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Abstract
Mechanical systems with singular and/or configuration-dependent mass matrix can pose
difficulties to Hamiltonian formulations, which are the standard choice for the design
of energy-momentum conserving time integrators. In this work, we derive a structure-
preserving time integrator for constrained mechanical systems based on a mixed variational
approach. Livens’ principle (or sometimes called Hamilton–Pontryagin principle) features
independent velocity and momentum quantities and circumvents the need to invert the mass
matrix. In particular, we take up the description of rigid body rotations using unit quater-
nions. Using Livens’ principle, a new and comparatively easy approach to the simulation
of these problems is presented. The equations of motion are approximated by using (par-
titioned) midpoint discrete gradients, thus generating a new energy-momentum conserving
integration scheme for mechanical systems with singular and/or configuration-dependent
mass matrix. The derived method is second-order accurate and algorithmically preserves a
generalized energy function as well as the holonomic constraints and momentum maps cor-
responding to symmetries of the system. We study the numerical performance of the newly
devised scheme in representative examples for multibody and rigid body dynamics.

Keywords Holonomic constraints · Singular mass matrix · Rigid body rotations · Unit
quaternions · Euler parameters · Livens’ principle · Structure-preserving integration ·
Energy-momentum methods · Discrete gradients

1 Introduction

1.1 State of the art

Dynamics modeling Over time, two approaches to the description of dynamical systems
have been developed: the well-known Lagrangian and Hamiltonian formalisms both con-
sider descriptive energetic scalars and deploy certain operations on them to generate the
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system’s equations of motion [26]. However, another formulation, which unifies both frame-
works by means of independent position, velocity, and momentum quantities, has been pro-
posed by Livens [41]. Livens’ principle has been recently taken up (cf. [13, 27, 54]) under
the name of Hamilton–Pontryagin principle due to its close relation to the Pontryagin prin-
ciple from the field of optimal control [51]. Livens’ principle allows for an advantageous
universal description due to its mixed character. In the previous works [32, 33] Livens’ prin-
ciple serves as a basis for the design of a new variational principle for constrained dynamics.

Numerical integration Over the last decades, numerical methods have been developed to
solve the equations of motion approximately. The class of structure-preserving integrators
seeks to inherit the conservation principles of dynamical systems in a discrete sense (cf.
monographs such as Hairer et al. [24]). In the field of mechanics, structure-preserving in-
tegration schemes can be mainly divided into two different groups: symplectic methods, of
which variational integrators are an important subclass, and energy-momentum (EM) inte-
grators.

EM integrators are implicit methods that inherit the energy and momentum-map conser-
vation of the time-continuous dynamical system in discrete time. These methods are popular
due to the enhanced stability [23], allowing for robust long-time simulations. Mostly based
on discrete gradients [21, 22, 28, 44], EM schemes typically build up on a Hamiltonian
framework. This requires to set up a Hamiltonian function, such that the mass matrix (or
inertia matrix) needs to be invertible.

Parametrizations of finite rotations When simulating multibody system dynamics, the
mathematical properties of the formulation heavily depend on the particular choice of coor-
dinates. Especially the parametrization of rotational degrees of freedom offers a multitude
of possibilities [1, 4, 15]. The investigation of rotations dates back to the historical work by
Euler [16]. Possible ways to parameterize the three rotational degrees of freedom include,
but are not limited to:

• Euler angles: This minimal representation is non-unique, non-global and can induce the
gimbal lock.

• Rotation matrices / direction cosines / directors: They are unique and global, but have a
high redundancy of six.

• Unit quaternions / Euler parameters: They are non-unique1 but global and only have a
redundancy of one.

As an extension of complex numbers, which can be used to describe planar rotations, the
concept of unit quaternions offers an appealing and widely-used approach to the description
of spatial rotations. Basic textbooks on the fundamentals of quaternions can be found in
[1, 36] and the seminal works by Haug [25] and Nikravesh [48]. Until now, unit quaternion
parametrizations of spatial rigid body rotations and their numerical integration are an active
field of research [29, 49, 52, 55, 60, 62, 63]. The standard approach yields a singular 4 × 4
mass matrix, thus making a direct transition to the Hamiltonian setup impossible. Over time,
Hamiltonian approaches have been developed nevertheless [3, 12, 42, 46, 62]. While novel
methods using unit quaternions can still induce notable energy errors [55, 63], most EM
methods in this context are based on the classical Euler’s equations [35, 39, 53, 57]. Only
few works target the EM-consistent integration of rigid body rotations formulated in quater-
nions: Besides [47], another exception is [7], circumventing the need of an undetermined

1A given (unique) rotation matrix corresponds to both q and −q. While this can lead to unwinding phenom-
ena in control [15], this ambiguity is not an issue in quaternion-based time stepping approaches.
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inertia term for setting up the Hamiltonian framework. This was achieved by starting from a
director-based formulation of finite rotations with the nine independent components of the
rotation matrix ([9, 34] or [38, Chap. 8]) and a subsequent size-reduction to obtain a regular
mass matrix in the quaternion-based framework.

