-independent and normative fashion.

Figure 5.5 shows the most important classes and relationships of the ODRL in-
formation model [Ian18b]. At the core of the ODRL standard lies the concept
of policies, which specify generic usage statements concerning one or more
assets. Each ODRL policy consists of one or more rules, which are always as-
sociated with an action that may be executed on the protected assets. Rules

193

5 A Trustworthy Distributed Usage Control Framework

can also contain several constraints, which further refine the rule using com-
parison as well as logical operators on pre-defined operands. Each rule can
express either a permission, a prohibition, or a duty on the associated assets
with regard to the defined action. A permission rule allows the action on the
asset if all constraints are satisfied, while the prohibition rule disallows it. In
contrast, a duty rule represents an obligation to exercise an action. Both per-
missions and prohibitions can also be associated with additional duty rules,
which must then be fulfilled before the permission can be granted (duty), or
in case an action infringes on a prohibition (remedy). Finally, each rule can be
associated with one or two parties, which represent the issuer of the rule (as-
signer) and the intended recipient of the rule (assignee). Usually, policies ex-
press the currently applicable usage rules for certain digital assets. However,
ODRL also allows to specify non-binding offers and agreements of usage rules
between assigner and assignee. This is especially useful when implementing
automated contract negotiations in preparation of data transmissions. Nev-
ertheless, these features are out of scope for the DataSov framework and we
do not consider ODRL offers and agreements in the remainder of this thesis.

Policy

uid
profile

Rule

uid
Action

Asset

uid

Constraint

uid

Party

uid

LeftOperand

RightOperand

Operator

duty
Permission Duty Prohibition

remedy

sub class

permission
obligation
prohibition

assigner
assignee

target

OfferAgreement

sub class

action

constraint

operator left

right

Figure 5.5: Simplified version of the ODRL information model. Own illustration after [Ian18b].

Since the ODRL information model is independent of concrete application
domains and by design also considers asset distribution, it is a suitable foun-
dational technology for expressing usage control policies in our framework

194

5.3 A Policy Language for DataSov

(cf. requirements P1 and P2). However, due to its normative approach, the
standard ODRL vocabulary does not allow to uniquely reference individual
components such as information points and execution points. It also does not
consider the representation of provenance data. As motivated earlier, these
are necessary prerequisites for properly enforcing usage control and prove-
nance tracking in the DataSov framework (requirements P3 to P5). Hence, in
the remainder of this section, we extend the ODRL information model and
vocabulary by specifying a new ODRL profile for DataSov that adds these
missing language features.

5.3.2 Defining Information Sources

As shown in fig. 5.5, the core ODRL information model offers two operand
classes to define constraints in ODRL rules. A left operand represents the
property that the respective constraint is concerned with, such as the time of
day or a specific attribute of the current asset. The right operands then define
the concrete values to which the left operand should be compared, for exam-
ple a specific number or string. Finally, a set of operators define the logical
comparisons that should be conducted between both operands to evaluate the
constraint. Listing 5.4 gives an example of an ODRL constraint representing
a time restriction using the left and right operand concept.

Listing 5.4: Example of a core ODRL constraint with left and right operands [Ian18b].

1 "constraint": [{

2 "leftOperand": "dateTime",

3 "operator": "lteq",

4 "rightOperand": { "@value": "2017-12-31", "@type": "xsd:date" }

5 }]

While the core ODRL information model defines the syntax and semantics of
these operand types, unfortunately it does not allow to specify the expected
sources of the referenced information, or how an ODRL decision point is sup-
posed to actually retrieve them. However, this is an important requirement
for trustworthy distributed usage control enforcement. Policy issuers must

195

5 A Trustworthy Distributed Usage Control Framework

be able to not only define what information should be evaluated as part of a
rule constraint, but also from where a trustworthy decision point may retrieve
this information (cf. requirement P3). Otherwise, a malicious data receiver
could interfere with the trustworthy policy evaluation process by manipulat-
ing the sources of referenced information, instead of attacking the decision
point implementation itself. To achieve a policy language that can accommo-
date these requirements, we extend the core ODRL information model with a
new profile specific to our DataSov framework. More concretely, we specify
two new operand types in our custom ODRL profile: context operands and
information operands. A context operand is used to reference information
about the currently active policy evaluation context at the decision point. As
described earlier, the DataSov PDP services are notified by the enforcement
points about all data usage events that have been intercepted. These inter-
cepted events also include a set of parameters that are describing the context
of the requested data usage. We introduce the concept of context operands,
in order to support directly referencing these event parameters in ODRL poli-
cies. Listing 5.5 shows the usage of a DataSov context operand in an ODRL
constraint concerning the ID of an accessed asset.

Listing 5.5: Example of a DataSov ODRL constraint using a left context operand.

1 "constraint": [{

2 "leftOperand": {

3 "@type": "ods:ctxOperand",

4 "key": "assetId"

5 },

6 "operator": "eq",

7 "rightOperand": "uri:urn:example:asset:891"

8 }]

A context operand is defined as a JSON-LD object of type ods:ctxOperand with
the key property as the only member. This property specifies the lookup key
of the event parameter that will be evaluated on the current policy context
by the ODRL decision point. DataSov context operands can be used both
as a left-hand and a right-hand operand of an ODRL constraint. This allows
policy authors to both define restrictions directly for event parameters (like

196

5.3 A Policy Language for DataSov

in listing 5.5), as well as use them as target values for dynamic comparisons.
Context operands are always evaluated purely locally at the decision point.
The exact definition and semantics of the context operand, as well as the entire
ods: namespace of the DataSov ODRL profile, is given in appendix C.

Furthermore, we also define the concept of information operands as part of our
custom ODRL profile. In contrast to the locally evaluated context operands,
information operands allow us to specify external information sources, such
as Policy Information Points (PIPs), directly in our usage control policies.
While the core ODRL information model and vocabulary mainly focus on
specifying the semantics of certain operand identifiers, for our proposal of
trustworthy usage control enforcement we also need to unambiguously de-
termine the source of information that is referenced in policies. Otherwise,
our policy evaluation process as presented in chapter 3 may be susceptible to
man-in-the-middle attacks. In order to achieve sufficiently detailed policies,
we need to add support for two new elements to our policy language.

(i) Allow policy authors to specify from where external information
should be retrieved during the policy evaluation.

(ii) Allow policy authors to specify the concrete identity of the
component that is expected to deliver the requested information, as it
is being authenticated by the DataSov framework (cf. section 5.2.2).

To fulfill both of these requirements, we introduce the concept of information
operands into the ODRL information model. Listing 5.6 shows an example of
such an information operand at the right-hand side of an ODRL constraint.

Listing 5.6: Example of a DataSov ODRL constraint using a right information operand.

1 "constraint": [{

2 "leftOperand": "recipient",

3 "operator": "isPartOf",

4 "rightOperand": {

5 "@type": "ods:pipOperand",

6 "uri": "uri:urn:example:pip",

7 "method": "permittedRecipients",

8 "params": {

197

5 A Trustworthy Distributed Usage Control Framework

9 "assetId": {"@type": "ods:ctxOperand", "key": "assetId"}

10 }

11 }

12 }]

The DataSov information operand is an object of type ods:pipOperand, which
contains three additional properties. The uri property defines the operand’s
target component that the decision point should contact during the policy
evaluation. More concretely, it contains the expected component identity of
the information point delivering the requested information. During policy
evaluation, the decision point verifies that the contacted information point is
indeed authenticated under the specified component URI (see section 3.2.8).
This allows policy issuers to designate specific usage control components as
trustworthy information sources, and thus prevents any evaluation ambigu-
ity or man-in-the-middle attacks on the used information points during policy
enforcement. Note that for convenience purposes, this property may also di-
rectly hold a network URL under which the information point is available, if
the usage control system uses URLs as component identities. Otherwise, an
additional mapping is necessary to look up the proper network target for the
given URI. However, this mapping can be untrusted since the target’s compo-
nent identity, as specified in the policy, is verified on the established channel
using the URI. Complementing the target URI, the method property identifies
the lookup method that should be used at the contacted information point to
retrieve the requested information. Which methods are available depends on
the concrete information point. However, there are a number of core meth-
ods that all DataSov information points must support. The details concerning
the supported PIP methods are specified in the DataSov ODRL profile given
in appendix C. Finally, the params property is a key-value map of parameters
that should be transmitted to the information point during the operand eval-
uation. Since we model these parameters to be ODRL operands themselves,
they can either be constant values or consist of nested context and informa-
tion operands. The example in listing 5.6 shows how an asset identifier can be
taken out of the current policy evaluation context and then be used as input
parameter for the retrieval of a list of permitted recipients. Just like context

198

5.3 A Policy Language for DataSov

operands, information operands can also be used both on the left and right
side of ODRL constraints.

5.3.3 Supporting External Obligations

In addition to external information sources, we also require our policy lan-
guage to support the representation of external obligations (requirement P4).
Generally, there are two ways to express obligations in the core ODRL infor-
mation model. Policies can include obligations either (i) as a dedicated duty
rule, or (ii) by means of the duty property that can be set inside a permission
rule. Listing 5.7 illustrates these two types of obligations in an exemplary
ODRL policy.

Listing 5.7: Example of an ODRL policy using two obligations. Modified from [Ian18b].

1 {"@context": "http://www.w3.org/ns/odrl.jsonld",

2 "uid": "http://example.com/policy:42B",

3 // Duty rule

4 "obligation": [{

5 "action": "delete",

6 "target": "http://example.com/document:ABC"

7 }],

8 "permission": [{

9 "action": "distribute",

10 "target": "http://example.com/document:XZY",

11 // Duty property

12 "duty": [{

13 "action": "attribute"

14 }]

15 }]

16 }

In both cases, the obligations are expressed using the action class of the ODRL
information model. While this sufficiently determines the expected semantics
of the included obligations, we require some additional information in the pol-
icy when using ODRL as a language for trustworthy distributed usage control.
Most importantly, policy issuers must be able to explicitly specify the target

199

5 A Trustworthy Distributed Usage Control Framework

components that should execute the defined obligations. Otherwise, we run
into similar issues as with the information operands in the previous section.
For example, a malicious decision point operator could interfere with the us-
age control enforcement by redirecting the triggered obligations to different
(albeit legitimate) execution points than intended by the policy issuer. To
prevent man-in-the-middle attacks of this nature, we introduce the concept
of PXP actions as a subclass of the default ODRL action. Listing 5.8 gives an
example of a PXP action that logs the distribution of a particular data asset.

Listing 5.8: Example of a DataSov ODRL obligation using a PXP action.

1 "action": [{

2 "@type": "ods:pxpAction",

3 "uri": "uri:urn:example:pxp",

4 "method": "log",

5 "params": {

6 "message": "Asset distributed to example recipient.",

7 "level": "WARNING"

8 }

9 }]

The definition of our PXP action closely resembles the previously introduced
definition of the information operand. A PXP action consists of a JSON-LD
object of type ods:pxpAction with three additional properties. As before, the
uri property expresses the component identity of the execution point that the
obligation should be directed towards. Our decision point verifies this iden-
tity using the framework’s component authentication scheme. The obligation
itself is then refined by the method and params properties. The set of available
PXP methods that can be referenced in obligations depends on the concrete
implementation of the targeted component. A list of methods that must be
supported by all DataSov PXPs is given as part of our custom ODRL profile in
appendix C. Note that our ODRL profile can also be extended with additional
methods that are implemented by customized PXP components.

In addition to referencing specific PXPs in obligations, we also define the
concept of PEP actions. Unlike PXP obligations, PEP actions are automati-
cally executed by the enforcement point that enforces the resulting decision.

200

5.3 A Policy Language for DataSov

This is useful for expressing obligations that can be executed directly on the
usage-controlled data, such as data modifications or anonymizations. Hence,
PEP actions constitute the mechanism that implements MODIFY decisions in
the DataSov usage control system. Besides altering data, PEP actions can also
be used to modify the policy of the associated data asset, which allows data
owners to regulate policy updates in preparation of subsequent data transmis-
sions (see section 3.2.5). The definition of PEP actions is essentially the same
as when referencing PXPs, except that no dedicated URI property is required
anymore. However, unlike in the core ODRL information model, policy is-
suers can still define a set of parameters for the enforcement point to use
when executing the obligation. A list of all methods that are implemented by
the DataSov PEPs is given as part of our custom ODRL profile in appendix C.
Listing 5.9 shows an example for a PEP action that redacts the contents of a
privacy critical event parameter as part of the usage control enforcement.

Listing 5.9: Example of a DataSov ODRL obligation using a PEP action.

1 "action": [{

2 "@type": "ods:pepAction",

3 "method": "modifyParam",

4 "params": {

5 "key": "employeeName",

6 "match": "\.*",

7 "mask": "[REDACTED]"

8 }

9 }]

5.3.4 Representing Provenance Information

As final extension of the core ODRL information model, we also need to spec-
ify how provenance information should be represented in the policy language
(requirement P5). In general, we have two goals regarding the support of
provenance data in ODRL policies. First, we want to leverage the policy
enforcement process as a means to control provenance tracking on usage-
controlled data assets. Furthermore, the collected provenance information

201

5 A Trustworthy Distributed Usage Control Framework

should be made available as input for the policy evaluation itself, in order to
allow policy issuers to specify rules and constraints based on the previous
usage history of data assets. We achieve the first of these goals by support-
ing the collection of provenance data though PXP obligations, as introduced
in the previous section. For this, we include a provenance obligation method
in all DataSov PXPs, which accepts a provenance object as input parameter
and updates the local Provenance Storage Points accordingly. Data providers
can then enforce provenance tracking as part of the usage control by simply
including corresponding obligation definitions into their ODRL policies. List-
ing 5.10 gives an exemplary PXP action that collects provenance information
for newly generated data assets attributed to a certain individual.

Listing 5.10: Example of a DataSov ODRL obligation for provenance tracking.

1 "action": [{

2 "@type": "ods:pxpAction",

3 "uri": "uri:urn:example:pxp",

4 "method": "provenance",

5 "params" : {

6 "prosps": ["uri:urn:example:prosp"],

7 "provenance": {

8 "@type": "ods:provenance",

9 "entities": [{"@type":"ods:ctxOperand", "key":"assetId"}],

10 "activities": ["uri:urn:example:process:5778"],

11 "agents": ["uri:urn:example:person:johndoe"],

12 "relations": [

13 [{"@type":"ods:ctxOperand", "key":"assetId"},

14 "prov:wasGeneratedBy",

15 "uri:urn:example:process:5778"],

16 [{"@type":"ods:ctxOperand", "key":"assetId"},

17 "prov:wasAttributedTo",

18 "uri:urn:example:person:johndoe"]

19]

20 }

21 }

22 }]

Our provenance PXP action, as illustrated in listing 5.10, accepts just two pa-
rameters. Most importantly, the provenance parameter holds a JSON-LD object

202

5.3 A Policy Language for DataSov

representing the provenance information that should be recorded. To repre-
sent provenance information in our ODRL policies, we build on the existing
PROV data model that has been standardized by the W3C [Bel13]. More con-
cretely, a provenance object is defined by the type ods:provenance and contains
a total of four lists representing the entities, activities, agents, and relations.
As specified in the PROV data model, we identify each entity, activity, and
agent by their unique URI. Furthermore, we represent the relations between
these three PROV base classes by triples in the form of [subject, relation,

object]. Note that we do not need to hard-code the identifiers of the refer-
enced provenance objects, since our ODRL profile also allows to use context
and information operands inside the parameter lists. For example, the action
definition in listing 5.10 dynamically retrieves the identifier of the concerned
data asset as provenance entity from the current evaluation context. Once the
PXP executes this action as part of the policy evaluation process, the informa-
tion represented in the specified provenance object is added to the provenance
state at the local Provenance Storage Points. To determinewhich exact ProSPs
should be updated, policy issuers can provide a list of component URIs in the
prosps parameter. The execution point will then connect to all listed ProSPs
and update the stored provenance information via the ProSP interface, as de-
scribed in section 5.1. To prevent man-in-the-middle attacks, the DataSov
PXPs always authenticate these connections against the specified URIs. If a
provenance update fails for any reason, the execution point declares the cor-
responding obligation as not fulfilled in the ODRL information model. This
in turn causes the ODRL decision point evaluating the policy to deny the re-
quested data usage by default.¹ That way data owners can use the DataSov
framework to enforce provenance tracking on shared assets in a reliable and
trustworthy fashion.

In addition to acquiring provenance data during usage control enforcement,
we also want to utilize the collected information in ODRL policies. For
this, we leverage our previously described information operand concept to

¹ Alternatively, ODRL also allows to specify concrete consequences of an unfulfilled obligation
[Ian18b]. However, this is not yet supported by the DataSov decision point.

203

5 A Trustworthy Distributed Usage Control Framework

retrieve provenance information from PIPs during policy evaluation. List-
ing 5.11 shows an example policy that uses our DataSov ODRL profile to
express usage rules on data assets on the basis of their provenance history.

Listing 5.11: Example of a DataSov ODRL policy using an information operand to check prove-
nance data as part of a constraint.

1 {"@context": "https://gitlab.cc-asp.fraunhofer.de/datasov/core/-/raw/master/

pdp/profile/ods.jsonld",

2 "profile": "https://gitlab.cc-asp.fraunhofer.de/datasov/core#ods-ttl",

3 "uid": "uri:urn:example:policy:odrl:11",

4 "prohibition": [{

5 "target": "uri:urn:example:asset:891",

6 "action": "delete",

7 "constraint": [{

8 "leftOperand": {

9 "@type": "ods:pipOperand",

10 "uri": "uri:urn:example:pip",

11 "method": "provenance",

12 "params": {

13 "prosps": ["uri:urn:example:prosp"],

14 "request": "relations",

15 "match": ["\.*", "prov:used", "uri:urn:example:asset:891"]

16 }

17 },

18 "operator": "neq",

19 "rightOperand": []

20 }]

21 }]

22 }

This policy prohibits the deletion of a particular asset on the condition that is
has been previously used by any activity. To express this restriction in ODRL,
we use a constraint with a left operand of type ods:pipOperand and the method
provenance. By using the parameter request, we can specify the desired type of
provenance information, in this case the relations. The parameter match allows
us to filter the requested provenance information at the PIP using regular
expressions. In this case we filter for relations of type prov:used, as well as the
concerned asset. Finally, with the prosps parameter we can again specify the

204

5.3 A Policy Language for DataSov

expected component identities of the concrete ProSPs, which should be used
as sources for the requested provenance information.

5.3.5 The DataSov Policy Decision Point

To summarize, we extended the core ODRL information model in order to
define a suitable ODRL-based policy language for DataSov that meets our re-
quirements. The DataSov ODRL profile introduces the concept of context and
information operands to support referencing external information sources in
policies (requirement P3). Furthermore, we added two new action classes to
represent obligations that must be executed at the enforcement point and ex-
ecution point, respectively (requirement P4). Finally, we included support for
referencing provenance information in ODRL policies according to the the
W3C PROV data model. This allows us to both control provenance tracking
via usage control obligations, as well as rely on provenance data for usage
control constraints (requirement P5). Figure 5.6 gives a complete overview
of the extensions that our DataSov profile makes to the core ODRL informa-
tion model. The complete definition of the profile’s vocabulary, as well as a
corresponding JSON-LD parsing context, is given in appendix C.

PEPAction

method

PXPAction

uri
method

Params

ContextOperand

key

InfoOperand

uri
method

Provenance

entities
activities
agents
relations

sub class

params

sub class params

provenance

sub class

Policy

uid
profile

Rule

uid
Action

Asset

uid

Constraint

uid

Party

uid

LeftOperand

RightOperand

Operator

duty
Permission Duty Prohibition

remedy

sub class

permission
obligation
prohibition

assigner
assignee

target

OfferAgreement

sub class

action

constraint

operator left

right

Figure 5.6: The extended information model of the DataSov ODRL profile.

205

5 A Trustworthy Distributed Usage Control Framework

In addition to extending the policy language, we also implemented a
lightweight decision point engine for the DataSov framework that can
parse and evaluate policies adhering to our ODRL profile. The developed
policy engine is implemented in C++ using the RapidJSON¹ parsing library,
and can be compiled into SGX enclaves using the Asylo framework. How-
ever, as a prototypical implementation we do not yet support the full ODRL
information model. Most importantly, our decision point does not allow the
expression of offers and agreements about digital rights, since usage rule
negotiation is out of scope for the DataSov framework. The program code
of our PDP is available online.²

In order to verify the feasibility of the developed solution, we tested the per-
formance of the implementedODRL decision point on an STM32MP157C-DK2³
development board. We choose this platform since it is the slowest com-
ponent used in our final evaluation scenario (see chapter 7). To provide
a comparison with a more widespread ARM-based embedded device, we
also tested our PDP on a Raspberry Pi 3 Model B+ single board computer.
Figure 5.7 shows the determined policy evaluation times in milliseconds.
We conducted our performance evaluation with four example policies of
increasing complexity. The test policies contain between 10 and 25 rules
(R), with each rule including either 10 or 25 constraints (C). Furthermore,
all policies are constructed to avoid short-circuited rule and constraint eval-
uation, in order to ensure that the policy engine always has to evaluate
all existing rules and constraints. To exclude the influence of the network
stack and other components on the execution times, the example policies
do not include any external PIP operands or PXP obligations. Our results
show that a medium-sized policy with 10 rules and 10 constraints per rule
can be evaluated in about six milliseconds on the ARM TrustZone board,
and about two milliseconds on the Raspberry Pi. Larger policies, consisting
of 25 rules with 25 constraints each, require about 35 and 14 milliseconds
to evaluate, respectively. However, policies with more than 10 rules and

¹ https://github.com/Tencent/rapidjson (accessed on 12/08/2023).
² https://gitlab.cc-asp.fraunhofer.de/datasov/core/-/tree/master/pdp (accessed on 12/08/2023).
³ https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf (accessed on 12/21/2023).

206

https://github.com/Tencent/rapidjson
https://gitlab.cc-asp.fraunhofer.de/datasov/core/-/tree/master/pdp
https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf

5.4 Conclusion

constraints rarely occur in realistic scenarios. Hence, we can conclude that
our decision point implementation is fast enough for its intended purpose,
even in applications with resource-constrained and embedded devices.

0

5

10

15

20

25

30

35

40

R10/C10 R10/C25 R25/C10 R25/C25

P
o

li
cy

 e
va

lu
at

io
n

ti
m

e
[m

s]

STM32MP157C-DK2 Raspberry Pi 3 Model B+

35 (±0.3)

n=1000

14 (±0.3)14.6 (±0.1)

5.6 (±0.1)5.4 (±0.1)

2.3 (±0.3)

13.9 (±0.1)

5.8 (±0.1)

Figure 5.7: Mean evaluation times of DataSov ODRL policies on an STM32MP157C-DK2 and
a Raspberry Pi 3 Model B+ in milliseconds. The policies differ in the number of
evaluated rules (R) and constraints per rule (C). The standard deviation is given in
brackets.

5.4 Conclusion

In this chapter we presented our proof of concept implementation for a trust-
worthy distributed usage control and provenance tracking framework called
DataSov. The DataSov framework is based on the system design proposed
in chapter 3 and integrates the results and contributions presented in chap-
ter 4. As a result, the framework allows to dynamically deploy and provision
distributed usage control components as Intel SGX enclaves, TPM-protected
applications, and ARM TrustZone devices. During system operation, all de-
ployed components are automatically authenticated using certificates, while
being protected against malicious manipulations through heterogeneous re-
mote attestations. We also designed and implemented a suitable rollback pro-
tection mechanism for our system, which is based on a central state store.
Together, this achieves the first part of research contribution RC6. We cover

207

5 A Trustworthy Distributed Usage Control Framework

the second part of this contribution, i.e., the evaluation of the framework in
the realm of smart manufacturing, in chapter 7 of this thesis.

As second contribution in this chapter, we developed and evaluated an exten-
sion of the ODRL policy model for trustworthy distributed usage control (re-
search contribution RC2). Our custom ODRL profile allows data providers to
manage provenance tracking and reference the collected information directly
via usage control policies. It also provides support for the expression of PXP
obligations and PIP operands. Furthermore, we facilitate the enforcement of
such policies in the DataSov framework by providing a corresponding ODRL
decision point implementation.

208

6 Estimating Trustworthiness

In the previous chapters we described the concept and implementation of our
trustworthy distributed usage control and provenance tracking system, which
leverages trusted computing technologies to prevent malicious data receivers
from tampering with critical system components. However, simply offering
such technical measures to protect distributed usage control enforcement is
not sufficient to reach all of our thesis goals. There must also be a way for (po-
tential) data providers to actually determine the trustworthiness of a particular
usage control system, in the sense that it indeed deploys adequately chosen
trusted computing technologies that can enforce the specified usage rules on
the shared data. To achieve this, two challenges need to be solved. First, we
must define a method to estimate the trustworthiness of a distributed usage
control system, i.e., give an indication to what extent the proper enforcement
of a specific usage control policy can reasonably be expected in the current
protection state. Furthermore, the determined estimations must be signaled
back to the policy issuer, in order to facilitate informed data sharing decisions.

In this chapter we address these research questions by developing a trustwor-
thiness estimation approach for distributed usage control systems and inte-
grating it into our DataSov framework. For this, in section 6.1 we first moti-
vate the need for a descriptive trustworthiness score in DataSov and lay out
our specific goals and requirements for it. Afterwards, in section 6.2 we in-
troduce a formal model that can represent the current state of the distributed
usage control system and its protection mechanisms. Based on this formal
model, in section 6.3 we then define a suitable trustworthiness score for de-
ployed usage control policies and show that it fulfills our previously identified
requirements. Section 6.4 describes how the developed trustworthiness score

209

6 Estimating Trustworthiness

is integrated into the DataSov framework. Finally, we conclude this chapter
in section 6.5 with a brief summary.

Some of the contributions presented in this chapter improve on our previ-
ous work, which we have partially published in three research papers. In
[Wag19a] and [Wag22b] we discussed earlier versions of our formal model
describing the protection state of distributed usage control systems and cor-
responding trustworthiness scores. Furthermore, in [Wag22a] we proposed
a visualization concept for the determined estimations, which constitutes a
precursor to the DataSov trust dashboard presented in section 6.4.

6.1 Motivation and Requirements

The DataSov framework relies on a transitive remote attestation concept that
automatically verifies the integrity of distributed usage control components.
However, this alone does not take into account the different capabilities,
strengths, and weaknesses of the underlying (heterogeneous) trusted com-
puting technologies that are protecting the individual system components.
For example, while TPMs have a much larger TCB than Intel SGX enclaves
and do not provide isolated execution environments for individual applica-
tions, they are also much more widely available and can be used seamlessly
with unmodified legacy applications. Due to these specific benefits and
drawbacks, component operators must regularly conduct a trade-off to make
an adequate selection between the different technologies on offer. Like-
wise, data providers must decide if the available technological protection is
sufficient for their individual security needs. However, which technologies
should be deemed acceptable for which components depends on the value
of the shared data, the level of risk aversion shown by the data owner, as
well as the individual preferences and convictions of the various system
participants, and thus cannot be universally decided. For example, some data
providers might not trust Intel and hence want to avoid critical policies to be
enforced by SGX enclaves, while other participants have different opinions
and sentiments. Furthermore, in a distributed usage control system with
many different participating stakeholders and component operators, the set

210

6.1 Motivation and Requirements

of active system components and their individual protection states undergo
constant changes. Hence conducting a static, one-time security analysis to
determine the adequacy of the deployed components and technologies is
usually not feasible. In addition, there may also be system components that
must be trusted independently of the deployed protection mechanisms, in
order to reliably enforce a particular usage control policy. As pointed out in
section 3.4.3, trusted computing alone cannot adequately protect against the
malicious deletion of critical information, such as collected provenance data
or log messages. Because of this, we must find a way to ensure that such com-
ponents are operated by trustworthy subjects, ideally by the policy issuers
themselves, before allowing data and corresponding policies to be shared.
Note that this determination also cannot be done statically for the entire
system, because it depends both on the specific policy, as well as the degrees
of trust that the data owner attributes to individual component operators.

We deal with these issues and challenges by developing a method to estimate
the overall trustworthiness of the distributed usage control system. More con-
cretely, we provide policy issuers in DataSov with a quantitative indicator
that reveals how well the distributed usage control system in its current pro-
tection state is prepared to enforce a specific policy. The evaluated protection
state includes the deployed usage control components, their operator repu-
tation, the conducted remote attestations, and the applied trusted computing
technologies. Furthermore, due to the aforementioned reasons, we conduct
the trustworthiness evaluation dynamically during runtime and from the sub-
jective point of view of the individual data providers.

Interpretation of trustworthiness. Over the past years, the term trust has
been well researched in various scientific disciplines [Cho15]. For our pur-
poses, we adopt a notion of trust as a measure of confidence in the behavior
of a (technical) entity, which is an interpretation often applied in the realm
of networking and information security [Cho15]. More concretely, Jøsang
et al. define trust as “the subjective probability by which an individual, A, ex-
pects that another individual, B, performs a given action on which its welfare de-
pends” [Jøs07]. Subjective probabilities of this nature are usually interpreted

211

6 Estimating Trustworthiness

as Bayesian degrees of belief in contrast to a frequentistic understanding of
probability [Bey16]. In our scenario, we are interested in the level of trust
that data providers have in the ability of a distributed usage control system
to successfully enforce their usage rules. Even though the term trustworthi-
ness is sometimes used synonymously with the term trust in the literature
[Yan09, Nei15], we see value in distinguishing those two concepts. Cho et al.
define trustworthiness as evidential statements that can be used to update (i.e.,
increase or reduce) previous trust assessments [Cho15]. In this sense, trust-
worthiness often originates from direct observations of data about the past
behavior of the trustee, following a frequentistic interpretation of probability.
However, in cases where no reliable data is available and/or a-priori estima-
tions are necessary, trustworthiness can also be determined based on subjec-
tive degrees of belief, e.g., in the form of expert opinions [Hub16, pp. 37–38].
For the remainder of this section, we follow the latter interpretation and con-
sider the trustworthiness of a distributed usage control system to be an upper
limit for the degree of trust that a data provider can reasonably place in the
enforcement of a particular usage control policy, given a number of expert es-
timations regarding the current technological protection state of the system.

Goals and requirements. Our goal in this chapter is to define a score that
quantifies this notion of trustworthiness, and integrate it into our DataSov us-
age control framework. The trustworthiness score should represent to what
degree a data provider can (at most) expect a specific policy to be enforced
correctly by the distributed usage control system. More concretely, we re-
quire a function 𝑡 ∶ 𝒫 × 𝒮 → [0,1], which maps a policy 𝑃 ∈ 𝒫 together
with the current system state 𝑆 ∈ 𝒮 to the estimated trustworthiness score
between 0 and 1. Evaluating this function allows data providers to distin-
guish system states that are favorable for the enforcement of their particular
policies (score close to 1) from scenarios where the policy enforcement can
likely be bypassed (score close to 0). Note that, although defined between 0
and 1, we see this score as a conveniently constructed quantitative indicator
instead of a mathematical probability. We discuss the issues with interpreting
this value as a probability later in section 6.3.4. In the following two sections,
we describe the construction of our trustworthiness score 𝑡. We base this

212

6.1 Motivation and Requirements

function on the capabilities of the deployed trusted computing technologies
and the subjective level of trust that a data provider places in the operators
of remote components. Furthermore, our score must fulfill the following five
requirements in order to provide useful information to data providers.

(S1) Technological propriety: The trustworthiness score should indicate
to what degree the trusted computing technologies currently deployed
in the distributed usage control system are feasible to enforce the
policy in question. Technological feasibility should be determined by
experts based on the (partial) protection goals of the usage control
components participating in the policy enforcement (see section 3.3.1).

(S2) Operator propriety: The trustworthiness score should indicate
whether usage control components, which are either (i) unattested or
(ii) cannot be sufficiently protected by the underlying trusted
computing technologies, are operated by trustworthy stakeholders.

(S3) Minimality: The trustworthiness score of a policy must be limited by
the technological adequacy of the least strongly protected usage control
component, as well as the policy issuer’s opinion of the least trusted
component operator that is relied on for the policy enforcement.

(S4) Monotony: If a policy 𝑃1 relies on a superset of usage control
components and operators for its enforcement compared to policy 𝑃2,
its trustworthiness score must be equal or lower:
∀𝑆 ∈ 𝒮 ∶ 𝑃1 ⊇ 𝑃2 ⟹ 𝑡(𝑃1, 𝑆) ≤ 𝑡(𝑃2, 𝑆).

(S5) Language agnosticism: The trustworthiness score should be
constructed independently of a concrete policy language.

Reputation systems. Trustworthiness estimations can be based not just on
expert opinions, but also on concrete data that has been collected about the
entities in question. Reputation systems follow the latter approach by analyz-
ing the past behavior of assessed entities to determine their trustworthiness
[Has17]. The rationale behind this is that, if an entity has shown cooperative
behavior in the past, it will likely continue to do so in the future and hence can
be considered trustworthy. As elaborated in section 3.1.2, reputation systems

213

6 Estimating Trustworthiness

have been used previously in the context of usage control systems [Yan09,
Bal13, Nei15, Tru16a]. However, they are not feasible for our purpose of esti-
mating trustworthiness in distributed usage control systems that are protected
by remote attestations. The main issue is that reputation systems require an
adequate set of observations about a component’s behavior to make reliable
predictions. This also includes assessments about the nature of the observed
actions, i.e., if the component acted cooperatively or maliciously. However, in
the case of distributed usage control enforcement, we need to provide reliable
trustworthiness estimations before critical data is being shared. Furthermore,
in our scenario a hostile data receiver could initially build a good reputation
score by operating honest components, and then “spend” it on bypassing the
protection policies of valuable data. Hence, our trustworthiness score should
focus on the current protection state of the considered system components, in-
stead of their past actions. Finally, reputation systems are designed to predict
the most likely future behavior of entities. However, with remote attestation
we already have a technical mechanism in place that achieves this purpose.
Our notion of trustworthiness is instead aimed at determining if the avail-
able trusted computing mechanisms can adequately protect the enforcement
process of the deployed usage control policies.

For these reasons, we define our trustworthiness score based on expert opin-
ions regarding the capabilities of trusted computing technologies to achieve
the protection goals of individual usage control components. We also con-
sider the (subjective) trustworthiness of remote component operators from
the data provider’s point of view.

6.2 Formal Model

This section introduces the formal model that we use to represent a particular
state 𝑆 ∈ 𝒮 of our distributed usage control system. Each system state consists
of a component model, an attacker model, and a trust model. As mentioned
in the introduction, the original publication of our formal system model, on
which this section is based, can be found in [Wag22b].

214

6.2 Formal Model

6.2.1 Component Model

Thepurpose of the componentmodel is to represent all instances of usage con-
trol components that are currently deployed in the system, as well as their
security properties, remote attestations, and dependencies. We express the
deployment status of the distributed usage control system with the help of an
instance graph. The vertices of this graph represent the deployed component
instances, i.e., the currently active PEPs, PDPs, PRPs, PIPs, PXPs, and ProSPs,
as well as the usage-controlled data processing applications. The edges of the
graph represent the existing trust relationships between individual compo-
nent instances.

Definition 6.1 (Instance graph). Let 𝑉 be the set of component instances in
a distributed usage control system. Let 𝐸 ⊆ 𝑉×𝑉 be a set of directed edges over
𝑉, with (𝑣,𝑤) ∈ 𝐸 iff. usage control component 𝑣 requires the cooperation of
component 𝑤 for its duties. We call the tuple 𝐼 ≔ (𝑉, 𝐸) instance graph of the
distributed usage control system.

The goal of the instance graph is to describe the current configuration of
the distributed usage control system and to identify what concrete trust
dependencies must be covered with remote attestations. Note that the in-
stance graph is closely related, but not equivalent to the trust dependency
graph we constructed during our conceptual security analysis in section 3.3.3.
The graph in fig. 3.13 shows all necessary trust dependencies between the
different types of usage control components. The instance graph, on the
other hand, represents the concrete instances of these usage control compo-
nents and their individual dependencies. As such the instance graph is not
universal, but specific to a certain use case and it can change over time as
new components are deployed in the distributed system. Furthermore, not
all trust dependencies identified in fig. 3.13 must necessarily be included in
the instance graph. For example, if a certain Policy Information Point does
not provide any provenance information, its vertex in the instance graph
does not have any dependencies to ProSPs. To illustrate this concept further,
fig. 6.1 gives an example of a simple instance graph representing a usage
control system with two participants Alice and Bob.

215

6 Estimating Trustworthiness

alice:pdp
notify

alice:pep

alice:prp alice:app bob:app

bob:pep bob:pdp

notify

deploy

bob:prp bob:pip

retrieve evaluate

notify

notify

bob:pxp

execute

alice:prosp

storestore

storeretrieve

retrieve

Figure 6.1: Example of an instance graph with two system participants Alice and Bob.

In addition to the dependencies between instances, we also need to represent
the component properties on which the trustworthiness estimation should
ultimately be based. For this, we introduce two further mappings on the in-
stance graph. First, the mechanism mapping 𝑚∶ 𝑉 → 𝑀 associates each
component instance with the specific trusted computing mechanism that pro-
tects it. Since we only consider TPMs, Intel SGX, and ARM TrustZone in
the scope of this thesis, in our case the set of mechanisms results to 𝑀 ≔
{⊥,TPM, SGX,TZ}. However, in the future both our usage control framework,
as well as the trustworthiness estimation method, can be extended with ad-
ditional mechanisms. Furthermore, we define the set of usage control partic-
ipants 𝑂 and the operator mapping 𝑜∶ 𝑉 → 𝑂, which maps each component
instance to the system participant that is responsible for operating it. We as-
sume the operators to be in full control of both the component’s hardware and
software stack. For the example in fig. 6.1, the set of usage control participants
results to 𝑂 ≔ {Alice,Bob}. Finally, the component model must also include
information about the conducted remote attestations. To represent this, we
define the attestation mapping 𝑎𝑡𝑡 ∶ 𝑉 → 2𝑉 . For each 𝑣 ∈ 𝑉, this function
specifies the set of component instances that have been successfully attested
by component 𝑣 until this point in time. The complete component model is
then formed as the tuple of instance graph, mechanism and operator map-
ping, as well as the attestation mapping for all system components. Note that
the resulting component model represents the state of the distributed system
at one particular point in time. Hence the instance graph, as well as all three
mappings that are based on it, will change during the system operation.

216

6.2 Formal Model

Definition 6.2 (Component model). Let 𝐼 = (𝑉, 𝐸) be the instance graph
of a distributed usage control system and 𝑎𝑡𝑡 ∶ 𝑉 → 2𝑉 an attestation mapping
over 𝑉. Let𝑚∶ 𝑉 → 𝑀 be a mechanism mapping and 𝑜∶ 𝑉 → 𝑂 an operator
mapping for 𝐼. We call the tuple 𝒞 = (𝐼, 𝑎𝑡𝑡,𝑚, 𝑜) component model of the
distributed usage control system.

6.2.2 Attacker Model

Besides giving a description of the currently active system components, our
formalmodel must also represent the expected attackers and their capabilities.
As part of our security analysis in section 3.3.2, we have already introduced
three basic types of attackers that a trustworthy usage control system must
protect against. A network attacker has the ability to intercept andmanipulate
messages that are exchanged between distributed usage control components.
A software attacker additionally has unprivileged access to the components,
but is still restrained by the operating system. Finally, the privileged attacker
has complete physical access to the component and can manipulate its soft-
ware stack at will, including the boot loaders and operating system. However,
we assume that the trusted computing hardware cannot be manipulated even
by privileged attackers. We represent these capabilities in our formal model
using a set of three attackers 𝐴 ≔ {network, software, privileged}. Note that
there is a strict ordering of the attackers in 𝐴 according to their capabilities:
network < software < privileged. To describe which attackers are expected on
which component instances, we introduce the attacker mapping 𝑎∶ 𝑉 → 𝐴.
Due to the strict ordering, it is sufficient to only declare the most capable
attacker on each component, with all less capable attackers being implicitly
included. Also note that the attacker mapping expresses the subjective view
of a single usage control system participant, and hence differs for each stake-
holder. For example, each system participant will expect components that are
under the influence of a competing organization to be attacked by malicious
administrators, i.e., privileged attackers. Our own components, however, are
usually not considered to be threatend by their administrators.

In addition to the expected attackers, we also need to define the protection
goals that are relevant for the different usage control components. As part

217

6 Estimating Trustworthiness

of our security analysis in section 3.3.1, we have already identified four (par-
tial) protection goals for each type of usage control component. These pro-
tection goals include data confidentiality, code and data integrity, as well as
protection against data deletion. Table 3.1 in section 3.3.1 shows which of
these protection goals are relevant for the correct execution of each type of
usage control component. However, as pointed out earlier, different trusted
computing technologies provide different benefits and drawbacks. Because
of this, it is useful to break down the protection goals even further in our
formal model. In section 4.1 we distinguished trusted computing technolo-
gies based on their capabilities to secure data confidentiality and integrity in
three different phases, namely, (i) during data transmission, (ii) while data is
stored, and (iii) while data is actively processed. To represent these differ-
ences in our attacker model, we identify a total of eight different protection
goals 𝐺 ≔ {𝐶𝑥, 𝐼𝑥 ∣ 𝑥 ∈ {tra, proc, store}} ∪ {𝐼𝑐𝑜𝑑𝑒, 𝐼𝑑𝑒𝑙}. This allows us to
formulate a goal mapping 𝑔∶ 𝑉 → 2𝐺 , which associates each system compo-
nent with the set of protection goals that must be fulfilled at this component.
Note that, due to the included data processing applications, this mapping is
(partially) scenario-specific. We give an example of a concrete goal mapping
as part of our evaluation scenario in section 7.3.2. Ultimately, the attacker
model follows as the tuple of attacker mapping and goal mapping.

Definition 6.3 (Attacker model). Let 𝐼 = (𝑉, 𝐸) be the instance graph of a
distributed usage control system. Let 𝐴 ≔ {network, software, privileged} be the
set of attackers and 𝐺 ≔ {𝐶𝑥, 𝐼𝑥 ∣ 𝑥 ∈ {tra, proc, store}} ∪ {𝐼𝑐𝑜𝑑𝑒, 𝐼𝑑𝑒𝑙} be the set
of protection goals. Let 𝑎∶ 𝑉 → 𝐴 be an attacker mapping and 𝑔∶ 𝑉 → 2𝐺
a goal mapping for 𝐼. We call the tuple 𝒜 = (𝑎, 𝑔) attacker model for the
distributed usage control system.

6.2.3 Trust Model

The final part of the formal model represents the initial trust statements
on which to base the trustworthiness score. As mentioned before, our
score relies on expert estimations concerning the suitability of trusted com-
puting technologies for various tasks. In addition, the level of trust that
data providers have in the operators of remote usage control components

218

6.2 Formal Model

must also be considered. We formalize these initial trust statements using
two trust estimation functions. First, the operator trust estimation function
𝑡𝑜 ∶ 𝑂 → [0,1] describes the degree of trust that a potential data provider has
in each component operator. This trust statement is quantified as a subjective
degree of belief between 0 (known malicious) and 1 (fully trusted). Similarly,
the mechanism trust estimation function 𝑡𝑚 ∶ 𝑀 × 𝐺 × 𝐴 → [0,1] describes
the degree of trust in the capability of each trusted computing mechanism
in 𝑀 to enforce a specific protection goal in 𝐺 against an attacker in 𝐴.
Sensibly, we demand that a well-defined mechanism trust estimation follows
the previously specified attacker order, i.e., a stronger attacker cannot have a
higher trust estimation than a weaker one for the same mechanism and pro-
tection goal. However, unlike the operator trust estimations, these degrees
of belief usually cannot be decided by the data providers themselves. Instead,
we assume the mechanism trust estimation function to be determined by
technology experts, based on security reviews of the considered trusted
computing mechanisms. Later, in section 6.4.3, we give exemplary values for
this function, which we also use for our evaluation. The formal trust model
is then represented by the tuple of both trust estimation functions.