Non-standard mass matrices In the previous works [32, 33], the usage of Livens’ principle
has been restricted to constrained mechanical systems with constant mass matrix. However,
in a multitude of frameworks, the mass matrix can even become singular or does depend
on the coordinates themselves (cf. [18, 59]). Apart from easy model problems, where the
singularity of the mass matrix can be overcome easily by means of modeling approaches,
the rigid body dynamics formulated in unit quaternions (see above) is an important case.
These cases pose some difficulties for Hamiltonian methods, since the inversion of the mass
matrix might not be feasible. The advantageous structure of Livens’ principle with respect
to non-standard mass matrices has only been recently explored in [31].

1.2 Present contributions

In the present work we make contributions in the following fields:

• Multibody systems analysis: This paper introduces a novel approach to multibody sys-
tems with singular and/or configuration-dependent mass matrices, utilizing Livens’ prin-
ciple [13, 27, 32, 33, 41]. Unlike Hamiltonian frameworks, this approach avoids the inver-
sion of the mass matrix, providing a new basis for the development of structure-preserving
time integrators.

• Structure-preserving integrators: We design an energy- and momentum-consistent time
integrator by directly discretizing Livens’ equations of motion in conjunction with Gon-
zalez discrete derivatives [21, 24]. This new EM integrator handles both singular and
configuration-dependent mass matrices, ensuring time-discrete energy and momentum
preservation and exact satisfaction of holonomic constraints. The design of such a method
would not be feasible in this straightforward way in a Hamiltonian or Lagrangian frame-
work.

• Quaternion-based dynamics: The paper explores the unit quaternion representation for
rigid body rotations and tailors a new EM integrator for this problem class. Leveraging
Livens’ principle, we can set up in a straightforward manner the kinetic energy in terms
of quaternions and quaternion velocities. In contrast to existing approaches [7, 47, 62],
here one does not require a sophisticated augmentation of the mass matrix with additional
inertia terms.

1.3 Outline

The outline of the present work is as follows: In Sect. 2 the fundamentals of the dynamics
of mechanical system are briefly outlined. After recapitulating Lagrangian and Hamilto-
nian mechanics of holonomically constrained systems, we introduce Livens’ principle in
Sect. 2.3. After that, the usage of unit quaternions (or Euler parameters) for the parametriza-
tion of the rotational dynamics of rigid bodies are covered by Sect. 3. This includes a revi-
sion of necessary fundamentals as well as a demonstration, how Livens’ principle provides a
new modelling approach in this context (see Sect. 3.3). In Sect. 4 we discretize the deduced
equations of motion pertaining to Livens’ principle using discrete derivatives to obtain a new
EM-consistent time-stepping scheme, which is used in Sect. 5 for the simulation of repre-
sentative example problems. Section 6 concludes this paper by reviewing the main findings
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and giving a short outlook for future research directions. The Appendix contains useful re-
lations and definitions, which are not crucial to understand the main concepts and ideas of
the bulk part of this work. Especially, we include the Hamiltonian reference procedure from
[7], see Appendix D.

Notation Throughout this work we follow the upcoming notation rules. Column vectors
a,b,μ ∈ R

n just use an italic, bold font, and lowercase letters, and their row vector coun-
terpart is obtained from transposition, i.e., aT,bT,μT ∈ R

1×n. A matrix A ∈ R
n×m uses bold

font as well, but typically assumes uppercase letters. Matrix transposition is denoted by AT.
A scalar quantity is written using normal font, e.g., V ∈ R. Quaternions are indicated using
blackboard-typed font, e.g., a, b. Scalar-multiplication uses the dot product a · b or a · b.
The outer (or dyadic) product of two vectors a ⊗ b yields a matrix with components aibj .
Matrix-vector multiplication is denoted as Ab or Cq. The d × d identity matrix is denoted
by Id×d . Moreover, we define column concatenation and a row concatenation such that

[
A b

]T =
[

AT

bT

]
. (1)

Partial derivatives are denoted by ∂xf (x, y) and the gradient operator of functions with mul-
tiple arguments is given by ∇f (x, y) = [∂xf ∂yf ]T. If not stated otherwise, ||�|| denotes
the standard Euclidean norm. The widehat-notation (see, e.g., [26]) will be used, such that
the cross-product a × b = âb is formulated with the skew-symmetric matrix

â =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ = −̂aT, (2)

where ai denotes the ith component of vector a in a given coordinate frame. If not mentioned
differently, we assume this to be an inertial and Euclidean coordinate frame, denoted by {ei}.

2 Dynamics modeling

In this chapter, we review the fundamentals of conservative Lagrangian and Hamiltonian for-
mulations for the dynamics of holonomically constrained systems in Sect. 2.1 and Sect. 2.2,
respectively. Subsequently, we present the alternative formulation using Livens’ principle in
Sect. 2.3 and demonstrate its conservation principles.

2.1 Lagrangian dynamics

Consider the motion of a conservative dynamical system in a time interval of interest
T = [0, tend] with n coordinates q : T → Q, the configuration space, which is constrained
by m independent scleronomic, holonomic constraint equations gk : Q → R (k = 1, . . . ,m)
comprised in a column-vector such that

g(q(t)) = 0. (3)

Correspondingly, the configuration space is given by

Q = {q(t) ∈R
n : g(q) = 0}, (4)
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and hidden velocity constraints are imposed due to consistency requiring

d

dt
g(q(t)) = ∇g(q(t))q̇ = 0, (5)

where the constraint Jacobian has rank m due to the independence of the constraints. Ad-
missible velocities q̇ belong to the tangent space

TqQ = {q̇ ∈R
n : ∇g(q)q̇ = 0}, (6)

henceforth omitting time-dependency for clarity. The motion of such a dynamical system
is determined by Hamilton’s principle of least action, which ensures the stationarity of the
action integral leading to

δ

∫

T
(L(q, q̇) − λ · g(q)) dt = 0. (7)

In the last relation Lagrange multipliers λ : T → R
m have been introduced to enforce con-

straint equation (3). Moreover, L : TQ → R is the Lagrange function. In this work we con-
sider separable forms

L(q, q̇) = T (q, q̇) − V (q) = 1

2
q̇TM(q)q̇ − V (q), (8)

where the kinetic energy function T : TQ → R is set up using the symmetric, positive
semidefinite mass matrix M : Q → R

n×n, which is explicitly allowed to have rank defi-
ciency. Moreover, in (8), V : Q → R denotes the potential energy function. For the present
case, the dynamics are governed by constraints as well, making it reasonable to define an
augmented Lagrangian

Lλ(q, q̇) = L(q, q̇) − λ · g(q). (9)

The variational principle (7) leads to the well-known Lagrangian equations of the first kind
as corresponding Euler–Lagrange equations, i.e.,

d

dt

(
∂q̇L(q, q̇)

)
− ∂qL(q, q̇) + ∇g(q)Tλ = 0,

g(q) = 0.

(10)

The total energy of the system in the Lagrangian setup is given by the sum of kinetic and
potential energy, i.e.,

Etot(q, q̇) = T (q, q̇) + V (q). (11)

2.2 Hamiltonian dynamics

The Hamiltonian framework for conservative dynamical systems can be derived under some
assumptions using a Legendre transformation, yielding a map from the tangent bundle TQ
to the co-tangent bundle

T ∗Q = {q ∈ Q,p ∈ R
n : ∇g(q)M(q)−1p = 0}. (12)
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Definition 2.1 Given a Lagrangian system, the corresponding Hamiltonian function
H : T ∗Q → R can be obtained by employing a Legendre transformation
FL : (q, q̇) �→ (q,p), where the conjugate momenta are defined a priori using the fiber
derivative

p := ∂q̇L(q, q̇) (13)

such that

H(q,p) := p · q̇(q,p) − L(q, q̇(q,p)). (14)

This Legendre transformation exists only if relation (13) can be inverted, i.e., if systems
with Lagrange function (8) have an invertible mass matrix. If this is the case, the system’s
Hamiltonian pertaining to the augmented Lagrangian (9) reads

Hλ(q,p) = T ∗(q,p) + V (q) + λ · g(q) = 1

2
p · M(q)−1p + V (q) + λ · g(q), (15)

where T ∗ : T ∗Q → R denotes the kinetic co-energy, satisfying T ∗(q,p) = T (q, q̇(q,p)).
Relation (15) also demonstrates that the Hamiltonian can be identified with the total energy
of the system in the Hamiltonian setup corresponding to (11).