Definition 6.4 (Trust model). Let 𝐼 be the instance graph of a distributed us-
age control systemwith the set of component operators𝑂. Let𝐴 be a set of attack-
ers, 𝐺 a set of protection goals, and 𝑀 a set of mechanisms. Let 𝑡𝑜 ∶ 𝑂 → [0,1]
be an operator trust estimation function and 𝑡𝑚 ∶ 𝑀 × 𝐺 × 𝐴 → [0,1] a well-
defined mechanism trust estimation function. We call the tuple 𝒯 = (𝑡𝑜, 𝑡𝑚)
trust model for the distributed usage control system.

Finally, a particular usage control system state 𝑆 ∈ 𝒮 can now be formally rep-
resented by a triple consisting of component model, attacker model, and trust
model: 𝒮 ≔ {𝑆 ∣ 𝑆 = (𝒞,𝒜,𝒯)}. Of those, the component model 𝒞 is respon-
sible for describing the distributed system at a particular point in time, includ-
ing the component deployments and the conducted remote attestations. The
attacker model 𝒜 and the trust model 𝒯 define the security expectations and
the baseline trust statements on which the trustworthiness scores are based.
Note that, unlike the objective component model, these parts of the system
state express the subjective view of a particular usage control participant, and

219

6 Estimating Trustworthiness

at least partially depend on the specific application context to which the usage
control enforcement is applied. In section 7.3.2 we give a concrete example
for a suitable attacker and trust model in a distributed application from the
realm of smart manufacturing, as part of our framework evaluation.

6.3 A Trustworthiness Score

After formally representing usage control system states, in this section we
introduce a trustworthiness score that fulfills our requirements S1 to S5. For
this, we first describe how to identify the distributed system components that
are relevant for the enforcement of a particular usage control policy. Then we
present the definition of our trustworthiness score and assert that it indeed
complies with the previously set requirements. Finally, we discuss what issues
must be solved in order to interpret the defined score as a probability.

As mentioned in the introduction, this section is based on an earlier version of
our proposed score construction, which we originally published in [Wag22b].

6.3.1 Usage Control Operations

The instance graph included in the formal componentmodel represents the to-
tality of all existing usage control components and their dependencies. How-
ever, for our trustworthiness score we are usually interested in just a small
part of the distributed system, such as the subset of components that are re-
quired to enforce a particular usage control policy. We express this with the
concept of usage control operations. A usage control operation is a connected
subgraph of the system’s instance graph, which represents the selection of
components and trust dependencies that are necessary for successfully exe-
cuting a particular system function (e.g., enforcing a policy). The particular
system component which initiated a usage control operation (e.g., a data pro-
cessing application) is called the root of the operation. Root components are
characterized by having no incoming trust dependencies, and there must be
exactly one root component in a usage control operation. Furthermore, note

220

6.3 A Trustworthiness Score

that not all trust dependencies identified in the underlying instance graph
must also be included in the usage control operation.

Definition 6.5 (Usage control operation). Let 𝐼 = (𝑉, 𝐸) be the instance
graph of a distributed usage control system. Let 𝐽 = (𝑉̄, ̄𝐸) be a subgraph of 𝐼
with 𝑉̄ ⊆ 𝑉 and ̄𝐸 ⊆ 𝐸 ∩ (𝑉̄ × 𝑉̄). We call 𝐽 usage control operation on 𝐼, if

𝐽 is a connected subgraph (6.1)
∃!𝑥 ∈ 𝑉̄ ∶ indeg(𝑥) = 0 (6.2)

(𝑢, 𝑣) ∈ ̄𝐸 ⇔ 𝑢 depends on 𝑣 in this operation. (6.3)

The unique component instance 𝑥 is called root of the operation 𝐽. We denote the
set of all usage control operations for the instance graph 𝐼 by 𝑂𝑝(𝐼).

In order to define our trustworthiness score based on usage control policies,
we need to translate concrete policy definitions into formalized usage control
operations. This process obviously depends on the policy language. Since we
want to preserve language agnosticism (cf. requirement S5), we abstract from
specific policy languages by introducing the function 𝑜𝑝𝑠∶ 𝒫×𝑉2 → 𝑂𝑝(𝐼).
This function takes a policy 𝑃 ∈ 𝒫, as well as the tuple of policy deployer and
recipient (𝑑, 𝑟) ∈ 𝑉2, and returns the usage control operation that represents
the enforcement process of that particular policy. This allows us to define our
trustworthiness score exclusively on the formal model and independently of
concrete policy languages. However, the function 𝑜𝑝𝑠 must still be specified
for each supported policy engine. Listing 6.1 shows the algorithm that eval-
uates the function 𝑜𝑝𝑠 for the ODRL-based policy language used in DataSov.
This algorithm iterates the provided instance graph and collects the relevant
usage control components, together with their dependencies, according to the
provided policy. Line 2 of listing 6.1 adds the initial dependency between the
policy deployer and the recipient. Line 3 then gathers all dependencies from
the recipient to the enforcement points. The PEPs are then iterated to deter-
mine the set of associated PDPs (lines 4-8). This loop also collects the depen-
dencies from the PEPs to any directly used ProSPs, as well as to the retrieval
points. To improve readability, we denote adding a set of edges together with
the connected components using the arrow symbols +← for uni-directional

221

6 Estimating Trustworthiness

and +↔ for bi-directional trust dependencies. Once the set of decision points
is complete, it is itself iterated to extend the assembled usage control opera-
tion with the necessary dependencies to PXPs and PIPs. These dependencies
are now taken from the provided ODRL policy. Line 11 collects all execution
points that are specified in ODRL actions, while line 12 analyzes all ODRL
constraints that include PIP operands. We identify these components in the
policy via their unique URI (see section 5.3). The final two loops in lines 15-20
then iterate over the extracted PXPs and PIPs to collect the missing depen-
dencies to Provenance Storage Points, which are referenced in the policy via
the prosps parameter of ODRL provenance actions and constraints.

Listing 6.1: Definition of the function 𝑜𝑝𝑠 for the DataSov ODRL profile.

Input: Instance graph 𝐼 = (𝑉,𝐸)
Input: ODRL policy 𝑃 ∈ 𝒫
Input: Policy deployer and recipient (𝑑, 𝑟) ∈ 𝑉2

Output: Usage control operation 𝐽 ∈ 𝑂𝑝(𝐼)
1 𝐽 ← (∅,∅); 𝑝𝑑𝑝,𝑝𝑥𝑝,𝑝𝑖𝑝 ← ∅;
2 𝐽 +←{(𝑑, 𝑟)};
3 𝑝𝑒𝑝 ← {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑟 ∧ 𝑡𝑦𝑝𝑒(𝑣) = PEP};
4 forall (𝑎, 𝑏) ∈ 𝑝𝑒𝑝 do
5 𝑝𝑑𝑝 ← 𝑝𝑑𝑝 ∪ {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑡𝑦𝑝𝑒(𝑣) = PDP};
6 𝐽 +←{(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑡𝑦𝑝𝑒(𝑣) = PRP};
7 𝐽 +↔{(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑡𝑦𝑝𝑒(𝑣) = ProSP};
8 end
9 𝐽 +←𝑝𝑒𝑝 ∪ 𝑝𝑑𝑝;

10 forall (𝑎, 𝑏) ∈ 𝑝𝑑𝑝 do
11 𝑝𝑥𝑝 ← 𝑝𝑥𝑝 ∪ {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑣 ∈ 𝑃.𝑎𝑐𝑡𝑖𝑜𝑛𝑠};
12 𝑝𝑖𝑝 ← 𝑝𝑖𝑝 ∪ {(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑣 ∈ 𝑃.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠};
13 𝐽 +←{(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑡𝑦𝑝𝑒(𝑣) = PRP};
14 end
15 forall (𝑎, 𝑏) ∈ 𝑝𝑥𝑝 do
16 𝐽 +↔{(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑣 ∈ 𝑃.𝑎𝑐𝑡𝑖𝑜𝑛𝑠.𝑝𝑎𝑟𝑎𝑚𝑠.𝑝𝑟𝑜𝑠𝑝𝑠};
17 end
18 forall (𝑎, 𝑏) ∈ 𝑝𝑖𝑝 do
19 𝐽 +↔{(𝑢, 𝑣) ∈ 𝐸 ∣ 𝑢 = 𝑏 ∧ 𝑣 ∈ 𝑃.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.𝑝𝑎𝑟𝑎𝑚𝑠.𝑝𝑟𝑜𝑠𝑝𝑠};
20 end
21 𝐽 +↔𝑝𝑥𝑝 ∪ 𝑝𝑖𝑝;
22 return 𝐽

222

6.3 A Trustworthiness Score

To further illustrate this algorithm, fig. 6.2 shows an excerpt of a sim-
ple ODRL policy 𝑃 together with the generated usage control operation
𝑜𝑝𝑠(𝑃, (alice:app, bob:app)) based on the instance graph example given ear-
lier in fig. 6.1. Note that the policy deployer 𝑑 ∈ 𝑉 (in this case alice:app)
always constitutes the root of the generated usage control operation.

1 "permission": [{

2 "target": "urn:alice:asset",

3 "action": "use",

4 "constraint": [{

5 "leftOperand": {

6 "@type": "ods:pipOperand",

7 "uri": "urn:bob:pip",

8 "method": "counter"

9 },

10 "operator": "lt", "rightOperand": 5

11 }]

12 }]

(a) An example ODRL rule

bob:pep bob:pdp

bob:prp

store retrieve

notify

bob:app

notify

bob:pip

evaluate

alice:app

deploy

(b) The resulting usage control operation

Figure 6.2: An example application of the algorithm in listing 6.1.

6.3.2 Score Definition

After introducing the concept of usage control operations, we can now pro-
ceed with the definition of our trustworthiness score. We base the trustwor-
thiness estimation of a policy on the properties of the components that have
been identified by the corresponding usage control operation graph. More
concretely, all relevant components must either (i) be operated by stakehold-
ers that are initially trusted to correctly provide the component’s services, or
(ii) be remotely attested by all of their predecessors in the operation graph.
In the first case, we can evaluate the operator trust estimation function 𝑡𝑜
to determine the extent that the respective components can be trusted. In
the second case, the trustworthiness score is instead influenced by the con-
fidence placed in the capabilities of the trusted computing mechanisms that
are protecting the usage control component. Hence, we evaluate this part of
the score using the mechanism trust estimation function 𝑡𝑚. In the remainder

223

6 Estimating Trustworthiness

of this section, we show how the previously formalized system state can be
used to determine a trustworthiness score based on this approach. First, we
define the set of critical stakeholders 𝑆𝑡𝑆(𝐽) for each usage control operation
𝐽 ∈ 𝑂𝑝(𝐼). This set identifies all operators 𝑜(𝑣) of usage control components
𝑣 ∈ 𝑉, which are the target of an unattested trust dependency in 𝐽 and hence
must be initially trusted for the operation to reliably succeed. Note that, since
for our purposes all identified transitive trust dependencies must be covered
in the operation graph, we consider a component to be unattested if just one
of its predecessors in 𝐽 did not conduct a remote attestation.

Definition 6.6 (Critical stakeholders). Let 𝑆 = (𝒞,𝒜,𝒯) be the state of a
distributed usage control system with instance graph 𝐼 ∈ 𝒞, operator mapping
𝑜 ∈ 𝒞, and attestation mapping 𝑎𝑡𝑡 ∈ 𝒞. For each usage control operation
𝐽 ∈ 𝑂𝑝(𝐼), we define the set of critical stakeholders under the system state 𝑆 as
follows.

𝑆𝑡𝑆(𝐽) ≔ ⋃
(𝑢,𝑣)∈𝐽

{𝑜(𝑣) ∣ 𝑣 ∉ 𝑎𝑡𝑡(𝑢)} (6.4)

For the second part of the trustworthiness score, we define the set of critical
mechanism capabilities 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑇). This set contains all trusted computing
capabilities that we must rely on for the usage control operation 𝐽 to be suffi-
ciently protected, under the assumption that the components operated by the
stakeholders given in 𝑇 are already trusted. Analogously to the trust model,
we represent each mechanism capability by a triple (m, g, a) ∈ 𝑀 × 𝐺 × 𝐴,
consisting of a trusted computing mechanism m, a protection goal g, and an
expected attacker a. The set of required mechanism capabilities is extracted
from the usage control operation graph by evaluating the mechanism map-
ping and attacker model on it (cf. lines 4-13 of the algorithm in definition 6.7).
Additionally, in order to get a useful set, we also need to remove duplicate
combinations of mechanism and protection goals that only differ in the ex-
pected attacker. Sensibly, in such cases we retain the mechanism capabilities
against the most powerful adversary according to the defined attacker order
(cf. lines 8 and 11). The input set of initially trusted stakeholders 𝑇 allows
us to define which components can be considered a-priori trusted, and hence

224

6.3 A Trustworthiness Score

do not have to be analyzed for critical capabilities (cf. line 3). This aids our
subsequent definition of the trustworthiness score.

Definition 6.7 (Critical mechanism capabilities). Let 𝑆 = (𝒞,𝒜,𝒯) be
the state of a distributed usage control system with instance graph 𝐼 ∈ 𝒞, opera-
tor mapping 𝑜 ∈ 𝒞, attestation mapping 𝑎𝑡𝑡 ∈ 𝒞, mechanism mapping𝑚 ∈ 𝒞,
goal mapping 𝑔 ∈ 𝒜, and attacker mapping 𝑎 ∈ 𝒜. For each usage control
operation 𝐽 ∈ 𝑂𝑝(𝐼), we define the set of critical mechanism capabilities under
the system state 𝑆 as the output of the following algorithm.

Input: Usage control operation 𝐽 ∈ 𝑂𝑝(𝐼)
Input: Initially trusted stakeholders 𝑇 ⊆ 𝑜(𝐽)
Input: System state 𝑆 ∈ 𝒮
Output: Critical mechanism capabilities 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑇)

1 𝑅 ← ∅;
2 forall (𝑢, 𝑣) ∈ 𝐽 do
3 if 𝑜(𝑣) ∈ 𝑇 then continue;
4 m ←𝑚(𝑣);
5 a ← 𝑎(𝑣);
6 forall g ∈ 𝑔(𝑣) do
7 if ∃ā ∶ (m, g, ā) ∈ 𝑅, ā < a then
8 𝑅 ← 𝑅 \ {(m, g, ā)};
9 end

10 if ∄ā ∶ (m, g, ā) ∈ 𝑅, ā > a then
11 𝑅 ← 𝑅 ∪ {(m, g, a)};
12 end
13 end
14 end
15 return 𝑅

We can now define our trustworthiness score 𝑡 ∶ 𝑉2×𝒫×𝒮 → [0,1] based on
the sets of critical stakeholders andmechanism capabilities as specified in def-
initions 6.6 and 6.7. The value of the function 𝑡 should reflect to what degree
the distributed usage control system, characterized by the system state 𝑆 ∈ 𝒮,
can be expected to enforce a policy 𝑃 ∈ 𝒫 that is deployed and received
by the two components (𝑑, 𝑟) ∈ 𝑉2. For the policy 𝑃 to be enforced prop-
erly under these circumstances, all component instances that are included in
the corresponding usage control operation 𝐽 ≔ 𝑜𝑝𝑠(𝑃, (𝑑, 𝑟)) need to behave

225

6 Estimating Trustworthiness

correctly. To achieve this in the current system state 𝑆, it must be ensured
that all critical stakeholders 𝑆𝑡𝑆(𝐽) are honest and that all critical capabili-
ties 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑆𝑡𝑆(𝐽)) are adequate. Consequently, we can obtain a suitable
quantitative indicator by defining our trustworthiness score as the product
over the respective operator and mechanism trust estimations 𝑡𝑜 and 𝑡𝑚 of the
identified critical stakeholders and capabilities. However, note that even fully
attested components may already be covered by the initial level of trust placed
in their operators, if it is higher than what is achievable by the trusted com-
puting mechanisms. To accommodate this in our construction, we maximize
the resulting product over all possible sets 𝑇 ⊆ 𝑜(𝐽) of component operators
that include at least the required critical stakeholders.

Definition 6.8 (Trustworthiness score). Let 𝑆 = (𝒞,𝒜,𝒯) be the state of a
distributed usage control system with instance graph 𝐼 = (𝑉, 𝐸) ∈ 𝒞, operator
mapping 𝑜 ∈ 𝒞, operator trust estimation 𝑡𝑜 ∈ 𝒯, and mechanism trust estima-
tion 𝑡𝑚 ∈ 𝒯. Let 𝑃 ∈ 𝒫 be a usage control policy, (𝑑, 𝑟) ∈ 𝑉2 the tuple of policy
deployer/recipient, and 𝑜𝑝𝑠∶ 𝒫 × 𝑉2 → 𝑂𝑝(𝐼) a suitable usage control opera-
tion mapping. We define the trustworthiness score for policy 𝑃, policy deployer
𝑑, and policy recipient 𝑟 under system state 𝑆 as

𝑡(𝑑, 𝑟, 𝑃, 𝑆) ≔ max
𝑇∈𝑃𝑇

(∏
𝑠∈𝑇

𝑡𝑜(𝑠) ⋅ ∏
𝑐∈𝐶𝑎𝑝𝑆(𝐽∣𝑇)

𝑡𝑚(𝑐)) (6.5)

with 𝐽 ≔ 𝑜𝑝𝑠(𝑃, (𝑑, 𝑟)) as well as 𝑃𝑇 ≔ {𝑇 ∈ 2𝑜(𝐽) ∣ 𝑇 ⊇ 𝑆𝑡𝑆(𝐽)}.

Note that in eq. (6.5) the power set 𝑃𝑇 contains all possible selections of com-
ponent operators 𝑇 ⊆ 𝑜(𝐽), which fully cover the required critical stakehold-
ers 𝑆𝑡𝑆(𝐽). The set 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑇) then captures all critical mechanism capabil-
ities of attested components that are still required for the enforcement of the
policy, under the assumption that the operators in 𝑇 are already trusted.

Since both the attacker and trust model included in the system state 𝑆 are de-
fined from the point of view of a particular policy issuer, the resulting trust-
worthiness score 𝑡(𝑑, 𝑟, 𝑃, 𝑆) is also subjective to that specific data provider.
Following our notion of trustworthiness as outlined in section 6.1, the value

226

6.3 A Trustworthiness Score

of the function 𝑡 can be interpreted as an upper limit for the level of trust that
the data provider can reasonably place in the ability of the distributed usage
control system to properly enforce the given policy. This estimation is based
on the degree of trust that the data provider initially places in the component
operators, as well as the aptitude of the deployed trusted computing mecha-
nisms to uphold the required protection goals against the expected attackers.
However, note that the defined trustworthiness score is generally not equal
to the enforcement probability of the policy itself. Later, in section 6.3.4, we
discuss the issues of interpreting this value as a probability in greater detail.

6.3.3 Requirement Compliance

We now show the compliance of our trustworthiness score, i.e., that its defi-
nition fulfills the requirements S1 to S5 as introduced in section 6.1. The prac-
tical evaluation of our trustworthiness score by means of an exemplary use
case from the realm of smart manufacturing is presented in the next chapter.

Technological and operator propriety. Requirement S1 (technological
propriety) demands that a useful trustworthiness score must indicate to what
degree the deployed trusted computing technologies are suitable to protect
the enforcement of a particular policy. In addition, requirement S2 (operator
propriety) demands that the defined score must also show whether usage
control components, which are not sufficiently protected by trusted comput-
ing mechanisms, are operated by trustworthy stakeholders. Together, these
two requirements ensure that the constructed score adequately reflects the
ability of the distributed usage control system to enforce a specific protection
policy. This is the most important property for our score to be useful as a
quantitative indicator assisting data providers with data sharing decisions.

To achieve both technological and operator propriety in our proposed trust-
worthiness score, we define a formal model that captures the deployed trusted
computing platforms and their operators, as well as the (partial) protection
goals and the expected attackers for every usage control component (cf. def-
initions 6.2 and 6.3). By means of a usage control operation graph we then

227

6 Estimating Trustworthiness

identify all relevant system components and trust dependencies of the policy
in question (cf. definition 6.5). Furthermore, our trust model (cf. definition 6.4)
provides expert estimations regarding the protection capabilities of trusted
computing technologies (i.e., the function 𝑡𝑚), as well as assessments about
the initial trustworthiness of other usage control participants (i.e., the func-
tion 𝑡𝑜). Finally, the definition of our trustworthiness score is based on the
idea that, in order to ensure a successful policy enforcement, every component
in the corresponding usage control operation graph must be covered either by
a high initial trustworthiness placed in its operator (determined with 𝑡𝑜), or by
the adequacy of the trusted computing mechanisms used to protect this com-
ponent (determined with 𝑡𝑚). Hence, we construct our score by multiplying
together the respective baseline estimations of all required component oper-
ators and mechanism capabilities (cf. definition 6.8). This weighs in all esti-
mations that are relevant for the enforcement of this policy. More concretely,
the construction in definition 6.8 ensures the following three properties.

(i) The score always includes the operator trust estimations 𝑡𝑜(𝑠) for all
critical stakeholders 𝑠 ∈ 𝑆𝑡𝑆(𝐽), who operate unattested components
in the usage control operation 𝐽, and hence must be initially trusted
(cf. definition 6.6). This is ensured by maximizing the score only over
those sets of component operators 𝑇 ⊆ 𝑜(𝐽) that fully include all
critical stakeholders.

(ii) As a result of this maximization, the score may additionally include
the estimations 𝑡𝑜(𝑠) for such (trustworthy) stakeholders 𝑠 ∈ 𝑇, who
operate components that are attested but cannot be adequately
protected by the deployed trusted computing technologies (i.e., the
values 𝑡𝑚(⋅) for the associated mechanisms are outweighed by the
operator trustworthiness).

(iii) The remaining components of the usage control operation 𝐽, which
cannot be adequately covered by the initial trustworthiness of their
operators, must then be protected by trusted computing mechanisms.
Our construction ensures that the resulting score includes the
mechanism trust estimations 𝑡𝑚(𝑐) for all critical capabilities
𝑐 ∈ 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑇), on which these components rely (cf. definition 6.7).

228

6.3 A Trustworthiness Score

While (i) and (ii) jointly fulfill operator propriety, (iii) ensures that the score
indicates the feasibility of the required trusted computing technologies to en-
force the necessary protection goals against the expected attackers, and hence
fulfills technological propriety. As a result of achieving both requirements,
our score can identify (un)trustworthy component operators in the usage con-
trol enforcement process as well as distinguish system states with strong tech-
nological protection from those with weaker security guarantees.

Minimality. Requirement S3 demands that the trustworthiness score must
be minimal, i.e., that it is limited by the adequacy of the least strong mecha-
nism capability, as well as the policy issuer’s opinion of the least trusted com-
ponent operator that are required for the enforcement of the policy in ques-
tion. The previously discussed properties of technological and operator pro-
priety ensure that the relevant baseline estimations 𝑡𝑚(⋅) and 𝑡𝑜(⋅) are always
included in the resulting trustworthiness score for the policy. Since these
values are between 0 and 1, and the score is defined as a product (cf. defini-
tion 6.8), the degrees of belief in the least strongmechanism capability and the
least trusted critical operator are upper bounds for the resulting trustworthi-
ness score. For example, if a usage control component that is part of the policy
enforcement process relies on a mechanism m, which provides low security
guarantees for the required protection goal g against the expected attacker
a, then the trustworthiness score will be limited by the respective degree of
belief 𝑡𝑚(m, g, a). A proof sketch for this property is given in appendix D.

Monotony. Requirement S4 demands that a policy𝑃1, which relies on at least
the same usage control components as another policy 𝑃2, must not receive a
higher trustworthiness score. This ensures that a policy with “greater” de-
mands, such as additional dependencies to PIPs or PXPs, cannot be rated more
favorably under the same circumstances. We can formalize this property as
∀𝑆 ∈ 𝒮 ∶ 𝐽1 ⊇ 𝐽2 ⟹ 𝑡(𝑑, 𝑟, 𝑃1, 𝑆) ≤ 𝑡(𝑑, 𝑟, 𝑃2, 𝑆) for any policy deployer 𝑑,
policy receiver 𝑟, and with 𝐽𝑥 ≔ 𝑜𝑝𝑠(𝑃𝑥, (𝑑, 𝑟)) denoting the usage control op-
erations of both policies. Our trustworthiness score fulfills this requirement
mainly because it is constructed such that additional trust dependencies in

229

6 Estimating Trustworthiness

the usage control operations can only add more restrictions in terms of critical
stakeholders and/or critical mechanism capabilities to the product specified in
definition 6.8. As a result, an extended usage control operation can only lead
to a lower (or equal) trustworthiness score. In appendix D we provide a com-
plete proof sketch for this property by laying out all possible consequences of
including an additional trust dependency in a usage control operation.

Language agnosticism. Finally, our trustworthiness score should also be
independent of policy languages (requirement S5). We achieve this by defin-
ing our score based on the abstract concept of usage control operations (cf.
definition 6.5). The connection between concrete usage control policies and
their trustworthiness score is then made with the function 𝑜𝑝𝑠. This function
identifies all usage control components and dependencies that are relevant
for a specific policy. Hence, in order to support a new policy language, we
only need to appropriately re-define the function 𝑜𝑝𝑠. Because of this, our
trustworthiness score fulfills the requirement of language agnosticism.

6.3.4 Probabilistic Interpretation

In the previous section we asserted the compliance of our trustworthiness
score by showing that it fulfills the necessary requirements. This makes our
score useful as a quantitative indicator that can point out problematic system
states to policy issuers. However, since it is defined as a value between 0 and
1, we can also ask the question to what extent the trustworthiness score can be
interpreted as the actual probability of policy enforcement. In the remainder
of this section, we describe the necessary assumptions and remaining issues to
be solved in order to allow a probabilistic interpretation of the defined score.

Our trustworthiness score is based on deriving a set of statements from a us-
age control policy, which must all be true for the policy enforcement process
to be properly secured. These statements correspond to assessments about
component operators and trusted computing mechanisms, such as “compo-
nent operator Alice is honest” and “the SGX technology can ensure the integrity
of data processed on the CPU against malicious platform owners”. As described

230

6.3 A Trustworthiness Score

in the previous sections, we define the (expertly estimated) probabilities that
these statements are true using the functions 𝑡𝑜 and 𝑡𝑚. Then we multiply to-
gether the degrees of belief in the veracity of all statements that are relevant
for the analyzed policy (cf. definition 6.8). The result is an aggregated score
that fulfills our requirement of identifying untrustworthy component opera-
tors and weak technological protection. However, for the resulting value to
actually resemble the policy enforcement probability, several additional as-
sumptions are necessary. First, we must assume that the formal model con-
siders and adequately represents all influences on the enforcement of usage
control policies. While in our case the security properties of the used trusted
computing technologies are certainly a major influence on the probability of
policy enforcement, there are aspects that our model does not consider. For
example, a reliable policy enforcement also presupposes that the software im-
plementing the functionalities of distributed usage control components works
correctly and does not contain any security-critical bugs. Furthermore, we do
not consider the possibility of random (i.e., non-malicious) failures or human
errors in setting up the protection mechanisms at the usage control compo-
nents. Another issue is that, since our attacker model is focused on malicious
usage control participants, we assume components operated by trusted stake-
holders to always behave correctly, even though this may not be the case.

Second, in order to get accurate trustworthiness scores, we must also ensure
that our model is instantiated with correct information. In terms of the com-
ponent model, this mainly concerns the proper identification of all usage con-
trol components and trust dependencies that are relevant for the enforcement
of the analyzed policy. As shown in listing 6.1, we achieve this by directly
extracting the referenced components from the policy specification. The rele-
vant trust dependencies between the usage control components have been de-
termined as part of our security analysis in section 3.4. Because of this, we can
reasonably expect to identify all relevant usage control components and their
dependencies. The remaining parts of the component model (i.e., mechanism,
operator, and attestation mapping) can then be easily determined during the
operation of the system. The attacker model, however, is more difficult to de-
fine correctly. This is mainly because it includes the set of expected attackers
and relevant protection goals that must be considered for each component,

231

6 Estimating Trustworthiness

which depends on the concrete application scenario. Usually, system design-
ers conduct an informal security analysis to determine this information. For
our score to deliver accurate results, we must assume that this analysis has
been conducted thoroughly and diligently enough for all attackers and protec-
tion goals to have been identified. Finally, we also need to accurately instan-
tiate the trust model. This requires that the collected degrees of belief in the
underlying trust statements (i.e., the functions 𝑡𝑜 and 𝑡𝑚) adequately repre-
sent reality. Since we rely on user input and expert estimations to determine
these probabilities, this is not necessarily guaranteed. Methods for determin-
ing accurate expert estimations in a scientific context have been extensively
researched over many decades. Popular methods today include variants of the
Delphi technique [Row01], cost estimation approaches [Gan14], and gamified
methods such as planning poker [Gre02, Mol08]. Furthermore, expert estima-
tions also play an important role in many probabilistic risk assessment meth-
ods [Bed01, pp. 191–217]. Nevertheless, the application of these methods to
acquire accurate estimations for 𝑡𝑜 and 𝑡𝑚 is beyond the scope of this work.

Assuming that the formal model and the baseline trust estimations are correct,
the last remaining question concerns the soundness of multiplying together
the identified degrees of belief (cf. definition 6.8). While this is an adequate
construction to receive a quantitative score that can inform data providers
about problematic system states, for it to result in the actual probability of
policy enforcement, we additionally need to assume that the multiplied de-
grees of belief are independent. Since usage control participants are usually
self-reliant actors, we can reasonably expect the independence of statements
about operators, i.e., the degrees of belief 𝑡𝑜 . Furthermore, we avoid some ob-
vious dependencies in our construction of the set of critical mechanism capa-
bilities (see definition 6.7) by filtering out similar tuples that only differ in the
expected attacker. Nevertheless, the estimations concerning the trusted com-
puting mechanisms 𝑡𝑚 generally cannot be considered independent. This is
because different technologies rely on common cryptographic primitives, as-
sumptions, and protocols. Similarly, the different protection goals for a single
mechanism also have common influences and are not independent. Because
of this our score, as the multiplication of these degrees of beliefs, generally
does not equal the actual probability of policy enforcement.

232

6.3 A Trustworthiness Score

To alleviate this issue and achieve a more accurate representation of the en-
forcement probability, we could extend our trust model by breaking down
the collected baseline estimations to a finer granularity. For example, con-
sider that both the TPM- and SGX-based attestation protocols rely on the
RSA cryptosystem to generate digital signatures. Hence, the degrees of belief
𝑡𝑚(TPM, 𝐼𝑐𝑜𝑑𝑒, ⋅) and 𝑡𝑚(SGX, 𝐼𝑐𝑜𝑑𝑒, ⋅) both depend on the RSA assumption.
For simplicity, we can describe these three events as 𝑇, 𝑆, and 𝑅. To deal with
the detected dependency, instead of multiplying 𝑃(𝑇) and 𝑃(𝑆), we could also
collect expert estimations about the likelihood that the RSA assumption holds
true, i.e., 𝑃(𝑅), as well as the corresponding conditional probabilities for the
mechanisms, i.e., 𝑃(𝑇 ∣ 𝑅) and 𝑃(𝑆 ∣ 𝑅). Assuming the conditional indepen-
dence of 𝑇 and 𝑆 given 𝑅, the joint¹ probability of all three events then results
to 𝑃(𝑇, 𝑆, 𝑅) = 𝑃(𝑅) ⋅ 𝑃(𝑇 ∣ 𝑅) ⋅ 𝑃(𝑆 ∣ 𝑅) [Ste00]. Since this is not the only
shared cryptographic primitive between SGX and TPMs, we then need to con-
sider additional dependencies in the same manner, in order to get an accurate
estimation for the actual enforcement probability. Bayesian networks [Ste00]
provide a graph-based model to represent such conditionally (in)dependent
events and calculate the joint probability over a subset of variables. How-
ever, since the considered trusted computing mechanisms are large and com-
plicated systems with a multitude of different cryptographic protocols and
primitives, breaking down our trust model to this level and modeling indi-
vidual influences on the trusted computing mechanisms adds a high degree
of complexity to the score construction, which in turn affects the applica-
bility of the score. Furthermore, in addition to obvious dependencies such
as commonly used cryptographic functions, there are also dependencies that
are much more difficult to model appropriately, for example when assessing
the different protection goals of a particular trusted computing platform. Be-
cause of these reasons, and since constructing our score on the level of trusted
computing technologies already achieves our requirements (see section 6.1)
and provides useful information for data providers (see our evaluation in sec-
tion 7.3.3), we leave the further exploration of this approach for future work.

¹ Note that in this particular case the desired marginal probability 𝑃(𝑇, 𝑆) is equal to the joint
probability 𝑃(𝑇, 𝑆, 𝑅), because the RSA assumption is a precondition, i.e., 𝑃(𝑇, 𝑆, 𝑅) = 0.

233

6 Estimating Trustworthiness

6.4 The DataSov Trust Dashboard

As final contribution in this chapter, we describe the integration of the de-
veloped trustworthiness score into the DataSov framework. For this, in sec-
tion 6.4.1, we present our design of a trust dashboard that can provide feed-
back to data providers and policy issuers by visualizing the trustworthiness
score for all deployed policies. In section 6.4.2 we then show how the user
interface of our dashboard represents degrees of beliefs in a human-readable
way. Finally, in section 6.4.3, we present the concrete trust estimations de-
scribing the capabilities of trusted computing mechanisms, which we use for
our subsequent evaluation in the next chapter.

6.4.1 Dashboard Design

We integrate the calculation and display of our trustworthiness score into the
DataSov framework by means of a web-based dashboard, which allows data
owners to monitor the sharing of assets and their corresponding policies. The
goal of our trust dashboard is to provide policy issuers with information about
the adequacy of the current usage control system state to properly enforce
their usage rules. We implemented the trust dashboard as a web application
using Node.js together with the ReactJS ecosystem. The dashboard’s front-
end is integrated into the DataSov framework in the same way as the prove-
nance dashboard presented in section 5.1.3. The back-end of the dashboard is
realized in Java using the Spark¹ web-server.

In order to calculate our trustworthiness score, the dashboard needs access to
four different types of information:

(i) The list of currently deployed policies as input for the function 𝑜𝑝𝑠.
(ii) The current system state as defined by our formal component model 𝒞.
(iii) The formal attacker model 𝒜, describing the expected attackers and

protection goals of the components.

¹ https://sparkjava.com/ (accessed on 12/08/2023).

234

https://sparkjava.com/

6.4 The DataSov Trust Dashboard

(iv) The trust model 𝒯, which includes the baseline trust estimations about
the component operators and trusted computing mechanisms.

The list of deployed policies and the current state of the usage control system is
continuously retrieved by the dashboard’s back-end server using the DataSov
monitor components (see section 5.1.3). The received state updates include the
currently active usage control components and their dependencies, as well as
the conducted remote attestations. The back-end server then continuously
integrates these state updates into our formal system model to determine a
complete picture of the usage control system state. Since the attacker and
trust models are subjective to the data owner, they are not automatically de-
termined, but can instead be configured individually via the front-end. Based
on this information, the back-end server then calculates the trustworthiness
scores for all currently active policies as described in the previous section.

Figure 6.3 shows a screenshot of the DataSov trust dashboard. On the left-
hand side a visualization of the current instance graph is located, which gives
dashboard users an overview of the current system state. This graph displays
all active usage control components and their trust dependencies. Note that
the dashboard only shows active trust dependencies (cf. fig. 3.13), although
both directions are being attested and verified. For clarity, the edges PEP → PRP

are also omitted in the visualization. The labels that are shown on the edges
identify the trusted computingmechanisms and protocols that have been used
for the remote attestations. In case of timed-out attestations, the edges are
shown in red instead of black. Furthermore, users can also select individual
components as a data provider, and then inspect a list of shared data assets and
their corresponding policies on the right-hand side of the screen. Near the top
we show the calculated trustworthiness score 𝑡(𝑑, 𝑟, 𝑃, 𝑆) ∈ [0,1] for the cur-
rently selected policy/data deployment in the form of a percentage. For eas-
ier visual comprehension, the score is also mapped to a colored grading scale
spanningA to E, which is inspired by the visualization of the European Nutri-
Score [Her22]. Table 6.1 shows the definition of the colored grading scale as it
is implemented in the DataSov trust dashboard. Note that the defined ranges
are chosen as examples and are meant only for illustrative purposes.

235

6 Estimating Trustworthiness

In
st
an

ce
gr

ap
h

D
at
a
an

d
po

lic
y
lis

tPo
lic

y
sc
or
e

Fi
gu

re
6.
3:

Sc
re
en

sh
ot

of
th
e
D
at
aS

ov
tru

st
da

sh
bo

ar
d.

236

6.4 The DataSov Trust Dashboard

Table 6.1: Colored grading scale for the developed trustworthiness score.

Grade A B C D E
Label excellent good adequate insufficient poor
Range over 90% 90% - 80% 80% - 60% 60% - 40% under 40%
Color #00FF00 #97C422 #FFFF00 #FFA500 #FF0000

Below the overall trust score for the policy, we also display additional in-
formation about the trust propagation of the policy. The idea behind this is to
give users an intuitive understanding of where the assumptions that influence
the trustworthiness score come from. To achieve this, in addition to the trust
score for the complete usage control operation 𝐽 ≔ 𝑜𝑝𝑠(𝑃, (𝑑, 𝑟)), we also
calculate the scores for partial usage control operations. These partial oper-
ations are defined for each component 𝑣 ∈ 𝐽 and are comprised of the path
from the operation’s root (i.e., the policy deployer 𝑑) to the respective compo-
nent: {𝑡(𝑑, 𝑟, 𝐽|(𝑑→𝑟→…→𝑣), 𝑆)}𝑣∈𝐽 . Showing this allows the user to go over the
trust propagation step by step and identify at which usage control component
the trustworthiness score deteriorates. For example, in the scenario illustrated
in fig. 6.3, we can see that the reliance on the remote PIP noticeably decreases
the trustworthiness score of the policy. This is because this component intro-
duces ARMTrustZone as an additional trusted computing technology into the
usage control operation, which expands the set of mechanism capabilities that
the policy enforcement relies on. Removing the dependency to this PIP will
hence decrease the attack surface for this policy. Furthermore, calculating the
trust propagation in this manner also allows the DataSov dashboard to illus-
trate which parts of the deployed usage control policies likely can or cannot be
enforced. This is achieved by overlaying the policy text with the partial trust
scores of each usage control component that is required to enforce a specific
policy section. Figure 6.4 shows a screenshot of the resulting policy visualiza-
tion for the previously described scenario. Note that the highlighted section
in the middle of the policy contains an ODRL operand definition referencing
the ARM TrustZone PIP in question.

237

6 Estimating Trustworthiness

Fi
gu

re
6.
4:

Po
lic

y
vi
su

al
iz
at
io
n
in

th
e
D
at
aS

ov
tru

st
da

sh
bo

ar
d.

238

6.4 The DataSov Trust Dashboard

6.4.2 Representing Degrees of Belief

As described in the previous section, our trust model consists of two func-
tions: the operator trust estimation 𝑡𝑜 and the mechanism trust estimation
𝑡𝑚. While the former estimation is specified by the usage control participants
themselves, the latter must be decided by experts. In both cases, however, we
need to represent the degrees of belief in a way that is comprehensible for
humans. For this purpose, Ries and Schreiber introduced the Human-Trust-
Interface (HTI) [Rie08b]. The HTI visually represents degrees of belief on a
two-dimensional scale, as is shown in fig. 6.5. The tuple (𝑡, 𝑐) ∈ [0,1]2 is also
called an opinion and is comprised of a trust value 𝑡 together with a certainty
value 𝑐. While the value 𝑡 represents the (subjective) level of trust in the ve-
racity of a claim, the certainty 𝑐 denotes the subject’s confidence in that trust
estimation. Representing degrees of belief in such a way has the advantage of
making the uncertainty that is associated with the trust estimation explicit.
This facilitates the expression of trust statements that are based on evidence
(high certainty value, e.g., 𝑜1) in contrast to statements that are based on con-
jecture (low certainty value, e.g., 𝑜2). Furthermore, the authors conducted
a user study which found this representation to be intuitively interpretable
[Rie08b]. For these reasons, we adopt the HTI as a method for visually repre-
senting degrees of belief in the graphical user interface of our trust dashboard.

0

1
Certainty 𝑐

0 1

Trust 𝑡

𝑜1 = (𝑡1, 𝑐1)

𝑜2 = (𝑡2, 𝑐2)

Figure 6.5: Human-readable representation of degrees of belief after Ries and Schreiber. Illus-
tration modified from [Rie08b].

239

6 Estimating Trustworthiness

Even though this representation of degrees of belief is useful for visualization
purposes, we still need to retrieve values between 0 and 1 in order to calculate
our trustworthiness score. For this, the underlying mathematical model of
HTI offers the function 𝔼∶ [0,1]2 → [0,1], which maps the two-dimensional
opinion space back to standard probabilities in the Bayesian sense [Rie09].
This function is defined as the trust value weighted by the confidence and an
initial expectation value 𝑓, i.e.,𝔼(𝑡, 𝑐) ≔ 𝑐⋅𝑡+(1−𝑐)⋅𝑓. The initial expectation
𝑓 ∈ [0,1] can be seen as a default value that is chosen if the level of trust
cannot be confidently estimated. Ries and Heinemann propose to choose 𝑓
depending on the application scenario and the subject’s general attitude, for
example pessimistic (𝑓 ≈ 0), neutral (𝑓 ≈ 0.5), or optimistic (𝑓 ≈ 1) [Rie08a].
In addition, it is also possible to directly calculate with opinions in the same
way as with probabilities. For this, Ries introduces the logical operators AND,
OR, and NOT in the opinion space [Rie11]. These operators are defined to
be compliant with standard probabilistic evaluations of propositional terms,
e.g., it holds that 𝔼(𝑜1 ∧ 𝑜2) = 𝔼(𝑜1) ⋅ 𝔼(𝑜2). Because of this property, we
can also use the logical operator AND as defined in [Rie11] to calculate our
trustworthiness score directly on the collected baseline trust estimations.

6.4.3 Baseline Trust Estimations

Finally, in preparation of our dashboard evaluation in section 7.3, we need to
define concrete values for the baseline trust estimations 𝑡𝑜 and 𝑡𝑚. As men-
tioned before, the operator trust estimation 𝑡𝑜 is subjective and depends on the
concrete application. Hence, wewill define it later specifically for the example
scenario presented in section 7.3. The mechanism trust estimation function
𝑡𝑚, on the other hand, describes the capabilities of the deployed trusted com-
puting mechanisms to ensure the necessary protection goals against the ex-
pected attackers. As such, we assume this function to be determined by tech-
nology experts. It must also be continuously updated to reflect novel attack
vectors and mitigations. For the purposes of evaluating our trust dashboard,
we define an exemplary estimation describing the capabilities of the three
technologies supported by the DataSov framework, i.e., TPMs, Intel SGX, and
ARM TrustZone. However, it should be pointed out that this estimation is

240

6.4 The DataSov Trust Dashboard

meant for illustrative purposes only, and we do not claim its completeness.
Acquiring reliable estimates for the function 𝑡𝑚 would require interviewing
multiple independent technology experts, which is beyond the scope of this
work. Furthermore, we base our exemplary estimation only on publicly avail-
able technical descriptions and specifications, as well as on published attacks
that are discussed in the scientific literature. As part of our analysis in chap-
ter 4, we have already pointed out the different capabilities and limitations
of the three considered trusted computing technologies with regard to our
application of distributed usage control. In the remainder of this section, we
give a brief summary of the notable technological differences and motivate
our exemplary definition of the trust estimation function 𝑡𝑚.