Eventually, for the constrained mechanical systems of our interest, the well-known
Hamiltonian equations of motion appear in their canonical form as first order ordinary dif-
ferential equations

q̇ = ∂pHλ(q,p) = M(q)−1p (16a)

ṗ = −∂qHλ(q,p) = −∂qT (q,p) − ∇V (q) − ∇g(q)Tλ (16b)

0 = g(q). (16c)

As the transition to the Hamiltonian framework may not be feasible in general, we now
want to introduce a different and more general framework, which circumvents the inversion
of the system’s mass matrix.

2.3 Livens’ principle

From Hamilton’s principle of least action (7) one can proceed by allowing the velocities to
be independent variables v ∈ TqQ. The kinematic relation q̇ = v can be enforced by means
of Lagrange multipliers p ∈ T ∗

qQ.

Definition 2.2 The augmented action integral for Livens’ principle accounting for holo-
nomic constraints reads

S(q,v,p,λ) =
∫

T
[L(q,v) + p · (q̇ − v) − λ · g(q)] dt . (17)

Initially termed Livens’ principle (cf. Sect. 26.2 in Pars [50]) after G.H. Livens, who
proposed this functional for the first time (cf. Livens [41]), Marsden and co-workers (e.g.,
[13]) coined the name Hamilton–Pontryagin principle for this functional due to its close
relation to the classical Pontryagin principle from the field of optimal control. Due to its
mixed character with three independent fields (q , v, p), it resembles the Hu–Washizu prin-
ciple from the area of elasticity theory. Initially, this principle did not account for constraints.
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More recently, preliminary works [32, 33] have taken up Livens’ principle to obtain a novel
variational principle, the GGL principle, which extends Livens’ principle to holonomically
constrained systems and explicitly accounts for velocity constraints in the sense of (5).

By stating the stationary condition

δS(q,v,p,λ) = 0 (18)

and executing the variations with respect to every independent variable, one obtains the
equations of motion

q̇ = v, (19a)

ṗ = ∂qL(q,v) − ∇g(q)Tλ, (19b)

p = ∂vL(q,v), (19c)

0 = g(q), (19d)

where the arbitrariness of variations and standard endpoint conditions
δq(t = 0) = δq(t = T ) = 0 have been taken into account. With regard to (19c), the La-
grange multiplier p can be identified as the conjugate momentum. Thus, Livens’ principle
automatically accounts for the Legendre transformation (see Def. 2.1), whereas within the
framework of Hamiltonian dynamics momentum variables have to be defined a priori using
the fiber derivative.

It can be shown that the above differential algebraic equations (DAEs) (19a)–(19d) have
differentiation index 3 (see, for example, [37]), which can lead to numerical instabilities. An
index reduction using the classical Gear–Gupta–Leimkuhler stabilization [19] or an expan-
sion of (17) to account also for the hidden constraints (cf. GGL principle in [32, 33]) can
circumvent the arising problems.

In analogy to (14), a generalized energy function can be introduced as follows.

Definition 2.3 Given a Lagrangian (8) the quantity

E(q,v,p) = p · v − L(q,v) = Ekin(q,v,p) + V (q) (20)

is called a generalized energy function and Ekin(q, v,p) := p · v − T (q, v) is the corre-
sponding generalized kinetic energy function, both being defined for independent coordi-
nates, velocities and momenta.

Remark 2.4 (Alternative form of Livens’ principle) Using the generalized energy function,
(17) can be recast as

S(q,v,p) =
∫

T
[p · q̇ − E(q,v,p) − λ · g(q)] dt, (21)

such that the Euler–Lagrange equations (19a)–(19d) are equivalently given by

q̇ = ∂pE(q,v,p), (22a)

ṗ = −∂qE(q,v,p) − ∇g(q)Tλ, (22b)

0 = ∂vE(q,v,p), (22c)

0 = g(q). (22d)
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Proposition 2.5 The generalized energy (20) is a conserved quantity along solutions of
(19a)–(19d).

Proof We compute

d

dt
E(q,v,p) = ∂qE(q,v,p) · q̇ + ∂vE(q,v,p) · v̇ + ∂pE(q,v,p) · ṗ

= −λ · ∇g(q)v = 0,

(23)

where the partial derivatives of E have been used and (22a)–(22d) has been inserted. Thus,
the second term vanishes while the first and third term cancel each other. Having in mind
that (5) holds, also this last part is zero, such that dE/dt = 0. �

Proposition 2.6 Assume that a dynamical system has symmetry, i.e., it satisfies the invari-
ance properties

L(qα,vα) = L(q,v), g(qα) = g(q), (24)

where (qα, vα) are one-parameter curves in the configuration space (4) and tangent space
(6), respectively, resulting from the action of a matrix group G on the configuration space.
Then, according to Noether’s theorem, each symmetry induces the conservation of an asso-
ciated momentum map, defined by

Lξ (q,p) := p · ξq, (25)

where ξ is an element of the Lie algebra of G.

Proof Livens’ principle with constraints is a special case of the GGL principle. The propo-
sition follows from a proof in analogy to Sect. 2.2.1 and 3.2.1 in [32]. The reference is
restricted to constant mass matrices. However, this does not alter the deduction of the
proof. �

Remark 2.7 (Equivalence with Lagrangian dynamics) Note that reinserting (19c) into (19b)
yields

q̇ = v, (26a)

d

dt
(∂vL(q,v)) = ∂qL(q,v) − ∇g(q)Tλ, (26b)

0 = g(q), (26c)

which traces back to the Lagrangian equations of the first kind (10), after substituting (26a)
into (26b).

Remark 2.8 (Equivalence with Hamiltonian dynamics) For mechanical systems with La-
grangian (8) where the mass matrix is invertible, relation (19c) yields M(q)−1p = v. Then,
(19a), (19b), and (19d) directly lead to the canonical Hamiltonian equations of motion
(16a)–(16c). Moreover, in this case, the generalized energy function can be identified as
the Hamiltonian, such that E(q, v(q,p),p) = H(q,p).
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3 Unit quaternions for rigid body rotations

In this section, we briefly introduce the notion of unit quaternions (or Euler parameters) and
their application for rigid body rotations. Section 3.3 represents the core of the underlying
work: We show that the naturally emerging singular mass matrix can be directly used for
simulation when using Livens’ principle (see Chap. 2).

3.1 Unit quaternions

A quaternion q ∈H � R
4 can be considered as a 4-tuple combining a scalar part q0 ∈ R and

a vector part q ∈R
3 with components qi . Correspondingly, we use the notation q = (q0,q),

which is equivalent to

q =
[
q0

q

]
=

⎡

⎢
⎢
⎣

q0

q1

q2

q3

⎤

⎥
⎥
⎦ . (27)

Moreover, quaternion multiplication for two quaternions q,p ∈H is defined as

q ◦ p=
[

q0p0 − q · p
q0p + p0q + q × p

]
. (28)

Multiplication (28) is not commutative due to the presence of the cross-product within the
vector-part, but associative, i.e., a ◦ b ◦ c = (a ◦ b) ◦ c = a ◦ (b ◦ c). The identity element
for multiplication such that q ◦ e = e ◦ q = q, is given by e = (1, 03×1). Additionally, the
conjugate quaternion is given by q = (q0,−q), and it can be shown that q ◦ p = p ◦ q. The
Euclidean norm of a quaternion is computed via

‖q‖ = √
q · q=

√
q2

0 + q · q =
√

q2
0 + q2

1 + q2
2 + q3

3 . (29)

Especially helpful is the notion of unit quaternions. Unit quaternions are a subset of all
quaternions satisfying the unit length condition ‖q‖ = 1 ⇔ q · q = 1 ⇔ q ◦ q = q ◦ q = e,
which can be recast as

g1(q) = 1

2
(q · q− 1) = 0, (30)

with the corresponding group of unity quaternions Sp(1), the symplectic group, which can
be identified with the 4-dimensional unit hypersphere

S3 = {q ∈R
4 : g1(q) = 0}. (31)

For a detailed introduction to quaternions, we refer to [1, 36].

3.2 Linear algebra representation

It is quite handy to define certain matrix operations in order to recast the quaternion multi-
plication (28). Thus, following [36], we make use of the representation given by

a ◦ b = Ql(a)b = Qr(b)a (32)
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with the 4 × 4 matrices

Ql(a) := [
a G(a)T

] = a0I4×4 + a+, (33a)

Qr(b) := [
b E(b)T

] = b0I4×4 + b−, (33b)

the inverses of which can be found in (134). In (33a)–(33b), there are moreover the quantities

a+ :=
[

0 −aT

a â

]
, b− :=

[
0 −bT

b −b̂

]
(34)

defined, as well as the 3 × 4 matrices

G(a) := [−a a0I3×3 − â
]

, (35a)

E(b) := [−b b0I3×3 + b̂
]

. (35b)