Trusted Platform Modules. As presented earlier in section 4.2.1, TPMs
can protect the confidentiality and integrity of data at rest (i.e., the protection
goals 𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒) by means of cryptographic sealing. The security of
the sealing operations is determined by the capability of the TPM to shield
the associated private keys from attackers. While the TPM takes care to
always retain generated sealing keys on the trusted hardware, in the past
this hardware isolation has been successfully circumvented by side-channel
attacks. Recently, Moghimi et al. published a timing-based attack that is
capable of extracting secret key material from the TPM [Mog20]. However,
this attack vector has since been mitigated by the TPM manufacturers with
firmware updates for the affected devices [Mog19]. As a result, for our
evaluation we presume TPMs to be capable of achieving the protection goals
𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒 against both network and software attackers. In terms of
the trust model, this is reflected by high trust and confidence values for
𝑡𝑚(TPM, {𝐶𝑠𝑡𝑜𝑟𝑒, 𝐼𝑠𝑡𝑜𝑟𝑒}, {network, software}). Privileged attackers, on the
other hand, have physical access to the system hardware and hence could
intercept critical information directly on the TPM bus [And19, Dew21].
Because of this additional attack vector, we must assume that privileged
adversaries can generally bypass TPM-based sealing, albeit with the hurdle
of having to mount a dedicated physical attack on the trusted hardware.
We reflect this in the trust model by assigning a much lower trust value for
privileged adversaries than for network and software attackers. Furthermore,

241

6 Estimating Trustworthiness

TPMs do not provide isolated execution environments for user applications.
As a result, TPM-protected systems can safeguard the confidentiality and in-
tegrity of data during processing (protection goals 𝐶𝑝𝑟𝑜𝑐 and 𝐼𝑝𝑟𝑜𝑐) only in the
sense that we can exclude malicious software being executed on the trusted
platform. While this prevents software-based attacks on these two protection
goals, we must still assume that processed data will not get intercepted via
hardware attacks, e.g., on the unencrypted memory bus. Consequently, we
also assign a lower trust rating to these protection goals in our trust model.

In terms of remotely attesting TPM-based systems, our framework relies on
the MSCP protocol as described in section 4.2.4. Our security analysis shows
that the MSCP protocol can ensure confidentiality and integrity during data
transmission (protection goals 𝐶𝑡𝑟𝑎 and 𝐼𝑡𝑟𝑎) even against privileged attack-
ers. Furthermore, the attestation evidence transmitted during the protocol
handshake also protects code integrity (protection goal 𝐼𝑐𝑜𝑑𝑒) against all ad-
versaries. Regarding side-channel attacks against code integrity, Han et al.
identified a power management flaw in the TPM specification that allows to
forge PCR values [Han18]. However, the authors have already submitted suit-
able firmware patches that effectively mitigate this attack [Han18]. Because
of this, we classify all three protection goals concerning remote attestation as
fulfilled in our trust estimation.

Finally, TPMs also offer some limited amount of non-volatile (NV) memory,
which could be used to protect critical information against malicious dele-
tion (protection goal 𝐼𝑑𝑒𝑙). However, due to the technical limitations of NV
memory (see section 4.2.1), usually only cryptographic keys are kept inside
the TPM, while encrypted data blobs are outsourced to the file system. Fur-
thermore, storing information directly in the NV memory still cannot protect
against malicious deletion by privileged attackers, since they have full ac-
cess to the system and can reset or physically destroy the TPM. Because of
this, for our evaluation we assume that the TPM cannot adequately protect
against deletion attacks by software and privileged attackers (i.e., low trust
values with high confidence). Based on the presented analysis and arguments,
we set the concrete values for the trust estimation function 𝑡𝑚(TPM, g, a) as
shown in table 6.2.

242

6.4 The DataSov Trust Dashboard

Table 6.2: Mechanism trust estimations 𝑡𝑚(TPM, g, a).

(𝑡, 𝑐) × 10−3 Attacker a
network software privileged

Goal g 𝑡 𝑐 𝑡 𝑐 𝑡 𝑐
𝐶𝑠𝑡𝑜𝑟𝑒, 𝐼𝑠𝑡𝑜𝑟𝑒 990 900 980 850 450 800
𝐶𝑝𝑟𝑜𝑐, 𝐼𝑝𝑟𝑜𝑐 800 950 600 900 550 900
𝐶𝑡𝑟𝑎, 𝐼𝑡𝑟𝑎 995 950 990 950 980 900
𝐼𝑐𝑜𝑑𝑒 998 990 995 950 990 900
𝐼𝑑𝑒𝑙 700 800 300 850 150 850

Software Guard Extensions. Similar to TPMs, Intel SGX processors also
provide cryptographic sealing functions that can protect the confidentiality
and integrity of outsourced data (see section 4.3.1). In this regard, however,
the SGX technology has the advantage that it does not rely on any external
hardwaremodules to perform the sealing. Instead, the critical data never leave
the protected CPU unencrypted, which effectively prevents bus snooping at-
tacks by privileged adversaries. To reflect this in our trust model, we classify
the capability of SGX to protect the goals 𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒 against privileged
attackers with a higher trust value than for TPMs. Furthermore, in contrast
to TPMs, the SGX processor allows to run user code inside a completely iso-
lated Trusted Execution Environment (TEE). Because of this, in addition to
data at rest, SGX can also cryptographically ensure the confidentiality and in-
tegrity of data in use (protection goals 𝐶𝑝𝑟𝑜𝑐 and 𝐼𝑝𝑟𝑜𝑐) without any additional
assumptions about the host system. However, over the recent years several
attacks have been published that aim to break the isolation of executed SGX
enclaves. As indicated earlier, attaining expert assessments about this by con-
ducting a comprehensive and independent peer review of published attacks
on the SGX technology is beyond the scope of this work. Instead, we give a
brief summary of the identified attack classes and assess their impact based
on two surveys by Nilsson et al. [Nil20] and Fei et al. [Fei21].

One of the most researched classes of attacks on SGX enclave isolation are
cache attacks [Mog17, Göt17, Sch17, Bra17b]. The principal idea behind these
attacks is to deduce enclave memory contents by priming the processor cache
with known data, and then observing the execution times of applications.

243

6 Estimating Trustworthiness

Since cache attacks aim to recover enclavememory in plain text, they threaten
the protection goal of data confidentiality (protection goal 𝐶𝑝𝑟𝑜𝑐) rather than
integrity. However, these attacks usually require the execution of attacker-
controlled software on the SGX processor, which limits the expected adver-
saries to software and/or privileged attackers. A related class of attacks are
memory attacks, which also target the protection goal 𝐶𝑝𝑟𝑜𝑐 . Even though
they apply a similar concept as cache attacks, memory attacks work on the
level of memory management instead of caches. For example, an attacker can
manipulate the (unencrypted) page tables that are managed by the untrusted
operating system, in order to recover enclavememory by observing the result-
ing page faults [Xu15]. There are also more advanced attack vectors on SGX,
which do not even require triggering page faults [Van17b, Van17a, Wan17,
Kim19]. Nevertheless, since the attacker still needs access to the page tables,
the attacker models for these attacks usually assume privileged adversaries
such as malicious system owners. Furthermore, SGX processors have also
been identified as being vulnerable to various types of branch prediction at-
tacks [Lee17b, Evt18, Van18, Kor18, Che19a, Huo20]. These attacks exploit the
speculative branch prediction features that most modern processors employ
for efficiency. By carefully measuring execution timings, untrusted applica-
tions can obtain information about the control flow of enclaves and ultimately
deduce enclave memory contents. Hence, these attacks also break the confi-
dentiality of data in use (protection goal 𝐶𝑝𝑟𝑜𝑐) under the assumption that the
attacker can execute malicious software on the target machine.

Like TPMs, SGX processors can also be attacked via side-channel attacks on
the physical hardware. For example, it has been demonstrated that measur-
ing the power consumption of cryptographic operations can leak sensitive
key material [Lip21]. While this attack once again only targets data con-
fidentiality (protection goal 𝐶𝑝𝑟𝑜𝑐), there are also side-channel attacks that
can break the integrity of processed data (protection goal 𝐼𝑝𝑟𝑜𝑐). This can be
achieved by manipulating the processor voltages in order to inject faults into
the enclave execution [Qiu19, Mur20], or by provoking random bit flips in the
system memory [Jan17]. Finally, purely software-based attacks are also pos-
sible on SGX enclaves. Most importantly, return-oriented programming has
been used to inject malicious operations into enclaves [Lee17a, Yoo22], which

244

6.4 The DataSov Trust Dashboard

breaks both confidentiality and integrity of data in use. However, these at-
tacks require a privileged attacker that is in complete control of the untrusted
operating system [Lee17a, Yoo22]. In recent years, there has also been ex-
tensive research into viable countermeasures against the identified attacks on
SGX hardware. Effective mitigations have been developed against cache at-
tacks [Gru17, Yav22, Cai23], memory attacks [Shi17, Che17, Ahm19, Bra19,
Lan22, Con23], branch prediction vulnerabilities [Wei18, Int21, Jin21], as well
as software- and hardware-based attacks [Seo17, Kog22]. Because of this, for
the evaluation of our trust dashboard, we rate SGX as being generally capable
of ensuring the confidentiality and integrity of data in use. However, due to
the presented attack vectors on SGX processors, we assign higher trust and
certainty values against network attackers than against software and privi-
leged attackers. Furthermore, we assume that the deployed SGX hardware is
fully patched and works as specified.

Our framework relies on the Enclave Key Exchange Protocol (EKEP) for the
SGX-based attestation of remote system components (see section 4.3.2). Even
though Dall et al. identified an attack vector against the implementation of the
EPID attestation scheme for SGX enclaves [Dal18], this is not relevant for our
system, because EKEP uses the DCAP primitives instead of EPID [Asy21c].
Since the EKEP attestation protocol has been formally verified by Roeder et al.
[Roe22], we can associate high trust values with the protection goals 𝐶𝑡𝑟𝑎 ,
𝐼𝑡𝑟𝑎 , and 𝐼𝑐𝑜𝑑𝑒 against all attackers. However, we still need to assume that
the quoting enclave used by EKEP in our proof of concept, which is provided
by the Asylo framework, is correctly implemented. Finally, SGX does not
provide any capabilities regarding the protection of critical data against dele-
tion attacks by software and privileged adversaries. Hence, we must classify
the protection goal 𝐼𝑑𝑒𝑙 as not fulfilled (i.e., low trust values with high cer-
tainty). The concrete values that we choose for the trust estimation function
𝑡𝑚(SGX, g, a) are given in table 6.3.

245

6 Estimating Trustworthiness

Table 6.3: Mechanism trust estimations 𝑡𝑚(SGX, g, a).

(𝑡, 𝑐) × 10−3 Attacker a
network software privileged

Goal g 𝑡 𝑐 𝑡 𝑐 𝑡 𝑐
𝐶𝑠𝑡𝑜𝑟𝑒, 𝐼𝑠𝑡𝑜𝑟𝑒 997 950 995 900 993 850
𝐶𝑝𝑟𝑜𝑐, 𝐼𝑝𝑟𝑜𝑐 995 950 992 900 987 850
𝐶𝑡𝑟𝑎, 𝐼𝑡𝑟𝑎 997 980 995 950 993 900
𝐼𝑐𝑜𝑑𝑒 998 950 995 900 990 850
𝐼𝑑𝑒𝑙 600 800 150 850 050 850

ARM TrustZone. Since both technologies are designed as Trusted Execu-
tion Environments, the capabilities of ARM TrustZone concerning the pro-
tection of critical data during processing are largely comparable to those of
Intel SGX. However, as discussed in section 4.4.1, Trusted Applications run-
ning on ARM TrustZone devices have a larger Trusted Computing Base than
SGX enclaves, because they also rely on the trusted firmware and the secure
world operating system. As a result, we have to assume the correctness of
a much larger set of software, which leads to a larger attack surface under
TrustZone. To reflect this in our trust model, we choose slightly lower esti-
mates for the protection goals 𝐶𝑝𝑟𝑜𝑐 and 𝐼𝑝𝑟𝑜𝑐 compared to Intel SGX.

In terms of cryptographic sealing (protection goals 𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒) and re-
mote attestation (protection goals 𝐶𝑡𝑟𝑎 , 𝐼𝑡𝑟𝑎 , and 𝐼𝑐𝑜𝑑𝑒), ARM TrustZone un-
fortunately does not provide the same level of functionality as Intel SGX. Be-
cause of this, we rely on the fTPM module [Raj16] running as a Trusted Ap-
plication inside the secure world to achieve these protection goals (see sec-
tions 4.4.3 and 4.4.4). One advantage of this approach is that we can apply
the same methods as previously used for hardware TPMs, such as relying on
TPM-managed sealing keys for secure storage and our MSCP protocol for re-
mote attestation. As a result, we can select trust values for these protection
goals that are generally comparable to those previously determined for TPMs.
In addition, having a firmware-level TPM also prevents bus snooping attacks,
and hence even increases the security of sealing operations against privileged
attackers compared to hardware TPMs (protection goals 𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒). On
the other hand, since we use a customized trusted boot process that relies on

246

6.4 The DataSov Trust Dashboard

a larger CRTM than when using hardware TPMs (see section 4.4.3), we must
rate the protection goal 𝐼𝑐𝑜𝑑𝑒 with a lower trust value than before. Further-
more, as a softwaremodule, fTPM cannot provide the same level of immutabil-
ity as a discrete TPM chip. Recently, Jacob et al. found several software-based
attacks on the fTPM implementation for the AMD SEV processor architecture
[Jac23]. Even though these attacks do not target the ARM TrustZone archi-
tecture directly, it still proves that software-based attacks on firmware-level
TPMs are a concern to be considered. We reflect this uncertainty in our trust
model by reducing the confidence values of the protection goals 𝐶𝑡𝑟𝑎 , 𝐼𝑡𝑟𝑎 ,
and 𝐼𝑐𝑜𝑑𝑒 compared to both other technologies.

Finally, like TPMs and Intel SGX, ARM TrustZone also does not provide any
effective protection mechanisms to secure critical data against malicious dele-
tion by software and privileged attackers (protection goal 𝐼𝑑𝑒𝑙). Based on these
considerations, table 6.4 shows the resulting trust and certainty values for the
trust estimation function 𝑡𝑚(TZ, g, a).

Table 6.4: Mechanism trust estimations 𝑡𝑚(TZ, g, a).

(𝑡, 𝑐) × 10−3 Attacker a
network software privileged

Goal g 𝑡 𝑐 𝑡 𝑐 𝑡 𝑐
𝐶𝑠𝑡𝑜𝑟𝑒, 𝐼𝑠𝑡𝑜𝑟𝑒 990 850 980 750 850 750
𝐶𝑝𝑟𝑜𝑐, 𝐼𝑝𝑟𝑜𝑐 990 900 980 850 970 800
𝐶𝑡𝑟𝑎, 𝐼𝑡𝑟𝑎 995 900 990 850 980 800
𝐼𝑐𝑜𝑑𝑒 985 850 980 830 970 800
𝐼𝑑𝑒𝑙 700 750 300 750 100 750

As mentioned earlier, conducting an in-depth security assessment that con-
sists of a peer-reviewed process collecting and aggregating the opinions of
multiple independent technology experts is beyond the scope of this work.
Hence, the estimated trust values given in tables 6.2 to 6.4 cannot necessarily
be considered reliable. Nevertheless, they are still founded in an analysis of
the current scientific literature and as such are useful to evaluate the proof of
concept of our proposal, as presented in the next chapter.

247

6 Estimating Trustworthiness

6.5 Conclusion

In this chapter we presented our research contribution RC7 by developing a
trustworthiness score for distributed usage control systems. Our score is de-
signed to represent the adequacy of the current system state to reliably protect
the enforcement of a particular usage control policy from a data provider’s
point of view. To achieve this, we rely on expert estimations regarding the
capabilities of trusted computing technologies to ensure the necessary pro-
tection goals against the expected attackers. We also consider the degree of
trust that data providers might initially show towards other usage control
system participants. Our score is constructed using a graph-based formal
model that can represent the currently deployed system components, their
attacker and trust model, as well as the conducted remote attestations. We
validated the definition of our score by showing that it fulfills the previously
set requirements, which includes operator and technological propriety, mini-
mality, monotony, and language agnosticism. To provide policy issuers with
qualified feedback regarding the adequacy of the current system state with re-
spect to their usage rules, we also integrated the developed score into a web-
based trust dashboard that is part of our trustworthy usage control frame-
work. The developed trust dashboard illustrates the current usage control
system state, as well as the individual policy scores using a color-coded vi-
sual scale. To conclude, the research contributions presented in this chapter
add transparency to our distributed usage control and provenance tracking
framework, and hence achieve goal 4 of the thesis objective. In the following
chapter we validate the effectiveness of the developed trustworthiness score
by means of a concrete application scenario as well.

Finally, this chapter also provides several starting points for future research.
Since the expressiveness of our score relies mainly on the quality of the un-
derlying expert estimations, it must be ensured that they are collected from
a sufficient number of knowledgeable individuals using an adequately imple-
mented process. Hubbard and Seiersen present several suggestions for setting
up processes to acquire accurate expert estimations [Hub16, pp. 133–155]. In

248

6.5 Conclusion

addition, the design choice to represent degrees of belief with tuples consist-
ing of both trust and certainty values in our dashboard could prove to be
advantageous for this process as well, because it provides a simple way to
distinguish varying levels of expertise [Rie07]. A related question is if we
can leverage real-world data in form of observations, in addition to mere (sub-
jective) estimations, to get more accurate results. As motivated earlier, the
direct observation of component responses is unfeasible in our case, since we
cannot reliably decide if a particular response of a usage control component
is malicious or not. However, other possible sources of observations include
statistical data about successfully executed attacks on trusted computing plat-
forms. So far we see this kind of knowledge as being implicitly represented by
the opinions of well-informed experts, but it may be beneficial to also consider
it explicitly in the construction of the score, provided that suitable statistical
data are available. Furthermore, our attacker model could be augmented to
represent more detailed attributes of adversaries, such as motivation, oppor-
tunity, and individual attacker skills. Since these properties are usually not
binary in nature, they could be integrated into the proposedmodel in the form
of degrees of belief as well. Finally, the granularity of the collected security
estimations used in the construction of our score could be improved by mod-
eling more detailed security properties, such as cryptographic assumptions
and individual algorithms. While this would reduce the impact that depen-
dent properties have on the accuracy of the score (see section 6.3.4), it also
increases the complexity of the construction.

249

7 Evaluation and Results

To demonstrate the practicality of our trustworthy usage control and prove-
nance tracking system in a real-world scenario, we conduct a brief evaluation
using an exemplary application from the realm of smart manufacturing. In
this chapter, we first introduce our concrete evaluation scenario and present
the individual usage control policies that are enforced across two domains.
Based on this application, we then evaluate the performance of the initial
component provisioning, as well as the distributed policy enforcement and
provenance tracking mechanisms. Finally we show that our trust dashboard,
as presented in the last chapter, is capable of assisting policy issuers with the
identification of problematic usage control system states in this scenario.

7.1 Example Scenario: Smart Manufacturing

Smart manufacturing is an umbrella term that summarizes many recent ef-
forts of leveraging the potential of big data and collaborative data processing
in production systems [Win21]. One aspect of smart manufacturing, which
has been researched over the past few years, concerns the advantages of in-
tegrating assistance functions into assembly tables [Tsu20, Len20]. Such in-
telligent workstations can provide personalized assistance to human workers,
which helps with the execution of difficult work steps and increases both the
workers’ wellbeing and their productivity. Furthermore, smart assembly sta-
tions facilitate the automated and continuous collection of data about work
processes, as well as the assembled goods themselves, such as work step pro-
tocols, sensor data, and even video recordings [Wag21b]. This information
can then be harnessed locally for the optimization of manufacturing processes
[Man19], butmay also be sharedwith the recipients of assembled parts further

251

7 Evaluation and Results

down in the supply chain [Won17]. However, collecting and sharing informa-
tion in a smart manufacturing context entails many data security and privacy
concerns, which must be adequately addressed [Man19, Wag21b]. As Birnstill
and Beyerer pointed out, usage control is a viable building block to mitigate
many of the resulting problems in smart manufacturing use cases [Bir18a].
Because of these findings, we choose our evaluation scenario to consist of
a smart assembly table sharing potentially sensitive information with differ-
ent services, both locally as well as with remote parties such as customers.
The goal of this evaluation is to demonstrate that our developed trustwor-
thy usage control framework is capable of performing efficiently in a smart
manufacturing context.

7.1.1 Scenario Overview

Figure 7.1 illustrates the exemplary scenario from the realm of smartmanufac-
turing, whichwe use to evaluate our distributed usage control and provenance
tracking framework. For the sake of simplicity, we assume the existence of
just two stakeholders: a producer of goods and an associated customer, who
acquires and further processes these commodities. The producer operates a
smart assembly table, which is capable of continuously collecting process data
about the manufactured parts. The resulting task logs for each assembled part
are the main assets in this scenario. Among other data, the task logs con-
tain automatically generated work step protocols and sensor data captured
during the manufacturing process. They may also include video recordings
of the conducted work steps, which are taken for documentation and quality
management purposes [Wag21b]. The collected task logs are shared with two
different services for evaluation purposes. First, the producer operates an ac-
counting service in the same application domain as the assembly table. This
service evaluates the collected task logs in order to extract statistical infor-
mation about the work processes, for example the employees’ working hours.
In addition, the information collected by the assembly table is also of interest
to the customer further down in the supply chain. For this, the customer op-
erates an optimization service in their own infrastructure, which utilizes the

252

7.1 Example Scenario: Smart Manufacturing

shared task logs to fine tune any subsequent manufacturing processes. How-
ever, in order to protect the privacy of the involved workers, the informa-
tion contained in the task logs must be anonymized before any cross-domain
sharing can be allowed.

Assembly
Table

Producer

Accounting
Service

Asset: Task
information

Production
Line

Customer

Optimization
Service

Asset: Anonymized
task information

Figure 7.1: Overview of the evaluation scenario.

In this scenario, we leverage our trustworthy usage control framework to re-
strict the evaluation of the shared data assets to the described use cases. Most
importantly, the remote customer must be prevented from using the shared
task logs for any other than the advertised purposes. Furthermore, since the
assembly table potentially captures personal information about human work-
ers, we also demand that the provenance of the data transmissions and usages
must be reliably tracked.

7.1.2 System Deployment

To securely enforce these usage restrictions by technical means, both stake-
holders leverage our DataSov distributed usage control framework as pre-
sented in chapter 5. Figure 7.2 shows the concrete system deployment of the
necessary usage control components, as well as the three data processing ap-
plications that we use for our performance evaluation. Note that all three
applications integrate a DataSov Policy Enforcement Point (PEP) into their

253

7 Evaluation and Results

program logic, which intercepts relevant data usage events and enforces the
resulting decisions. Furthermore, both the producer and the customer oper-
ate dedicated instances of retrieval points (PRPs) and decision points (PDPs)
in their respective domains. The producer also operates a Policy Execution
Point (PXP) and a Provenance Storage Point (ProSP), which in this scenario is
responsible for collecting and retaining the provenance information of shared
data assets. Furthermore, the customer operates a Policy Information Point
(PIP) providing additional attributes during the enforcement process. To re-
flect the two distinct usage control domains, we identify each component via
a unique URI that is prefixed by urn:producer or urn:customer, respectively.

urn:producer urn:customer

Table

PEP
Optimization

PEP

PDP

PRP

PXP

ProSP

Accounting

PEP PDP

PRP

PIP

M-Store

State Store

CA

ARM

TPM

SGX

TPM

SGX

SGX

Figure 7.2: Deployment of the systems and usage control components used in the evaluation.

As shown in chapter 5, the DataSov framework relies on our previously de-
veloped heterogeneous remote attestation protocol to secure this distributed
usage control infrastructure against malicious tampering and component re-
moval. In order to design a representative evaluation scenario, we leverage all
three trusted computing technologies that are supported by DataSov. Since
assembly tables are often realized as ARM-based embedded systems, we use
an fTPM instance executed on a TrustZone device to measure the platform in-
tegrity of the assembly table. The accounting service is instead deployed on a

254

7.1 Example Scenario: Smart Manufacturing

server that is protected by a hardware TPM. The customer’s optimization ser-
vice, as well as all individual usage control components, are implemented as
separate Intel SGX enclaves. Finally, each DataSov usage control component
also requires connection to a CertificationAuthority (CA) for the initial certifi-
cate provisioning, as well as tomeasurement and state stores for the necessary
code and state integrity checks. For the sake of simplicity, and since it does
not influence performance, we deploy only one instance of these components
on an additional TPM-protected server. In reality, both stakeholders would
operate individual CA servers and measurement stores in their own domains.

Note that the resulting system deployment as shown in fig. 7.2 represents an
exemplary scenario, intended to showcase and evaluate the application of our
distributed usage control framework. To ensure that the performance evalu-
ation of the trustworthy usage control enforcement is not affected by one of
the domain-specific applications, for our tests we only simulate the concrete
application functionalities, i.e., the assistance functions in the assembly table,
the accounting service, and the process optimization at the customer. Further-
more, we oversimplify some of the implementation details that do not concern
the usage control enforcement process itself. For example, in a production en-
vironment the data sharing would not be launched directly from the assembly
tables, but instead be managed by an intermediate distribution service.

7.1.3 Usage Control Policies

Finally, we define the concrete usage rules and corresponding ODRL policies
that should be enforced by the DataSov framework in our evaluation scenario.
First, the assembly table must be restricted to distribute the acquired task in-
formation exclusively to the producer’s accounting service and the customer’s
optimization service. Furthermore, all task logs must be anonymized before
they may be shared with the customer’s domain. Listing 7.1 shows the ODRL
policy that enforces these usage restrictions on a specific asset. This policy
consists of two permissions for the action distribute, each with a constraint
on the recipient’s URI. The DataSov framework takes care to authenticate all
asset recipients based on the permitted URIs via the provisioned component

255

7 Evaluation and Results

certificates (see section 5.2.2). In addition, the rule that permits the asset dis-
tribution to the customer also includes a duty to anonymize the task log by
redacting any worker names prior to transmission (lines 19-24). This obliga-
tion is defined as a PEP action using the modifyParam method, which is auto-
matically executed by the assembly table’s enforcement point before allowing
the data to be distributed to the optimization service.

Listing 7.1: DataSov ODRL policy enforced at the assembly table.

1 {"@context": "https://gitlab.cc-asp.fraunhofer.de/datasov/core/.../ods.jsonld",

2 "profile": "https://gitlab.cc-asp.fraunhofer.de/datasov/core#ods-ttl",

3 "permission": [

4 {"target": "urn:producer:asset:task:1587",

5 "action": "urn:producer:action:table:distribute",

6 "constraint": [{

7 "leftOperand": {"@type": "ods:ctxOperand", "key": "recipient_uri"},

8 "operator": "eq",

9 "rightOperand": "urn:producer:service:accounting"

10 }]

11 },

12 {"target": "urn:producer:asset:task:1587",

13 "action": "urn:producer:action:table:distribute",

14 "constraint": [{

15 "leftOperand": {"@type": "ods:ctxOperand", "key": "recipient_uri"},

16 "operator": "eq",

17 "rightOperand": "urn:customer:service:optimization"

18 }],

19 "duty": [{

20 "action": {

21 "@type": "ods:pepAction", "method": "modifyParam",

22 "params": {"key": "employee_name", "mask": "[REDACTED]"}

23 }

24 }]

25 }]

26 }

Since the producer’s accounting service processes data that potentially in-
clude personal information about workers, it must be ensured that any eval-
uation of task information is logged as part of the asset’s provenance graph.
Listing 7.2 shows the ODRL policy that achieves this requirement. This policy
permits the action evaluateTask on the asset under the precondition that the
producer’s PXP successfully executes the provenance method. The associated

256

7.1 Example Scenario: Smart Manufacturing

provenance object is assembled from the event context and defines the evalu-
ating process, identified by its application URI, as a new activity in the PROV
model (lines 12-18). It then registers a new prov:used relation between the pro-
cess and the evaluated asset. Attaching this policy to the assets automatically
enforces provenance tracking at the accounting service.

Listing 7.2: DataSov ODRL policy enforced at the producer’s accounting service.

1 {"@context": "https://gitlab.cc-asp.fraunhofer.de/datasov/core/.../ods.jsonld",

2 "profile": "https://gitlab.cc-asp.fraunhofer.de/datasov/core#ods-ttl",

3 "permission": [

4 {"target": "urn:producer:asset:task:1587",

5 "action": "urn:producer:action:accounting:evaluateTask",

6 "duty": [{

7 "action": {

8 "@type": "ods:pxpAction",

9 "uri": "urn:producer:service:pxp", "method": "provenance",

10 "params" : {

11 "prosps": ["urn:producer:service:prosp"],

12 "provenance": {

13 "@type": "ods:provenance",

14 "activities": [{"@type": "ods:ctxOperand", "key": "app_uri"}],

15 "relations": [

16 [{"@type": "ods:ctxOperand", "key": "app_uri"},

17 "prov:used", "urn:producer:asset:task:1587"]]

18 }

19 }

20 }

21 }]

22 }]

23 }

Finally, listing 7.3 shows the ODRL policy restricting the usage of assets that
are shared with the customer’s optimization service. While this policy uncon-
ditionally permits the evaluation of shared sensor data (lines 4-6), the action
evaluateWorksteps may only be executed if the producer is explicitly notified
about it using the log method of the producer’s PXP (lines 7-16). Furthermore,
the policy prohibits the evaluation of video images unless the depicted work-
ers consented (lines 19-26). To achieve this, the policy uses a PIP operand
with the method hasEmployeeConsented. Since this method is not part of the
DataSov ODRL profile (cf. appendix C), the customer’s PIP must explicitly
implement it. Because the video images may contain personal information

257

7 Evaluation and Results

about the workers, the policy also enforces provenance tracking at the pro-
ducer’s ProSP before the data evaluation is permitted (lines 27-42).

Listing 7.3: DataSov ODRL policy enforced at the customer’s optimization service.

1 {"@context": "https://gitlab.cc-asp.fraunhofer.de/datasov/core/.../ods.jsonld",

2 "profile": "https://gitlab.cc-asp.fraunhofer.de/datasov/core#ods-ttl",

3 "permission": [

4 {"target": "urn:producer:asset:task:1587",

5 "action": "urn:customer:action:optimization:evaluateSensorData"

6 },

7 {"target": "urn:producer:asset:task:1587",

8 "action": "urn:customer:action:optimization:evaluateWorksteps",

9 "duty": [{

10 "action": {

11 "@type": "ods:pxpAction",

12 "uri": "urn:producer:service:pxp", "method": "log",

13 "params": { "message": "Task 1587 is being evaluated by the customer!" }

14 }

15 }]

16 },

17 {"target": "urn:producer:asset:task:1587",

18 "action": "urn:customer:action:optimization:evaluateVideo",

19 "constraint": [{

20 "leftOperand": {

21 "@type": "ods:pipOperand",

22 "uri": "urn:customer:service:pip", "method": "hasEmployeeConsented",

23 "params": {"employee_id": {"@type": "ods:ctxOperand", "key": "employee_id"}}

24 },

25 "operator": "eq", "rightOperand": "true"

26 }],

27 "duty": [{

28 "action": {

29 "@type": "ods:pxpAction",

30 "uri": "urn:producer:service:pxp", "method": "provenance",

31 "params" : {

32 "prosps": ["urn:producer:service:prosp"],

33 "provenance": {

34 "@type": "ods:provenance",

35 "activities": [{"@type": "ods:ctxOperand", "key": "app_uri"}],

36 "relations": [

37 [{"@type": "ods:ctxOperand", "key": "app_uri"},

38 "prov:used", "urn:producer:asset:task:1587"]]

39 }

40 }

41 }

42 }]

43 }]

44 }

258

7.2 Performance Evaluation

Note that the policies described in listings 7.1 to 7.3 are not statically deployed
to the respective application services. Instead, these policies are dynamically
created for each individual task log as soon as it is generated by the assem-
bly table. Following the sticky policy concept, the DataSov framework then
attaches them to the task logs and transmits the resulting policy set to all ser-
vices with which the assets are being shared (see section 3.2.3). This allows
the implementation of flexible use cases where many different types of data
assets, all with individual usage rules, should be distributed.

7.2 Performance Evaluation

To evaluate the performance of our trustworthy usage control framework in
this scenario, we set up a testbed according to the system deployment shown
in fig. 7.2. For the sake of comparability, we used the same trusted comput-
ing platforms as for the evaluation of our heterogeneous remote attestation
protocol in section 4.5.4. Hence, we implemented the assembly table func-
tionalities on an STM32MP157C-DK2¹ TrustZone prototyping board, using
the MSCP protocol together with the normal world fTPM service² for remote
attestation. The accounting service has been executed on a Thinkpad T480s
(i7-8550U processor, 16GB RAM, Ubuntu 22.04) using the Infineon SLB9670³
hardware TPM as underlying trusted computing technology. The optimiza-
tion service, as well as all usage control components, have been deployed
as SGX enclaves on an HP 250 G8 (i7-1065G7 processor, 8GB RAM, Ubuntu
22.04). The enclaves are executed on the SGX processor in release mode. Fi-
nally, all participating system components have been connected to a single
network via Gigabit Ethernet. In the remainder of this section, we present
the results of our performance evaluation concerning component provision-
ing, as well as the deployment and enforcement of usage control policies.

¹ https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf (accessed on 12/21/2023).
² https://github.com/microsoft/ms-tpm-20-ref/tree/main/TPMCmd/Simulator (accessed on
12/25/2023).

³ https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-
security-solutions/optiga-tpm/slb-9670vq2.0/ (accessed on 12/08/2023).

259

https://www.st.com/resource/en/data_brief/stm32mp157c-dk2.pdf
https://github.com/microsoft/ms-tpm-20-ref/tree/main/TPMCmd/Simulator
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.infineon.com/cms/de/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/

7 Evaluation and Results

7.2.1 Component Provisioning

The process of provisioning DataSov components mainly consists of creating
a new public/private key pair and then requesting a corresponding compo-
nent certificate at the local domain CA (see section 3.2.8). In addition to the
certificate generation, this process also includes a (uni-directional) remote at-
testation to ensure that the certified private key of the component will be
adequately protected by its TCB. Since the private key and the issued cer-
tificates are then sealed and stored locally by the DataSov component, this
provisioning step must be executed only once for each component. To evalu-
ate the performance of component provisioning in DataSov, we executed this
process a total of 100 times on each of the three deployed systems. Figure 7.3
shows the mean component provisioning times in milliseconds.

n=100

0

50

100

150

200

250

Table Accounting Optimization

P
ro

vi
si

o
n

in
g

ti
m

e
[m

s]

121 (±23)

219 (±2)

49 (±3)

STM32MP157C-DK2
fTPM

Thinkpad T480s
Infineon TPM

HP 250 G8
Intel SGX

Figure 7.3: Mean provisioning times of DataSov components in milliseconds. The standard de-
viation is given in brackets.

Unsurprisingly, component provisioning is dominated by the time that is nec-
essary to conduct the required remote attestations (cf. section 4.5.4). Since
hardware TPMs are the least efficient technology supported by our frame-
work, provisioning the accounting service takes the longest with almost 220
milliseconds. Besides the remote attestation, this time also includes the gen-
eration of the Certificate Signing Request (CSR) at the accounting service and

260

7.2 Performance Evaluation

the issuance of a component certificate by the CA. As determined earlier in
this thesis, fTPM-based remote attestation on ARMTrustZone devices is more
efficient than using hardware TPMs. Consequently, the provisioning of the
assembly table is achieved in about 120 milliseconds. Finally, provisioning the
SGX enclave of the optimization service only requires about 50 milliseconds.
Note that, even thoughwe evaluated the provisioning process on the three do-
main applications, these results are specific to the underlying trusted comput-
ing platforms and not the individual applications. Hence provisioning the us-
age control components, which are implemented as SGX enclaves, also takes
about 50 milliseconds. Given that each component must be provisioned only
once, we can conclude that the DataSov provisioning process is fast enough
to support realistic use cases even using resource-constrained devices.

7.2.2 Policy Deployment and Enforcement

In addition to the component provisioning, we also evaluated the perfor-
mance of the complete asset distribution and policy enforcement process in
the DataSov framework. To keep the results interpretable, we once again
conduct this evaluation separately for all three applications in our exemplary
scenario. Furthermore, in our tests we distinguish between the initial asset
distribution and subsequent asset distributions. This is to account for the fact
that the latency of policy operations in our distributed usage control frame-
work greatly depends on the number of remote attestations that must be con-
ducted between individual system components. If a new asset is distributed in
a freshly launched system, the DataSov frameworkmust first authenticate and
remotely attest all usage control components that are necessary for the result-
ing policy deployment and enforcement process. Since the DataSov frame-
work automatically caches the heterogeneously attested connections for a
certain period of time (see section 5.2.1), subsequent deployments and en-
forcements of similar policies (e.g., for new assets) can then re-use the cached
connections. Because of this system property, it is not useful to simply deter-
mine the average latency for a policy deployment and enforcement process
in our evaluation scenario. Instead, we reflect this in our tests by first eval-
uating the performance of the initial asset distribution in a completely fresh

261

7 Evaluation and Results

system (i.e., the worst case), before separately testing the subsequent policy
deployments and enforcements that make use of cached channels.

n=15

0

200

400

600

800

1000

1200

1400

1600

Table Accounting Optimization

E
xe

cu
ti

o
n

ti
m

e
[m

s]

1399 (±52)

290 (±10)
375 (±9)

STM32MP157C-DK2
fTPM

Thinkpad T480s
Infineon TPM

HP 250 G8
Intel SGX

Figure 7.4: Mean initial asset distribution and policy enforcement times in milliseconds. The
standard deviation is given in brackets.

Figure 7.4 shows the mean execution times of the three domain applications
during the initial asset distribution. In a fresh system, the assembly table takes
about 1.4 seconds to generate a new asset, deploy the three policies described
in section 7.1.3, and then transmit the new asset to both the accounting and
the optimization services. This distribution process also triggers the evalua-
tion and enforcement of the policy in listing 7.1 at the assembly table. Further-
more, the assembly table contacts the producer’s Provenance Storage Point to
track the creation of the new asset. Hence, the resulting total execution time
includes the required remote attestations of the PRP, PDP, and ProSP, as well
as both of the application services. Also note that contacting the producer’s
ProSP requires a bi-directional remote attestation instead of a uni-directional
one (cf. the identified trust dependencies in section 3.3.3).

The accounting and optimization services then periodically process the re-
ceived assets, which in turn causes the evaluation of the two policies shown
in listings 7.2 and 7.3, respectively. The policy enforcement at the accounting
service initially takes about 290 milliseconds, which is again caused mainly by

262

7.2 Performance Evaluation

the remote attestations of the required usage control components, i.e., the pro-
ducer’s PRP, PDP, PXP, and ProSP. Similarly, the optimization service must
initially attest all local usage control components in the customer’s domain
(PRP, PDP, and PIP). In addition, since the asset’s usage control policy de-
mands provenance tracking at the data source, the customer’s services must
also remotely attest the producer’s PXP and ProSP during the policy evalua-
tion. Together with the enforcement of the resulting usage decision, this takes
the optimization service about 375 milliseconds.

n=100

0

50

100

150

200

250

Table Accounting Optimization

E
xe

cu
ti

o
n

ti
m

e
[m

s]

214 (±50)

17 (±2)

40 (±7)

STM32MP157C-DK2
fTPM

Thinkpad T480s
Infineon TPM

HP 250 G8
Intel SGX

Figure 7.5: Mean subsequent asset distribution and policy enforcement times in milliseconds.
The standard deviation is given in brackets.

In contrast to the initial asset distribution, fig. 7.5 shows the mean execution
times for all subsequent distributions of new data assets. We conduct these
tests in the same exact environment as before, except that the remotely at-
tested connections are now cached. As a result, these values show only the
time required for asset generation and distribution, as well as the overhead for
policy deployment, evaluation, and enforcement in the distributed usage con-
trol system. As before, the assembly table has the highest execution time of all
three applicationswith about 214milliseconds. This is because it is running on
the slowest platform and it has to transmit the data assets, including the cap-
tured video recordings, to the remote applications. However, compared to the
initial asset distribution, the required execution time is significantly reduced.

263

7 Evaluation and Results

Similarly, both the accounting and the optimization service can also enforce
their policies much quicker than before, with execution times of about 17 and
40 milliseconds, respectively.

To conclude, these results show that our framework can efficiently dissem-
inate and enforce usage control policies, even when they require support of
multiple distributed components, such as remote PIPs, PXPs, and ProSPs. As
expected, the number of required remote attestations has a significant im-
pact on the resulting policy enforcement time. Because of this, it is impor-
tant to carefully configure channel timeouts in the DataSov framework, in
order to find a compromise between acceptable performance and frequent re-
attestations. Nevertheless, our results show that even on a completely unini-
tialized distributed usage control system, the policy enforcement times are
still usable in practice (cf. fig. 7.4).

7.3 Dashboard Evaluation

We conclude our evaluation by presenting the functionality of the web-based
dashboard that is provided by the DataSov framework. More concretely, we
show that the DataSov dashboard adequately represents the collected prove-
nance information in our evaluation scenario. Furthermore, we demonstrate
that our dashboard can also reveal potentially dangerous usage control system
states using the trustworthiness score described in the previous chapter.

7.3.1 Collected Provenance Graphs

The usage control policies presented in listings 7.2 and 7.3 leverage ODRL
actions to enforce provenance tracking on all shared data assets. Figure 7.6
shows an excerpt of the resulting provenance graph for two deployed assets,
as it is provided by the DataSov dashboard. At the time of the data cre-
ation, the assembly table saves the prov:wasGeneratedBy relation, as well as the
prov:wasAttributedTo relation between the asset and the worker, at the local
ProSP. This makes it possible to retrospectively identify the data subjects that

264

7.3 Dashboard Evaluation

Fi
gu

re
7.
6:

Sc
re
en

sh
ot

of
th
e
D
at
aS

ov
pr

ov
en

an
ce

da
sh

bo
ar
d
in

th
e
ex

am
pl
e
sc
en

ar
io
.

265

7 Evaluation and Results

are affected by a particular shared asset. Furthermore, the disseminated usage
control policies obligate both data processing services to track their individ-
ual usages of these assets by logging respective prov:used relations. Note that
in our example scenario not every asset is used by all services, since the data
processing is conditional on the enforced usage restrictions.

In summary, the DataSov framework allows data owners to enforce prove-
nance tracking on shared data assets by issuing usage control policies that in-
clude appropriate ODRL obligations. The subsequently collected provenance
information is represented according to the PROV data model [Bel13]. Our
provenance dashboard then enables the data owners (or an oversight author-
ity) to display and analyze the resulting provenance graphs, in order to under-
stand the usage history of shared data assets. Furthermore, since the DataSov
ODRL extension offers a custom RDF description that is referenced in the us-
age control policies, the underlying provenance model can also be extended
with additional relation types or entity subclasses, as required by the specific
application scenario.