Remember the widehat-notation (2). The linear algebra representation (32) can also be writ-
ten as the exponential map [7, 56] with

Ql(a) = expO(4)

(
1

2
a+

)
= cos

(
1

2
||a||

)
I4×4 + sin

(
1
2 ||a||)

||a|| a+. (36)

3.3 Rotational dynamics of rigid bodies

Consider a rigid body undergoing a pure rotation about the origin O of an orthonormal frame
{ei}. The reference configuration occupies the regular domain B, and every point is uniquely
defined by its material vector X = Xiei ∈ B. For simplicity, we assume O to be the center of
mass and ei coincides with the principal axes of B. During motion the spatial position may
be addressed via x(X, t) = R(t)X, where the rotation matrix R = R−T ∈ SO(3), the special
orthogonal group in three dimensions, describes the time-dependency of a local (body-fixed)
frame {d i} as d i (t) = R(t)ei . The body’s kinetic energy is therefore given by

T (t) =
∫

B
ρ0(X)ẋ(X, t) · ẋ(X, t)dV , (37)

where ρ0 : B → R+ denotes the material mass density and ẋ(X, t) = Ṙ(t)X is a material
velocity vector. It is common to describe the rotational motion in terms of angular velocity
vectors, e.g., using the spatial angular velocity ω such that ẋ(X, t) = ω(t) × x(X, t) = ω̂x .
Using the relation ω = R�, the convective counterpart, the material representation � of the
angular velocity is obtained. Note the important relation Ṙ = R�̂ = ω̂R, which leads to
ẋ = R�̂X = −RX̂�. Plugging this into (37) eventually leads to another representation of
the kinetic energy in terms of the convective angular velocity (see, e.g., [9])

T (t) = T̃ (�(t)) = 1

2
�(t) · J0�(t), (38)

with the convected inertia tensor

J0 := −
∫

B
X̂

2
ρ0(X)dV =

∫

B
((X · X)I − X ⊗ X) ρ0(X)dV =

3∑

i=1

J i
0ei ⊗ ei , (39)
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which can be diagonalized using its principal values J i
0 .

An important result from Euler’s theorem of rotations [16] is that any rotation of a rigid
body may be specified by a rotation axis and a rotation angle, such that the rotation vector
is given by ϑ = ϑn with the unit vector n = ϑ/‖ϑ‖ ∈ S2, the unit sphere in R

3, and the
rotation angle ϑ = ‖ϑ‖ ∈ R. The unit quaternion describing this rotation is obtained by
using the appropriate exponential map (see [56]) yielding

q = expS3

([
0

1
2ϑ

])
=

[
cos (ϑ/2)

sin (ϑ/2)n

]
. (40)

This relation has given unit quaternions an alternative name: Euler parameters. This has
led to the development to parameterize rigid body rotations by using unit quaternions
q = (q0,q) ∈ S3, i.e., it satisfies the holonomic unity constraint (30) at all times. Remem-
bering (5), this induces hidden (velocity-level) constraints as

d

dt
g(q) = ∇g(q) · q̇ = q · q̇ = 0, (41)

such that the tangent space is defined via

TqS3 = {v ∈ H : q · v = 0}. (42)

The velocity constraint (41) can alternatively be written as q̇ ◦ q + q ◦ q̇ = (0, 0). Based
on this representation, it can be shown that the convective angular velocity � satisfies
(0, 1

2 �) = q ◦ q̇, see [8] for the details. Correspondingly, the convective angular velocity
� and its spatial counterpart ω can be written as

�(q,v) = 2G(q)v = −2G(v)q,

ω(q,v) = 2E(q)v = −2E(v)q
(43)

and the inverse relations

v = 1

2
G(q)T� = 1

2
E(q)Tω, (44)

which can be verified using (135). As core of this work, we can now rewrite the kinetic
energy (38) in terms of unit quaternions and their velocities as

T (q,v) = T̃ (�(q,v)) = 1

2
v · M̃4(q)v (45)

along with the 4 × 4 mass matrix

M̃4(q) = 4G(q)TJ0G(q), (46)

which is singular for all (q, v) since G(q) has rank three. Thus also M̃4 has only rank three.
While many works need to avoid the singularity of the mass matrix for example by aug-
menting it, this does not bother us when making use of Livens’ principle. For the rotational
dynamics, Livens’ equations of motion become

q̇ = v , (47a)
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ṗ = ∂qL(q,v) − λ∇g(q), (47b)

p = ∂vL(q,v), (47c)

0 = g(q). (47d)

The two partial derivatives read

∂qL = 4G(v)TJ0G(v)q− ∇V (q), (48a)

∂vL = M̃4(q)v , (48b)

where we additionally allow for potential forces, e.g., due to gravity.

Remark 3.1 We refer to [7] for an insightful discourse on how to perform the transition from
a rotation matrix R ∈ SO(3) to unit quaternions. In this context the rotation of a vector
ξ ∈R

3 can be described by

(0,R(q)ξ) = q ◦ (0, ξ) ◦ q. (49)

Consequently, the rotation matrix can be linked to the quaternion representation and its
transformation matrices (35a)–(35b) via

R(t) = R(q) = E(q)G(q)T. (50)

Making use of (136), it can be checked that this automatically ensures the proper orthog-
onality of the rotation matrix. In terms of the quaternion components the rotation matrix
eventually reads

R(q) =
⎡

⎣
q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤

⎦ , (51)

see, e.g., [47]. This relation can also be obtained using the Rodrigues formula (see, e.g.,
[11, 47])

R(ϑn) = cos(ϑ)I 3×3 + (1 − cos(ϑ))n ⊗ n + sin(ϑ)̂n, (52)

featuring the angle-axis representation from (40) and making use of double-angle formulas.

3.4 Conservation of angular momentum

Here, we show the invariance of the kinetic energy of a rigid body (45) with respect to super-
posed rotations. In accordance with Noether’s theorem, this leads to a conserved quantity,
the angular momentum (see Proposition 2.6). To this end, consider a one-parameter family
of rigid body rotations about the axis defined by ξ ∈R

3 given by xα = expS3(0, αξ), see
(40), such that

qα = xα ◦ q = Ql(x
α)q, (53a)

vα = xα ◦ v = Ql(x
α)v . (53b)
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Corollary 3.2 The convective angular velocity (43) is invariant under superposed rotations
such that

�α = �(qα,vα) = �(q,v) = �. (54)

This induces the symmetry

T̃ (�α) = T̃ (�) ⇔ T (qα,vα) = T (q,v) (55)

for the kinetic energy of the rigid body.

Proof We demonstrate that

qα ◦ vα = xα ◦ q ◦ (xα ◦ v) = q ◦ (xα ◦ xα) ◦ v = q ◦ v , (56)

which is identical with

Ql(q
α)Tvα = Ql(q)Tv . (57)

In view of (33a)–(33b) this implies

G(qα)vα = G(q)v , qα · vα = q · v , (58)

which concludes the proof due to definition (43). �

We now want to highlight that under certain assumptions Corollary 3.2 induces symmetry
of the total dynamical system, in correspondence with Proposition 2.6.

Proposition 3.3 Given the rotational invariance of the potential energy, i.e., V (qα) = V (q),
the rotational dynamics of a rigid body has symmetry in the sense of

L(qα,vα) = L(q,v), g(qα) = g(q), (59)

where the constraint is given by the unity constraint of quaternions (30).

Proof In view of (134), one can define the constraint invariant

η(qα) = qα · qα = q · q = η(q). (60)

This proves the second symmetry condition. The first one follows from the assumption as
well as Corollary 3.2. �

Corresponding to (59), there are infinitesimal invariance conditions given by

d

dα

∣
∣∣
α=0

L
(

expO(4)

(α

2
ξ+

)
q, expO(4)

(α

2
ξ+

)
v
)

= 0 (61)

d

dα

∣∣
∣
α=0

g
(

expO(4)

(α

2
ξ+

)
q
)

= 0, (62)

which make use of the exponential map (36). Applying the chain rule, taking the sum, and
making use of the definition of an augmented Lagrangian (9), this yields

1

2
∂qLλ · ξ+q− 1

2
v · ξ+p= 0. (63)
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Proposition 3.4 The angular momentum2 (see [7])

L(q,p) = 1

2
E(q)p (64)

is preserved about a symmetry axis defined by ξ . The corresponding momentum map is given
by

Lξ = L(q,p) · ξ = 1

2
p · ξ+q = 1

2
p · E(q)Tξ (65)

and satisfies d
dt

Lξ = 0.