7.3.2 Configured System Model

Before discussing the trustworthiness scores that our dashboard calculates for
the deployed usage control policies, we first have to describe the configuration
of the system model that we used in this scenario. As presented previously in
section 6.4.1, the majority of the formal system model is automatically deter-
mined by the DataSov framework, including the usage control system state,
the trust dependencies, the conducted remote attestations, and the deployed
usage control policies. However, some of the required information is either
subjective or application-specific, and hence must be defined individually by
the policy issuers. This includes the operator trust definitions and parts of the
attacker model, as well as the protection goals that are relevant for the domain
applications. Note that these definitions are always made from the point of
view of the dashboard user, which in our evaluation scenario is the producer.

To finalize the formal trust model, we need to define the operator trust esti-
mations for both system participants. As data owner and policy issuer, we can

266

7.3 Dashboard Evaluation

assume the producer to be fully trusted. We reflect this in the trust model by
setting 𝑡𝑜(producer) ≔ (𝑡=1.0, 𝑐=1.0). The customer, however, is the main an-
tagonist of our usage control enforcement and hence is viewed as principally
untrusted. This is reflected by setting 𝑡𝑜(customer) ≔ (𝑡=0.1, 𝑐=0.8). Note that
the graphical user interface of the DataSov dashboard allows users to easily
configure these operator trust estimations using the Human-Trust-Interface
(HTI) presented in section 6.4.2. In terms of the attacker model, we only have
to decide on the expected adversaries for the customer’s components, because
the producer is fully trusted anyway. Since the customer operates their own
remote distributed usage control components, we must expect malicious sys-
tem administrators as the most capable adversaries. We can model this by
setting the expected attacker to privileged for all of the customer’s compo-
nents: ∀𝑣 ∈ 𝑉 ∶ 𝑜(𝑣) = customer ⟹ 𝑎(𝑣) = privileged.

Finally, we also need to define the protection goals that are relevant for the
various distributed system components. In section 3.3.1 we have already an-
alyzed what protection goals are (generally) necessary for the different us-
age control components. To briefly summarize, all usage control components
must ensure code integrity as their main protection goal. PEPs, PDPs, and
PRPs must also ensure data integrity to preclude manipulations of deployed
policies. In addition to data integrity, PIPs and ProSPs must sometimes also
protect the confidentiality of provided information. Furthermore, a crucial
requirement for the reliable enforcement of provenance tracking is that the
used ProSPs can adequately protect the collected information against unau-
thorized deletion. In addition to the general usage control components, we
must also define the required protection goals of the new domain applications
to properly prepare the trust dashboard for our evaluation scenario. Most
importantly, all three applications must once again protect the integrity of
the executed code base (𝐼𝑐𝑜𝑑𝑒). Furthermore, since the assembly table is re-
sponsible for disseminating the critical data assets, it also must protect data
confidentiality and integrity during transmission (𝐶𝑡𝑟𝑎 , 𝐼𝑡𝑟𝑎). In addition, the
accounting service must be able to protect confidentiality and integrity of the
received information during processing (𝐶𝑝𝑟𝑜𝑐 , 𝐼𝑝𝑟𝑜𝑐). This is because the pro-
cessed data are sensitive and, with the producer being interested in accurate
results, must also not be tamperedwith. In contrast, from the producer’s point

267

7 Evaluation and Results

of view it is sufficient if the optimization service running in the customer’s
domain only protects the confidentiality of the shared data, since we are not
interested in the integrity of the customer’s results. Finally, the protection
goals 𝐶𝑠𝑡𝑜𝑟𝑒 and 𝐼𝑠𝑡𝑜𝑟𝑒 are of no further relevance for the deployed applica-
tions, since they never store any critical data anyway.

Table 7.1: Goal mapping used in the evaluation scenario.

𝑔∶ 𝑉 → 2𝐺 𝐶𝑡𝑟𝑎 𝐶𝑝𝑟𝑜𝑐 𝐶𝑠𝑡𝑜𝑟𝑒 𝐼𝑡𝑟𝑎 𝐼𝑝𝑟𝑜𝑐 𝐼𝑠𝑡𝑜𝑟𝑒 𝐼𝑐𝑜𝑑𝑒 𝐼𝑑𝑒𝑙
Table
Accounting
Optimization
PEP
PDP
PRP
PIP
PXP
ProSP

Table 7.1 gives an overview of the resulting goal mapping for the three exem-
plary data processing applications, as well as all usage control components.
Note that we do not require PEPs and PDPs to protect confidentiality, because
in our scenario the permitted data usage strategy is known to all participants,
and hence the generated usage events are not secret. Consequently, we also
do not consider the provenance information stored at the ProSP to be confi-
dential. Since PRPs and PIPs do not process any data, they must reach their
protection goals only during data transmission and storage. PDPs and PXPs,
on the other hand, must provide secure processing. Finally, the PXP used in
our scenario must also protect the integrity of stored data, because it receives
log information generated by the optimization service (cf. listing 7.3).

The producer can conveniently define this additional information concern-
ing the formal model via a JSON-based configuration file when setting up the

268

7.3 Dashboard Evaluation

dashboard server. The concrete configuration file that we used for our evalu-
ation in the following section can be found in the DataSov repository.¹

7.3.3 Resulting Trustworthiness Scores

After establishing the missing parts of the underlying system model in our
evaluation scenario, we now show that the DataSov trust dashboard can as-
sist policy issuers in determining the extent to which the distributed usage
control system can safeguard the enforcement of their deployed usage rules.
To achieve this, we demonstrate that our trustworthiness score identifies and
reveals problematic system states in a practical application scenario.

We conduct our demonstration with the usage control policy that is being
enforced at the customer’s optimization service (see listing 7.3). Figure 7.7
shows the corresponding usage control operation graph that represents the
enforcement process of this particular policy in our evaluation scenario. The
root of the operation graph is the producer’s assembly table, which initially
deploys the shared data assets together with their policies at the customer’s
optimization service. The optimization service then relies on the customer’s
local PRP and PDP for the evaluation of the received usage control policy.
Note that the PEP responsible for enforcing this policy is already included in
the code base of the optimization service, and hence is not modeled as an in-
dividual vertex in the operation graph. Furthermore, the customer’s decision
point has a dependency to the local information point, in order to evaluate
the ODRL operands specified in the policy (see listing 7.3). Finally, the prove-
nance tracking obligation that is included in the policy triggers the producer’s
PXP during the enforcement process, which in turn stores the collected prove-
nance information at the ProSP in the producer’s domain.

¹ https://gitlab.cc-asp.fraunhofer.de/datasov/ucdashboard/-/blob/master/server/model.json (ac-
cessed on 01/25/2024).

269

https://gitlab.cc-asp.fraunhofer.de/datasov/ucdashboard/-/blob/master/server/model.json

7 Evaluation and Results

Optimization
notify

PDP

PRP

PIP

PXP ProSP

retrievestore

evaluate

storeexecute

Customer

Producer

Assembly
Table

deploy

Figure 7.7: Usage control operation graph for the policy enforced at the optimization service in
the customer’s domain.

Our goal with the usage control operation depicted in fig. 7.7 is to demonstrate
that the DataSov trust dashboard can indeed warn a policy issuer (in our case
the producer) about potentially dangerous usage control system states. In sec-
tion 6.1 we have identified operator propriety and technological propriety as the
twomajor functional requirements of our trustworthiness score. Hence, in the
remainder of this section we show that our trust dashboard, and by extension
the underlying trustworthiness score, can indeed identify untrusted compo-
nent operators and point out weakly protected usage control components to
the data provider by means of a low policy score in a realistic application set-
ting. Note that for our evaluation we use the baseline trust estimations as
specified in section 6.4.3, with the initial expectation value 𝑓 set to 1.

Evaluation baseline. To establish a baseline for our demonstration, fig. 7.8
depicts the user interface of the producer’s trust dashboard during the execu-
tion of the previously presented evaluation scenario. In the policy list on the
right-hand side of the screen, the asset that has been sharedwith the optimiza-
tion service is already selected. The left-hand side shows the automatically
generated state graph of the distributed system with the producer’s compo-
nents in green and the customer’s components in yellow. The highlighted
nodes and edges show the usage control operation (sub-)graph of the cur-
rently selected policy (cf. fig. 7.7). As fig. 7.8 shows, all relevant usage control

270

7.3 Dashboard Evaluation

Fi
gu

re
7.
8:

Sc
re
en

sh
ot

of
th
e
D
at
aS

ov
tru

st
da

sh
bo

ar
d
sh

ow
in
g
th
e
or

ig
in
al

ev
al
ua

tio
n
sc
en

ar
io
.Th

e
re
su

lti
ng

po
lic

y
sc
or
e
is

94
.6%

.

271

7 Evaluation and Results

components have been successfully attested. Furthermore, the lower right-
hand side of the dashboard summarizes the trust propagation for the partial
usage control operations (cf. section 6.4.1). At the root component of the oper-
ation (i.e., the assembly table), the partial trustworthiness score initially starts
at 100%. This is because the producer is known to be fully trusted. Progressing
through the operation graph, however, the resulting partial scores gradually
decrease as more and more new security properties are collected from the us-
age control components in the customer’s domain. Since in our evaluation
scenario all relevant components are protected by adequate trusted comput-
ing technologies that can fulfill the necessary protection goals, the final policy
score results to 94.6%. The adequacy of the deployed technologies to enforce
the given policy is then pointed out to the user by visualizing the overall pol-
icy score at the upper right-hand side of the screen.

Low operator propriety. To demonstrate that our trust dashboard is capa-
ble of notifying policy issuers about low operator propriety, we executed a
modified version of the smart manufacturing application scenario. Figure 7.9
shows the trust dashboard in the same exact system configuration as before,
except in this instance the operator trust of the producer’s PXP has been re-
duced from fully trusted to 𝑡𝑜(producer:pxp) ≔ (𝑡=0.8, 𝑐=0.9). This might be-
come necessary if a particular subset of components is under the influence of
an employee that is not fully trusted. As can be seen in fig. 7.9, modifying
the evaluation scenario in such a way reduces the overall policy score from
94.6% to 77.6%. This result shows that the operator trust estimation indeed
limits the trustworthiness score even in a realistic use case, according to the
minimality principle applied during the score design (see section 6.3.3).

Low technological propriety. For the next evaluation scenario we consider
the question of technological propriety. Figure 7.10 shows a screenshot of the
trust dashboard with the customer’s PDP being executed as a TPM-protected
server instead of an Intel SGX enclave. Even though all usage control compo-
nents are still successfully attested, the dashboard now shows that the partial
trustworthiness score sharply decreases at the customer’s decision point. This

272

7.3 Dashboard Evaluation

Fi
gu

re
7.
9:

Sc
re
en

sh
ot

of
th
eD

at
aS

ov
tru

st
da

sh
bo

ar
d
sh

ow
in
g
th
ee

va
lu
at
io
n
sc
en

ar
io

w
ith

re
du

ce
d
op

er
at
or

tru
st

fo
rt

he
pr

od
uc

er
’s

PX
P.

Th
e
re
su

lti
ng

po
lic

y
sc
or
e
is

77
.6%

.

273

7 Evaluation and Results

Fi
gu

re
7.
10

:S
cr
ee

ns
ho

to
ft

he
D
at
aS

ov
tru

st
da

sh
bo

ar
d
sh

ow
in
g
th
e
ev

al
ua

tio
n

sc
en

ar
io

us
in
g
a
TP

M
-p
ro
te
ct
ed

PD
P

in
th
e
cu

st
om

er
’s

do
m
ai
n.

Th
e
re
su

lti
ng

po
lic

y
sc
or
e
is

55
.4%

.

274

7.3 Dashboard Evaluation

is because TPMs are not as well-suited as Intel SGX to protect decision points.
More concretely, PDPs must fulfill the protection goal of data integrity dur-
ing processing (see table 7.1). However, TPMs do not provide isolated exe-
cution environments for the platform applications, which results in a much
larger attack vector on this protection goal than when using Intel SGX. As
a result, we must now make additional assumptions to achieve a successful
policy enforcement, most notably that the policy evaluation will not be influ-
enced by physical attacks such as intercepting the unencrypted memory bus
of the PDP (cf. section 6.4.3). While this may be an acceptable risk for the data
provider, depending on the concrete data that should be shared, a trustwor-
thy usage control system must reliably point out this potential weak spot in
the enforcement process. Our dashboard achieves this by adding the property
(TPM, 𝐼𝑝𝑟𝑜𝑐, privileged) ∈ 𝑀×𝐺×𝐴 to the set of critical mechanism capabil-
ities, which in turn limits the trustworthiness score in this situation to 55.4%.
This result shows that our dashboard can indeed warn data providers about
potential security issues with the technological mechanisms that are used to
protect the enforcement of their usage control policies. Note that it can still be
sensible to operate PDPs as TPM-protected services instead of SGX enclaves,
for example if no SGX-capable hardware is available. However, in that case
data providers should consciously make data sharing decisions based on the
feedback that our dashboard provides.

Inadequate provenance tracking. A variant of both operator and tech-
nological propriety, which is especially important for provenance tracking,
concerns the protection of collected provenance information against unau-
thorized deletion. Since none of the discussed trusted computing technologies
adequately ensure this protection goal against internal adversaries, and dele-
tion attacks are easily executed, policy issuers need to ensure that the used
ProSPs are running in a trusted domain (see section 3.4.3). We test the capa-
bility of the dashboard to identify this issue by moving the deployed ProSP
from the producer’s domain to the customer. Figure 7.11 shows the resulting
trustworthiness score for our usage control policy in this modified scenario.

275

7 Evaluation and Results

Fi
gu

re
7.
11

:S
cr
ee

ns
ho

to
ft

he
D
at
aS

ov
tru

st
da

sh
bo

ar
d
sh

ow
in
g
th
e
ev

al
ua

tio
n

sc
en

ar
io

us
in
g
a
Pr

oS
P

in
th
e
cu

st
om

er
’s

do
m
ai
n.

Th
e

re
su

lti
ng

po
lic

y
sc
or
e
is

28
.0%

.

276

7.3 Dashboard Evaluation

As we can see in fig. 7.11, the trust dashboard correctly identifies the ProSP
as being untrustworthy and consequently marks it with a red border. This
is because the component is no longer covered by the high operator trust of
the producer, and instead must achieve its security requirements by relying
on the deployed trusted computing mechanism. However, the low capability
estimations of the SGX technology for the necessary protection goal 𝐼𝑑𝑒𝑙 limit
the resulting policy score to just 28.0%. This result shows that our dashboard
warns policy issuers if the activated usage rules contain provenance tracking
obligations that cannot be reliably enforced in the distributed system. The
same is true also for PXPs that have to permanently store information relevant
for the policy issuer, such as collected log files.

Attestation failures. Finally, for the sake of completeness we also show
how our trust dashboard represents failed remote attestations and missing
components. Note that this particular representation is not based on the previ-
ously demonstrated trustworthiness score, since attestation failures and miss-
ing usage control components are not considered in the formal model used for
our trustworthiness estimationmethod (see section 6.2). Nevertheless, we can
still give data providers comprehensible feedback in these cases. Figure 7.12
shows the trust dashboard with the attestation between the customer’s PDP
and PRP unsuccessful. In reality, this situation is most likely due to the re-
quired PRP not being launched. However, it may also be the case that the
establishment of the secure connection between the two components failed
due to a deliberate manipulation of the PRP’s launch configuration, sealed
state, or code base. In both cases our trust dashboard handles the failed attes-
tation by assigning each usage control operation that depends on the missing
component a fixed score of 0.0%. We do this because in case of an unrespon-
sive or otherwise unusable component, the proper execution of the policy
enforcement process cannot be guaranteed anymore. However, note that in
such a scenario the DataSov enforcement point at the optimization service
automatically falls back to denying any requested data usages, independently
of the trust dashboard. Hence, this is not a situation that requires an active
intervention by the policy issuer (security by default).

277

7 Evaluation and Results

Fi
gu

re
7.
12

:S
cr
ee

ns
ho

to
ft

he
D
at
aS

ov
tru

st
da

sh
bo

ar
d
sh

ow
in
g
th
e
ev

al
ua

tio
n
sc
en

ar
io

w
ith

a
m
iss

in
g
att

es
ta
tio

n
to

th
e
cu

st
om

er
’s

PR
P.

Th
e
re
su

lti
ng

po
lic

y
sc
or
e
is

0.0
%.

278

7.4 Conclusion

7.4 Conclusion

In this chapter we validated our implemented proof of concept by realizing
an exemplary application scenario from the realm of smart manufacturing.
Our evaluation scenario consists of a smart assembly table disseminating col-
lected work step protocols to remote data processing applications, namely an
optimization and an accounting service. Respectively, these three applica-
tions are protected by ARM TrustZone, Intel SGX, and a hardware TPM. We
also defined ODRL policies for this application scenario, which make use of
both customized PXP obligations and PIP operands, as well as the provenance
tracking functionalities integrated into the DataSov framework. Based on the
defined scenario, we then conducted a performance evaluation of the trust-
worthy usage control enforcement process (research contribution RC6). Our
results show that the initial asset deployment and policy enforcement over
freshly attested channels takes about 1.4 seconds at the TrustZone-protected
assembly table. At the more powerful accounting and optimization services,
the policy enforcement process still takes about 300 to 400 milliseconds. We
found these relatively high enforcement times to be caused almost exclusively
by the conducted remote attestations. Re-evaluating the policy deployment
and enforcement on cached channels showed that the actual usage control
overhead results to about 200 milliseconds on the assembly table, and about
20 to 40 milliseconds at the optimization and accounting services. As second
contribution in this chapter, we validated that our trust dashboard is capa-
ble of identifying problematic usage control system states in this scenario,
including low operator trustworthiness and weak technological protection of
distributed components (research contribution RC7). This demonstrates that
our proposed trustworthiness score fulfills the previously set requirements
also in a practical application. However, since in this thesis we focus on the
underlying technical aspects and consider questions regarding usability to be
out of scope, further research is necessary to validate the adequacy of the vi-
sual representations chosen for the dashboard, e.g., by means of user studies.

279

7 Evaluation and Results

In summary, our evaluation shows that the developed DataSov framework
is capable of implementing trustworthy distributed usage control and prove-
nance tracking in a smart manufacturing use case. The achieved performance
of the policy enforcement is sufficient for this purpose, which validates the
final goal 5 of the thesis objective. However, our evaluation also shows that
the necessary remote attestations cause a relatively high overhead, especially
in cases with many contacted usage control components. To alleviate the re-
sulting performance impact, our framework allows to individually determine
the frequency of re-attestations (see section 5.2.1). In the future, additional
research into “averaging” the conducted attestations, e.g., by randomizing re-
attestation periods, may help to avoid sudden latency peaks.

280

8 Conclusion and Outlook

This chapter concludes the thesis with a brief summary recapitulating the ad-
dressed research questions and achieved contributions. We also show that the
main objective of this thesis, as well as the initially defined goals, have all been
reached. Finally, we identify several starting points for possible future work.

8.1 Summary

Usage control and provenance tracking are two promising technologies to
achieve security and transparency in collaborative data processing applica-
tions. However, the hitherto unsolved challenge of how to reliably enforce
these mechanisms on a technical level – especially in remote and potentially
hostile environments – has limited their practical application so far. Achiev-
ing this requires a distributed system architecture that is designed to with-
stand attacks even from malicious component operators. By providing im-
mutable hardware-based trust anchors, trusted computing technologies con-
stitute important building blocks for this goal. However, wemust still develop
suitable remote attestation protocols that can achieve the necessary require-
ments both in terms of security and functionality. Finally, such a distributed
usage control infrastructure should also give (potential) data providers feed-
back about the adequacy of the deployed technologies, in order to facilitate
informed decisions about data releases and policy definitions.

In the light of these challenges, the main objective of this thesis is to con-
tribute a proof of concept for a trustworthy and distributed usage control and
provenance tracking system, which can be securely operated in heterogeneous

281

8 Conclusion and Outlook

trusted computing environments. We have achieved this objective by imple-
menting and evaluating the DataSov framework. Furthermore, we have also
reached all five goals that have been set out in the introduction.

Goal 1: Our framework provides a joint distributed usage control and
provenance tracking infrastructure, which supports flexible and
generic application scenarios by being designed in accordance with
the widely used XACML reference architecture.

Goal 2: Our framework leverages trusted computing technologies to
enforce usage control and provenance tracking on a technical level.
A comprehensive security analysis shows that malicious data
receivers cannot manipulate the enforcement of usage rules or
disturb the tracking of data provenance.

Goal 3: Our framework supports TPMs, Intel SGX, and ARM TrustZone as
trusted computing platforms. It also provides technological
interoperability by means of a heterogeneous attestation protocol.

Goal 4: Our framework includes a trust dashboard that gives policy issuers
a notion of the trustworthiness of the usage control system in its
current state.

Goal 5: We demonstrated that our framework is capable of realizing a
practical use case from the realm of smart manufacturing.

To achieve these goals, we made several research contributions in three dif-
ferent areas over the course of this thesis. In the remainder of this section, we
reiterate the relevant research questions and summarize our contributions.

8.1.1 Usage Control and Provenance Tracking

Research Question 1: How can we monitor and control the usage of shared
data across multiple remote domains? How can shared usage control policies be
reliably enforced even in the presence of malicious data receivers?

To answer this question, we developed a system architecture for trustwor-
thy distributed usage control enforcement (research contribution RC1). Our

282

8.1 Summary

design includes a transitive remote attestation concept that automatically pro-
tects the integrity of all relevant system components against malicious tam-
pering. Furthermore, we introduced a certificate-based component authenti-
cation scheme to prevent the impersonation of usage control components. To
validate the effectiveness of our proposed design, we identified the relevant
protection goals, developed a suitable attacker and trust model, and finally
conducted a comprehensive security analysis.

Research Question 2: How can we effectively obligate the collection of prove-
nance information with usage control policies? How can we utilize previously
collected provenance information in the specified usage rules?

We solved this question by conceptually integrating provenance tracking into
the distributed usage control enforcement process, as defined by our system
design. This allows policy issuers to (i) obligate provenance tracking as part
of usage restrictions and (ii) leverage collected provenance information for
the specification of new usage rules. To implement this concept in a con-
crete policy language, we developed an extension of the ODRL information
model that adds support for provenance tracking (research contribution RC2).
Finally, we also implemented and evaluated a corresponding ODRL decision
point that is capable of processing such policies.

8.1.2 Technical Enforcement

Research Question 3: How can we leverage trusted computing technologies
to enforce the correct behavior of usage control and provenance tracking com-
ponents? Which concrete remote attestation protocols can we use to securely
instantiate our distributed system design? Is the performance of those remote
attestation protocols sufficient for our purposes?

To instantiate our conceptual system design with concrete trusted comput-
ing technologies, we analyzed the capabilities of TPMs, Intel SGX, and ARM
TrustZone. Our analysis revealed that TPM-based attestation protocols cur-
rently used in virtual data spaces are vulnerable against nonce-data attacks
by malicious administrators. To solve this issue, we designed, analyzed, and

283

8 Conclusion and Outlook

implemented a remote attestation protocol that uses a TPM-internal key ex-
change to establish mutually attested and encrypted communication chan-
nels (research contribution RC3). We also implemented a proof of concept
for a trusted boot process on ARM TrustZone platforms that allows to con-
duct integrity measurements of loaded applications both in the normal, as
well as in the secure world of the device (research contribution RC4). Finally,
we integrated these contributions into our trustworthy distributed usage con-
trol framework and validated them using an exemplary application scenario
from the realm of smart manufacturing (research contribution RC6). While
our evaluation shows that the developed framework fulfills the set expecta-
tions, it also revealed a noticeable performance impact that is caused by the
conducted remote attestations. We alleviate this issue in our framework by
offering cached communication channels, which can intermittently re-attest
the components in fixed time intervals.

Research Question 4: How can we conduct remote attestations in hetero-
geneous execution environments, i.e., between different trusted computing tech-
nologies? Are there significant performance overheads when using a heteroge-
neous remote attestation protocol compared to single-technology protocols?

In addition to the previously mentioned contributions in this research area,
we also developed and evaluated a heterogeneous remote attestation proto-
col for our framework (research contribution RC5). Our solution is based on
the existing EKEP protocol and can establish mutually attested and encrypted
communication channels between TPM-protected software stacks, Intel SGX
enclaves, and ARM TrustZone devices. The protocol evaluation shows that
heterogeneously conducted attestations do not introduce any significant over-
head compared to conventional single-technology approaches.

8.1.3 Trustworthiness Estimation

Research Question 5: How can the trustworthiness of a distributed usage
control system be estimated in relation to the policies that should be enforced,
from a particular data provider’s point of view?

284

8.2 Future Work

To answer this question, in the final part of the thesis we developed a trust-
worthiness score that represents the ability of a distributed usage control sys-
tem, which is protected by trusted computing technologies, to successfully en-
force a particular usage control policy (research contribution RC7). Our score
is based on a formal model that describes the current usage control system
state, including the components required for the enforcement of the analyzed
policy, the deployed trusted computing technologies, and the conducted re-
mote attestations. We validated our trustworthiness score by showing that it
fulfills the previously defined requirements, which include operator and tech-
nological propriety, minimality, monotony, and language agnosticism. Fi-
nally, we also integrated the described policy score into a trust dashboard
that is part of the developed usage control framework. As part of our frame-
work evaluation, we showed that the dashboard indeed identifies problematic
system states and issues respective warnings by means of low trustworthi-
ness scores. In addition to this core functionality, the developed dashboard
also gives data owners an overview of the currently shared data assets and
deployed policies, as well as the collected provenance graphs.

8.2 Future Work

To further improve the applicability of our developed trustworthy usage con-
trol and provenance tracking system, additional trusted computing technolo-
gies should be integrated into the framework. Complementing the estab-
lished SGX architecture, Intel recently introduced their Trust Domain Exten-
sions (TDX) as a new Trusted Execution Environment for the Intel platform.
Unlike SGX however, TDX provides virtualization-based instead of process-
based isolation [Int23b]. Since this increases the size of the protected TCBs
compared to SGX, acquiring and validating platformmeasurements will likely
have to be handled differently. Furthermore, AMD’s Secure Encrypted Virtu-
alization (SEV) [Kap21] is currently becoming more and more relevant. Since
SEV also uses a VM-based architecture, its integration should be conceptually
similar to Intel TDX. In addition, integrating the ARM Confidential Comput-
ing Architecture (CCA) as successor for the TrustZone technology on newer

285

8 Conclusion and Outlook

processor architectures should be pursued as well. Finally, there may also
be a demand for usage control on very resource-constrained devices, which
do not have any dedicated trusted computing hardware. For these platforms,
the possibilities of DICE-based remote attestation [Tao21] should be investi-
gated. Besides the conceptual integration of novel trusted computing hard-
ware into our system, support for new platforms must also be implemented
in the framework. Since we designed our trustworthy usage control and
provenance tracking architecture independently of concrete trusted comput-
ing technologies (see chapter 3), our framework can be extended with novel
trusted hardware rather easily. This essentially requires implementing a new
technology-specific launcher application and sealing layer, as well as adding
new assertion providers to the heterogeneous attestation protocol. However,
in terms of the technical foundation of our proof of concept implementation, it
may be beneficial to use a different trusted computing framework than Asylo
for these integrations, since Asylo is very focused on SGX as core technology.
One candidate for a more suitable environment is Intel’s upcoming SGX/TDX
combined attestation infrastructure [Int23c]. Also, there are recent develop-
ments towards building a universal trusted computing environment [Ott23],
which could be a good starting point to develop even more broadly applicable
trustworthy usage control systems in the future.

Since the developed framework constitutes a proof of concept implementa-
tion, more work must be done before it can be used effectively in produc-
tive scenarios. This includes simplifying and automating the deployment and
provisioning process of trustworthy usage control and provenance tracking
components. We partially considered this in our framework implementation
by providing all system components as individual Docker containers. How-
ever, so far they still require manual configuration and deployment. In addi-
tion, making our framework ready for more complicated use cases than our
evaluation scenario also requires additional research into the configuration
of remote attestations. As our evaluation showed, the number of conducted
attestations significantly impacts the performance of the distributed policy
enforcement. This impact is most apparent when using resource-constrained
ARM TrustZone devices, but is also noticeable with hardware TPMs and SGX
enclaves. Even though our framework can alleviate this issue by offering

286

8.2 Future Work

cached communication channels with intermittent re-attestations, there may
be better solutions to avoid sudden latency peaks caused by remote attesta-
tions, for example using randomized re-attestation periods. Future research
may also investigate the trade-off between security and performance that
arises when having to select an appropriate attestation frequency. Finally,
since we designed the proof of concept implementation directly according
to our previous security analysis (see section 3.4), the framework is always
attesting all identified trust dependencies between contacted usage control
components. Future research could consider minimizing the number of re-
quired attestations by dynamically merging components into a single TCB,
depending on the current deployment context.

In addition, we have also identified some open research questions regarding
the trustworthiness estimation approach presented in chapter 6. For one, in
this thesis we focused on the technical aspects of defining a useful trustwor-
thiness score and implementing a corresponding dashboard as a mechanism
to provide feedback for data providers. Consequently, our dashboard evalu-
ation in section 7.3 concentrates on demonstrating that the developed score
is sound and meets our security requirements. For a future adoption of the
proposed method into productive use cases, the adequacy and usability of the
included visualization concepts must be evaluated further, e.g., by means of
representative user studies. Furthermore, we used exemplary trust values to
define the capabilities of trusted computing mechanisms for the evaluation of
our score. To apply the constructed policy score productively, these estima-
tions must be acquired from a sufficient number of technology experts using
an adequate peer review process. As a starting point for future research on
this matter, Hubbard and Seiersen present several suggestions for acquiring
accurate expert estimations [Hub16, pp. 133–155]. In addition, we defined the
baseline trust estimations underlying our score construction at the level of en-
tire trusted computing mechanisms. While this is an appropriate granularity
to use for our application, it also leads to issues with dependent properties,
and hence decreases the overall accuracy of the score. To improve on this as-
pect of our approach, more research should be conducted into modeling the
security properties of trustworthy distributed usage control systems.

287

Bibliography

[Agr07] AGREITER, Berthold; ALAM, Muhammad; BREU, Ruth; HAFNER,
Michael; PRETSCHNER, Alexander; SEIFERT, Jean-Pierre and
ZHANG, Xinwen: “A Technical Architecture for Enforcing Us-
age Control Requirements in Service-Oriented Architectures”.
In: Proceedings of the 2007 ACM Workshop on Secure Web Ser-
vices. 2007, pp. 18–25 (cit. on pp. 20, 53, 65).

[Ahm19] AHMAD, Adil; JOE, Byunggill; XIAO, Yuan; ZHANG, Yinqian;
SHIN, Insik and LEE, Byoungyoung: “Obfuscuro: A Commodity
Obfuscation Engine on Intel Sgx”. In: Network and Distributed
System Security Symposium. 2019. URL: https : / /par .nsf .gov/
biblio/10134884 (visited on 10/01/2023) (cit. on p. 245).

[Ahn20] AHN, Jaehwan; LEE, Il-Gu and KIM, Myungchul: “Design and
Implementation of Hardware-Based Remote Attestation for a
Secure Internet of Things”. In: Wireless personal communica-
tions 114.1 (2020), pp. 295–327 (cit. on pp. 146, 147).

[Aka22] AKAICHI, Ines and KIRRANE, Sabrina: “Usage Control Specifi-
cation, Enforcement, and Robustness: A Survey”. 2022. arXiv:
2203.04800 (cit. on pp. 5, 18, 20, 24).

[Akr16] AKRAM, Raja Naeem; MARKANTONAKIS, Konstantinos; MAYES,
Keith; BONNEFOI, Pierre-François; SAUVERON, Damien and
CHAUMETTE, Serge: “An Efficient, Secure and Trusted Channel
Protocol for Avionics Wireless Networks”. In: 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE. 2016,
pp. 1–10 (cit. on pp. 110, 113, 114, 116, 123).

289

https://par.nsf.gov/biblio/10134884
https://par.nsf.gov/biblio/10134884
https://arxiv.org/abs/2203.04800

Bibliography

[Alh12] ALHARBI, Khalid and LIN, Xiaodong: “Pdp: A Privacy-
Preserving Data Provenance Scheme”. In: 2012 32nd In-
ternational Conference on Distributed Computing Systems
Workshops. IEEE, 2012, pp. 500–505 (cit. on p. 31).

[Aln10] ALNEMR, Rehab; KÖNIG, Stefan; EYMANN, Torsten and MEINEL,
Christoph: “Enabling Usage Control through Reputation Ob-
jects: A Discussion on e-Commerce and the Internet of Services
Environments”. In: Journal of theoretical and applied electronic
commerce research 5.2 (2010), pp. 59–76 (cit. on p. 51).

[Ama20] AMAN, Muhammad Naveed; BASHEER, Mohamed Haroon;
DASH, Siddhant; WONG, Jun Wen; XU, Jia; LIM, Hoon Wei and
SIKDAR, Biplab: “HAtt: Hybrid Remote Attestation for the In-
ternet of Things with High Availability”. In: IEEE Internet of
Things Journal 7.8 (2020), pp. 7220–7233 (cit. on p. 47).

[Amb22] AMBLANK, Roman: “Both-World Measured Boot Architecture
on Arm TrustZone Devices with Firmware-TPMs”. BA thesis.
Karlsruher Institut für Technologie (KIT), Apr. 1, 2022. 62 pp.
(cit. on p. 138).

[AMD20a] AMD: AMD SEV-SNP: Strengthening VM Isolation with In-
tegrity Protection and More. Jan. 2020. URL: https://www.amd.
com/system/files/TechDocs/SEV-SNP- strengthening- vm-
isolation-with-integrity-protection-and-more.pdf (visited on
03/30/2023) (cit. on p. 41).

[AMD20b] AMD: Secure Encrypted Virtualization API Version 0.24. Revi-
sion 3.24. Apr. 2020. URL: https://www.amd.com/system/files/
TechDocs/55766_SEV-KM_API_Specification.pdf (visited on
03/30/2023) (cit. on p. 41).

[And19] ANDZAKOVIC, Denis: Extracting BitLocker Keys from a TPM.
Pulse Security. Mar. 13, 2019. URL: https://pulsesecurity.co.nz/
articles/TPM-sniffing (visited on 09/29/2023) (cit. on p. 241).

290

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://www.amd.com/system/files/TechDocs/55766_SEV-KM_API_Specification.pdf
https://pulsesecurity.co.nz/articles/TPM-sniffing
https://pulsesecurity.co.nz/articles/TPM-sniffing

Bibliography

[Arm08] ARMKNECHT, Frederik; GASMI, Yacine; SADEGHI, Ahmad-Reza;
STEWIN, Patrick; UNGER, Martin; RAMUNNO, Gianluca and
VERNIZZI, Davide: “An Efficient Implementation of Trusted
Channels Based on OpenSSL”. In: Proceedings of the 3rd ACM
Workshop on Scalable Trusted Computing. 2008, pp. 41–50 (cit.
on pp. 111, 113, 116).

[ARM20] ARM: TrustZone for Armv8-A. Version 1.0. Jan. 8, 2020. URL:
https : / /developer .arm.com/- /media /Arm%20Developer%
20Community/PDF/Learn%20the%20Architecture/TrustZone%
20for%20Armv8-A.pdf (visited on 03/31/2023) (cit. on p. 42).

[ARM21a] ARM: Interaction between Measured Boot and an fTPM (PoC).
2021. URL: https : / / trustedfirmware - a . readthedocs . io / en /
latest/design_documents/measured_boot_poc.html (visited on
07/03/2023) (cit. on pp. 137, 140).

[ARM21b] ARM: Trusted Board Boot. 2021. URL: https://trustedfirmware-
a.readthedocs.io/en/latest/design/trusted-board-boot.html
(visited on 07/08/2023) (cit. on pp. 43, 138, 139).

[Art15] ARTHUR, Will; CHALLENER, David and GOLDMAN, Kenneth: A
Practical Guide to TPM 2.0: Using the New Trusted Platform
Module in the New Age of Security. Springer Nature, 2015 (cit.
on pp. 34, 167).

[Asg11] ASGHAR, Muhammad Rizwan; ION, Mihaela; RUSSELLO, Gio-
vanni and CRISPO, Bruno: “Securing Data Provenance in the
Cloud”. In: International Workshop on Open Problems in Network
Security. Springer, 2011, pp. 145–160 (cit. on p. 31).

[Asy21a] ASYLO: Enclave Key Exchange Protocol (EKEP). 2021. URL:
https : / / asylo . dev / docs / concepts / ekep . html (visited on
06/29/2023) (cit. on pp. 131, 132, 149, 151–153, 185).

[Asy21b] ASYLO: gRPC Authn and Authz. 2021. URL: https://asylo.dev/
docs/reference/grpc_auth.html (visited on 08/27/2023) (cit. on
p. 189).

291

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/TrustZone%20for%20Armv8-A.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/TrustZone%20for%20Armv8-A.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/TrustZone%20for%20Armv8-A.pdf
https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/measured_boot_poc.html
https://trustedfirmware-a.readthedocs.io/en/latest/design_documents/measured_boot_poc.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://asylo.dev/docs/concepts/ekep.html
https://asylo.dev/docs/reference/grpc_auth.html
https://asylo.dev/docs/reference/grpc_auth.html

Bibliography

[Asy21c] ASYLO: Remote Attestation. 2021. URL: https://asylo.dev/docs/
concepts/remote_attestation.html (visited on 01/25/2024) (cit.
on pp. 153, 245).

[Aub17] AUBLIN, Pierre-Louis; KELBERT, Florian; O’KEFFE, D;
MUTHUKUMARAN, Divya; PRIEBE, Christian; LIND, Joshua;
KRAHN, Robert; FETZER, Christof; EYERS, David and PIETZUCH,
Peter: TaLoS: Secure and Transparent TLS Termination inside
SGX Enclaves. 2017. URL: http://www.doc.ic.ac.uk/research/
technicalreports/2017/DTRS17-5.pdf (visited on 06/30/2023).
preprint (cit. on pp. 130, 132).

[Azi14] AZIZ, NorazahAbd; UDZIR, Nur Izura and MAHMOD, Ramlan:
“Extending TLS with Mutual Attestation for Platform Integrity
Assurance.” In: Journal of Communication 9.1 (2014), pp. 63–72
(cit. on pp. 111, 113, 116).

[Bai10] BAI, Guangdong; GU, Liang; FENG, Tao; GUO, Yao and CHEN,
Xiangqun: “Context-Aware Usage Control for Android”. In:
International Conference on Security and Privacy in Communica-
tion Systems. Springer. 2010, pp. 326–343 (cit. on pp. 21, 23).

[Bal13] BALDINI, Gianmarco; KOUNELIS, Ioannis; FOVINO, Igor Nai and
NEISSE, Ricardo: “A Framework for Privacy Protection and
Usage Control of Personal Data in a Smart City Scenario.” In:
CRITIS. Springer, 2013, pp. 212–217 (cit. on pp. 51, 214).

[Ban21] BANKS, Alexander Sprogø; KISIEL, Marek and KORSHOLM,
Philip: “Remote Attestation: A Literature Review”. 2021. arXiv:
2105.02466 (cit. on p. 105).

[Bar18a] BARKER, Elaine; CHEN, Lily; ROGINSKY, Allen; VASSILEV, Apos-
tol and DAVIS, Richard: Recommendation for Pair-Wise Key-
Establishment Schemes Using Discrete Logarithm Cryptogra-
phy. NIST Special Publication (SP) 800-56A Rev. 3. National
Institute of Standards and Technology, Apr. 16, 2018. DOI: 10.
6028/NIST.SP.800-56Ar3 (cit. on pp. 110, 111).

292

https://asylo.dev/docs/concepts/remote_attestation.html
https://asylo.dev/docs/concepts/remote_attestation.html
http://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
http://www.doc.ic.ac.uk/research/technicalreports/2017/DTRS17-5.pdf
https://arxiv.org/abs/2105.02466
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3

Bibliography

[Bar18b] BARTUSCH, Felix; HANUSSEK, Maximilian and KRÜGER, Jens:
“Automatic Generation of Provenance Metadata during Execu-
tion of Scientific Workflows.” In: IWSG. 2018 (cit. on p. 28).

[Bat19] BATES, Adam and HASSAN, Wajih Ul: “Can Data Provenance
Put an End to the Data Breach?” In: IEEE Security & Privacy
17.4 (2019), pp. 88–93 (cit. on p. 28).

[Bed01] BEDFORD, Tim; COOKE, Roger et al.: Probabilistic Risk Analysis:
Foundations and Methods. Cambridge University Press, 2001
(cit. on p. 232).

[Bel13] BELHAJJAME, Khalid; B’FAR, Reza; CHENEY, James; COPPENS,
Sam; CRESSWELL, Stephen; GIL, Yolanda; GROTH, Paul; KLYNE,
Graham; LEBO, Timothy and MCCUSKER, Jim: PROV-DM: The
PROV Data Model. PROV-DM: The PROV Data Model. Apr. 30,
2013. URL: https : / /www.w3 .org /TR/prov- dm/ (visited on
03/19/2023) (cit. on pp. 29, 178, 179, 203, 266).

[Bey16] BEYERER, Jürgen and GEISLER, Jürgen: “A Framework for a Uni-
form Quantitative Description of Risk with Respect to Safety
and Security”. In: European Journal for Security Research 1.2
(2016), pp. 135–150 (cit. on p. 212).

[Bie13] BIER, Christoph: “How Usage Control and Provenance Track-
ing Get Together-a Data Protection Perspective”. In: 2013 IEEE
Security and Privacy Workshops. IEEE, 2013, pp. 13–17 (cit. on
pp. 9, 31).

[Bie21] BIER, Philipp Christoph Sebastian: Umsetzung des daten-
schutzrechtlichen Auskunftsanspruchs auf Grundlage von
Usage-Control und Data-Provenance-Technologien. KIT
Scientific Publishing, 2021 (cit. on pp. 6, 9, 28, 31, 60, 70, 96,
177).

[Bir16] BIRNSTILL, Pascal: Privacy-Respecting Smart Video Surveil-
lance Based on Usage Control Enforcement. Vol. 25. KIT Scien-
tific Publishing, 2016 (cit. on pp. 20–22).

293

https://www.w3.org/TR/prov-dm/

Bibliography

[Bir18a] BIRNSTILL, Pascal and BEYERER, Jürgen: “Building Blocks for
Identity Management and Protection for Smart Environments
and Interactive Assistance Systems”. In: Proceedings of the 11th
PErvasive Technologies Related to Assistive Environments Confer-
ence. 2018, pp. 292–296 (cit. on p. 252).

[Bir18b] BIRRELL, Eleanor; GJERDRUM, Anders; van RENESSE, Robbert;
JOHANSEN, Håvard; JOHANSEN, Dag and SCHNEIDER, Fred B.:
“SGX Enforcement of Use-Based Privacy”. In: Proceedings of
the 2018 Workshop on Privacy in the Electronic Society. 2018,
pp. 155–167 (cit. on p. 54).

[Bra08] BRATUS, Sergey; D’CUNHA, Nihal; SPARKS, Evan and SMITH,
Sean W: “TOCTOU, Traps, and Trusted Computing”. In: In-
ternational Conference on Trusted Computing. Springer. 2008,
pp. 14–32 (cit. on p. 93).

[Bra17a] BRANDENBURGER, Marcus; CACHIN, Christian; LORENZ,
Matthias and KAPITZA, Rüdiger: “Rollback and Forking Detec-
tion for Trusted Execution Environments Using Lightweight
Collective Memory”. In: 2017 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 157–168 (cit. on p. 128).

[Bra17b] BRASSER, Ferdinand; MÜLLER, Urs; DMITRIENKO, Alexandra;
KOSTIAINEN, Kari; CAPKUN, Srdjan and SADEGHI, Ahmad-Reza:
“Software Grand Exposure: SGX Cache Attacks Are Practical”.
In: 11th USENIX Workshop on Offensive Technologies (WOOT
17). 2017 (cit. on p. 243).

[Bra19] BRASSER, Ferdinand; CAPKUN, Srdjan; DMITRIENKO, Alexandra;
FRASSETTO, Tommaso; KOSTIAINEN, Kari and SADEGHI, Ahmad-
Reza: “DR.SGX: Automated and Adjustable Side-Channel Pro-
tection for SGX Using Data Location Randomization”. In: Pro-
ceedings of the 35th Annual Computer Security Applications Con-
ference. San Juan Puerto Rico USA: ACM, Dec. 9, 2019, pp. 788–
800. DOI: 10.1145/3359789.3359809 (cit. on p. 245).

294

https://doi.org/10.1145/3359789.3359809

Bibliography

[Bre18] BRENNER, Stefan; BEHLENDORF, Michael and KAPITZA, Rüdi-
ger: “Trusted Execution, and the Impact of Security on Perfor-
mance”. In: Proceedings of the 3rd Workshop on System Software
for Trusted Execution. 2018, pp. 28–33 (cit. on p. 39).

[Bri10] BRICKELL, Ernie and LI, Jiangtao: “Enhanced Privacy ID from
Bilinear Pairing for Hardware Authentication and Attestation”.
In: 2010 IEEE Second International Conference on Social Comput-
ing. IEEE. 2010, pp. 768–775 (cit. on pp. 46, 129).

[Bro22] BROST, Gerd: IDSCP2 Overview. 2022. URL: https://github.com/
industrial- data- space/idscp2- jvm/wiki/IDSCP2-Overview
(visited on 06/30/2023) (cit. on pp. 54, 112–114, 116, 123, 149,
351).

[Bru18] BRUCKNER, Fabian; NAGEL, Ralf; KRÜGER, Dominik; WEN-
ZEL, Sven and OTTO, Boris: “Eine Programmiersprache zur
souveränen Datenverarbeitung”. In: D•A•CH Security 2018.
syssec, 2018, pp. 35–46. URL: https : / /www . syssec . at / de /
veranstaltungen/dachsecurity2018/papers/DACH_Security_
2018_Paper_12A1.pdf (visited on 11/02/2023) (cit. on p. 98).

[Bru21] BRUCKNER, Fabian and HOWAR, Falk: “Utilizing Remote Evalu-
ation for Providing Data Sovereignty in Data-sharing Ecosys-
tems”. In: Hawaii International Conference on System Sciences.
2021. DOI: 10.24251/HICSS.2021.842. URL: http://hdl.handle.net/
10125/71463 (visited on 11/02/2023) (cit. on p. 98).

[Bub14] BUBECK, Alexander; GRUHLER, Matthias; REISER, Ulrich and
WEIẞHARDT, Florian: “Vom fahrerlosen Transportsystem zur
intelligenten mobilen Automatisierungsplattform”. In: Industrie
4.0 in Produktion, Automatisierung und Logistik: Anwendung·
Technologien· Migration (2014), pp. 221–233 (cit. on p. 2).

[Bun06] BUNEMAN, Peter; CHAPMAN, Adriane and CHENEY, James:
“Provenance Management in Curated Databases”. In: Proceed-
ings of the 2006 ACM SIGMOD International Conference on
Management of Data. 2006, pp. 539–550 (cit. on p. 28).

295

https://github.com/industrial-data-space/idscp2-jvm/wiki/IDSCP2-Overview
https://github.com/industrial-data-space/idscp2-jvm/wiki/IDSCP2-Overview
https://www.syssec.at/de/veranstaltungen/dachsecurity2018/papers/DACH_Security_2018_Paper_12A1.pdf
https://www.syssec.at/de/veranstaltungen/dachsecurity2018/papers/DACH_Security_2018_Paper_12A1.pdf
https://www.syssec.at/de/veranstaltungen/dachsecurity2018/papers/DACH_Security_2018_Paper_12A1.pdf
https://doi.org/10.24251/HICSS.2021.842
http://hdl.handle.net/10125/71463
http://hdl.handle.net/10125/71463

Bibliography

[Bun10] BUNEMAN, Peter and DAVIDSON, Susan B.: “Data Provenance
– The Foundation of Data Quality”. In: Workshop: Issues and
Opportunities for Improving the Quality and Use of Data within
the DoD, Arlington, USA. 2010, pp. 26–28 (cit. on p. 5).

[Bur17] BURGER, Ansgar; LANG, Andreas and MÜLLER, Yannis:
“Mögliche Veränderungen von System-Architekturen im
Bereich der Produktion”. In: Industrie 4.0: Wie cyber-physische
Systeme die Arbeitswelt verändern (2017), pp. 57–68 (cit. on
p. 1).

[Büt17] BÜTTNER, Karl-Heinz and BRÜCK, Ulrich: “Use Case Industrie
4.0 - Fertigung im Siemens Elektronikwerk Amberg”. In: Hand-
buch Industrie 4.0 Bd. 4: Allgemeine Grundlagen (2017), pp. 45–
70 (cit. on p. 1).

[Cai23] CAI, Wenjing; ZHU, Ziyuan; LIU, Yuxin; ZHANG, Yusha and
CHENG, Xu: “Detecting and Mitigating Cache Side Channel
Threats on Intel SGX”. In: 2023 26th International Conference
on Computer Supported Cooperative Work in Design (CSCWD).
IEEE, 2023, pp. 972–977 (cit. on p. 245).

[Car18] CARVALHO, L.; BELHAJJAME, Khalid and MEDEIROS, C.: “A
PROV-compliant Approach to Script-to-Workflow Process”. In:
The Sem. Web J (2018) (cit. on p. 28).

[Che09a] CHENEY, James; CHITICARIU, Laura and TAN, Wang-Chiew:
“Provenance in Databases: Why, How, and Where”. In: Founda-
tions and Trends® in Databases 1.4 (2009), pp. 379–474 (cit. on
p. 28).

[Che09b] CHENG, Song; BING, Liu; YANG, Xin; YIXIAN, Yang; LI, Zhongx-
ian and HAN, Yin: “A Security-Enhanced Remote Platform
Integrity Attestation Scheme”. In: 2009 5th International Con-
ference on Wireless Communications, Networking and Mobile
Computing. IEEE. 2009, pp. 1–4 (cit. on pp. 111, 113, 114, 116).

296

Bibliography

[Che17] CHEN, Sanchuan; ZHANG, Xiaokuan; REITER, Michael K. and
ZHANG, Yinqian: “Detecting Privileged Side-Channel Attacks
in Shielded Execution with Déjà Vu”. In: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’17. ACM, Apr. 2, 2017, pp. 7–18. DOI: 10 .
1145/3052973.3053007 (cit. on p. 245).

[Che19a] CHEN, Guoxing; CHEN, Sanchuan; XIAO, Yuan; ZHANG, Yin-
qian; LIN, Zhiqiang and LAI, Ten H.: “Sgxpectre: Stealing Intel
Secrets from Sgx Enclaves via Speculative Execution”. In: 2019
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157 (cit. on p. 244).

[Che19b] CHEN, Guoxing; ZHANG, Yinqian and LAI, Ten-Hwang: “Opera:
Open Remote Attestation for Intel’s Secure Enclaves”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 2317–2331 (cit. on pp. 130,
132).

[Che20] CHEN, Guoxing and ZHANG, Yinqian: “MAGE: Mutual Attes-
tation for a Group of Enclaves without Trusted Third Parties”.
2020. arXiv: 2008.09501 (cit. on p. 72).

[Che22] CHEANG, Kevin; RASMUSSEN, Cameron; LEE, Dayeol;
KOHLBRENNER, David W.; ASANOVIĆ, Krste and SESHIA,
Sanjit A.: “Verifying RISC-V Physical Memory Protection”.
2022. arXiv: 2211.02179 (cit. on p. 43).

[Che23] CHEN, Lily; MOODY, Dustin; REGENSCHEID, Andrew; ROBINSON,
Angela and RANDALL, Karen: Recommendations for Discrete
Logarithm-based Cryptography: Elliptic Curve Domain Param-
eters. NIST Special Publication (SP) 800-186. National Institute
of Standards and Technology, Feb. 3, 2023. DOI: 10.6028/NIST.
SP.800-186 (cit. on p. 156).

[Cho15] CHO, Jin-Hee; CHAN, Kevin and ADALI, Sibel: “A Survey on
Trust Modeling”. In: ACM Computing Surveys (CSUR) 48.2
(2015), pp. 1–40 (cit. on pp. 211, 212).

297

https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
https://arxiv.org/abs/2008.09501
https://arxiv.org/abs/2211.02179
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186

Bibliography

[Cir20] CIRILLO, Flavio; CHENG, Bin; PORCELLANA, Raffaele; RUSSO,
Marco; SOLMAZ, Gürkan; SAKAMOTO, Hisashi and ROMANO, Si-
mon Pietro: “Intentkeeper: Intent-oriented Data Usage Control
for Federated Data Analytics”. In: 2020 IEEE 45th Conference on
Local Computer Networks (LCN). IEEE. 2020, pp. 204–215 (cit.
on p. 53).

[Cok11] COKER, George; GUTTMAN, Joshua; LOSCOCCO, Peter; HERZOG,
Amy; MILLEN, Jonathan; O’HANLON, Brian; RAMSDELL, John;
SEGALL, Ariel; SHEEHY, Justin and SNIFFEN, Brian: “Principles
of Remote Attestation”. In: International Journal of Information
Security 10.2 (2011), pp. 63–81 (cit. on pp. 110, 116).

[Col10] COLOMBO, Maurizio; LAZOUSKI, Aliaksandr; MARTINELLI, Fabio
and MORI, Paolo: “A Proposal on Enhancing XACML with
Continuous Usage Control Features”. In: Grids, P2P and Services
Computing. Springer, 2010, pp. 133–146 (cit. on p. 25).

[Con23] CONSTABLE, Scott; VAN BULCK, Jo; CHENG, Xiang; XIAO, Yuan;
XING, Cedric; ALEXANDROVICH, Ilya; KIM, Taesoo; PIESSENS,
Frank; VIJ, Mona and SILBERSTEIN, Mark: “AEX-Notify:
Thwarting Precise Single-Stepping Attacks through Interrupt
Awareness for Intel SGX Enclaves”. In: 32nd USENIX Security
Symposium (USENIX Security 23). 2023, pp. 4051–4068 (cit. on
p. 245).

[Cos16a] COSTAN, Victor and DEVADAS, Srinivas: “Intel SGX Explained”.
In: Cryptology ePrint Archive (2016) (cit. on pp. 38, 39, 126).

[Cos16b] COSTAN, Victor; LEBEDEV, Ilia A. and DEVADAS, Srinivas: “Sanc-
tum: Minimal Hardware Extensions for Strong Software Isola-
tion.” In: USENIX Security Symposium. 2016, pp. 857–874 (cit. on
p. 44).

[Cui19] CUI, Pinchen; DIXON, Julie; GUIN, Ujjwal and DIMASE, Daniel:
“A Blockchain-Based Framework for Supply Chain Prove-
nance”. In: IEEE Access 7 (2019), pp. 157113–157125 (cit. on
p. 52).

298

Bibliography

[Dal18] DALL, Fergus; DE MICHELI, Gabrielle; EISENBARTH, Thomas;
GENKIN, Daniel; HENINGER, Nadia; MOGHIMI, Ahmad and
YAROM, Yuval: “Cachequote: Efficiently Recovering Long-Term
Secrets of SGX EPID via Cache Attacks”. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2018.2
(2018), pp. 171–191. DOI: tches.v2018.i2.171-191 (cit. on p. 245).

[Dem11] DEMSKY, Brian: “Cross-Application Data Provenance and Pol-
icy Enforcement”. In: ACM Transactions on Information and
System Security (TISSEC) 14.1 (2011), pp. 1–22 (cit. on p. 55).

[Dew21] DEWAELE, Thomas and OBERSON, Julien: TPM Sniffing. Sec
Team Blog. Nov. 15, 2021. URL: https : / / blog . scrt . ch / 2021 /
11/15/tpm-sniffing/ (visited on 09/29/2023) (cit. on p. 241).

[Di 18] DI CERBO, Francesco; MARTINELLI, Fabio; MATTEUCCI, Ilaria
and MORI, Paolo: “Towards a Declarative Approach to Stateful
and Stateless Usage Control for Data Protection.” In: WEBIST.
2018, pp. 308–315 (cit. on p. 25).

[Djo20] DJOKO, Judicael Briand: “Towards Practical Access Control and
Usage Control on the Cloud Using Trusted Hardware”. PhD
thesis. University of Pittsburgh, 2020 (cit. on pp. 8, 54).

[Dui22] DUISBERG, Alexander: “Legal Aspects of IDS: Data Sovereignty
- What Does It Imply?” In: Designing Data Spaces (2022), p. 61
(cit. on p. 5).

[Dus20] DUSHKU, Edlira; RABBANI, Md Masoom; CONTI, Mauro;
MANCINI, Luigi V and RANISE, Silvio: “SARA: Secure Asyn-
chronous Remote Attestation for IoT Systems”. In: IEEE
Transactions on Information Forensics and Security 15 (2020),
pp. 3123–3136 (cit. on p. 47).

[El 15] EL KATEB, Donia; ELRAKAIBY, Yehia; MOUELHI, Tejeddine;
RUBAB, Iram and LE TRAON, Yves: “Towards a Full Support of
Obligations in XACML”. In: Risks and Security of Internet and
Systems: 9th International Conference, CRiSIS 2014, Trento, Italy,
August 27-29, 2014, Revised Selected Papers 9. Springer, 2015,
pp. 213–221 (cit. on p. 25).

299

https://doi.org/tches.v2018.i2.171-191
https://blog.scrt.ch/2021/11/15/tpm-sniffing/
https://blog.scrt.ch/2021/11/15/tpm-sniffing/

Bibliography

[Evt18] EVTYUSHKIN, Dmitry; RILEY, Ryan; ABU-GHAZALEH, Nael Cse;
ECE and PONOMAREV, Dmitry: “BranchScope: A New Side-
Channel Attack on Directional Branch Predictor”. In: ACM SIG-
PLAN Notices 53.2 (Nov. 30, 2018), pp. 693–707. DOI: 10.1145/
3296957.3173204 (cit. on p. 244).

[Fei21] FEI, Shufan; YAN, Zheng; DING, Wenxiu and XIE, Haomeng:
“Security Vulnerabilities of SGX and Countermeasures: A Sur-
vey”. In: ACM Computing Surveys (CSUR) 54.6 (2021), pp. 1–36
(cit. on pp. 39, 243).

[Fen21] FENG, Erhu; LU, Xu; DU, Dong; YANG, Bicheng; JIANG, Xue-
qiang; XIA, Yubin; ZANG, Binyu and CHEN, Haibo: “Scalable
Memory Protection in the PENGLAI Enclave.” In: OSDI. 2021,
pp. 275–294 (cit. on p. 44).

[Gal12] GALLOWAY, Brendan and HANCKE, Gerhard P.: “Introduction to
Industrial Control Networks”. In: IEEE Communications surveys
& tutorials 15.2 (2012), pp. 860–880 (cit. on p. 1).

[Gan14] GANDOMANI, Taghi Javdani; WEI, Koh Tieng and BINHAMID,
Abdulelah Khaled: “A Case Study Research on Software Cost
Estimation Using Experts’ Estimates, Wideband Delphi, and
Planning Poker Technique”. In: International Journal of Soft-
ware Engineering and its applications 8.11 (2014), pp. 173–182
(cit. on p. 232).

[Gao20] GAO, Yuanzhao; CHEN, Xingyuan and DU, Xuehui: “A Big Data
Provenance Model for Data Security Supervision Based on
PROV-DM Model”. In: IEEE Access 8 (2020), pp. 38742–38752
(cit. on p. 30).

[Gas07] GASMI, Yacine; SADEGHI, Ahmad-Reza; STEWIN, Patrick;
UNGER, Martin and ASOKAN, N: “Beyond Secure Channels”.
In: Proceedings of the 2007 ACM Workshop on Scalable Trusted
Computing. 2007, pp. 30–40 (cit. on pp. 111, 113, 116).

300

https://doi.org/10.1145/3296957.3173204
https://doi.org/10.1145/3296957.3173204

Bibliography

[Geh12] GEHANI, Ashish and TARIQ, Dawood: “SPADE: Support for
Provenance Auditing in Distributed Environments”. In: Mid-
dleware 2012: ACM/IFIP/USENIX 13th International Middleware
Conference, Montreal, QC, Canada, December 3-7, 2012. Proceed-
ings 13. Springer, 2012, pp. 101–120 (cit. on p. 31).

[Gha17] GHALI, Cesar; STUBBLEFIELD, Adam; KNAPP, Ed; LI, Jiang-
tao; SCHMIDT, Benedikt and BOEUF, Julien: Application Layer
Transport Security. Dec. 2017. URL: https://cloud.google.com/
docs / security / encryption - in - transit / application - layer -
transport-security (visited on 07/01/2023) (cit. on p. 131).

[Gla10] GLAVIC, Boris: “Perm: Efficient Provenance Support for Rela-
tional Databases”. PhD thesis. University of Zurich, 2010 (cit.
on p. 31).

[Glo10] GLOBAL PLATFORM: TEE Client API Specification v1.0. July
2010. URL: https://globalplatform.org/wp- content/uploads/
2010/07/TEE_Client_API_Specification-V1.0.pdf (visited on
02/06/2024) (cit. on p. 133).

[Glo21] GLOBAL PLATFORM: TEE Internal Core API Specification v1.3.1.
July 2021. URL: https://globalplatform.org/wp-content/uploads/
2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.
1_PublicRelease_CC.pdf (visited on 12/14/2023) (cit. on pp. 133,
157).

[Gol06] GOLDMAN, Kenneth; PEREZ, Ronald and SAILER, Reiner: “Link-
ing Remote Attestation to Secure Tunnel Endpoints”. In: Pro-
ceedings of the First ACM Workshop on Scalable Trusted Comput-
ing. 2006, pp. 21–24 (cit. on pp. 111, 113, 116).

[Göt17] GÖTZFRIED, Johannes; ECKERT, Moritz; SCHINZEL, Sebastian
and MÜLLER, Tilo: “Cache Attacks on Intel SGX”. In: Proceed-
ings of the 10th European Workshop on Systems Security. Eu-
roSys ’17: Twelfth EuroSys Conference 2017. Belgrade Serbia:
ACM, Apr. 23, 2017, pp. 1–6. DOI: 10 . 1145 /3065913 .3065915
(cit. on p. 243).

301

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2021/03/GPD_TEE_Internal_Core_API_Specification_v1.3.1_PublicRelease_CC.pdf
https://doi.org/10.1145/3065913.3065915

Bibliography

[Gra22] GRAMINE: Gramine: Attestation and Secret Provisioning. 2022.
URL: https://gramine.readthedocs.io/en/stable/attestation.html
(visited on 08/11/2022) (cit. on pp. 131, 132).

[Gre02] GRENNING, James: “Planning Poker or How to Avoid Analysis
Paralysis While Release Planning”. In: Hawthorn Woods: Renais-
sance Software Consulting 3 (2002), pp. 22–23 (cit. on p. 232).

[Gre11] GREVELER, Ulrich; JUSTUS, Benjamin and LOEHR, Dennis: “Mu-
tual Remote Attestation: Enabling System Cloning for TPM
Based Platforms”. In: International Workshop on Security and
Trust Management. Springer. 2011, pp. 193–206 (cit. on pp. 110,
113, 114, 116, 123).

[Gro13] GROTH, Paul and MOREAU, Luc: PROV-Overview. PROV-
Overview. Apr. 30, 2013. URL: https://www.w3.org/TR/prov-
overview/ (visited on 03/25/2023) (cit. on pp. 28–30).

[Gru17] GRUSS, Daniel; LETTNER, Julian; SCHUSTER, Felix; OHRIMENKO,
Olya; HALLER, Istvan and COSTA, Manuel: “Strong and Efficient
Cache Side-Channel Protection Using Hardware Transactional
Memory”. In: 26th USENIX Security Symposium (USENIX Secu-
rity 17). 2017, pp. 217–233 (cit. on p. 245).

[Gün17] GÜNTHNER, Willibald; KLENK, Eva and TENEROWICZ-WIRTH,
Peter: “Adaptive Logistiksysteme als Wegbereiter der Industrie
4.0”. In: Handbuch Industrie 4.0 Bd. 4: Allgemeine Grundlagen
(2017), pp. 99–125 (cit. on p. 2).

[Han18] HAN, Seunghun; SHIN, Wook; PARK, Jun-Hyeok and KIM, Hy-
oungChun: “A Bad Dream: Subverting Trusted Platform Mod-
ule While You Are Sleeping”. In: 27th USENIX Security Sympo-
sium (USENIX Security 18). 2018, pp. 1229–1246 (cit. on p. 242).

[Has17] HASAN, Omar: A Survey of Privacy Preserving Reputation Sys-
tems. LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude
Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de
Lyon, Nov. 15, 2017 (cit. on pp. 51, 213).

302

https://gramine.readthedocs.io/en/stable/attestation.html
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/

Bibliography

[Her17] HERSCHEL, Melanie; DIESTELKÄMPER, Ralf and BEN LAHMAR,
Houssem: “A Survey on Provenance: What for? What Form?
What From?” In: The VLDB Journal 26 (2017), pp. 881–906 (cit.
on pp. 5, 28).

[Her22] HERCBERG, Serge; TOUVIER, Mathilde and SALAS-SALVADO,
Jordi: “The Nutri-Score Nutrition Label: A Public Health Tool
Based on Rigorous Scientific Evidence Aiming to Improve the
Nutritional Status of the Population”. In: International Journal
for Vitamin and Nutrition Research 92.3-4 (July 2022), pp. 147–
157. DOI: 10.1024/0300-9831/a000722 (cit. on p. 235).

[Hil07a] HILTY, Manuel; PRETSCHNER, Alexander and BASIN, David:
“Verteilte Nutzungskontrolle”. In: digma. 2007 (cit. on p. 19).

[Hil07b] HILTY, Manuel; PRETSCHNER, Alexander; BASIN, David; SCHAE-
FER, Christian and WALTER, Thomas: “A Policy Language for
Distributed Usage Control”. In: European Symposium on Re-
search in Computer Security. Springer. 2007, pp. 531–546 (cit. on
pp. 20, 25).

[Hu15] HU, Vincent C.; KUHN, D. Richard; FERRAIOLO, David F. and
VOAS, Jeffrey: “Attribute-Based Access Control”. In: Computer
48.2 (2015), pp. 85–88 (cit. on p. 17).

[Hu20] HU, Rui; YAN, Zheng; DING, Wenxiu and YANG, Laurence T.:
“A Survey on Data Provenance in IoT”. In: World Wide Web 23
(2020), pp. 1441–1463 (cit. on p. 31).

[Hub16] HUBBARD, Douglas W and SEIERSEN, Richard: How to Measure
Anything in Cybersecurity Risk. John Wiley & Sons, 2016 (cit.
on pp. 212, 248, 287).

[Hub22] HUBER, Monika; WESSEL, Sascha; BROST, Gerd and MENZ,
Nadja: “Building Trust in Data Spaces”. In: Designing Data
Spaces (2022), p. 147 (cit. on pp. 7, 50).

303

https://doi.org/10.1024/0300-9831/a000722

Bibliography

[Huo20] HUO, Tianlin; MENG, Xiaoni; WANG, Wenhao; HAO, Chunliang;
ZHAO, Pei; ZHAI, Jian and LI, Mingshu: “Bluethunder: A 2-Level
Directional Predictor Based Side-Channel Attack against Sgx”.
In: IACR Transactions on Cryptographic Hardware and Embed-
ded Systems (2020), pp. 321–347 (cit. on p. 244).

[Ian18a] IANELLA, Renato; STEIDL, Michael; MYLES, Stuart and
RODRÍGUEZ-DONCEL, Víctor: ODRL Vocabulary & Expres-
sion 2.2. ODRL Vocabulary & Expression 2.2. Feb. 15, 2018. URL:
https://www.w3.org/TR/odrl-vocab/ (visited on 08/09/2023)
(cit. on p. 193).

[Ian18b] IANELLA, Renato and VILLATA, Serena: ODRL Information
Model 2.2. ODRL Information Model 2.2. Feb. 15, 2018. URL:
https://www.w3.org/TR/odrl-model/ (visited on 03/12/2023)
(cit. on pp. 12, 25, 66, 193–195, 199, 203).

[Int21] INTEL CORPORATION: Speculative Execution Side Channel Mit-
igations. May 26, 2021. URL: https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-
guidance/technical- documentation/speculative- execution-
side-channel-mitigations.html (visited on 10/01/2023) (cit. on
p. 245).

[Int23a] INTEL CORPORATION: Intel Software Guard Extensions SDK De-
veloper Reference. Revision 2.19. 2023. URL: https://download.
01.org/intel-sgx/sgx-linux/2.19/docs/Intel_SGX_Developer_
Reference_Linux_2.19_Open_Source.pdf (visited on 03/29/2023)
(cit. on pp. 130, 132).

[Int23b] INTEL CORPORATION: Intel Trust Domain Extensions. Feb. 2023.
URL: https://www.intel.com/content/www/us/en/developer/
tools/trust-domain-extensions/documentation.html (visited on
11/06/2023) (cit. on pp. 40, 285).

[Int23c] INTEL CORPORATION: Put Zero Trust Within Reach and Get
Public Cloud Flexibility with Private Cloud Security. Intel.
Sept. 19, 2023. URL: https : / /www.intel .com/content/www/
us/en/content-details/788131/put-zero-trust-within-reach-and-

304

https://www.w3.org/TR/odrl-vocab/
https://www.w3.org/TR/odrl-model/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://download.01.org/intel-sgx/sgx-linux/2.19/docs/Intel_SGX_Developer_Reference_Linux_2.19_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.19/docs/Intel_SGX_Developer_Reference_Linux_2.19_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.19/docs/Intel_SGX_Developer_Reference_Linux_2.19_Open_Source.pdf
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/content-details/788131/put-zero-trust-within-reach-and-get-public-cloud-flexibility-with-private-cloud-security.html
https://www.intel.com/content/www/us/en/content-details/788131/put-zero-trust-within-reach-and-get-public-cloud-flexibility-with-private-cloud-security.html
https://www.intel.com/content/www/us/en/content-details/788131/put-zero-trust-within-reach-and-get-public-cloud-flexibility-with-private-cloud-security.html

Bibliography

get-public-cloud-flexibility-with-private-cloud-security.html
(visited on 11/05/2023) (cit. on pp. 148, 149, 286).

[Jac23] JACOB, Hans Niklas; WERLING, Christian; BUHREN, Robert and
SEIFERT, Jean-Pierre: faulTPM: Exposing AMD fTPMs’ Deepest
Secrets. May 2, 2023. arXiv: 2304.14717 [cs]. preprint (cit. on
p. 247).

[Jan17] JANG, Yeongjin; LEE, Jaehyuk; LEE, Sangho and KIM, Taesoo:
“SGX-Bomb: Locking Down the Processor via Rowhammer At-
tack”. In: Proceedings of the 2nd Workshop on System Software
for Trusted Execution. SOSP ’17: ACM SIGOPS 26th Sympo-
sium on Operating Systems Principles. Shanghai China: ACM,
Oct. 28, 2017, pp. 1–6. DOI: 10 .1145/3152701.3152709 (cit. on
p. 244).

[Jar19] JARKE, Matthias; OTTO, Boris and RAM, Sudha: “Data
Sovereignty and Data Space Ecosystems”. In: Business &
Information Systems Engineering 61.5 (2019). URL: https :
//link.springer.com/article/10.1007/s12599-019-00614-2 (cit. on
pp. 2, 4).

[Jav18] JAVAID, Uzair; AMAN, Muhammad Naveed and SIKDAR, Biplab:
“Blockpro: Blockchain Based Data Provenance and Integrity for
Secure Iot Environments”. In: Proceedings of the 1st Workshop
on Blockchain-enabled Networked Sensor Systems. 2018, pp. 13–
18 (cit. on p. 52).

[Jim22] JIMALE, Mohamud Ahmed; Z’ABA, Muhammad Reza; KIAH,
Miss Laiha Binti Mat; IDRIS, Mohd Yamani Idna; JAMIL,
Norziana; MOHAMAD, Moesfa Soeheila and ROHMAD, Mohd
Saufy: “Authenticated Encryption Schemes: A Systematic
Review”. In: IEEE Access 10 (2022), pp. 14739–14766 (cit. on
p. 119).

[Jin21] JINHUI, Yuan; HONGWEI, Zhou and LAISUN, Zhang: “RSGX:
Defeating SGX Side Channel Attack with Return Oriented Pro-
gramming”. In: 2021 IEEE International Conference on Artificial

305

https://www.intel.com/content/www/us/en/content-details/788131/put-zero-trust-within-reach-and-get-public-cloud-flexibility-with-private-cloud-security.html
https://www.intel.com/content/www/us/en/content-details/788131/put-zero-trust-within-reach-and-get-public-cloud-flexibility-with-private-cloud-security.html
https://arxiv.org/abs/2304.14717
https://doi.org/10.1145/3152701.3152709
https://link.springer.com/article/10.1007/s12599-019-00614-2
https://link.springer.com/article/10.1007/s12599-019-00614-2

Bibliography

Intelligence and Computer Applications (ICAICA). IEEE, 2021,
pp. 1094–1098 (cit. on p. 245).

[Jøs07] JØSANG, Audun; ISMAIL, Roslan and BOYD, Colin: “A Survey of
Trust and Reputation Systems for Online Service Provision”.
In: Decision support systems 43.2 (2007), pp. 618–644 (cit. on
p. 211).

[Jos17] JOST, Jana; KIRKS, Thomas; MÄTTIG, Benedikt; SINSEL, Alexan-
der and TRAPP, Thies Uwe: “Der Mensch in der Industrie – In-
novative Unterstützung durch Augmented Reality”. In: Hand-
buch Industrie 4.0 Bd. 1: Produktion (2017), pp. 153–174 (cit. on
p. 2).

[Jun14] JUNG, Christian; EITEL, Andreas and SCHWARZ, Reinhard: “En-
hancing Cloud Security with Context-aware Usage Control
Policies.” In: GI-Jahrestagung 211 (2014), p. 50 (cit. on pp. 20–
22, 26, 59, 63, 75, 89).

[Jun17] JUNGBLUTH, Volker: “Intelligente, vernetzte Lagersysteme für
die Industrie 4.0: Beispiel Shuttle-Technologien”. In: Handbuch
Industrie 4.0 Bd. 3: Logistik (2017), pp. 139–149 (cit. on p. 2).

[Jun22] JUNG, Christian and DÖRR, Jörg: “Data Usage Control”. In: De-
signing Data Spaces. Springer, 2022, pp. 129–146 (cit. on pp. 26,
59, 63, 89).

[Kaa20] KAANICHE, Nesrine; BELGUITH, Sana; LAURENT, Maryline;
GEHANI, Ashish; RUSSELLO, Giovanni et al.: “Prov-Trust:
Towards a Trustworthy SGX-based Data Provenance Sys-
tem”. In: Proceedings of the 17th International Joint Conference
on E-Business and Telecommunications-Volume 3: SECRYPT.
ScitePress. 2020, pp. 225–237 (cit. on p. 55).

[Kan22] KANAL, Martin: Der Eclipse Dataspace Connector (EDC) – Ar-
chitektur und Nutzen des Frameworks. Business Software und
IT-Blog - Wir gestalten digitale Wertschöpfung. Aug. 23, 2022.
URL: https : / / blog . doubleslash . de /der - eclipse - dataspace -
connector- edc- architektur- und- nutzen- des- frameworks/
(visited on 02/28/2023) (cit. on p. 3).

306

https://blog.doubleslash.de/der-eclipse-dataspace-connector-edc-architektur-und-nutzen-des-frameworks/
https://blog.doubleslash.de/der-eclipse-dataspace-connector-edc-architektur-und-nutzen-des-frameworks/

Bibliography

[Kap17] KAPLAN, David: “Protecting VM Register State with SEV-ES”.
In: White paper (Feb. 17, 2017). URL: https://www.amd.com/
system/files/TechDocs/Protecting%20VM%20Register%20State%
20with%20SEV-ES.pdf (visited on 03/30/2023) (cit. on p. 41).

[Kap21] KAPLAN, David; POWELL, Jeremy and WOLLER, Tom: “AMD
Memory Encryption”. In: White paper (Oct. 18, 2021). URL:
https : / /www.amd.com/system/files /TechDocs/memory-
encryption-white - paper .pdf (visited on 03/30/2023) (cit. on
pp. 41, 285).

[Keb18] KEBEDE, Milen G.; SILENO, Giovanni and VAN ENGERS, Tom: “A
Critical Reflection on ODRL”. In: International Workshop on AI
Approaches to the Complexity of Legal Systems. Springer, 2018,
pp. 48–61 (cit. on p. 193).

[Kel13] KELBERT, Florian and PRETSCHNER, Alexander: “Data Usage
Control Enforcement in Distributed Systems”. In: Proceedings of
the Third ACM Conference on Data and Application Security and
Privacy. 2013, pp. 71–82 (cit. on pp. 5, 18, 20, 22, 23).

[Kel14] KELBERT, Florian and PRETSCHNER, Alexander: “Decentralized
Distributed Data Usage Control”. In: International Conference
on Cryptology and Network Security. Springer. 2014, pp. 353–
369 (cit. on pp. 23, 24).

[Kel15] KELBERT, Florian and PRETSCHNER, Alexander: “A Fully Decen-
tralized Data Usage Control Enforcement Infrastructure”. In:
International Conference on Applied Cryptography and Network
Security. Springer. 2015, pp. 409–430 (cit. on pp. 23, 24).

[Kel18] KELBERT, Florian and PRETSCHNER, Alexander: “Data Usage
Control for Distributed Systems”. In: ACM Transactions on Pri-
vacy and Security (TOPS) 21.3 (2018), pp. 1–32 (cit. on pp. 20–
22).

[Kim19] KIM, Deokjin; JANG, Daehee; PARK, Minjoon; JEONG, Yunjong;
KIM, Jonghwan; CHOI, Seokjin and KANG, Brent Byunghoon:
“SGX-LEGO: Fine-grained SGX Controlled-Channel Attack

307

https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf

Bibliography

and Its Countermeasure”. In: computers & security 82 (2019),
pp. 118–139 (cit. on p. 244).

[Kin21] KING, Gordon and WANG, Hans: “HTTPA: HTTPS Attestable
Protocol”. 2021. arXiv: 2110.07954 (cit. on pp. 131, 132).

[Kir22] KIRSTEIN, Fabian and BOHLEN, Vincent: “IDS as a Foundation
for Open Data Ecosystems”. In: Designing Data Spaces: The
Ecosystem Approach to Competitive Advantage. Springer In-
ternational Publishing Cham, 2022, pp. 225–240 (cit. on p. 3).

[Kna18] KNAUTH, Thomas; STEINER, Michael; CHAKRABARTI, Somnath;
LEI, Li; XING, Cedric and VIJ, Mona: “Integrating Remote Attes-
tation with Transport Layer Security”. 2018. arXiv: 1801.05863
(cit. on pp. 45, 130, 132).

[Kog22] KOGLER, Andreas; GRUSS, Daniel and SCHWARZ, Michael:
“Minefield: A Software-only Protection for SGX Enclaves
against DVFS Attacks”. In: 31st USENIX Security Symposium
(USENIX Security 22). 2022, pp. 4147–4164 (cit. on p. 245).

[Kon14] KONG, Joonho; KOUSHANFAR, Farinaz; PENDYALA, Praveen K;
SADEGHI, Ahmad-Reza and WACHSMANN, Christian: “PUFatt:
Embedded Platform Attestation Based on Novel Processor-
Based PUFs”. In: 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE. 2014, pp. 1–6 (cit. on p. 47).

[Kor18] KORUYEH, Esmaeil Mohammadian; KHASAWNEH, Khaled N.;
SONG, Chengyu and ABU-GHAZALEH, Nael: “Spectre Returns!
Speculation Attacks Using the Return Stack Buffer”. In: 12th
USENIX Workshop on Offensive Technologies (WOOT 18). 2018
(cit. on p. 244).

[Krä22] KRÄMER, Jan; STÜDLEIN, Nadine and ZIERKE, Oliver: “Sharing
Needs Caring: Experimental Insights on the Optimal Design
of B2B Data Sharing Platforms”. In: Data as a Common Good
(2022), p. 66 (cit. on p. 4).

308

https://arxiv.org/abs/2110.07954
https://arxiv.org/abs/1801.05863

Bibliography

[Kum12] KUMARI, Prachi and PRETSCHNER, Alexander: “Deriving
Implementation-Level Policies for Usage Control Enforcement”.
In: Proceedings of the Second ACM Conference on Data and
Application Security and Privacy. 2012, pp. 83–94 (cit. on p. 25).

[Kun06] KUNTZE, Nicolai and SCHMIDT, Andreas U.: “Transitive Trust
in Mobile Scenarios”. In: Emerging Trends in Information and
Communication Security: International Conference, ETRICS 2006,
Freiburg, Germany, June 6-9, 2006. Proceedings. Springer, 2006,
pp. 73–85 (cit. on p. 58).

[Kyl07] KYLE, David and BRUSTOLONI, José Carlos: “Uclinux: A Linux
Security Module for Trusted-Computing-Based Usage Controls
Enforcement”. In: Proceedings of the 2007 ACM Workshop on
Scalable Trusted Computing. 2007, pp. 63–70 (cit. on pp. 53, 65).

[Lan14] LAN, Anna; HAN, Zhen; ZHANG, Dawei; JIANG, Yichen; LIU,
Tianhua and LI, Meihong: “An Anonymous Remote Attestation
Protocol to Prevent Masquerading Attack”. In: 2014 IEEE 11th
Intl Conf on Ubiquitous Intelligence and Computing and 2014
IEEE 11th Intl Conf on Autonomic and Trusted Computing and
2014 IEEE 14th Intl Conf on Scalable Computing and Communi-
cations and Its Associated Workshops. IEEE. 2014, pp. 590–595.
DOI: 10.1109/UIC-ATC-ScalCom.2014.30 (cit. on pp. 112, 116).

[Lan16] LANGLEY, Adam; HAMBURG, Mike and TURNER, Sean: Elliptic
Curves for Security. Request for Comments RFC 7748. Inter-
net Engineering Task Force, Jan. 2016. 22 pp. DOI: 10 . 17487 /
RFC7748. URL: https://datatracker.ietf.org/doc/rfc7748 (visited
on 01/22/2024) (cit. on p. 156).

[Lan22] LANG, Fan; WANG, Wei; MENG, Lingjia; LIN, Jingqiang; WANG,
Qiongxiao and LU, Linli: “MoLE: Mitigation of Side-channel
Attacks against SGX via Dynamic Data Location Escape”. In:
Proceedings of the 38th Annual Computer Security Applications
Conference. ACSAC: Annual Computer Security Applications
Conference. Austin TX USA: ACM, Dec. 5, 2022, pp. 978–988.
DOI: 10.1145/3564625.3568002 (cit. on p. 245).

309

https://doi.org/10.1109/UIC-ATC-ScalCom.2014.30
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://datatracker.ietf.org/doc/rfc7748
https://doi.org/10.1145/3564625.3568002

Bibliography

[Lau22] LAUF, Florian; SCHEIDER, Simon; BARTSCH, Jan; HERRMANN,
Philipp; RADIC, Marija; REBBERT, Marcel; NEMAT, André T.;
SCHLUETER LANGDON, Christoph; KONRAD, Ralf and SUNYAEV,
Ali: “Linking Data Sovereignty and Data Economy: Aris-
ing Areas of Tension”. In: 17th International Conference on
Wirtschaftsinformatik. 2022 (cit. on p. 4).

[Laz10] LAZOUSKI, Aliaksandr; MARTINELLI, Fabio and MORI, Paolo:
“Usage Control in Computer Security: A Survey”. In: Computer
Science Review 4.2 (2010), pp. 81–99 (cit. on pp. 5, 17).

[Laz14] LAZOUSKI, Aliaksandr; MANCINI, Gaetano; MARTINELLI, Fabio
and MORI, Paolo: “Architecture, Workflows, and Prototype for
Stateful Data Usage Control in Cloud”. In: 2014 IEEE Security
and Privacy Workshops. IEEE. 2014, pp. 23–30 (cit. on p. 21).

[Lee17a] LEE, Jaehyuk; JANG, Jinsoo; JANG, Yeongjin; KWAK, Nohyun;
CHOI, Yeseul; CHOI, Changho; KIM, Taesoo; PEINADO, Mar-
cus and KANG, Brent ByungHoon: “Hacking in Darkness:
Return-oriented Programming against Secure Enclaves”. In:
26th USENIX Security Symposium (USENIX Security 17). 2017,
pp. 523–539 (cit. on pp. 244, 245).

[Lee17b] LEE, Sangho; SHIH, Ming-Wei; GERA, Prasun; KIM, Taesoo; KIM,
Hyesoon and PEINADO, Marcus: “Inferring Fine-Grained Con-
trol Flow inside SGX Enclaves with Branch Shadowing”. In:
26th USENIX Security Symposium (USENIX Security 17). 2017,
pp. 557–574 (cit. on p. 244).

[Lee20] LEE, Dayeol; KOHLBRENNER, David; SHINDE, Shweta;
ASANOVIĆ, Krste and SONG, Dawn: “Keystone: An Open
Framework for Architecting Trusted Execution Environ-
ments”. In: Proceedings of the Fifteenth European Conference on
Computer Systems. 2020, pp. 1–16 (cit. on p. 44).

[Len20] LENGENFELDER, Christian; FRESE, Christian; ZUBE, Angelika;
VOIT, Michael and BEYERER, Jürgen: “A Cooperative HCI As-
sembly Station with Dynamic Projections”. In: ISR 2020; 52th

310

Bibliography

International Symposium on Robotics. VDE, 2020, pp. 1–8 (cit.
on pp. 2, 251).

[Les16] LESLIE-HURD, Rebekah: “Sealing and Attestation in Intel Soft-
ware Guard Extensions”. Jan. 8, 2016. URL: https://rwc.iacr.org/
2016/Slides/Sealing%20and%20Attestation%20in%20SGX.pdf
(visited on 03/29/2023) (cit. on p. 40).

[Li10] LI, Yanlin; MCCUNE, Jonathan M. and PERRIG, Adrian: “SBAP:
Software-based Attestation for Peripherals”. In: Trust and Trust-
worthy Computing: Third International Conference, TRUST 2010,
Berlin, Germany, June 21-23, 2010. Proceedings 3. Springer, 2010,
pp. 16–29 (cit. on p. 47).

[Li19] LI, Wenhao; XIA, Yubin and CHEN, Haibo: “Research on ARM
Trustzone”. In: GetMobile: Mobile Computing and Communica-
tions 22.3 (2019), pp. 17–22 (cit. on p. 42).

[Li22] LI, Xupeng; LI, Xuheng; DALL, Christoffer; GU, Ronghui; NIEH,
Jason; SAIT, Yousuf and STOCKWELL, Gareth: “Design and Ver-
ification of the Arm Confidential Compute Architecture”. In:
16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22). 2022, pp. 465–484 (cit. on p. 43).

[Lia17] LIANG, Xueping; SHETTY, Sachin; TOSH, Deepak; KAMHOUA,
Charles; KWIAT, Kevin and NJILLA, Laurent: “Provchain: A
Blockchain-Based Data Provenance Architecture in Cloud En-
vironment with Enhanced Privacy and Availability”. In: 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 2017, pp. 468–477 (cit. on
pp. 31, 52).

[Lin21] LING, Zhen; YAN, Huaiyu; SHAO, Xinhui; LUO, Junzhou; XU,
Yiling; PEARSON, Bryan and FU, Xinwen: “Secure Boot, Trusted
Boot and Remote Attestation for ARM TrustZone-based IoT
Nodes”. In: Journal of Systems Architecture 119 (2021), p. 102240
(cit. on p. 147).

311

https://rwc.iacr.org/2016/Slides/Sealing%20and%20Attestation%20in%20SGX.pdf
https://rwc.iacr.org/2016/Slides/Sealing%20and%20Attestation%20in%20SGX.pdf

Bibliography

[Lip21] LIPP, Moritz; KOGLER, Andreas; OSWALD, David; SCHWARZ,
Michael; EASDON, Catherine; CANELLA, Claudio and GRUSS,
Daniel: “PLATYPUS: Software-based Power Side-Channel At-
tacks on X86”. In: 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 355–371 (cit. on p. 244).

[Lyl10] LYLE, John and MARTIN, Andrew: “Trusted Computing and
Provenance: Better Together”. In: Proceedings of the 2nd Confer-
ence on Theory and Practice of Provenance. 2010 (cit. on p. 55).

[Man19] MANNHARDT, Felix; PETERSEN, Sobah Abbas and OLIVEIRA,
Manuel Fradinho: “A Trust and Privacy Framework for Smart
Manufacturing Environments”. In: Journal of Ambient Intelli-
gence and Smart Environments 11.3 (2019), pp. 201–219 (cit. on
pp. 4, 251, 252).

[Mar19] MARRA, Antonio La; MARTINELLI, Fabio; MORI, Paolo and
SARACINO, Andrea: “A Distributed Usage Control Framework
for Industrial Internet of Things”. In: Security and Privacy
Trends in the Industrial Internet of Things. Springer, 2019,
pp. 115–135 (cit. on p. 20).

[Mat17] MATETIC, Sinisa; AHMED, Mansoor; KOSTIAINEN, Kari; DHAR,
Aritra; SOMMER, David; GERVAIS, Arthur; JUELS, Ari and CAP-
KUN, Srdjan: “ROTE: Rollback Protection for Trusted Execu-
tion”. In: Proceedings of the 26th USENIX Conference on Security
Symposium. Usenix Association, 2017, pp. 1289–1306 (cit. on
pp. 94, 95, 128, 183).

[Mei13] MEIER, Simon; SCHMIDT, Benedikt; CREMERS, Cas and BASIN,
David: “The TAMARIN Prover for the Symbolic Analysis of
Security Protocols”. In: Computer Aided Verification: 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings 25. Springer, 2013, pp. 696–701 (cit. on
p. 119).

312

Bibliography

[Mén22] MÉNÉTREY, Jämes; PASIN, Marcelo; FELBER, Pascal and SCHI-
AVONI, Valerio: “Watz: A Trusted WebAssembly Runtime Envi-
ronment with Remote Attestation for TrustZone”. 2022. arXiv:
2206.08722 (cit. on p. 147).

[Mey21] MEYER ZUM FELDE, Hendrik; MORBITZER, Mathias and
SCHÜTTE, Julian: “Securing Remote Policy Enforcement by a
Multi-Enclave Based Attestation Architecture”. In: 2021 IEEE
19th International Conference on Embedded and Ubiquitous
Computing (EUC). IEEE. 2021, pp. 102–108 (cit. on pp. 8, 54).

[Mio19] MIORANDI, Daniele; RIZZARDI, Alessandra; SICARI, Sabrina and
COEN-PORISINI, Alberto: “Sticky Policies: A Survey”. In: IEEE
Transactions on Knowledge and Data Engineering 32.12 (2019),
pp. 2481–2499 (cit. on pp. 63, 64, 98).

[Mof18] MOFRAD, Saeid; ZHANG, Fengwei; LU, Shiyong and SHI, Wei-
dong: “A Comparison Study of Intel SGX and AMD Memory
Encryption Technology”. In: Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security
and Privacy. 2018, pp. 1–8 (cit. on p. 41).

[Mog17] MOGHIMI, Ahmad; IRAZOqUI, Gorka and EISENBARTH, Thomas:
“CacheZoom: How SGX Amplifies the Power of Cache At-
tacks”. In: Cryptographic Hardware and Embedded Systems –
CHES 2017. Ed. by FISCHER, Wieland and HOMMA, Naofumi.
Vol. 10529. Cham: Springer International Publishing, 2017,
pp. 69–90. DOI: 10.1007/978-3-319-66787-4_4 (cit. on p. 243).

[Mog19] MOGHIMI, Daniel; SUNAR, Berk; EISENBARTH, Thomas and
HENINGER, Nadia: TPM-FAIL Website. 2019. URL: https://tpm.
fail (visited on 09/29/2023) (cit. on p. 241).

[Mog20] MOGHIMI, Daniel; SUNAR, Berk; EISENBARTH, Thomas and
HENINGER, Nadia: “TPM-FAIL: TPM Meets Timing and Lattice
Attacks”. In: 29th USENIX Security Symposium (USENIX Security
20). 2020, pp. 2057–2073 (cit. on p. 241).

313

https://arxiv.org/abs/2206.08722
https://doi.org/10.1007/978-3-319-66787-4_4
https://tpm.fail
https://tpm.fail

Bibliography

[Mol08] MOLØKKEN-ØSTVOLD, Kjetil; HAUGEN, Nils Christian and BEN-
ESTAD, Hans Christian: “Using Planning Poker for Combining
Expert Estimates in Software Projects”. In: Journal of Systems
and Software 81.12 (2008), pp. 2106–2117 (cit. on p. 232).

[Mun20] MUNOZ-ARCENTALES, Andres; LÓPEZ-PERNAS, Sonsoles; POZO,
Alejandro; ALONSO, Álvaro; SALVACHÚA, Joaquín and HUECAS,
Gabriel: “Data Usage and Access Control in Industrial Data
Spaces: Implementation Using FIWARE”. In: Sustainability 12.9
(2020), p. 3885 (cit. on p. 21).

[Mur20] MURDOCK, Kit; OSWALD, David; GARCIA, Flavio D; VAN BULCK,
Jo; GRUSS, Daniel and PIESSENS, Frank: “Plundervolt: Software-
based Fault Injection Attacks against Intel SGX”. In: 2020 IEEE
Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1466–
1482 (cit. on p. 244).

[Nag22] NAGEL, Lars and LYCKLAMA, Douwe: “How to Build, Run, and
Govern Data Spaces”. In: Designing Data Spaces: The Ecosys-
tem Approach to Competitive Advantage. Springer International
Publishing Cham, 2022, pp. 17–28 (cit. on p. 2).

[Nei11a] NEISSE, Ricardo; HOLLING, Dominik and PRETSCHNER, Alexan-
der: “Implementing Trust in Cloud Infrastructures”. In: 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE, 2011, pp. 524–533 (cit. on p. 53).

[Nei11b] NEISSE, Ricardo; PRETSCHNER, Alexander and DI GIACOMO,
Valentina: “A Trustworthy Usage Control Enforcement Frame-
work”. In: 2011 Sixth International Conference on Availability,
Reliability and Security. IEEE. 2011, pp. 230–235 (cit. on pp. 7,
53, 65).

[Nei15] NEISSE, Ricardo; STERI, Gary; FOVINO, Igor Nai and BALDINI,
Gianmarco: “SecKit: A Model-Based Security Toolkit for the
Internet of Things”. In: computers & security 54 (2015), pp. 60–
76 (cit. on pp. 51, 212, 214).

314

Bibliography

[Nei17] NEISSE, Ricardo; STERI, Gary and NAI-FOVINO, Igor: “A
Blockchain-Based Approach for Data Accountability and
Provenance Tracking”. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security. 2017, pp. 1–
10 (cit. on pp. 31, 52).

[Nil20] NILSSON, Alexander; BIDEH, Pegah Nikbakht and BRORSSON,
Joakim: “A Survey of Published Attacks on Intel SGX”. 2020.
arXiv: 2006.13598 (cit. on p. 243).

[OAS13] OASIS STANDARD: eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0. Jan. 22, 2013. URL: https://docs.
oasis-open.org/xacml/3.0/xacml-3.0- core- spec-os- en.pdf
(visited on 03/16/2023) (cit. on pp. 20, 25).

[Oli19] OLIVEIRA, Marcelo Iury S.; BARROS LIMA, Glória de Fátima and
FARIAS LÓSCIO, Bernadette: “Investigations into Data Ecosys-
tems: A Systematic Mapping Study”. In: Knowledge and Infor-
mation Systems 61 (2019), pp. 589–630 (cit. on p. 2).

[OP-19a] OP-TEE: Secure Storage. 2019. URL: https://optee.readthedocs.
io / en / latest / architecture / secure_storage .html (visited on
07/03/2023) (cit. on pp. 133, 134, 158).

[OP-19b] OP-TEE: Trusted Applications. 2019. URL: https : / / optee .
readthedocs.io/en/latest/architecture/trusted_applications.html
(visited on 07/04/2023) (cit. on pp. 134, 142).

[Opr21] OPRIEL, Sebastian; SKUBOWIUS, Emanuel and LAMBERJOHANN,
Marvin: “How Usage Control Fosters Willingness to Share
Sensitive Data in Inter-Organizational Processes of Supply
Chains”. In: International Scientific Symposium on Logistics.
Vol. 91. 2021 (cit. on p. 5).

[Opr22] OPRIEL, Sebastian and SCHMELTING, Jürgen: “Datensou-
veränität”. In: Silicon Economy: Wie digitale Plattformen indus-
trielle Wertschöpfungsnetzwerke global verändern. Springer,
2022, pp. 41–54 (cit. on pp. 3–5).

315

https://arxiv.org/abs/2006.13598
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html

Bibliography

[Ott18] OTTO, Boris; TEN HOMPEL, Michael and WROBEL, Stefan: “In-
dustrial Data Space: Referenzarchitektur für die Digitalisierung
der Wirtschaft”. In: Digitalisierung: Schlüsseltechnologien für
Wirtschaft und Gesellschaft (2018), pp. 113–133 (cit. on p. 2).

[Ott19] OTTO, Boris; STEINBUẞ, Sebastian; TEUSCHER, Andreas and
LOHMANN, Steffen: IDS Reference Architecture Model (Version
3.0). International Data Spaces Association, Apr. 1, 2019. URL:
http://doi.org/10.5281/zenodo.5105529 (visited on 02/28/2023)
(cit. on pp. 3, 7, 54).

[Ott22a] OTTO, Boris: “A Federated Infrastructure for European Data
Spaces”. In: Communications of the ACM 65.4 (2022), pp. 44–45
(cit. on p. 3).

[Ott22b] OTTO, Boris: “The Evolution of Data Spaces”. In: Designing
Data Spaces: The Ecosystem Approach to Competitive Advan-
tage. Springer International Publishing Cham, 2022, pp. 3–15
(cit. on p. 2).

[Ott23] OTT, Simon; KAMHUBER, Monika; PECHOLT, Joana and WES-
SEL, Sascha: “Universal Remote Attestation for Cloud and Edge
Platforms”. In: Proceedings of the 18th International Conference
on Availability, Reliability and Security. Benevento Italy: ACM,
Aug. 29, 2023, pp. 1–11. DOI: 10.1145/3600160.3600171 (cit. on
pp. 148, 149, 286).

[Par02] PARK, Jaehong and SANDHU, Ravi: “Towards Usage Control
Models: Beyond Traditional Access Control”. In: Proceedings
of the Seventh ACM Symposium on Access Control Models and
Technologies. 2002, pp. 57–64 (cit. on pp. 5, 17).

[Par04] PARK, Jaehong and SANDHU, Ravi: “The UCONABC Usage Con-
trol Model”. In: ACM transactions on information and system
security (TISSEC) 7.1 (2004), pp. 128–174 (cit. on pp. 17, 18).

[Par11] PARNO, Bryan; LORCH, Jacob R.; DOUCEUR, John R.; MICKENS,
James and MCCUNE, Jonathan M.: “Memoir: Practical State
Continuity for Protected Modules”. In: 2011 IEEE Symposium
on Security and Privacy. IEEE, 2011, pp. 379–394 (cit. on p. 108).

316

http://doi.org/10.5281/zenodo.5105529
https://doi.org/10.1145/3600160.3600171

Bibliography

[Pat10] PATNI, Harshal Kamlesh; SAHOO, Satya S.; HENSON, Cory An-
drew and SHETH, Amit P.: “Provenance Aware Linked Sensor
Data”. In: 2nd Workshop on Trust and Privacy on the Social and
Semantic Web. 2010 (cit. on p. 31).

[Pet22] PETTENPOHL, Heinrich; SPIEKERMANN, Markus and BOTH, Jan
Ruben: “International Data Spaces in a Nutshell”. In: Designing
Data Spaces (2022), p. 29 (cit. on pp. 2, 3).

[Pin19] PINTO, Sandro and SANTOS, Nuno: “Demystifying Arm Trust-
zone: A Comprehensive Survey”. In: ACM computing surveys
(CSUR) 51.6 (2019), pp. 1–36 (cit. on pp. 41, 42).

[Pre06] PRETSCHNER, Alexander; HILTY, Manuel and BASIN, David:
“Distributed Usage Control”. In: Communications of the ACM
49.9 (2006), pp. 39–44 (cit. on pp. 5, 18).

[Pre07] PRETSCHNER, Alexander; MASSACCI, Fabio and HILTY, Manuel:
“Usage Control in Service-Oriented Architectures”. In: Inter-
national Conference on Trust, Privacy and Security in Digital
Business. Springer. 2007, pp. 83–93 (cit. on p. 20).

[Pre08] PRETSCHNER, Alexander; HILTY, Manuel; BASIN, David; SCHAE-
FER, Christian and WALTER, Thomas: “Mechanisms for Usage
Control”. In: Proceedings of the 2008 ACM Symposium on Infor-
mation, Computer and Communications Security. 2008, pp. 240–
244 (cit. on p. 20).

[Pre09a] PRETSCHNER, Alexander: “An Overview of Distributed Usage
Control”. In: 2nd Conf. Knowledge Engineering: Principles and
Techniques. 2009 (cit. on p. 19).

[Pre09b] PRETSCHNER, Alexander; RÜESCH, Judith; SCHAEFER, Chris-
tian and WALTER, Thomas: “Formal Analyses of Usage Control
Policies”. In: 2009 International Conference on Availability, Relia-
bility and Security. IEEE. 2009, pp. 98–105 (cit. on p. 20).

317

Bibliography

[Pre11] PRETSCHNER, Alexander; LOVAT, Enrico and BÜCHLER,
Matthias: “Representation-Independent Data Usage Control”.
In: Data Privacy Management and Autonomous Spontaneus
Security. Springer, 2011, pp. 122–140 (cit. on pp. 20, 64).

[Qiu19] QIU, Pengfei; WANG, Dongsheng; LYU, Yongqiang and QU,
Gang: “VoltJockey: Breaking SGX by Software-Controlled
Voltage-Induced Hardware Faults”. In: 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE,
2019, pp. 1–6 (cit. on p. 244).

[Qur21] QURESHI, Mahmood Azhar and MUNIR, Arslan: “PUF-RAKE:
A PUF-based Robust and Lightweight Authentication and Key
Establishment Protocol”. In: IEEE Transactions on Dependable
and Secure Computing 19.4 (2021), pp. 2457–2475 (cit. on p. 47).

[Raj16] RAJ, Himanshu; SAROIU, Stefan; WOLMAN, Alec; AIGNER,
Ronald; COX, Jeremiah; ENGLAND, Paul; FENNER, Chris; KIN-
SHUMANN, Kinshuman; LOESER, Jork; MATTOON, Dennis et al.:
“fTPM: A Software-Only Implementation of a TPM Chip”. In:
25th USENIX Security Symposium (USENIX Security 16). 2016,
pp. 841–856 (cit. on pp. 135, 145, 163–165, 246).

[Ram18] RAMACHANDRAN, Aravind and KANTARCIOGLU, Murat: “Smart-
provenance: A Distributed, Blockchain Based Dataprovenance
System”. In: Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy. 2018, pp. 35–42 (cit. on
p. 52).

[Rao22] RAO, Anil: Rising to the Challenge - Data Security with Intel
Confidential Computing. Jan. 20, 2022. URL: https://community.
intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-
to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141 (visited on 11/06/2023) (cit. on p. 40).

[Res18] RESCORLA, Eric: The Transport Layer Security (TLS) Protocol
Version 1.3. Aug. 2018. URL: https://datatracker.ietf.org/doc/
html/rfc8446.html (visited on 06/23/2023) (cit. on p. 122).

318

https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://datatracker.ietf.org/doc/html/rfc8446.html
https://datatracker.ietf.org/doc/html/rfc8446.html

Bibliography

[Rie07] RIES, Sebastian: “Certain Trust: A Trust Model for Users and
Agents”. In: Proceedings of the 2007 ACM Symposium on Applied
Computing. 2007, pp. 1599–1604 (cit. on p. 249).

[Rie08a] RIES, Sebastian and HEINEMANN, Andreas: “Analyzing the
Robustness of CertainTrust”. In: Trust Management II. Ed. by
KARABULUT, Yücel; MITCHELL, John; HERRMANN, Peter and
JENSEN, Christian Damsgaard. Vol. 263. Boston, MA: Springer
US, 2008, pp. 51–67. DOI: 10.1007/978-0-387-09428-1_4 (cit. on
p. 240).

[Rie08b] RIES, Sebastian and SCHREIBER, Daniel: “Evaluating User Rep-
resentations for the Trustworthiness of Interaction Partners”.
In: ReColl Workshop at IUI. Vol. 8. 2008. URL: https://fileserver.
tk.informatik.tu-darmstadt.de/Publications/2008/ReColl(final)
.pdf (visited on 09/26/2023) (cit. on p. 239).

[Rie09] RIES, Sebastian: “Extending Bayesian Trust Models Regarding
Context-Dependence and User Friendly Representation”. In:
Proceedings of the 2009 ACM Symposium on Applied Computing.
2009, pp. 1294–1301 (cit. on p. 240).

[Rie11] RIES, Sebastian; HABIB, Sheikh Mahbub; MÜHLHÄUSER, Max
and VARADHARAJAN, Vijay: “Certainlogic: A Logic for Modeling
Trust and Uncertainty”. In: International Conference on Trust
and Trustworthy Computing. Springer. 2011, pp. 254–261 (cit. on
p. 240).

[Riz19] RIZOS, Athanasios; BASTOS, Daniel; SARACINO, Andrea and
MARTINELLI, Fabio: “Distributed UCON in CoAP and MQTT
Protocols”. In: Computer Security. Springer, 2019, pp. 35–52 (cit.
on p. 21).

[Roe22] ROEDER, Tom: A Formal Analysis of EKEP. 2022. URL: https :
//github.com/google/ekep-analysis/blob/main/README.md
(visited on 06/29/2023) (cit. on pp. 131, 149, 161, 245, 364–366).

319

https://doi.org/10.1007/978-0-387-09428-1_4
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2008/ReColl(final).pdf
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2008/ReColl(final).pdf
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2008/ReColl(final).pdf
https://github.com/google/ekep-analysis/blob/main/README.md
https://github.com/google/ekep-analysis/blob/main/README.md

Bibliography

[Row01] ROWE, Gene and WRIGHT, George: “Expert Opinions in Fore-
casting: The Role of the Delphi Technique”. In: Principles of
forecasting: A handbook for researchers and practitioners (2001),
pp. 125–144 (cit. on p. 232).

[Sah19] SAHOO, Satya S.; VALDEZ, Joshua; KIM, Matthew; RUESCHMAN,
Michael and REDLINE, Susan: “ProvCaRe: Characterizing Sci-
entific Reproducibility of Biomedical Research Studies Using
Semantic Provenance Metadata”. In: International journal of
medical informatics 121 (2019), pp. 10–18 (cit. on p. 28).

[Sai04] SAILER, Reiner; ZHANG, Xiaolan; JAEGER, Trent and VAN
DOORN, Leendert: “Design and Implementation of a TCG-based
Integrity Measurement Architecture.” In: USENIX Security
Symposium. Vol. 13. 2004, pp. 223–238 (cit. on pp. 110, 116).

[Sca18] SCARLATA, Vinnie; JOHNSON, Simon; BEANEY, James and ZMI-
JEWSKI, Piotr: “Supporting Third Party Attestation for Intel
SGX with Intel Data Center Attestation Primitives”. In: White
paper (2018). URL: https : / /www . intel . com/ content / dam/
develop/external/us/en/documents/intel- sgx- support- for-
third - party - attestation - 801017 .pdf (visited on 03/29/2023)
(cit. on p. 130).

[Sch11] SCHULZ, Steffen; SADEGHI, Ahmad-Reza and WACHSMANN,
Christian: “Short Paper: Lightweight Remote Attestation Us-
ing Physical Functions”. In: Proceedings of the Fourth ACM Con-
ference on Wireless Network Security. 2011, pp. 109–114 (cit. on
p. 47).

[Sch16] SCHEAR, Nabil; CABLE, Patrick T.; MOYER, Thomas M.;
RICHARD, Bryan and RUDD, Robert: “Bootstrapping and
Maintaining Trust in the Cloud”. In: Proceedings of the 32Nd
Annual Conference on Computer Security Applications. 2016,
pp. 65–77 (cit. on p. 73).

[Sch17] SCHWARZ, Michael; WEISER, Samuel; GRUSS, Daniel; MAURICE,
Clémentine and MANGARD, Stefan: “Malware Guard Extension:

320

https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf

Bibliography

Using SGX to Conceal Cache Attacks”. In: International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer. 2017, pp. 3–24 (cit. on p. 243).

[Sch18a] SCHÜTTE, Julian; BROST, Gerd and WESSEL, Sascha: “Der
Trusted Connector im Industrial Data Space”. 2018. arXiv:
1804.09442 (cit. on pp. 3, 7, 27).

[Sch18b] SCHÜTTE, Julian and BROST, Gerd Stefan: “LUCON: Data Flow
Control for Message-Based IoT Systems”. In: 2018 17th IEEE In-
ternational Conference on Trust, Security and Privacy in Comput-
ing and Communications/12th IEEE International Conference on
Big Data Science and Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 289–299 (cit. on p. 27).

[Sch22] SCHNEIDER, Moritz; MASTI, Ramya Jayaram; SHINDE, Shweta;
CAPKUN, Srdjan and PEREZ, Ronald: “Sok: Hardware-supported
Trusted Execution Environments”. 2022. arXiv: 2205.12742 (cit.
on pp. 8, 33, 38).

[Seg16] SEGALL, Ariel: Trusted Platform Modules: Why, When and
How to Use Them. IET, 2016 (cit. on pp. 108, 114, 121, 183).

[Seo17] SEO, Jaebaek; LEE, Byoungyoung; KIM, Seong Min; SHIH, Ming-
Wei; SHIN, Insik; HAN, Dongsu and KIM, Taesoo: “SGX-Shield:
Enabling Address Space Layout Randomization for SGX Pro-
grams.” In: NDSS. 2017. URL: https://gts3.org/assets/papers/
2017/seo:sgx-shield.pdf (visited on 10/01/2023) (cit. on p. 245).

[Ses04] SESHADRI, Arvind; PERRIG, Adrian; VAN DOORN, Leendert and
KHOSLA, Pradeep: “SWATT: Software-based Attestation for
Embedded Devices”. In: IEEE Symposium on Security and Pri-
vacy. IEEE, 2004, pp. 272–282 (cit. on p. 47).

[She17] SHEPHERD, Carlton; AKRAM, Raja Naeem and MARKANTONAKIS,
Konstantinos: “Establishing Mutually Trusted Channels for Re-
mote Sensing Devices with Trusted Execution Environments”.
In: Proceedings of the 12th International Conference on Avail-
ability, Reliability and Security. 2017, pp. 1–10 (cit. on pp. 146,
147).

321

https://arxiv.org/abs/1804.09442
https://arxiv.org/abs/2205.12742
https://gts3.org/assets/papers/2017/seo:sgx-shield.pdf
https://gts3.org/assets/papers/2017/seo:sgx-shield.pdf

Bibliography

[She21] SHEPHERD, Carlton; MARKANTONAKIS, Konstantinos and
JALOYAN, Georges-Axel: “LIRA-V: Lightweight Remote Attes-
tation for Constrained RISC-V Devices”. In: 2021 IEEE Security
and Privacy Workshops (SPW). IEEE, 2021, pp. 221–227 (cit. on
p. 44).

[Shi17] SHIH, Ming-Wei; LEE, Sangho; KIM, Taesoo and PEINADO, Mar-
cus: “T-SGX: Eradicating Controlled-Channel Attacks Against
Enclave Programs.” In: NDSS. 2017. URL: https : / /www.ndss-
symposium.org/wp-content/uploads/2017/09/ndss2017_07-
2_Shih_paper.pdf (visited on 10/01/2023) (cit. on p. 245).

[Sig19] SIGWART, Marten; BORKOWSKI, Michael; PEISE, Marco;
SCHULTE, Stefan and TAI, Stefan: “Blockchain-Based Data
Provenance for the Internet of Things”. In: Proceedings of the
9th International Conference on the Internet of Things. 2019,
pp. 1–8 (cit. on p. 52).

[Son22] SONG, Liantao; DING, Yan; DONG, Pan; GUO, Yong and WANG,
Chuang: “TZ-IMA: Supporting Integrity Measurement for Ap-
plications with ARM TrustZone”. In: International Conference
on Information and Communications Security. Springer, 2022,
pp. 342–358 (cit. on p. 141).

[Sou19] SOUZA, Renan; AZEVEDO, Leonardo; LOURENÇO, Vítor; SOARES,
Elton; THIAGO, Raphael; BRANDAO, Rafael; CIVITARESE, Daniel;
BRAZIL, Emilio; MORENO, Marcio and VALDURIEZ, Patrick:
“Provenance Data in the Machine Learning Lifecycle in
Computational Science and Engineering”. In: 2019 IEEE/ACM
Workflows in Support of Large-Scale Science (WORKS). IEEE,
2019, pp. 1–10 (cit. on p. 28).

[Ste00] STEPHENSON, Todd Andrew: An Introduction to Bayesian Net-
work Theory and Usage. Idiap, 2000. URL: https://infoscience.
epfl.ch/record/82584 (visited on 09/23/2023) (cit. on p. 233).

[Ste19] STEINBUSS, Sebastian: Framework for the IDS Certification
Scheme. Whitepaper Version 2. International Data Spaces As-
sociation, 2019. URL: https : / / internationaldataspaces . org /

322

https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_07-2_Shih_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_07-2_Shih_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_07-2_Shih_paper.pdf
https://infoscience.epfl.ch/record/82584
https://infoscience.epfl.ch/record/82584
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-certification-scheme-V.2.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-certification-scheme-V.2.pdf

Bibliography

wp- content / uploads / dlm_uploads / IDSA-White - Paper -
certification- scheme-V.2.pdf (visited on 04/09/2023) (cit. on
p. 50).

[Ste21] STEINBUSS, Sebastian: Usage Control in the International Data
Spaces. International Data Spaces Association, 2021. URL: https:
/ / internationaldataspaces . org /wp- content /uploads /dlm_
uploads/IDSA-Position-Paper-Usage-Control- in- the- IDS-
V3..pdf (visited on 08/11/2022) (cit. on pp. 5, 6, 26, 28).

[Str14] STRACKX, Raoul; JACOBS, Bart and PIESSENS, Frank: “ICE: A
Passive, High-Speed, State-Continuity Scheme”. In: Proceedings
of the 30th Annual Computer Security Applications Conference.
2014, pp. 106–115 (cit. on pp. 109, 128).

[Str16] STRACKX, Raoul and PIESSENS, Frank: “Ariadne: A Minimal
Approach to State Continuity”. In: USENIX Security. Vol. 16.
2016 (cit. on pp. 109, 128).

[Stu06] STUMPF, Frederic; TAFRESCHI, Omid; RÖDER, Patrick; ECKERT,
Claudia et al.: “A Robust Integrity Reporting Protocol for Re-
mote Attestation”. In: Proceedings of the Workshop on Advances
in Trusted Computing (WATC). 2006, p. 65 (cit. on pp. 110, 113,
114, 116, 123).

[Stu08] STUMPF, Frederic; FUCHS, Andreas; KATZENBEISSER, Stefan and
ECKERT, Claudia: “Improving the Scalability of Platform At-
testation”. In: Proceedings of the 3rd ACM Workshop on Scalable
Trusted Computing. 2008, pp. 1–10 (cit. on pp. 110, 113, 114, 116,
123).

[Tah15] TAHA, Mohammad M. Bany; CHAISIRI, Sivadon and KO, Ryan
KL: “Trusted Tamper-Evident Data Provenance”. In: 2015 IEEE
Trustcom/Bigdatase/Ispa. Vol. 1. IEEE, 2015, pp. 646–653 (cit. on
p. 55).

[Tan19] TANK, Darshan; AGGARWAL, Akshai and CHAUBEY, Nirbhay:
“Virtualization Vulnerabilities, Security Issues, and Solutions:
A Critical Study and Comparison”. In: International Journal of
Information Technology (2019), pp. 1–16 (cit. on p. 32).

323

https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-certification-scheme-V.2.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-certification-scheme-V.2.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-White-Paper-certification-scheme-V.2.pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3..pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3..pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3..pdf
https://internationaldataspaces.org/wp-content/uploads/dlm_uploads/IDSA-Position-Paper-Usage-Control-in-the-IDS-V3..pdf

Bibliography

[Tao21] TAO, Zhe; RASTOGI, Aseem; GUPTA, Naman; VASWANI, Kapil
and THAKUR, Aditya V.: “DICE*: A Formally Verified Imple-
mentation of DICE Measured Boot.” In: USENIX Security Sym-
posium. 2021, pp. 1091–1107 (cit. on p. 286).

[Tar22] TARDIEU, Hubert: “Role of Gaia-X in the European Data Space
Ecosystem”. In: Designing Data Spaces: The Ecosystem Approach
to Competitive Advantage. Springer International Publishing
Cham, 2022, pp. 41–59 (cit. on p. 3).

[Ten14] TEN HOMPEL, Michael and HENKE, Michael: “Logistik 4.0”. In:
Industrie 4.0 in Produktion, Automatisierung und Logistik: An-
wendung· Technologien· Migration. Springer, 2014, pp. 615–624
(cit. on p. 2).

[Tho17] THOBEN, Klaus-Dieter; WIESNER, Stefan and WUEST, Thorsten:
“Industrie 4.0 and Smart Manufacturing - A Review of Re-
search Issues and Application Examples”. In: International jour-
nal of automation technology 11.1 (2017), pp. 4–16 (cit. on p. 2).

[Tre17] TRENKLE, Andreas and FURMANS, Kai: “Der Mensch als Teil von
Industrie 4.0: Interaktionsmechanismen bei autonomen Ma-
terialflusssystemen”. In: Handbuch Industrie 4.0 Bd. 3: Logistik
(2017), pp. 45–59 (cit. on p. 2).

[Tru16a] TRUONG, Nguyen B.; CAO, Quyet H.; UM, Tai-Won and LEE,
Gyu Myoung: “Leverage a Trust Service Platform for Data
Usage Control in Smart City”. In: 2016 IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 2016, pp. 1–7 (cit. on
pp. 51, 214).

[Tru16b] TRUSTED COMPUTING GROUP: TCG EFI Protocol Spec-
ification. Revision 00.13. Mar. 30, 2016. URL: https : / /
trustedcomputinggroup . org / wp - content / uploads / EFI -
Protocol - Specification - rev13 - 160330final . pdf (visited on
07/09/2023) (cit. on pp. 140, 141).

324

https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf

Bibliography

[Tru19a] TRUSTED COMPUTING GROUP: TCG Trusted Attestation Pro-
tocol (TAP) Information Model for TPM Families 1.2 and 2.0
and DICE Family 1.0. Revision 0.36. Sept. 3, 2019. URL: https :
/ / trustedcomputinggroup.org/wp- content/uploads/TNC_
TAP_Information_Model_v1.00_r0.36-FINAL.pdf (visited on
03/28/2023) (cit. on p. 109).

[Tru19b] TRUSTED COMPUTING GROUP: Trusted Platform Module Library
Part 1: Architecture. Revision 01.59. Nov. 8, 2019. URL: https://
trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part1_Architecture_pub .pdf (visited on 03/28/2023)
(cit. on pp. 32–35, 119).

[Tru19c] TRUSTED COMPUTING GROUP: Trusted Platform Module Library
Part 2: Structures. Revision 01.59. Nov. 8, 2019. URL: https : / /
trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part2_Structures_pub.pdf (visited on 03/28/2023) (cit. on
pp. 106, 117–119).

[Tru19d] TRUSTED COMPUTING GROUP: Trusted Platform Module Library
Part 3: Commands. Revision 01.59. Nov. 8, 2019. URL: https://
trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_
r1p59_Part3_Commands_pub.pdf (visited on 03/28/2023) (cit.
on pp. 106, 117, 118, 166).

[Tru20] TRUSTED COMPUTING GROUP: TCG PC Client Platform TPM
Profile Specification for TPM 2.0. Revision 14. Sept. 4, 2020.
URL: https://trustedcomputinggroup.org/wp-content/uploads/
PC-Client- Specific- Platform-TPM-Profile- for- TPM- 2p0-
v1p05p_r14_pub.pdf (visited on 07/09/2023) (cit. on pp. 123,
156).

[Tru21a] TRUSTED COMPUTING GROUP: TCG PC Client Platform
Firmware Profile Specification. Revision 23. May 7, 2021. URL:
https://trustedcomputinggroup.org/wp-content/uploads/TCG_
PCClient_PFP_r1p05_v23_pub .pdf (visited on 07/10/2023)
(cit. on p. 141).

325

https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_Information_Model_v1.00_r0.36-FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_Information_Model_v1.00_r0.36-FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_Information_Model_v1.00_r0.36-FINAL.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/PC-Client-Specific-Platform-TPM-Profile-for-TPM-2p0-v1p05p_r14_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_PFP_r1p05_v23_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_PFP_r1p05_v23_pub.pdf

Bibliography

[Tru21b] TRUSTED COMPUTING GROUP: TPM 2.0 Keys for Device Iden-
tity and Attestation. Revision 12. Oct. 8, 2021. URL: https : / /
trustedcomputinggroup . org /wp - content / uploads / TPM-
2p0- Keys- for -Device- Identity- and-Attestation_v1_r12_
pub10082021.pdf (visited on 06/26/2023) (cit. on p. 117).

[Tsu20] TSUTSUMI, Daisuke; GYULAI, Dávid; TAKÁCS, Emma;
BERGMANN, Júlia; NONAKA, Youichi and FUJITA, Kikuo:
“Personalized Work Instruction System for Revitalizing
Human-Machine Interaction”. In: Procedia CIRP 93 (2020),
pp. 1145–1150 (cit. on p. 251).

[Ujc18] UJCICH, Benjamin E.; BATES, Adam and SANDERS, William H.:
“A Provenance Model for the European Union General Data
Protection Regulation”. In: International Provenance and An-
notation Workshop. Springer, 2018, pp. 45–57 (cit. on pp. 6, 28,
30).

[Usl22] USLÄNDER, Thomas and TEUSCHER, Andreas: “Industrial Data
Spaces”. In: Designing Data Spaces (2022), p. 313 (cit. on p. 4).

[Van17a] VAN BULCK, Jo; PIESSENS, Frank and STRACKX, Raoul: “SGX-
Step: A Practical Attack Framework for Precise Enclave Exe-
cution Control”. In: Proceedings of the 2nd Workshop on System
Software for Trusted Execution. SOSP ’17: ACM SIGOPS 26th
Symposium on Operating Systems Principles. Shanghai China:
ACM, Oct. 28, 2017, pp. 1–6. DOI: 10.1145/3152701.3152706 (cit.
on p. 244).

[Van17b] VAN BULCK, Jo; WEICHBRODT, Nico; KAPITZA, Rüdiger;
PIESSENS, Frank and STRACKX, Raoul: “Telling Your Secrets
without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution”. In: 26th USENIX Security Symposium
(USENIX Security 17). 2017, pp. 1041–1056 (cit. on p. 244).

[Van18] VAN BULCK, Jo; MINKIN, Marina; WEISSE, Ofir; GENKIN, Daniel;
KASIKCI, Baris; PIESSENS, Frank; SILBERSTEIN, Mark; WENISCH,
Thomas F; YAROM, Yuval and STRACKX, Raoul: “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient

326

https://trustedcomputinggroup.org/wp-content/uploads/TPM-2p0-Keys-for-Device-Identity-and-Attestation_v1_r12_pub10082021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2p0-Keys-for-Device-Identity-and-Attestation_v1_r12_pub10082021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2p0-Keys-for-Device-Identity-and-Attestation_v1_r12_pub10082021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2p0-Keys-for-Device-Identity-and-Attestation_v1_r12_pub10082021.pdf
https://doi.org/10.1145/3152701.3152706

Bibliography

out-of-Order Execution”. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018, pp. 991–1008 (cit. on p. 244).

[Wag18a] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jürgen:
“Distributed Usage Control Enforcement through Trusted Plat-
form Modules and SGX Enclaves”. In: Proceedings of the 23nd
ACM on Symposium on Access Control Models and Technologies,
SACMAT 2018, Indianapolis, IN, USA, June 13-15, 2018. Associ-
ation for Computing Machinery (ACM), 2018, pp. 85–91. DOI:
10.1145/3205977.3205990 (cit. on p. 103).

[Wag18b] WAGNER, Steffen: “Implicit Remote Attestation for Microkernel-
Based Embedded Systems”. Technische Universität München,
2018 (cit. on pp. 32, 33, 37).

[Wag19a] WAGNER, Paul Georg: “Towards a Formal Model for Quantify-
ing Trust in Distributed Usage Control Systems”. In: Proceed-
ings of the 2019 Joint Workshop of Fraunhofer IOSB and Institute
for Anthropomatics, Vision and Fusion Laboratory. Vol. 45. Karl-
sruher Schriften Zur Anthropomatik. KIT Scientific Publishing,
2019, pp. 113–131 (cit. on p. 210).

[Wag19b] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jürgen:
“Challenges of Using Trusted Computing for Collaborative
Data Processing”. In: Security and Trust Management. Ed. by
MAUW, Sjouke and CONTI, Mauro. Cham: Springer Interna-
tional Publishing, 2019, pp. 107–123. DOI: 10.1007/978-3-030-
31511-5_7 (cit. on pp. 7, 49).

[Wag20] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jür-
gen: “Establishing Secure Communication Channels Using
Remote Attestation with TPM 2.0”. In: Security and Trust Man-
agement. Ed. by MARKANTONAKIS, Kostantinos and PETROC-
CHI, Marinella. Cham: Springer International Publishing, 2020,
pp. 73–89. DOI: 10.1007/978-3-030-59817-4_5 (cit. on pp. 7, 103,
105).

327

https://doi.org/10.1145/3205977.3205990
https://doi.org/10.1007/978-3-030-31511-5_7
https://doi.org/10.1007/978-3-030-31511-5_7
https://doi.org/10.1007/978-3-030-59817-4_5

Bibliography

[Wag21a] WAGNER, Paul Georg: “Classifying Usage Control and Data
Provenance Architectures”. In: Proceedings of the 2020 Joint
Workshop of Fraunhofer IOSB and Institute for Anthropomatics,
Vision and Fusion Laboratory. Vol. 51. Karlsruher Schriften Zur
Anthropomatik. KIT Scientific Publishing, 2021, pp. 135–154
(cit. on p. 49).

[Wag21b] WAGNER, Paul Georg; LENGENFELDER, Christian; HOLZBACH,
Gerrit; BECKER, Maximilian; BIRNSTILL, Pascal; VOIT, Michael;
BEJHAD, Ali; SAMOREI, Tim and BEYERER, Jürgen: “Secure and
Privacy-Respecting Documentation for Interactive Manufactur-
ing and Quality Assurance”. In: Applied Sciences 11.16 (2021),
Art.–Nr.: 7339. DOI: 10 . 3390 /app11167339 (cit. on pp. 4, 251,
252).

[Wag22a] WAGNER, Paul Georg: “Conceptualization of a Trust Dashboard
for Distributed Usage Control Systems”. In: Proceedings of the
2021 Joint Workshop of Fraunhofer IOSB and Institute for An-
thropomatics, Vision and Fusion Laboratory. Vol. 54. Karlsruher
Schriften Zur Anthropomatik. KIT Scientific Publishing, 2022,
pp. 169–188 (cit. on p. 210).

[Wag22b] WAGNER, Paul Georg and BEYERER, Jürgen: “Quantifying Trust-
worthiness in Decentralized Trusted Applications”. In: Pro-
ceedings of the 2022 ACM Workshop on Secure and Trustworthy
Cyber-Physical Systems (Sat-CPS’22). Association for Comput-
ing Machinery (ACM), 2022, pp. 67–76. DOI: 10.1145/3510547.
3517930 (cit. on pp. 210, 214, 220).

[Wag22c] WAGNER, Paul Georg and BEYERER, Jürgen: “Towards Hetero-
geneous Remote Attestation Protocols”. In: Proceedings of the
19th International Conference on Security and Cryptography,
SECRYPT 2022, Lisbon, Portugal, 11th - 13th July 2022. Vol. 1.
SciTePress, 2022, pp. 586–591. DOI: 10.5220/0011289000003283
(cit. on p. 103).

[Wal22] WALTHER, Robert; WEINHOLD, Carsten and ROITZSCH, Michael:
“RATLS: Integrating Transport Layer Security with Remote

328

https://doi.org/10.3390/app11167339
https://doi.org/10.1145/3510547.3517930
https://doi.org/10.1145/3510547.3517930
https://doi.org/10.5220/0011289000003283

Bibliography

Attestation”. In: Applied Cryptography and Network Security
Workshops: ACNS 2022 Satellite Workshops, AIBlock, AIHWS,
AIoTS, CIMSS, Cloud S&P, SCI, SecMT, SiMLA, Rome, Italy, June
20–23, 2022, Proceedings. Springer, 2022, pp. 361–379 (cit. on
pp. 112, 113, 116).

[Wan17] WANG, Wenhao; CHEN, Guoxing; PAN, Xiaorui; ZHANG, Yin-
qian; WANG, XiaoFeng; BINDSCHAEDLER, Vincent; TANG, Haixu
and GUNTER, Carl A.: “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. ACM, Oct. 30, 2017,
pp. 2421–2434. DOI: 10.1145/3133956.3134038 (cit. on p. 244).

[Wan20] WANG, Ziwang; ZHUANG, Yi and YAN, Zujia: “TZ-MRAS: A Re-
mote Attestation Scheme for the Mobile Terminal Based on
ARM TrustZone”. In: Security and Communication Networks
2020 (2020) (cit. on pp. 46, 48, 146, 147).

[Wat17] WATERMAN, Andrew and ASANOVIĆ, Krste: The RISC-V Instruc-
tion Set Manual Volume II: Privileged Architecture. Version
1.10. May 7, 2017. URL: https://riscv.org/wp-content/uploads/
2017/05/riscv- privileged- v1 .10 .pdf (visited on 04/01/2023)
(cit. on p. 43).

[Wei18] WEISSE, Ofir; BULCK, Jo Van; MINKIN, Marina; GENKIN, Daniel;
KASIKCI, Baris; PIESSENS, Frank; SILBERSTEIN, Mark; STRACKX,
Raoul; WENISCH, Thomas F and YAROM, Yuval: Foreshadow-
NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. Revision 1.0. Aug. 14, 2018. URL: https:
/ / foreshadowattack . eu / foreshadow - NG . pdf (visited on
10/01/2023) (cit. on p. 245).

[Wei19] WEISER, Samuel; WERNER, Mario; BRASSER, Ferdinand;
MALENKO, Maja; MANGARD, Stefan and SADEGHI, Ahmad-Reza:
“Timber-V: Tag-isolated Memory Bringing Fine-Grained
Enclaves to RISC-V”. In: NDSS. 2019 (cit. on p. 44).

329

https://doi.org/10.1145/3133956.3134038
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf

Bibliography

[Wer22] WERDER, Karl; RAMESH, Balasubramaniam and ZHANG, Ron-
gen: “Establishing Data Provenance for Responsible Artificial
Intelligence Systems”. In: ACM Transactions on Management
Information Systems (TMIS) 13.2 (2022), pp. 1–23 (cit. on p. 28).

[Win21] WINKLER, Dietmar; KOROBEINYKOV, Alexander; NOVÁK, Petr;
LÜDER, Arndt and BIFFL, Stefan: “Big Data Needs and Chal-
lenges in Smart Manufacturing: An Industry-Academia Sur-
vey”. In: 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2021, pp. 1–
8 (cit. on pp. 1, 251).

[Won17] WONG, Kok-Seng and KIM, Myung Ho: “Privacy Protection for
Data-Driven Smart Manufacturing Systems”. In: International
Journal of Web Services Research (IJWSR) 14.3 (2017), pp. 17–32
(cit. on p. 252).

[Wüc12] WÜCHNER, Tobias and PRETSCHNER, Alexander: “Data Loss
Prevention Based on Data-Driven Usage Control”. In: 2012 IEEE
23rd International Symposium on Software Reliability Engineer-
ing. IEEE, 2012, pp. 151–160 (cit. on p. 25).

[Xu15] XU, Yuanzhong; CUI, Weidong and PEINADO, Marcus:
“Controlled-Channel Attacks: Deterministic Side Channels for
Untrusted Operating Systems”. In: 2015 IEEE Symposium on
Security and Privacy. IEEE, 2015, pp. 640–656 (cit. on p. 244).

[Yan09] YANG, Li and CEMERLIC, Alma: “Integrating Dirichlet Repu-
tation into Usage Control”. In: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Re-
search: Cyber Security and Information Intelligence Challenges
and Strategies. 2009, pp. 1–4 (cit. on pp. 51, 212, 214).

[Yan20] YAN, Zheng; GOVINDARAJU, Venu; ZHENG, Qinghua and WANG,
Yan: “IEEE Access Special Section Editorial: Trusted Comput-
ing”. In: IEEE Access 8 (2020), pp. 25722–25726 (cit. on p. 7).

330

Bibliography

[Yav22] YAVUZ, Tuba; FOWZE, Farhaan; HERNANDEZ, Grant; BAI, Ken Yi-
hang; BUTLER, Kevin RB and TIAN, Dave Jing: “ENCIDER: De-
tecting Timing and Cache Side Channels in SGX Enclaves and
Cryptographic APIs”. In: IEEE Transactions on Dependable and
Secure Computing 20.2 (2022), pp. 1577–1595 (cit. on p. 245).

[Yoo22] YOON, HanJae and LEE, ManHee: “SGXDump: A Repeatable
Code-Reuse Attack for Extracting SGX Enclave Memory”. In:
Applied Sciences 12.15 (2022), p. 7655 (cit. on pp. 244, 245).

[Zaf17] ZAFAR, Faheem; KHAN, Abid; SUHAIL, Saba; AHMED, Idrees;
HAMEED, Khizar; KHAN, Hayat Mohammad; JABEEN, Farhana
and ANJUM, Adeel: “Trustworthy Data: A Survey, Taxonomy
and Future Trends of Secure Provenance Schemes”. In: Journal
of network and computer applications 94 (2017), pp. 50–68 (cit.
on pp. 5, 31).

[Zha08] ZHANG, Xinwen; SEIFERT, Jean-Pierre and SANDHU, Ravi: “Se-
curity Enforcement Model for Distributed Usage Control”. In:
2008 IEEE International Conference on Sensor Networks, Ubiq-
uitous, and Trustworthy Computing (Sutc 2008). IEEE. 2008,
pp. 10–18 (cit. on pp. 7, 53, 65).

[Zho10] ZHOU, Lingli and ZHANG, Zhenfeng: “Trusted Channels with
Password-Based Authentication and TPM-based Attestation”.
In: 2010 International Conference on Communications and Mo-
bile Computing. Vol. 1. IEEE. 2010, pp. 223–227 (cit. on pp. 112–
114, 116).

331

Own Publications

This section includes a complete list of all own publications. Relating to the
research contributions presented in this dissertation, the publications [9] and
[11] deal with challenges and security requirements of distributed usage con-
trol systems. The publications [7], [10], and [15] contain previous work con-
cerning remote attestation protocols and trusted computing technologies. Fi-
nally, the publications [8], [13], and [14] provide preparatory work regarding
the trustworthiness estimation of distributed usage control systems. The re-
maining publications only superficially pertain to the thesis at hand.

[1] PICKHARDT, Rene; GOTTRON, Thomas; KÖRNER, Martin; WAGNER,
Paul Georg; SPEICHER, Till and STAAB, Steffen: “A Generalized Lan-
guage Model as the Combination of Skipped N-Grams and Modified
Kneser-Ney Smoothing”. 2014. arXiv: 1404.3377.

[2] WAGNER, Paul Georg; BIRNSTILL, Pascal; KREMPEL, Erik; BRET-
THAUER, Sebastian and BEYERER, Jürgen: “Privacy-Dashcam –
Datenschutzfreundliche Dashcams durch Erzwingen externer
Anonymisierung”. In: Lecture Notes in Informatics (LNI). Informatik
2016. Klagenfurt, Austria: Gesellschaft für Informatik e.V. (GI), 2016,
pp. 427–440.

[3] WAGNER, Paul; BIRNSTILL, Pascal; KREMPEL, Erik; BRETTHAUER, Se-
bastian and BEYERER, Jürgen: “Privacy Dashcam – Towards Lawful
Use of Dashcams Through Enforcement of External Anonymiza-
tion”. In: Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Ed. by GARCIA-ALFARO, Joaquin; NAVARRO-ARRIBAS,
Guillermo; HARTENSTEIN, Hannes and HERRERA-JOANCOMARTÍ,
Jordi. Cham: Springer International Publishing, 2017, pp. 183–201.
DOI: 10.1007/978-3-319-67816-0_11.

333

https://arxiv.org/abs/1404.3377
https://doi.org/10.1007/978-3-319-67816-0_11

Own Publications

[4] WAGNER, Paul Georg; BIRNSTILL, Pascal; KREMPEL, Erik and BRET-
THAUER, Sebastian: “Auf dem Weg zu datenschutzfreundlichen Dash-
cams”. In: Datenschutz und Datensicherheit 41.3 (2017), pp. 159–164.

[5] BIRNSTILL, Pascal; BIER, Christoph; WAGNER, Paul and BEYERER,
Jürgen: “Generic Semantics Specification and Processing for Inter-
System Information Flow Tracking”. In: Computer and Network Se-
curity Essentials. Ed. by DAIMI, Kevin. Cham: Springer International
Publishing, 2018, pp. 445–460. DOI: 10.1007/978-3-319-58424-9_25.

[6] BIRNSTILL, Pascal; KREMPEL, Erik; WAGNER, Paul Georg and BEY-
ERER, Jürgen: “Identity Management and Protection Motivated by
the General Data Protection Regulation of the European Union - A
Conceptual Framework Based on State-of-the-Art Software Tech-
nologies”. In: Technologies 6.4 (2018), pp. 115/1–14. DOI: 10 . 3390 /
technologies6040115.

[7] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jürgen: “Dis-
tributed Usage Control Enforcement through Trusted Platform Mod-
ules and SGX Enclaves”. In: Proceedings of the 23nd ACM on Sym-
posium on Access Control Models and Technologies, SACMAT 2018,
Indianapolis, IN, USA, June 13-15, 2018. Association for Computing
Machinery (ACM), 2018, pp. 85–91. DOI: 10.1145/3205977.3205990.

[8] WAGNER, Paul Georg: “Towards a Formal Model for Quantifying
Trust in Distributed Usage Control Systems”. In: Proceedings of the
2019 Joint Workshop of Fraunhofer IOSB and Institute for Anthropo-
matics, Vision and Fusion Laboratory. Vol. 45. Karlsruher Schriften
Zur Anthropomatik. KIT Scientific Publishing, 2019, pp. 113–131.

[9] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jürgen: “Chal-
lenges of Using Trusted Computing for Collaborative Data Pro-
cessing”. In: Security and Trust Management. Ed. by MAUW, Sjouke
and CONTI, Mauro. Cham: Springer International Publishing, 2019,
pp. 107–123. DOI: 10.1007/978-3-030-31511-5_7.

[10] WAGNER, Paul Georg; BIRNSTILL, Pascal and BEYERER, Jürgen: “Es-
tablishing Secure Communication Channels Using Remote Attes-
tation with TPM 2.0”. In: Security and Trust Management. Ed. by

334

https://doi.org/10.1007/978-3-319-58424-9_25
https://doi.org/10.3390/technologies6040115
https://doi.org/10.3390/technologies6040115
https://doi.org/10.1145/3205977.3205990
https://doi.org/10.1007/978-3-030-31511-5_7

Own Publications

MARKANTONAKIS, Kostantinos and PETROCCHI, Marinella. Cham:
Springer International Publishing, 2020, pp. 73–89. DOI: 10.1007/978-
3-030-59817-4_5.

[11] WAGNER, Paul Georg: “Classifying Usage Control and Data Prove-
nance Architectures”. In: Proceedings of the 2020 Joint Workshop of
Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion
Laboratory. Vol. 51. Karlsruher Schriften Zur Anthropomatik. KIT
Scientific Publishing, 2021, pp. 135–154.

[12] WAGNER, Paul Georg; LENGENFELDER, Christian; HOLZBACH, Gerrit;
BECKER, Maximilian; BIRNSTILL, Pascal; VOIT, Michael; BEJHAD, Ali;
SAMOREI, Tim and BEYERER, Jürgen: “Secure and Privacy-Respecting
Documentation for Interactive Manufacturing and Quality Assur-
ance”. In: Applied Sciences 11.16 (2021), Art.–Nr.: 7339. DOI: 10.3390/
app11167339.

[13] WAGNER, Paul Georg: “Conceptualization of a Trust Dashboard for
Distributed Usage Control Systems”. In: Proceedings of the 2021 Joint
Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision
and Fusion Laboratory. Vol. 54. Karlsruher Schriften Zur Anthropo-
matik. KIT Scientific Publishing, 2022, pp. 169–188.

[14] WAGNER, Paul Georg and BEYERER, Jürgen: “Quantifying Trustwor-
thiness in Decentralized Trusted Applications”. In: Proceedings of
the 2022 ACM Workshop on Secure and Trustworthy Cyber-Physical
Systems (Sat-CPS’22). Association for Computing Machinery (ACM),
2022, pp. 67–76. DOI: 10.1145/3510547.3517930.

[15] WAGNER, Paul Georg and BEYERER, Jürgen: “Towards Heterogeneous
Remote Attestation Protocols”. In: Proceedings of the 19th Interna-
tional Conference on Security and Cryptography, SECRYPT 2022, Lis-
bon, Portugal, 11th - 13th July 2022. Vol. 1. SciTePress, 2022, pp. 586–
591. DOI: 10.5220/0011289000003283.

335

https://doi.org/10.1007/978-3-030-59817-4_5
https://doi.org/10.1007/978-3-030-59817-4_5
https://doi.org/10.3390/app11167339
https://doi.org/10.3390/app11167339
https://doi.org/10.1145/3510547.3517930
https://doi.org/10.5220/0011289000003283

Supervised Student Theses

This section includes a complete list of all student theses supervised during the
course of this dissertation. Of those, [2] and [5] deal with conducting integrity
measurements on ARM TrustZone platforms. Furthermore, [4] is concerned
with the application of distributed usage control in cloud environments, while
[3], [7], and [10] examine remote attestation techniques. The remainingworks
only superficially pertain to the dissertation at hand.

[1] SAMOREI, Tim Philipp: “SCrypt – SmartCard-Emulation und
PKCS11-Schnittstelle für NFC-fähige Smartphones”. Bachelor’s
Thesis. Karlsruhe Institute of Technology (KIT), 2019.

[2] HARTSTERN, Daniel: “RAffT: A Remote Attestation Library for
Firmware-level Trusted Platform Modules”. Bachelor’s Thesis.
Karlsruhe Institute of Technology (KIT), 2020.

[3] NASEBAND, Clemens: “TPM-basierte Remote Attestation eines
Videodokumentationssystems über NFC”. Bachelor’s Thesis. Karl-
sruhe Institute of Technology (KIT), 2020.

[4] SCHULER, Nicolas: “Verteilte Nutzungskontrolle und Provenance
Tracking am Beispiel von Cloud-Technologien”. Bachelor’s Thesis.
Karlsruhe Institute of Technology (KIT), 2020.

[5] AMBLANK, Roman: “Both-World Measured Boot Architecture on
Arm TrustZone Devices with Firmware-TPMs”. Bachelor’s Thesis.
Karlsruhe Institute of Technology (KIT), 2021.

[6] RIEKERT, Thomas: “Datenschutzgerechte Dokumentation kritischer
Arbeitsschritte mit Intel SGX”. Bachelor’s Thesis. Karlsruhe Institute
of Technology (KIT), 2022.

337

Supervised Student Theses

[7] HEINE, Jonas: “Absicherung von erklärbarer künstlicher Intelligenz
durch TPM-basierte Attestierung”. Bachelor’s Thesis. Karlsruhe In-
stitute of Technology (KIT), 2023.

[8] KARA, Kerem: “Integrity Measurement for CI/CD Build Processes
Based on Trusted Platform Modules”. Bachelor’s Thesis. Karlsruhe
Institute of Technology (KIT), 2023.

[9] SAEED, Haris: “Development of a Trusted Continuous Integration
Infrastructure Based on Trusted Platform Module (TPM)”. Master’s
Thesis. University of Applied Sciences Karlsruhe (HKA), 2023.

[10] SAMOREI, Tim Philipp: “Integration von Remote Attestation in DDS
und ROS2 mittels Trusted Platform Modules”. Master’s Thesis. Karl-
sruhe Institute of Technology (KIT), 2024.

338

List of Figures

1.1 Concept of a decentralized data space 3
1.2 Research areas addressed in this thesis 11

2.1 The UCONABC usage control model 18
2.2 The principle of distributed usage control 19
2.3 An XACML-based usage control system architecture 21
2.4 Decentralized vs. cross-domain usage control 23
2.5 The PROV-DM data model 29
2.6 The TPM-based trusted boot process 37
2.7 The SGX enclave architecture 39
2.8 The SGX enclave measurement process 40
2.9 The ARM TrustZone architecture 42
2.10 The concept of remote attestation protocols 44

3.1 Remote attestation of a centralized usage control system . . 57
3.2 Remote attestation of a decentralized usage control

system . 58
3.3 Design of a trustworthy usage control and provenance

tracking system 60
3.4 Example of a distributed usage control system instantiation

with two usage control domains 62
3.5 Sequence diagram of a cross-domain policy deployment . . . 66
3.6 Sequence diagram of a domain-internal policy

deployment . 67
3.7 Sequence diagram of a policy enforcement 68
3.8 Sequence diagram of a policy revocation 69
3.9 Sequence diagram of a provenance collection 71

339

List of Figures

3.10 Sequence diagram of a transitive remote attestation during
policy deployment 74

3.11 Hierarchical PKI with two usage control domains 77
3.12 Sequence diagram of certificate provisioning and

component authentication 79
3.13 Trust dependencies between system components 85

4.1 Concepts of TPM-based remote attestation protocols 111
4.2 A nonce-data attack on IDSCP during usage control

enforcement . 114
4.3 Mean connection times for TPM-based remote attestation

protocols in milliseconds 124
4.4 TCBs of deployed usage control components 136
4.5 Measured Trusted Board Boot process using fTPM 139
4.6 Conducting load-time integrity measurements in OP-TEE . . 143
4.7 Complete chain of trust for both-world measurements on

TrustZone platforms 144
4.8 Mean TrustZone boot times in seconds using FVP with the

Armv8-A model 145
4.9 Overview of the EKEP protocol handshake 152
4.10 Heterogeneous remote attestation between TPMs and SGX

enclaves using EKEP 155
4.11 Mean connection times for TPM-, SGX-, and

TrustZone-based remote attestations in milliseconds 162
4.12 Mean connection times for heterogeneous remote

attestations in milliseconds 164

5.1 Overview of the DataSov framework architecture 172
5.2 Overview of the messages and service definitions

concerning usage control in the DataSov framework 174
5.3 Overview of the messages and service definitions

concerning provenance tracking in the DataSov
framework . 178

5.4 Screenshot of the DataSov provenance dashboard 180
5.5 Simplified version of the ODRL information model 194

340

List of Figures

5.6 The extended information model of the DataSov ODRL
profile . 205

5.7 Mean evaluation times of DataSov ODRL policies in
milliseconds . 207

6.1 Example of an instance graph with two system
participants . 216

6.2 An example application of the algorithm in listing 6.1 223
6.3 Screenshot of the DataSov trust dashboard 236
6.4 Policy visualization in the DataSov trust dashboard 238
6.5 Human-readable representation of degrees of belief after

Ries and Schreiber 239

7.1 Overview of the evaluation scenario 253
7.2 Deployment of the systems and usage control components

used in the evaluation 254
7.3 Mean provisioning times of DataSov components in

milliseconds . 260
7.4 Mean initial asset distribution and policy enforcement

times in milliseconds 262
7.5 Mean subsequent asset distribution and policy enforcement

times in milliseconds 263
7.6 Screenshot of the DataSov provenance dashboard in the

example scenario 265
7.7 Usage control operation graph for the policy enforced at

the optimization service in the customer’s domain 270
7.8 Screenshot of the DataSov trust dashboard showing the

original evaluation scenario 271
7.9 Screenshot of the DataSov trust dashboard showing the

evaluation scenario with reduced operator trust for the
producer’s PXP 273

7.10 Screenshot of the DataSov trust dashboard showing the
evaluation scenario using a TPM-protected PDP in the
customer’s domain 274

341

List of Figures

7.11 Screenshot of the DataSov trust dashboard showing the
evaluation scenario using a ProSP in the customer’s
domain for provenance tracking 276

7.12 Screenshot of the DataSov trust dashboard showing the
evaluation scenario with a missing attestation to the
customer’s PRP 278

B.1 Proof of the nonce-data attack on the IDSCP protocol using
Tamarin . 359

B.2 Verification of the MSCP protocol using Tamarin 364
B.3 Verification of the modified EKEP protocol including

TPM-based heterogeneous attestations using ProVerif 368

342

List of Tables

2.1 Comparison of usage control policy languages 27
2.2 Comparison of trusted computing technologies 48

3.1 Component-level protection goals 82
3.2 Summary of identified attack vectors and mitigations 97

4.1 Overview of TPM-based remote attestation protocols 116
4.2 The MSCP remote attestation protocol 117
4.3 MSCP variant with TPM-external key agreement 121
4.4 Overview of SGX-based remote attestation protocols 132
4.5 Overview of remote attestation protocols for TrustZone

devices . 147

6.1 Colored grading scale for the developed trustworthiness
score . 237

6.2 Mechanism trust estimations 𝑡𝑚(TPM, g, a) 243
6.3 Mechanism trust estimations 𝑡𝑚(SGX, g, a) 246
6.4 Mechanism trust estimations 𝑡𝑚(TZ, g, a) 247

7.1 Goal mapping used in the evaluation scenario 268

A.1 The IDSCP remote attestation protocol 351

343

Acronyms

ABAC Attribute-based Access Control

ACL Access Control List

AES Advanced Encryption Standard

AK Attestation Key

ALTS Application Layer Transport Security

API Application Programming Interface

CA Certification Authority

CCA Confidential Computing Architecture

CoT Chain of Trust

CPU Central Processing Unit

CRTM Core Root of Trust for Measurement

CSR Certificate Signing Request

DCAP Data Center Attestation Primitives

DHKE Diffie-Hellman Key Exchange

DICE Device Identifier Composition Engine

DRM Digital Rights Management

345

Acronyms

DSL Domain Specific Language

DUC Distributed Usage Control

ECA Event-Condition-Action

ECDH Elliptic Curve Diffie-Hellman

EKEP Enclave Key Exchange Protocol

eMMC Embedded Multi Media Card

EPID Enhanced Privacy ID

fTPM Firmware-Level Trusted Platform Module

HMAC Hash-based Message Authentication Code

HTTPS Hypertext Transfer Protocol Secure

IAS Intel Attestation Service

ID Identifier

IDS International Data Space

IDSCP International Data Space Communication Protocol

IMA Integrity Measurement Architecture

IoT Internet of Things

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

LUCON Logic-Based Usage Control

346

Acronyms

MSCP Mutually-Attested Secure Communication Protocol

M-Store Measurement Store

NIST National Institute of Standards and Technology

NV Storage Non-volatile Storage

OASIS Organization for the Advancement of Structured Information
Standards

ODRL Open Digital Rights Language

OS Operating System

OSL Obligation Specification Language

PAP Policy Administration Point

PCR Platform Configuration Register

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PKI Public Key Infrastructure

PMP Policy Management Point

ProDP Provenance Dissemination Point

ProSP Provenance Storage Point

PRP Policy Retrieval Point

PUF Physically Unclonable Function

PXP Policy Execution Point

RAT Remote Attestation

347

Acronyms

RBP Rollback Protection/Prevention

RDF Resource Description Framework

REE Rich Execution Environment

RPC Remote Procedure Call

RPMB Replay Protected Memory Block

RSA Rivest-Shamir-Adleman

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SDK Software Development Kit

SEV Secure Encrypted Virtualization

SGX Software Guard Extensions

SHA Secure Hash Algorithm

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SRK Storage Root Key

TA Trusted Application

TBB Trusted Board Boot

TCB Trusted Computing Base

TCG Trusted Computing Group

TDX Trust Domain Extensions

TEE Trusted Execution Environment

348

Acronyms

TLS Transport Layer Security

TOCTOU Time-of-Check Time-of-Use

TPM Trusted Platform Module

TTP Trusted Third Party

UC Usage Control

UEFI Unified Extensible Firmware Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UUID Universally Unique Identifier

VM Virtual Machine

W3C World Wide Web Consortium

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

349

A The IDSCP Handshake

Table A.1 summarizes the remote attestationmessages of an IDSCP handshake
between two TPM-protected platforms. A description of the complete IDSCP
protocol is given in [Bro22]. The implementation of the remote attestation
drivers for IDSCP are available on Github¹ under the Apache license.

Table A.1: The IDSCP remote attestation protocol.

TLS handshake
𝐴 ↔ 𝐵 ∶ Establish a TLS channel with certificates 𝑐𝑒𝑟𝑡𝐴 and 𝑐𝑒𝑟𝑡𝐵

Initiation phase
𝐴 → 𝐵 ∶ Non-predictable nonce 𝑁𝐴

𝐴 ← 𝐵 ∶ Non-predictable nonce 𝑁𝐵

Attestation phase
𝐴 ∶ (𝑞𝑢𝑜𝑡𝑒𝑑𝐴, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐴) ← TPM2_Quote(𝑎𝑘𝐴, SHA1(𝑁𝐵 ‖ 𝑐𝑒𝑟𝑡𝐵))
𝐴 → 𝐵 ∶ 𝑃𝐶𝑅𝐴, (𝑞𝑢𝑜𝑡𝑒𝑑𝐴, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐴), 𝑎𝑘𝐶𝑒𝑟𝑡𝐴

𝐵 ∶ (𝑞𝑢𝑜𝑡𝑒𝑑𝐵, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐵) ← TPM2_Quote(𝑎𝑘𝐵, SHA1(𝑁𝐴 ‖ 𝑐𝑒𝑟𝑡𝐴))
𝐴 ← 𝐵 ∶ 𝑃𝐶𝑅𝐵, (𝑞𝑢𝑜𝑡𝑒𝑑𝐵, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐵), 𝑎𝑘𝐶𝑒𝑟𝑡𝐵

Verification phase
𝐴 ∶ Verify (𝑞𝑢𝑜𝑡𝑒𝑑𝐵, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐵) is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐵
𝐴 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝑑𝐵 contains expected 𝑃𝐶𝑅𝐵 and SHA1(𝑁𝐴 ‖ 𝑐𝑒𝑟𝑡𝐴)

𝐵 ∶ Verify (𝑞𝑢𝑜𝑡𝑒𝑑𝐴, 𝑞𝑢𝑜𝑡𝑒𝑆𝑖𝑔𝐴) is valid under 𝑎𝑘𝐶𝑒𝑟𝑡𝐴
𝐵 ∶ Verify 𝑞𝑢𝑜𝑡𝑒𝑑𝐴 contains expected 𝑃𝐶𝑅𝐴 and SHA1(𝑁𝐵 ‖ 𝑐𝑒𝑟𝑡𝐵)

¹ https://github.com/industrial-data-space/idscp2-rat-drivers (accessed on 12/08/2023).

351

https://github.com/industrial-data-space/idscp2-rat-drivers

B Formal Protocol Verification

This chapter includes the formal models that we used to verify the attestation
protocols discussed in this thesis.

B.1 The IDSCP Protocol

Listing B.1 shows our formal model of the IDSCP protocol for the Tamarin
theorem prover. We model the IDSCP protocol handshake with a dedicated
Diffie-Hellman key exchange between two endpoints Alice and Bob. The key
exchange is performed by an (abstract) underlying TLS stack to achieve per-
fect forward secrecy. Our modeled theory proves that IDSCP is vulnerable
against nonce-data attacks if an attestation endpoint for the standard TCG
remote attestation protocol is present on one of the trusted platforms. We
model this quoting oracle with the TSS_Quote_TPMB rule.

Listing B.1: Formal model of the IDSCP attestation protocol in Tamarin.

1 theory IDSCP

2 begin

3

4 builtins: hashing , signing , diffie -hellman , symmetric -encryption

5

6 /* Our goal is to verify the security of the key exchange protocol under the assumption

7 * that the trusted platform is secure. This means that we assume the used attestation

8 * public keys to be known by Alice and Bob. Furthermore we assume that the attacker

9 * is unable to compromise an established attestation key or forge quote signatures. We

10 * model these assumptions by creating the attestation keys once for each platform.

11 *

12 * However , IDSCP is vulnerable against internal attackers who have knowledge about the

13 * platform secrets that are not bound to a TPM (in our case the TLS key). We model the

14 * administrator of Bob's system as an internal attacker by leaking Bob's TLS key.

15 */

353

B Formal Protocol Verification

16 // Define two TPMs (Alice and Bob)

17 rule TPM:

18 [] --> [TPM('A'), TPM('B')]

19

20 // Create a unique attestation key for each TPM

21 rule Get_ak:

22 [Fr(~ak), TPM(X)]

23 --[

24 OnlyOnceFor(<'Get_ak', X>)

25 , IsAK(X, ~ak)

26]->

27 [Ak(X, ~ak), !AkCert(X, pk(~ak))]

28

29 // Create a TLS signature key for each system

30 rule Get_tls:

31 [Fr(~tls), TPM(X)]

32 --[

33 OnlyOnceFor(<'Get_tls', X>)

34]->

35 [!Tls(X, ~tls), !TlsCert(X, pk(~tls))]

36

37 // The TLS public keys are known to any attacker

38 rule Tls_Certs_Are_Public:

39 [!TlsCert('A', tlsCertA), !TlsCert('B', tlsCertB)]

40 -->

41 [Out(tlsCertA), Out(tlsCertB)]

42

43 /* Since we need at least one honest player , we assume that the internal attacker knows

44 * Bob's TLS signature key. This models an internal attacker who knows Bob's secrets

45 * (for example the administrator of the system) and wants to intercept the messages

46 * between Alice and the (trusted) Bob on the attested secure channel. For this purpose ,

47 * rule BobIsAnInternalAttacker leaks Bob's TLS signature key.

48 */

49 rule BobIsAnInternalAttacker:

50 [!Tls('B', tlsB)] --> [Out(tlsB)]

51

52 /* Create quotes for Bob's trusted software stack (TSS). This rule models that there is

53 * some valid software on Bob's platform that acts as an attestation endpoint. It takes

54 * some qualifying data (e.g. a nonce) and asks the TPM to create a signed quote.

55 * Activating this rule will break the security of IDSCP!

56 */

57 rule TSS_Quote_TPMB:

58 [In(qualifyingData)

59 , Ak('B', ak)

60]-->

61 [Out(sign(<qualifyingData , 'PCRB'>, ak))]

62

63 // Step 1: Ephemeral DH key exchange during TLS handshake

64 rule tlsDHKE_A1:

65 [Fr(~a) // Choose fresh DH private key for Alice

66 , !Tls('A', tlsA) // Lookup Alice's TLS signature key

354

B.1 The IDSCP Protocol

67]--[

68 OnlyOnceFor('tlsDHKE_A1')

69]->

70 [Out(<'DHKE1', 'g'^~a, sign('g'^~a, tlsA)>)

71 , DHKE_A(~a) // Store Alice's DH private key

72]

73

74 rule tlsDHKE_B:

75 [In(<'DHKE1', dhPubA , sigA >)

76 , !TlsCert('A', tlsCertA) // Lookup Alice's TLS certificate

77 , Fr(~b) // Choose fresh DH private key for Bob

78 , !Tls('B', tlsB) // Lookup Bob's TLS signature key

79]--[

80 OnlyOnceFor('tlsDHKE_B')

81 , Neq(dhPubA , 'g') // Alice's public DH key must not be 'g'

82 , Eq(verify(sigA , dhPubA , tlsCertA), true) // Verify the DHKE signature

83 , EstablishedKey('B', dhPubA^~b) // Take note of Bob's established key

84]->

85 [Out(<'DHKE2', 'g'^~b, sign('g'^~b, tlsB)>)

86 , Tls_Finish('B') // Bob finished the TLS handshake and

87 // used tlsCertA for verification.

88 // This must later be included the quote.

89 , !Tls_Ephemeral_Key_B(dhPubA^~b)

90]

91

92 rule tlsDHKE_A2:

93 [In(<'DHKE2', dhPubB , sigB >)

94 , DHKE_A(~a)

95 , !TlsCert('B', tlsCertB) // Lookup Bob's TLS certificate

96]--[

97 OnlyOnceFor('tlsDHKE_A2')

98 , Neq(dhPubB , 'g') // Bob's public DH key must not be 'g'

99 , Eq(verify(sigB , dhPubB , tlsCertB), true) // Verify the DHKE signature

100 , EstablishedKey('A', dhPubB^~a) // Take note of Alice's established key

101]->

102 [Tls_Finish('A') // Alice finished the TLS handshake and

103 // used tlsCertB for verification.

104 // This must later be included the quote.

105 , !Tls_Ephemeral_Key_A(dhPubB^~a)

106]

107

108 /* So far only the authenticated Diffie -Hellman key exchange during the TLS handshake

109 * has been conducted. Now the remote attestation protocol that binds the TLS public

110 * keys to the TPM state starts.

111 */

112

113 // Step 2: IdscpRaVerifier messages

114 rule IdscpRaVerifier_A:

115 [Tls_Finish('A')

116 , !Tls_Ephemeral_Key_A(key)

117 , Fr(~challengeA) // Choose nonce for Alice

355

B Formal Protocol Verification

118]--[

119 OnlyOnceFor('IdscpRaVerifier_A')

120 , IdscpRaVerifier('A', 'B', ~challengeA)

121]->

122 [Out(senc(<'IdscpRaVerifier', 'A', ~challengeA >, key)) // Send attestation request

123 , Alices_Nonce(~challengeA)

124]

125

126 rule IdscpRaVerifier_B:

127 [Tls_Finish('B')

128 , !Tls_Ephemeral_Key_B(key)

129 , In(senc(<'IdscpRaVerifier', A, challengeA >, key)) // Receive attestation request

130 , Fr(~challengeB) // Choose nonce for Bob

131]--[

132 OnlyOnceFor('IdscpRaVerifier_B')

133 , IdscpRaVerifier('B', 'A', ~challengeB)

134]->

135 [Out(senc(<'IdscpRaVerifier', 'B', ~challengeB >, key)) // Send attestation request

136 , Bobs_Nonce(~challengeB)

137 , Bobs_Received_Nonce(challengeA)

138]

139

140 rule IdscpRaProver_A:

141 let quoteA = sign(<h(challengeB , tlsCertB), 'PCRA'>, akA) in

142 [!Tls_Ephemeral_Key_A(key)

143 , In(senc(<'IdscpRaVerifier', B, challengeB >, key)) // Receive attestation request

144 , !TlsCert(B, tlsCertB) // Load Bob's TLS certificate

145 , Ak('A', akA), !AkCert('A', akCertA) // Load Alice's attestation key

146]--[

147 OnlyOnceFor('IdscpRaProver_A')

148 , IdscpRaProver('A', B, quoteA)

149]->

150 [Out(senc(<'IdscpRaProver', 'A', quoteA >, key))] // Send quote to Bob

151

152 rule IdscpRaProver_B:

153 let quoteB = sign(<h(challengeA , tlsCertA), 'PCRB'>, akB) in

154 [!Tls_Ephemeral_Key_B(key)

155 , In(senc(<'IdscpRaProver', A, quoteA >, key)) // Receive quote from Alice

156 , Bobs_Received_Nonce(challengeA) // Load the previously received nonce

157 , !TlsCert(A, tlsCertA) // Load Alice's TLS certificate

158 , Ak('B', akB), !AkCert('B', akCertB) // Load Bob's attestation key

159]--[

160 OnlyOnceFor('IdscpRaProver_B')

161 , IdscpRaProver('B', A, quoteB)

162]->

163 [Out(senc(<'IdscpRaProver', 'B', quoteB >, key)) // Send quote to Alice

164 , Bobs_Received_Quote(quoteA) // Store quote for later verification

165]

166

167 rule IdscpRaResult_A:

168 [!Tls_Ephemeral_Key_A(key)

356

B.1 The IDSCP Protocol

169 , In(senc(<'IdscpRaProver', B, quoteB >, key)) // Receive quote from Bob

170 , Alices_Nonce(challengeA) // Retrieve own stored nonce

171 , !Tls('A', tlsA) // Lookup own TLS key

172 , !AkCert(B, akCertB) // Get Bob's attestation certificate

173]--[

174 OnlyOnceFor('IdscpRaResult_A')

175 , Eq(verify(quoteB , // Verify the quote , including the

176 <h(challengeA , pk(tlsA)), 'PCRB'>, // nonce and the TLS public key

177 akCertB), true)

178 , Attested('A', B, challengeA , akCertB) // Take note that Alice attested Bob

179]->

180 [Out(senc(<'IdscpRaResult', 'A'>, key))]

181

182 rule IdscpRaResult_B:

183 [!Tls_Ephemeral_Key_B(key)

184 , In(senc(<'IdscpRaResult', A>, key))

185 , Bobs_Nonce(challengeB) // Retrieve own stored nonce

186 , Bobs_Received_Quote(quoteA) // Retrieve stored quote from Alice

187 , !Tls('B', tlsB) // Lookup own TLS key

188 , !AkCert(A, akCertA) // Get Alice's attestation certificate

189]--[

190 OnlyOnceFor('IdscpRaResult_B')

191 , Eq(verify(quoteA , // Verify the quote , including the

192 <h(challengeB , pk(tlsB)), 'PCRA'>, // nonce and the TLS public key

193 akCertA), true)

194 , Attested('B', A, challengeB , akCertA) // Take note that Bob attested Alice

195]->[]

196

197 restriction Equality:

198 All x y #i. Eq(x,y) @i ==> x = y

199 restriction InEquality:

200 All x y #i. Neq(x,y) @i ==> not(x = y)

201 restriction OnlyOnceFor:

202 All X #i #j. OnlyOnceFor(X)@#i & OnlyOnceFor(X)@#j ==> #i = #j

203

204 /* Prove that Alice and Bob can mutually attest to one another and establish a shared

205 * secret. Proving this lemma makes sure that the model can be fully executed.

206 */

207 lemma Honest_protocol_mutual_attestation:

208 exists -trace

209 Ex akA akB challengeA challengeB tlsCertA tlsCertB key #i #j #k #l #m #n #o #p.

210 IdscpRaVerifier('A', 'B', challengeA) @ #i

211 & IdscpRaVerifier('B', 'A', challengeB) @ #j

212 & IdscpRaProver('A', 'B', sign(<h(challengeB , tlsCertB), 'PCRA'>, akA)) @ #k

213 & IdscpRaProver('B', 'A', sign(<h(challengeA , tlsCertA), 'PCRB'>, akB)) @ #l

214 & Attested('A', 'B', challengeA , pk(akB)) @ #m

215 & Attested('B', 'A', challengeB , pk(akA)) @ #n

216 & EstablishedKey('A', key) @ #o

217 & EstablishedKey('B', key) @ #p

218

219 /* Prove that an attacker cannot establish a shared secret with honest Alice and still

357

B Formal Protocol Verification

220 * successfully complete the attestation. An internal attacker with knowledge of Bob's

221 * TLS signature key (cf. rule BobIsAnInternalAttacker) can establish a DH secret with

222 * Alice during the TLS handshake. However , that attacker still has to present a valid

223 * quote from Bob's system that is signed with his attestation key. If the rule

224 * TSS_Quote_TPMB is activated this lemma is falsified , because the internal attacker

225 * can use the system of honest Bob to get such a quote and break the security of IDSCP.

226 */

227 lemma Established_key_secrecy:

228 /* It cannot be that */

229 not(

230 Ex key challengeA akCertB #i #j #k #l.

231 /* Alice and Bob mutually attested one another , */

232 IdscpRaVerifier('A', 'B', challengeA) @ #i

233 & Attested('A', 'B', challengeA , akCertB) @ #j

234 /* they established a shared key, */

235 & EstablishedKey('A', key) @ #k

236 /* and the adversary knows the key */

237 & K(key) @ #l

238)

239

240 /* Sanity check: Prove that the attacker does not learn the secret attestation keys.

241 * In our model we assume that the trusted platforms are secure and no attestation keys

242 * leak. Otherwise the protocol would be trivially insecure , since an attacker could

243 * just forge a quote.

244 */

245 lemma Aks_do_not_leak:

246 not(

247 Ex akA #i #j.

248 IsAK('A', akA) @ #i

249 & K(akA) @ #j

250) & not(

251 Ex akB #i #j.

252 IsAK('B', akB) @ #i

253 & K(akB) @ #j

254)

255

256 end

Figure B.1 shows the execution of this model using the Tamarin theorem
prover. As expected, Tamarin falsifies the lemma Established_key_secrecy by
finding the nonce-data attack on the IDSCP handshake.

358

B.2 The MSCP Protocol

Figure B.1: Proof of the nonce-data attack on the IDSCP protocol using Tamarin.

B.2 The MSCP Protocol

Listing B.2 shows our formal model of the MSCP protocol for the Tamarin
theorem prover. We modeled the MSCP handshake using a dedicated Diffie-
Hellman key exchange between two endpoints Alice and Bob. Note that in the
formalization we make no distinction between the MSCP variants with TPM-
internal and TPM-external key establishment. Instead, we model our quoting
structure to include creationData, which is signed by the attestation key and
can either represent the PCR 16, or the output of TPM2_CertifyCreation. In both
cases, the used creationData is cryptographically bound to the ephemeral keys.
Like in the formalization of IDSCP, we also include the TSS_Quote_TPM rules to
model quoting oracles that an attacker can leverage for nonce-data attacks.

Listing B.2: Formal model of the MSCP attestation protocol in Tamarin.

1 theory MSCP

2 begin

3

4 builtins: hashing , signing , diffie -hellman , symmetric -encryption

5

6 /* Our goal is to verify the security of the key exchange protocol under the assumption

7 * that the trusted platform is secure. This means that we assume the used attestation

8 * public keys to be known by Alice and Bob. Furthermore we assume that the attacker

359

B Formal Protocol Verification

9 * is unable to compromise an established attestation key or forge quote signatures. We

10 * model these assumptions by creating the attestation keys once for each platform.

11 */

12

13 // Define two TPMs (Alice and Bob)

14 rule TPM:

15 [] --> [TPM('A'), TPM('B')]

16

17 // Create a unique attestation key for each TPM

18 rule Get_ak:

19 [Fr(~ak), TPM(X)]

20 --[

21 OnlyOnceFor(<'Get_ak', X>)

22 , IsAK(X, ~ak)

23]->

24 [!Ak(X, ~ak), !AkCert(X, pk(~ak))]

25

26 /* Create quotes for Alice's and Bob's trusted software stack (TSS). This rule models

27 * that there is some valid software on both platforms that acts as an attestation

28 * endpoint. It takes some qualifying data (e.g. a nonce) and asks the TPM to create a

29 * signed quote.

30 */

31 rule TSS_Quote_TPMA:

32 [In(qualifyingData)

33 , Fr(~creationData) // Creation data for Alice's ephemeral key. Not attacker -chosen.

34 , !Ak('A', ak)

35]-->

36 [Out(sign(<qualifyingData , 'PCRA', ~creationData >, ak))]

37 rule TSS_Quote_TPMB:

38 [In(qualifyingData)

39 , Fr(~creationData) // Creation data for Bob's ephemeral key. Not attacker -chosen.

40 , !Ak('B', ak)

41]-->

42 [Out(sign(<qualifyingData , 'PCRB', ~creationData >, ak))]

43

44 // Initiation phase

45 rule Init_A:

46 [Fr(~nonceA)] // Choose fresh nonce for Alice

47 --[

48 OnlyOnceFor('Init_A')

49 , Initiation('A', 'B', ~nonceA) // Take note of Alice's init request

50]->

51 [Out(<'Init_A', ~nonceA >) // Send the nonce to Bob

52 , !Alices_Nonce(~nonceA)

53 , Init_A('B')

54]

55

56 rule Init_B:

57 [In(<'Init_A', nonceA >) // Receive nonce from Alice

58 , Fr(~nonceB) // Choose fresh nonce for Bob

59]

360

B.2 The MSCP Protocol

60 --[OnlyOnceFor('Init_B')

61 , Initiation('B', 'A', ~nonceB) // Take note of Bob's init request

62]->

63 [Out(<'Init_B', ~nonceB >) // Send the nonce to Alice

64 , !Bobs_Nonce(~nonceB)

65 , !Bobs_Received_Nonce(nonceA)

66 , Init_B('A')

67]

68

69 // Attestation phase

70 rule Attestation_A:

71 let quoteA = sign(<nonceB , 'PCRA', 'g'^~a>, akA) in

72 /* This quoting information attests to both the platform state and the ephemeral key.

73 * In case of MSCP with internal key establishment , this is created by

74 * TPM2_CertifyCreation. The creation data includes the name of the public key. In case

75 * of MSCP with external key establishment , this is created by TPM2_Quote. The ephemeral

76 * public key is then included by extending it into PCR 16.

77 */

78 [Init_A(B)

79 , In(<'Init_B', nonceB >) // Receive nonce from Bob

80 , Fr(~a) // Create a new DH private key for Alice

81 , !Ak('A', akA) // Load Alice's attestation key

82]--[

83 OnlyOnceFor('Attestation_A')

84 , AttestationResponse('A', B, quoteA) // Take note of Alice's quote

85]->

86 [Out(<'Attestation_A', quoteA , 'g'^~a>) // Send quote and DH public key to Bob

87 , Attestation_A(B, ~a)

88]

89

90 rule Attestation_B:

91 let quoteB = sign(<nonceA , 'PCRB', 'g'^~b>, akB) in

92

93 [Init_B(A)

94 , In(<'Attestation_A', quoteA , dhPubA >) // Receive quote and public key from Alice

95 , Fr(~b) // Create a new DH private key for Bob

96 , !Ak('B', akB) // Load Bob's attestation key

97 , !Bobs_Received_Nonce(nonceA) // Load the nonce that Bob received earlier

98]--[

99 OnlyOnceFor('Attestation_B')

100 , Neq(dhPubA , 'g') // Alice's public DH key must not be 'g'

101 , AttestationResponse('B', A, quoteB) // Take note of Bob's quote

102]->

103 [Out(<'Attestation_B', quoteB , 'g'^~b>) // Send quote and public key to Alice

104 , !Bobs_Received_Attestation(<quoteA , dhPubA >)

105 , Attestation_B(A, ~b)

106]

107

108 // Verification phase

109 rule Verification_A:

110 [Attestation_A(B, a)

361

B Formal Protocol Verification

111 , In(<'Attestation_B', quoteB , dhPubB >) // Receive quote and public key from Bob

112 , !Alices_Nonce(nonceA) // Load Alice's nonce

113 , !AkCert('B', akCertB) // Load Bob's attestation certificate

114]--[

115 OnlyOnceFor('Verification_A')

116 , Eq(verify(quoteB , // Verify the quote , including the nonce

117 <nonceA , 'PCRB', dhPubB >, // and the DH public key

118 akCertB), true)

119 , Attested('A', B, nonceA , akCertB) // Take note that Alice attested Bob

120 , EstablishedKey('A', dhPubB^a) // Generate shared key

121]->

122 [Out(<'Verification_A'>)]

123

124 rule Verification_B:

125 [Attestation_B(A, b)

126 , In(<'Verification_A'>)

127 , !Bobs_Nonce(nonceB) // Load Bob's nonce

128 , !Bobs_Received_Attestation(// Load the quote and DH key received earlier

129 <quoteA , dhPubA >)

130 , !AkCert('A', akCertA) // Load Alice's attestation certificate

131]--[

132 OnlyOnceFor('Verification_B')

133 , Eq(verify(quoteA , // Verify the quote , including the nonce

134 <nonceB , 'PCRA', dhPubA >, // and the DH public key

135 akCertA), true)

136 , Attested('B', A, nonceB , akCertA) // Take note that Alice attested Bob

137 , EstablishedKey('B', dhPubA^b) // Generate shared key

138]->[]

139

140 // Reveal the attestation keys

141 rule Ak_reveal:

142 [!Ak(X, ak)] --[RevealAk(X)]-> [Out(ak)]

143

144 restriction Equality:

145 All x y #i. Eq(x,y) @i ==> x = y

146 restriction InEquality:

147 All x y #i. Neq(x,y) @i ==> not(x = y)

148 restriction OnlyOnceFor:

149 All X #i #j. OnlyOnceFor(X)@#i & OnlyOnceFor(X)@#j ==> #i = #j

150

151 /* Prove that Alice and Bob can mutually attest to one another and establish a shared

152 * secret. Proving this lemma makes sure that the model can be fully executed.

153 */

154 lemma Honest_protocol_mutual_attestation:

155 exists -trace

156 Ex akA akB nonceA nonceB dhPubA dhPubB key #i #j #k #l #m #n #o #p.

157 Initiation('A', 'B', nonceA) @ #i

158 & Initiation('B', 'A', nonceB) @ #j

159 & AttestationResponse('A', 'B', sign(<nonceB , 'PCRA', dhPubA >, akA)) @ #k

160 & AttestationResponse('B', 'A', sign(<nonceA , 'PCRB', dhPubB >, akB)) @ #l

161 & Attested('B', 'A', nonceB , pk(akA)) @ #m

362

B.2 The MSCP Protocol

162 & Attested('A', 'B', nonceA , pk(akB)) @ #n

163 & EstablishedKey('B', key) @ #o

164 & EstablishedKey('A', key) @ #p

165

166 /* Prove that an attacker cannot retrieve the shared secret between Alice and Bob and

167 * still successfully complete the attestation , unless the attestation keys are revealed

168 * before the attestation is accepted (forward secrecy). Unlike IDSCP , this lemma holds

169 * true even if the TSS_Quote_TPM rules are active (i.e. internal attackers have access

170 * to the platform quote oracles).

171 */

172 lemma Established_key_secrecy_pfs:

173 /* For all MSCP handshakes , */

174 (All key nonceA akCertB #i #j #k #l.

175 /* where Alice attests Bob, */

176 Initiation('A', 'B', nonceA) @ #i

177 & Attested('A', 'B', nonceA , akCertB) @ #j

178 /* and a shared key is established , */

179 & EstablishedKey('A', key) @ #k

180 /* which is known by the attacker , */

181 & K(key) @ #l

182 /* the attacker must already have known Bob's attestation key, */

183 ==> Ex #z. RevealAk('B') @ #z

184 /* even before Alice accepted the attestation */

185 & #z < #j

186) &

187 /* And the same also the other way around */

188 (All key nonceB akCertA #i #j #k #l.

189 Initiation('B', 'A', nonceB) @ #i

190 & Attested('B', 'A', nonceB , akCertA) @ #j

191 & EstablishedKey('B', key) @ #k

192 & K(key) @ #l

193 ==> Ex #z. RevealAk('A') @ #z & #z < #j

194)

195

196 /* Sanity check: Prove that the attacker does not learn the secret attestation keys.

197 * In our model we assume that the trusted platforms are secure and no attestation keys

198 * leak. Otherwise the protocol would be trivially insecure , since an attacker could

199 * just forge a quote.

200 */

201 lemma Aks_do_not_leak:

202 All akA #i #j.

203 IsAK('A', akA) @ #i

204 & K(akA) @ #j

205 ==> Ex #z. RevealAk('A') @ #z

206 & All akB #i #j.

207 IsAK('B', akB) @ #i

208 & K(akB) @ #j

209 ==> Ex #z. RevealAk('B') @ #z

210

211 end

363

B Formal Protocol Verification

Figure B.2 shows that Tamarin verifies theMSCP protocol handshake in under
4 seconds. The lemma Honest_protocol_mutual_attestation checks the correct
execution of the mutual attestation between Alice and Bob. This verifies our
protocol requirements R1 (authentication), R2 (mutual attestation), and R3
(replay protection). The lemma Established_key_secrecy_pfs proves that any
attacker capable of intercepting the shared secret between Alice and Bob on
the attested channel must have known the long-term attestation keys even
before the attestation took place. This verifies the final two requirements R4
(secure channels) and R5 (perfect forward secrecy). Together with the inclu-
sion of the TSS_Quote_TPM oracle rules, this proves the security of MSCP even
against nonce-data attacks.

Figure B.2: Verification of the MSCP protocol using Tamarin.

B.3 The EKEP Protocol

The EKEP attestation protocol has already been formally verified by Roeder
et al. using the ProVerif theorem prover [Roe22]. However, as discussed in
section 4.5.3, when using EKEP to conduct TPM-based remote attestations we
need to ensure that the ephemeral Diffie-Hellman keys are properly bound to
the attested identity. Otherwise the resulting protocol may be vulnerable to
nonce-data attacks. To better represent this issue in the formal model, we

364

B.3 The EKEP Protocol

slightly modified the existing formalization from [Roe22]. Listing B.3 shows
the relevant excerpts¹ compared to the existing base model of EKEP.

Listing B.3: Excerpt of the ProVerif formal model for the EKEP attestation protocol, modified to
include TPM-based attestation. The original model has been published in [Roe22].

1 [...]

2

3 (** Implements the server side of EKEP. *)

4 let Server(serverName: Name , tpmPrivKey: SigningKey , sgxPubKey: VerifyingKey) =

5 (* Receive Client Precommit. *)

6 in(c, clientPrecommit: Challenge);

7 let transcript0 = CreateTranscript0(clientPrecommit) in

8

9 (* Send Server Precommit. *)

10 new serverPrecommit: Challenge;

11 out(c, serverPrecommit);

12 let transcript1 = ExtendToTranscript1(transcript0 , serverPrecommit) in

13

14 [...]

15

16 (* Compute Server Id *)

17 new serverPrivateKey: Z;

18 let serverPublicKey = exp(g, serverPrivateKey) in

19

20 (* Create a message for TPM to sign. Unlike with SGX, this message is directly signed

by the TPM and does not leave the TCB over the channel. *)

21 let serverTpmMessage = BuildServerTpmMessage(

22 serverName , kServerId , serverPublicKey , transcript2) in

23 let serverId = signServerTpm(tpmPrivKey , serverTpmMessage) in

24

25 (* Send Server Id. *)

26 out(c, serverId);

27 let transcript3 = ExtendToTranscript3(transcript2 , serverId) in

28

29 [...]

30

31 (* SgxAttestationForClient provides SGX signatures for clients. *)

32 let SgxAttestationForClient(clientSgxMacKey: HmacKey , sgxPrivKey: SigningKey) =

33 in(c, (message: ClientSgxMessage , tag: HmacAuthTag));

34 let kind = ClientSgxMessage_kind(message) in

35 if kind = kClientId then

36 if hmacClientSgxVerify(clientSgxMacKey , message , tag) then

37 out(c, signClientSgx(sgxPrivKey , message)).

38

¹ The complete (modified) formal model is available at https://gitlab.cc-asp.fraunhofer.de/
datasov/ekep/-/blob/main/ekep_tpm.pv (accessed on 12/08/2023).

365

https://gitlab.cc-asp.fraunhofer.de/datasov/ekep/-/blob/main/ekep_tpm.pv
https://gitlab.cc-asp.fraunhofer.de/datasov/ekep/-/blob/main/ekep_tpm.pv

B Formal Protocol Verification

39 (* SgxAttestationForOther provides SGX signatures for the adversary. *)

40 let SgxAttestationForOther(sgxPrivKey: SigningKey) =

41 in(c, (name: Name , publicKey: G, transcript: bitstring));

42 out(c, sign(sgxPrivKey , (name , kOtherId , publicKey , transcript))).

43

44 (* TpmAttestationForOther provides TPM signatures for the adversary. *)

45 let TpmAttestationForOther(tpmPrivKey: SigningKey) =

46 in(c, (name: Name , transcript: bitstring));

47 new publicKey: G;

48 out(c, sign(tpmPrivKey , (name , kServerId , publicKey , transcript))).

49

50 process

51 new clientSgxMacKey: HmacKey;

52 (* The server is not a TEE and does not have a secret MAC key *)

53

54 new serverName: Name;

55 new clientName: Name;

56 out(c, clientName);

57 out(c, serverName);

58

59 new sgxPrivKey: SigningKey;

60 let sgxPubKey = pubKey(sgxPrivKey) in

61 out(c, sgxPubKey);

62

63 (* This is the server 's long term secret *)

64 new tpmPrivKey: SigningKey;

65 let tpmPubKey = pubKey(tpmPrivKey) in

66 out(c, tpmPubKey);

67

68 new message: bitstring;

69

70 ((! Server(serverName , tpmPrivKey , sgxPubKey))

71 | (! Client(clientName , clientSgxMacKey , sgxPubKey , tpmPubKey , message))

72 | (! SgxAttestationForClient(clientSgxMacKey , sgxPrivKey))

73 | (! SgxAttestationForOther(sgxPrivKey))

74 | (! TpmAttestationForOther(tpmPrivKey))

75 (* Expose the client and server 's long -term identity keys in phase 1 to test perfect

forward secrecy in the protocol. *)

76 | (phase 1; out(c, clientSgxMacKey); out(c, tpmPrivKey))

77)

The original EKEP formalization in [Roe22] represents attestation identities
using HMAC keys that must be kept secret by the endpoint enclaves. In or-
der to receive attestation evidence that is signed by the long-term attestation
keys, each endpoint first needs to prove their own identity to the quoting en-
clave by providing a signature under the respective HMAC key. While this

366

B.3 The EKEP Protocol

model works for TEEs such as Intel SGX, it does not quite fit the TPM-based at-
testation mechanism. When conducting TPM-based attestations, the report is
usually signed directly with the attestation key by the TPM, instead of first be-
ing authenticated at a quoting enclave. To better represent this in the model,
we modified the formalization to sign TPM assertions directly with the long-
term attestation key tpmPrivKey (cf. lines 20ff.).

The second necessary modification deals with the assumptions about the at-
tackers’ abilities to request attestation evidence from the trusted platforms.
When using SGX, the assumption is that an attacker can get a signed attes-
tation report that authenticates any attacker-chosen ephemeral public key.
However, the SGX attestation report cannot include forged enclave identi-
ties, since these are authenticated using the secret HMAC keys. This models
the existence of other enclaves on the SGX platform and is represented in the
formalization by the SgxAttestationForOther subprocess in lines 40ff. However,
this representation is not completely accurate anymore when using TPMs in-
stead of TEEs. In that case we need to assume that attackers can get valid
attestation evidence (i.e., a quote) from the TPM-protected platform, for exam-
ple through secondary attestation endpoints as part of a nonce-data attack. A
secure TPM-based attestation protocol must then take care to prevent the in-
clusion of attacker-chosen ephemeral public keys into the quote, which could
otherwise be used to impersonate the trusted platform. For example, when us-
ingMSCP the ephemeral keys are generated inside the TPM and are hence out
of reach for the attacker. To represent this difference in the formal model, we
include an additional TpmAttestationForOther subprocess (cf. lines 45ff.). This
subprocess gives attackers the option to retrieve TPM-based attestation evi-
dence for the correct platform identity (in this case kServerId). However, the
attacker is not allowed to arbitrarily choose the ephemeral public key that
should be included in the attestation report. By including this new subpro-
cess in the formal model, we can now verify the security of MSCP endpoints
in EKEP also against nonce-data attacks.

367

B Formal Protocol Verification

Figure B.3: Verification of the modified EKEP protocol including TPM-based heterogeneous at-
testations using ProVerif.

Figure B.3 shows that ProVerif validates the security properties of EKEP also
with our modified formalization. This proves the soundness of our approach
to achieve heterogeneous remote attestation between TPMs and SGX enclaves
by including an MSCP attestation generator into the existing EKEP design.

368

C The DataSov ODRL Profile

This chapter includes the definition of our custom ODRL profile for the
DataSov framework. The DataSov ODRL profile adds support for direct PIP
lookups and PXP execute demands, which is a prerequisite for trustworthy
distributed usage control. Furthermore, the profile includes new vocabulary
definitions for representing provenance information in usage control policies.

Listing C.1 shows the complete DataSov ODRL profile definition, which is
extending the core ODRL informationmodel with the additional concepts that
have been described in section 5.3. TheDataSov ODRL profile is defined under
the ods: prefix and is specified in the Turtle RDF language.

Listing C.1: The DataSov ODRL profile in Turtle.

1 @base <https://gitlab.cc-asp.fraunhofer.de/datasov/core#> .

2 @prefix ods: <https://gitlab.cc-asp.fraunhofer.de/datasov/core#> .

3 @prefix odrl: <http://www.w3.org/ns/odrl/2/> .

4 @prefix profile: <http://www.w3.org/ns/dx/prof/> .

5 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax -ns#> .

6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

7 @prefix role: <http://www.w3.org/ns/dx/prof/role/> .

8 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .

9 @prefix owl: <http://www.w3.org/2002/07/owl#> .

10 @prefix dct: <http://purl.org/dc/terms/> .

11 @prefix prov: <http://www.w3.org/ns/prov#> .

12

13 ods: a owl:Ontology , profile:Profile ;

14 profile:isProfileOf <http://www.w3.org/ns/odrl/2/core > ;

15 profile:hasResource ods:ods-ttl ;

16 rdfs:label "ODRL DataSov Profile Ontology"@en ;

17 owl:versionInfo "1.0" ;

18 dct:creator "Paul Wagner" ;

19 dct:description "The ODRL DataSov Profile. Adds required concepts for trustworthy

usage control and provenance tracking."@en ;

20 rdfs:comment "This is the RDF ontology for the ODRL DataSov Profile Version 1.0."@en ;

21 dct:conformsTo <https://www.w3.org/TR/odrl -model/> .

369

C The DataSov ODRL Profile

22 ods:ods-ttl a profile:ResourceDescriptor ;

23 profile:hasRole role:vocabulary ;

24 profile:hasArtifact <https://gitlab.cc-asp.fraunhofer.de/datasov/core/-/tree/master/

pdp/profile/ods.ttl> ;

25 dct:title "Turtle Vocabulary for the ODRL DataSov Profile."@en ;

26 dct:format <https://www.iana.org/assignments/media -types/text/turtle > ;

27 dct:conformsTo <https://www.w3.org/TR/turtle/> .

28

29 ## SKOS Collections for ODRL DataSov Vocabulary.

30 <https://gitlab.cc-asp.fraunhofer.de/datasov/core#> a skos:Collection ;

31 skos:prefLabel "ODRL DataSov Profile v1.0"@en ;

32 skos:scopeNote "The terms of ODRL DataSov Profile"@en ;

33 skos:member ods:ctxOperand ;

34 skos:member ods:ctxKey ;

35 skos:member ods:pipOperand ;

36 skos:member ods:pipMethod ;

37 skos:member ods:pxpMethod ;

38 skos:member ods:pepMethod ;

39 skos:member ods:uri ;

40 skos:member ods:pxpAction ;

41 skos:member ods:pepAction ;

42 skos:member ods:params ;

43 skos:member ods:provenance ;

44 skos:member ods:entities ;

45 skos:member ods:activities ;

46 skos:member ods:agents ;

47 skos:member ods:relations ;

48 skos:member ods:match ;

49 skos:member ods:nmatch ;

50 skos:member ods:getTimePipMethod ;

51 skos:member ods:storeValuesPipMethod ;

52 skos:member ods:getValuePipMethod ;

53 skos:member ods:incCounterPipMethod ;

54 skos:member ods:decCounterPipMethod ;

55 skos:member ods:resetCounterPipMethod ;

56 skos:member ods:provenancePipMethod ;

57 skos:member ods:logPxpMethod ;

58 skos:member ods:provenancePxpMethod ;

59 skos:member ods:modifyParamPepMethod ;

60 skos:member ods:deployPolicyPepMethod ;

61 skos:member ods:revokePolicyPepMethod .

62

63 ## Concepts for context operands

64 ods:ctxOperand a odrl:LeftOperand , odrl:RightOperand , skos:Concept ;

65 rdfs:isDefinedBy ods: ;

66 rdfs:label "Context operand"@en ;

67 skos:definition "A left or right operand that is being evaluated on the event context.

"@en .

68

69 ods:ctxKey a rdf:Property , skos:Concept ;

70 rdfs:isDefinedBy ods: ;

370

C The DataSov ODRL Profile

71 rdfs:label "Context operand key"@en ;

72 skos:definition "The lookup key for a context operand."@en ;

73 rdfs:domain ods:ctxOperand .

74

75 ## Concepts for external information sources

76 ods:pipOperand a odrl:LeftOperand , odrl:RightOperand , skos:Concept ;

77 rdfs:isDefinedBy ods: ;

78 rdfs:label "External operand"@en ;

79 skos:definition "A left or right operand that is being evaluated using an external

information source."@en .

80

81 ods:pipMethod a rdf:Property , skos:Concept ;

82 rdfs:isDefinedBy ods: ;

83 rdfs:label "Policy information point method"@en ;

84 skos:definition "An unambiguous identifier for a method implemented by a policy

information point."@en ;

85 rdfs:domain ods:pipOperand .

86

87 ods:uri a rdf:Property , skos:Concept ;

88 rdfs:isDefinedBy ods: ;

89 rdfs:label "Component uri"@en ;

90 skos:definition "An uri unambiguously representing a component identity."@en ;

91 rdfs:domain ods:pipOperand , ods:pxpAction .

92

93 ## Concepts for actions

94 ods:pxpAction a odrl:Action , skos:Concept ;

95 rdfs:isDefinedBy ods: ;

96 rdfs:label "PXP action"@en ;

97 skos:definition "An action definition that should be executed at an external execution

point."@en .

98

99 ods:pxpMethod a rdf:Property , skos:Concept ;

100 rdfs:isDefinedBy ods: ;

101 rdfs:label "Policy execution point method"@en ;

102 skos:definition "An unambiguous identifier for a method implemented by a policy

execution point."@en ;

103 rdfs:domain ods:pxpAction .

104

105 ods:pepAction a odrl:Action , skos:Concept ;

106 rdfs:isDefinedBy ods: ;

107 rdfs:label "PEP action"@en ;

108 skos:definition "An action definition that should be executed at the local enforcement

point."@en .

109

110 ods:pepMethod a rdf:Property , skos:Concept ;

111 rdfs:isDefinedBy ods: ;

112 rdfs:label "Policy enforcement point method"@en ;

113 skos:definition "An unambiguous identifier for a method implemented by a policy

enforcement point."@en ;

114 rdfs:domain ods:pepAction .

115 ods:params a rdf:Property , skos:Concept ;

371

C The DataSov ODRL Profile

116 rdfs:isDefinedBy ods: ;

117 rdfs:label "Operand parameters"@en ;

118 skos:definition "A key-value map of operand parameters."@en ;

119 rdfs:domain ods:pipOperand , ods:pxpAction , ods:pepAction .

120

121 ## Concepts for provenance

122 ods:provenance a rdfs:Class , owl:Class , skos:Concept ;

123 rdfs:isDefinedBy ods: ;

124 rdfs:label "Provenance information"@en ;

125 skos:definition "A representation of provenance data in the PROV model."@en .

126

127 ods:entities a rdf:Property , rdf:List , skos:Concept ;

128 rdfs:isDefinedBy ods: ;

129 rdfs:label "Provenance entities"@en ;

130 skos:definition "A list of provenance entities. Each entity is represented by a unique

uri."@en ;

131 rdfs:domain ods:provenance ;

132 rdfs:range prov:Entity .

133

134 ods:activities a rdf:Property , rdf:List , skos:Concept ;

135 rdfs:isDefinedBy ods: ;

136 rdfs:label "Provenance activities"@en ;

137 skos:definition "A list of provenance activities. Each activity is represented by a

unique uri."@en ;

138 rdfs:domain ods:provenance ;

139 rdfs:range prov:Activity .

140

141 ods:agents a rdf:Property , rdf:List , skos:Concept ;

142 rdfs:isDefinedBy ods: ;

143 rdfs:label "Provenance agents"@en ;

144 skos:definition "A list of provenance agents. Each agent is represented by a unique

uri."@en ;

145 rdfs:domain ods:provenance ;

146 rdfs:range prov:Agent .

147

148 ods:relations a rdf:Property , rdf:List , skos:Concept ;

149 rdfs:isDefinedBy ods: ;

150 rdfs:label "Provenance relations"@en ;

151 skos:definition "A list of provenance relations. Each relation is represented as a

triple [from_uri , relation_type , to_uri]."@en ;

152 rdfs:domain ods:provenance .

153

154 ods:match a odrl:Operator , owl:NamedIndividual , skos:Concept ;

155 rdfs:isDefinedBy ods: ;

156 rdfs:label "Match"@en ;

157 skos:definition "Indicating that a given regular expression matches a constraint

operand."@en .

158

159 ods:nmatch a odrl:Operator , owl:NamedIndividual , skos:Concept ;

160 rdfs:isDefinedBy ods: ;

161 rdfs:label "Not match"@en ;

372

C The DataSov ODRL Profile

162 skos:definition "Indicating that a given regular expression does not match a

constraint operand."@en .

163

164 ## DataSov methods

165 ods:getTimePipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

166 rdfs:isDefinedBy ods: ;

167 rdfs:label "Pip method for time retrieval"@en ;

168 skos:definition "An information point method that returns the current time of day."@en

;

169 skos:note "Parameters: datatype , format , timezone. "@en ;

170 skos:scopeNote "Non-Normative"@en .

171

172 ods:storeValuesPipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

173 rdfs:isDefinedBy ods: ;

174 rdfs:label "Pip method for value storage"@en ;

175 skos:definition "An information point method that stores a set of parameters."@en .

176

177 ods:getValuePipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

178 rdfs:isDefinedBy ods: ;

179 rdfs:label "Pip method for value retrieval"@en ;

180 skos:definition "An information point method that returns a previously stored

parameter value."@en ;

181 skos:note "Parameters: name. "@en ;

182 skos:scopeNote "Non-Normative"@en .

183

184 ods:incCounterPipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

185 rdfs:isDefinedBy ods: ;

186 rdfs:label "Pip method for counter increases"@en ;

187 skos:definition "An information point method that increases the value of a named

counter."@en ;

188 skos:note "Parameters: name , diff. "@en ;

189 skos:scopeNote "Non-Normative"@en .

190

191 ods:decCounterPipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

192 rdfs:isDefinedBy ods: ;

193 rdfs:label "Pip method for counter decreases"@en ;

194 skos:definition "An information point method that decreases the value of a named

counter."@en ;

195 skos:note "Parameters: name , diff. "@en ;

196 skos:scopeNote "Non-Normative"@en .

197

198 ods:resetCounterPipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

199 rdfs:isDefinedBy ods: ;

200 rdfs:label "Pip method for counter resets"@en ;

201 skos:definition "An information point method that resets a named counter to 0."@en ;

202 skos:note "Parameters: name. "@en ;

203 skos:scopeNote "Non-Normative"@en .

204

205 ods:provenancePipMethod a ods:pipMethod , owl:NamedIndividual , skos:Concept ;

206 rdfs:isDefinedBy ods: ;

207 rdfs:label "Pip method for provenance retrieval"@en ;

373

C The DataSov ODRL Profile

208 skos:definition "An information point method that returns provenance information."@en

;

209 skos:note "Parameters: prosps , request. "@en ;

210 skos:scopeNote "Non-Normative"@en .

211

212 ods:logPxpMethod a ods:pxpMethod , owl:NamedIndividual , skos:Concept ;

213 rdfs:isDefinedBy ods: ;

214 rdfs:label "Pxp method for logging"@en ;

215 skos:definition "An execution point method that logs a message."@en ;

216 skos:note "Parameters: message , level. "@en ;

217 skos:scopeNote "Non-Normative"@en .

218

219 ods:provenancePxpMethod a ods:pxpMethod , owl:NamedIndividual , skos:Concept ;

220 rdfs:isDefinedBy ods: ;

221 rdfs:label "Pxp method for provenance storage"@en ;

222 skos:definition "An execution point method that stores provenance information."@en ;

223 skos:note "Parameters: prosps , provenance. "@en ;

224 skos:scopeNote "Non-Normative"@en .

225

226 ods:modifyParamPepMethod a ods:pepMethod , owl:NamedIndividual , skos:Concept ;

227 rdfs:isDefinedBy ods: ;

228 rdfs:label "Pep method for parameter modification"@en ;

229 skos:definition "An enforcement point method that modifies an event parameter."@en ;

230 skos:note "Parameters: key, mask. String parameters may also have: match "@en ;

231 skos:scopeNote "Non-Normative"@en .

232

233 ods:deployPolicyPepMethod a ods:pepMethod , owl:NamedIndividual , skos:Concept ;

234 rdfs:isDefinedBy ods: ;

235 rdfs:label "Pep method for policy deployment"@en ;

236 skos:definition "An enforcement point method that deploys a new policy."@en ;

237 skos:note "Parameters: policy. "@en ;

238 skos:scopeNote "Non-Normative"@en .

239

240 ods:revokePolicyPepMethod a ods:pepMethod , owl:NamedIndividual , skos:Concept ;

241 rdfs:isDefinedBy ods: ;

242 rdfs:label "Pep method for policy revocation"@en ;

243 skos:definition "An enforcement point method that revokes a policy."@en .

244

245 ## Declaration of annotation properties to keep the ontology within OWL DL

246 skos:member rdf:type owl:AnnotationProperty .

247 skos:scopeNote rdf:type owl:AnnotationProperty .

248 skos:prefLabel rdf:type owl:AnnotationProperty .

249 skos:definition rdf:type owl:AnnotationProperty .

250 skos:example rdf:type owl:AnnotationProperty .

251 skos:note rdf:type owl:AnnotationProperty .

252 dct:format rdf:type owl:AnnotationProperty .

253 dct:title rdf:type owl:AnnotationProperty .

254 dct:conformsTo rdf:type owl:AnnotationProperty .

255 dct:creator rdf:type owl:AnnotationProperty .

256 dct:description rdf:type owl:AnnotationProperty .

257 skos:Collection a owl:Class .

374

C The DataSov ODRL Profile

Listing C.2 shows the JSON-LD context definition that can be used to parse
ODRL policies in the DataSov framework. It extends the core ODRL context
definition with the vocabulary specified in the DataSov ODRL profile.

Listing C.2: JSON-LD context definition for the DataSov ODRL profile.

1 {"@context": ["http://www.w3.org/ns/odrl.jsonld",

2 { "ods": "https://gitlab.cc-asp.fraunhofer.de/datasov/core#",

3 "ods:ctxOperand": {

4 "@context": { "key": "ods:ctxKey" }

5 },

6 "ods:pipOperand": {

7 "@context": {

8 "uri": "@id",

9 "method": "ods:pipMethod",

10 "params": {

11 "@id": "ods:params",

12 "@container": "@index"

13 }

14 }

15 },

16 "ods:pxpAction": {

17 "@context": {

18 "uri": "@id",

19 "method": "ods:pxpMethod",

20 "params": {

21 "@id": "ods:params",

22 "@container": "@index"

23 }

24 }

25 },

26 "ods:pepAction": {

27 "@context": {

28 "method": "ods:pepMethod",

29 "params": {

30 "@id": "ods:params",

31 "@container": "@index"

32 }

33 }

34 },

35 "ods:provenance": {

36 "@context": {

37 "entities": "ods:entities",

38 "activities": "ods:activities",

39 "agents": "ods:agents",

40 "relations": "ods:relations"

41 }

42 }

43 }]}

375

D Proof Sketches

This chapter contains proof sketches for two of the requirements that our
trustworthiness score should fulfill.

Proposition D.1 formalizes the requirement S3 as described in section 6.1.

Proposition D.1 (Minimality). Let 𝑆 ∈ 𝒮 be the state of a distributed usage
control system with instance graph 𝐼 = (𝑉, 𝐸) and trust model 𝒯 = (𝑡𝑜, 𝑡𝑚).
Let 𝑃 ∈ 𝒫 be a usage control policy and 𝐽 ≔ 𝑜𝑝𝑠(𝑃, (𝑑, 𝑟)) its usage control
operation for policy deployer/receiver (𝑑, 𝑟) ∈ 𝑉2. Let ̂𝑠 ∈ 𝑂 be the least trusted
component operator and ̂𝑐 ∈ 𝑀 × 𝐺 × 𝐴 the least strong mechanism capabil-
ity that is required for the enforcement of usage control operation 𝐽. For the
trustworthiness score 𝑡 then follows

𝑡(𝑑, 𝑟, 𝑃, 𝑆) ≤ min (𝑡𝑜(̂𝑠), 𝑡𝑚(̂𝑐)) .

Proof.

𝑡(𝑑, 𝑟, 𝑃, 𝑆) Def.= max
𝑇∈𝑃𝑇

(∏
𝑠∈𝑇

𝑡𝑜(𝑠) ⋅ ∏
𝑐∈𝐶𝑎𝑝𝑆(𝐽∣𝑇)

𝑡𝑚(𝑐))

= ∏
𝑠∈𝑇𝑚𝑎𝑥

𝑡𝑜(𝑠) ⋅ ∏
𝑐∈𝐶𝑎𝑝𝑆(𝐽∣𝑇𝑚𝑎𝑥)

𝑡𝑚(𝑐)

̂𝑠∈𝑇𝑚𝑎𝑥= 𝑡𝑜(̂𝑠) ⋅ ∏
𝑠∈𝑇𝑚𝑎𝑥\{ ̂𝑠}

𝑡𝑜(𝑠) ⋅ ∏
𝑐∈𝐶𝑎𝑝𝑆(𝐽∣𝑇𝑚𝑎𝑥)

𝑡𝑚(𝑐)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

≤1

≤ 𝑡𝑜(̂𝑠). (i)

377

D Proof Sketches

Since ̂𝑐 ∈ 𝐶𝑎𝑝𝑆(𝐽 ∣ 𝑇𝑚𝑎𝑥), extracting 𝑡𝑚(̂𝑐) analogously yields

𝑡(𝑑, 𝑟, 𝑃, 𝑆) ≤ 𝑡𝑚(̂𝑐). (ii)

With (i) and (ii) it follows that 𝑡(𝑑, 𝑟, 𝑃, 𝑆) ≤ min (𝑡𝑜(̂𝑠), 𝑡𝑚(̂𝑐)).

Proposition D.2 formalizes the requirement S4 as described in section 6.1.

Proposition D.2 (Monotony). Let 𝑆 ∈ 𝒮 be the state of a distributed usage
control system with component model 𝒞 = ((𝑉, 𝐸), 𝑎𝑡𝑡,𝑚, 𝑜), attacker model
𝒜 = (𝑎, 𝑔), and trust model 𝒯 = (𝑡𝑜, 𝑡𝑚). Let 𝑃1, 𝑃2 ∈ 𝒫 be two policies with
usage control operations 𝐽1 ≔ 𝑜𝑝𝑠(𝑃1, (𝑑, 𝑟)) and 𝐽2 ≔ 𝑜𝑝𝑠(𝑃2, (𝑑, 𝑟)) for policy
deployer/receiver (𝑑, 𝑟) ∈ 𝑉2. For the trustworthiness score 𝑡 then follows

𝐽1 ⊇ 𝐽2 ⟹ 𝑡(𝑑, 𝑟, 𝑃1, 𝑆) ≤ 𝑡(𝑑, 𝑟, 𝑃2, 𝑆).

Proof. For convenience, we abbreviate the trustworthiness scores 𝑡(𝑑, 𝑟, 𝑃1, 𝑆)
and 𝑡(𝑑, 𝑟, 𝑃2, 𝑆) as 𝑡1 and 𝑡2. We also denote the sets of trusted operators for
which 𝑡1 and 𝑡2 get maximal as ̂𝑇1 ∈ 𝑃𝑇1 and ̂𝑇2 ∈ 𝑃𝑇2.

If 𝐽1 = 𝐽2, then trivially follows 𝑡1 = 𝑡2.

Without loss of generality, let 𝐽1 = 𝐽2 ∪{(𝑢, 𝑣)} for exactly one trust dependency
(𝑢, 𝑣) ∈ 𝐸 \𝐽2. Due to the construction of our score as given in definition 6.8, the
component 𝑣 ∈ 𝐽1 must now be covered either by operator trust (i.e., 𝑜(𝑣) ∈ ̂𝑇1)
or by mechanism trust (i.e., 𝑜(𝑣) ∉ ̂𝑇1). We can distinguish three cases concern-
ing the component operator 𝑜(𝑣).

Case 1: 𝑜(𝑣) ∈ ̂𝑇1 and 𝑜(𝑣) ∈ ̂𝑇2.
In this case, the component 𝑣 ∈ 𝐽1 is covered by operator trust in the extended
usage control operation graph, i.e., 𝑜(𝑣) ∈ ̂𝑇1. Since 𝑜(𝑣) has already been a
trusted operator in 𝐽2, i.e., 𝑜(𝑣) ∈ ̂𝑇2, and both graphs differ only in the edge
(𝑢, 𝑣), it must follow that ̂𝑇1 = ̂𝑇2 and subsequently 𝑡1 = 𝑡2.

Case 2: 𝑜(𝑣) ∈ ̂𝑇1 and 𝑜(𝑣) ∉ ̂𝑇2.
If component 𝑣 is covered by operator trust in 𝐽1, but 𝑜(𝑣) is not already a trusted
operator in 𝐽2, we must distinguish two more subcases.

378

D Proof Sketches

Subcase 1: If 𝑜(𝑣) ∉ 𝑜(𝐽2), then the added component 𝑣 introduces a completely
new stakeholder into 𝐽1. In this case, with ̂𝑇1 \ ̂𝑇2 = {𝑜(𝑣)} it follows from the
construction of the score that

𝑡1 = 𝑡𝑜(𝑜(𝑣))⏟⎵⏟⎵⏟
≤1

⋅ 𝑡2 ≤ 𝑡2.

Subcase 2: If 𝑜(𝑣) ∈ 𝑜(𝐽2), then ̂𝑇1 is an operator combination that fully covers
the critical stakeholders of 𝐽2, i.e., ̂𝑇1 ∈ 𝑃𝑇2. Since 𝑡2 is maximized over 𝑃𝑇2 (cf.
definition 6.8), and both graphs differ only in the edge (𝑢, 𝑣), it must follow that
𝑡1 ≤ 𝑡2.

Case 3: 𝑜(𝑣) ∉ ̂𝑇1 and 𝑜(𝑣) ∉ ̂𝑇2.
The last possibility is for component 𝑣 to be covered by mechanism trust, i.e.,
𝑜(𝑣) ∉ ̂𝑇1. This introduces a (possibly empty) set of additional critical mecha-
nism capabilities into the score construction. Even though the capabilities intro-
duced by component 𝑣 can supersede weaker capabilities that are already present
in 𝐽2 (cf. line 8 of the algorithm in definition 6.7), the well-formedness of the trust
estimation function 𝑡𝑚 (i.e., stronger attackers lead to smaller trust values for the
same mechanism and protection goal) ensures that the resulting capability trust
can only decrease. Since the new mechanism capabilities are considered for all
operator combinations 𝑇1 ∈ 𝑃𝑇1 with 𝑜(𝑣) ∉ 𝑇1 (cf. definition 6.8), it must fol-
low that 𝑡1 ≤ 𝑡2.

Note that if 𝑜(𝑣) is already a trusted operator for 𝐽2, then it must also be one
for 𝐽1, i.e., 𝑜(𝑣) ∈ ̂𝑇2 ⟹ 𝑜(𝑣) ∈ ̂𝑇1. This is because adding a new trust depen-
dency cannot remove any critical stakeholders (cf. definition 6.6) and all mech-
anism capabilities of components operated by stakeholder 𝑜(𝑣) in 𝐽2 are present
in 𝐽1 as well. Hence, the three identified cases are exhaustive.

379

	Cover
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Virtual Data Spaces
	1.2 Towards Data Sovereignty
	1.3 Research Gaps and Objective
	1.4 Research Questions and Contributions
	1.4.1 Usage Control and Provenance Tracking
	1.4.2 Technical Enforcement
	1.4.3 Estimating Trustworthiness

	1.5 Thesis Outline

	2 Preliminary Work
	2.1 Distributed Usage Control
	2.1.1 The XACML Architecture
	2.1.2 Decentralized vs. Cross-Domain Usage Control
	2.1.3 Policy Languages

	2.2 Provenance Tracking
	2.2.1 The PROV Model
	2.2.2 System Architectures

	2.3 Trusted Computing
	2.3.1 Trusted Platform Modules
	2.3.2 Trusted Execution Environments
	2.3.2.1 Intel Software Guard Extensions
	2.3.2.2 AMD Secure Encrypted Virtualization
	2.3.2.3 ARM TrustZone
	2.3.2.4 RISC-V Physical Memory Protection

	2.3.3 Remote Attestation Protocols

	3 Concept and System Design
	3.1 State of the Art
	3.1.1 Certification Processes
	3.1.2 Reputation Systems
	3.1.3 Distributed Ledgers
	3.1.4 Trusted Computing
	3.1.5 Conclusion

	3.2 Trustworthy System Design
	3.2.1 Remote Attestation Concept
	3.2.2 Distributed System Architecture
	3.2.3 Policy Deployment
	3.2.4 Policy Enforcement
	3.2.5 Policy Update and Revocation
	3.2.6 Provenance Collection
	3.2.7 Attestation and Measurement Handling
	3.2.8 Component Authentication and Provisioning

	3.3 Security Model
	3.3.1 Protection Goals
	3.3.2 Attacker Model
	3.3.3 Trust Dependencies

	3.4 Security Analysis
	3.4.1 Attacks on Data and Policies
	3.4.2 Attacks on Usage Control Components
	3.4.3 Attacks on Provenance Tracking
	3.4.4 Summary

	3.5 Design Alternatives
	3.6 Conclusion

	4 Technical Enforcement
	4.1 Security Requirements
	4.2 Using Trusted Platform Modules
	4.2.1 Security Properties
	4.2.2 Remote Attestation Protocols
	4.2.3 Attacks on Existing Protocols
	4.2.4 The MSCP Protocol

	4.3 Using Intel SGX
	4.3.1 Security Properties
	4.3.2 Remote Attestation Protocols

	4.4 Using ARM TrustZone
	4.4.1 Security Properties
	4.4.2 Deployment of Usage Control Components
	4.4.3 Conducting Both-World Measurements
	4.4.4 Remote Attestation Protocols

	4.5 Heterogeneous Remote Attestation
	4.5.1 Additional Requirements
	4.5.2 The EKEP Protocol
	4.5.3 Achieving Heterogeneous Attestations
	4.5.4 Protocol Evaluation

	4.6 Design Alternatives
	4.7 Conclusion

	5 A Trustworthy Distributed Usage Control Framework
	5.1 The DataSov Framework
	5.1.1 System Architecture
	5.1.2 Components and Service Definitions
	5.1.3 Provenance Tracking and Dashboard
	5.1.4 Implementation and Configuration
	5.1.5 Integrated Rollback Protection

	5.2 Remote Attestation in DataSov
	5.2.1 Implementing Heterogeneous Attestation
	5.2.2 Integrating Component Authentication
	5.2.3 Authorizing Asserted Component Identities

	5.3 A Policy Language for DataSov
	5.3.1 The Open Digital Rights Language
	5.3.2 Defining Information Sources
	5.3.3 Supporting External Obligations
	5.3.4 Representing Provenance Information
	5.3.5 The DataSov Policy Decision Point

	5.4 Conclusion

	6 Estimating Trustworthiness
	6.1 Motivation and Requirements
	6.2 Formal Model
	6.2.1 Component Model
	6.2.2 Attacker Model
	6.2.3 Trust Model

	6.3 A Trustworthiness Score
	6.3.1 Usage Control Operations
	6.3.2 Score Definition
	6.3.3 Requirement Compliance
	6.3.4 Probabilistic Interpretation

	6.4 The DataSov Trust Dashboard
	6.4.1 Dashboard Design
	6.4.2 Representing Degrees of Belief
	6.4.3 Baseline Trust Estimations

	6.5 Conclusion

	7 Evaluation and Results
	7.1 Example Scenario: Smart Manufacturing
	7.1.1 Scenario Overview
	7.1.2 System Deployment
	7.1.3 Usage Control Policies

	7.2 Performance Evaluation
	7.2.1 Component Provisioning
	7.2.2 Policy Deployment and Enforcement

	7.3 Dashboard Evaluation
	7.3.1 Collected Provenance Graphs
	7.3.2 Configured System Model
	7.3.3 Resulting Trustworthiness Scores

	7.4 Conclusion

	8 Conclusion and Outlook
	8.1 Summary
	8.1.1 Usage Control and Provenance Tracking
	8.1.2 Technical Enforcement
	8.1.3 Trustworthiness Estimation

	8.2 Future Work

	Bibliography
	Own Publications
	Supervised Student Theses
	List of Figures
	List of Tables
	Acronyms
	Appendix
	A The IDSCP Handshake
	B Formal Protocol Verification
	B.1 The IDSCP Protocol
	B.2 The MSCP Protocol
	B.3 The EKEP Protocol

	C The DataSov ODRL Profile
	D Proof Sketches