Proof Executing the time derivative yields

d

dt
(L(q,p) · ξ) = ∂qLξ · q̇+ ∂pLξ · ṗ = ∂qLξ · v + ∂pLξ · ∂qLλ = 0 (66)

and can be compared with (63). This leads us to the conditions

1

2
ξ+q= ∂pLξ , − 1

2
ξ+p = ∂qLξ , (67a)

conforming with the angular momentum map (65). �

4 Structure-preserving discretization

In this section, a novel integration method, which conserves first integrals of the equations
of motion pertaining to Livens’ principle, e.g., the generalized energy function E, is pro-
posed. This scheme results from a direct discretization of the Euler–Lagrange equations
(19a)–(19d) emanating from Livens’ principle with constraints. Particularly, discrete deriva-
tives are used, and we focus on the ones in the sense of Gonzalez [21]. The scheme is
specified for rigid body rotations using unit quaternions. In addition to that, we propose a
size reduction procedure to enhance computational efficiency.

For the discretization in time, the time interval of interest is divided into N ∈ N subinter-
vals, i.e.,

T = [0, tend] =
N−1⋃

n=0

[tn, tn+1] (68)

of constant time step size h ∈ R, with tn = nh. Correspondingly, approximations at the
discrete points in time are addressed via �n ≈ �(tn) and tn+1 is referred to as endpoint of
the respective time interval.

2This formula for the spatial angular momentum can be derived from the rotational kinetic energy in terms
of the spatial angular velocities via L = ∂ωT = RJ0RTω and using (50), (43), and (47c).
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4.1 Discrete gradients

Discrete gradients are a popular tool for generating geometric integration methods for dy-
namical systems. A general definition is as follows.

Definition 4.1 (Discrete gradients, see [24]) Given a function f : Rn → R, an operator
∇ :Rn ×R

n →R
n is called discrete gradient if it is a continuous function satisfying

1. Directionality

∇f (x,y) · (y − x) = f (y) − f (x), (69)

2. Consistency

∇f (x,x) = ∇f (x) . (70)

In particular, we restrict ourselves to a specific type of discrete gradients, which can
yield symmetric methods of second order accuracy, as they represent second-order approxi-
mations to the exact gradients.

Definition 4.2 (Gonzalez discrete gradient, see [21]) For a given function f : Rn → R, the
Gonzalez (or midpoint) discrete gradient ∇ :Rn ×R

n →R
n is defined by

∇f (x,y) = ∇f

(
x + y

2

)
+ f (y) − f (x) − ∇f

(
1
2 (x + y)

) · (y − x)

||y − x||2 (y − x). (71)

4.2 Livens-based energy-momentum integrator

We are now in a position to discretize the Euler–Lagrange equations from Livens’ principle
(19a)–(19d) in time, using Gonzalez discrete derivatives (71). Specifically, partial discrete
derivatives are used. Moreover, temporal derivatives are approximated in terms of difference
quotients, and the constraint functions are evaluated in the endpoint tn+1.

Thus, we propose the energy-momentum (EM) integrator, governed by

qn+1 − qn = hvn+1/2, (72a)

pn+1 − pn = h∂qL(q,v) − h

m∑

k=1

λk∇gk(q), (72b)

pn+1/2 = ∂vL(q,v), (72c)

g(qn+1) = 0, (72d)

where we use midpoint interpolations vn+1/2 = 1
2 (vn + vn+1) and pn+1/2 = 1

2 (pn + pn+1).
Moreover, ∂q and ∂v denote the partitioned discrete derivatives, which are described for the
sake of completeness in Appendix A. Directionality condition (69) extends to partitioned
discrete derivatives such that

∂qL(q,v) · 
q + ∂vL(q,v) · 
v = L(qn+1,vn+1) − L(qn,vn), (73)

where 
q = qn+1 − qn and 
v = vn+1 − vn.
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Definition 4.3 A discrete version of the generalized energy function (20) is given by

En = pn · vn − 1

2
vn · M(qn)vn + V (qn). (74)

Proposition 4.4 The discrete-time generalized energy (74) is conserved by time-stepping
method (72a)–(72d).

Proof Scalar multiplying (72b) with 
q and adding the scalar product of (72c) with 
v

yields

(pn+1 − pn) · (qn+1 − qn) + hpn+1/2 · (vn+1 − vn) (75)

= h∂qL(q,v) · (qn+1 − qn) − h

m∑

k=1

λk∇gk(q) · (qn+1 − qn) + ∂vL(q,v) · (vn+1 − vn).

Inserting (72a) and making use of the directionality property gives

(pn+1 − pn) · vn+1/2 + pn+1/2 · (vn+1 − vn) = L(qn+1,vn+1) − L(qn,vn) (76)

−
m∑

k=1

λk

(
gk(q

n+1) − gk(q
n)

)
.

After cancelling some terms on the left-hand side of the previous relation and taking into
account that the constraints are identically satisfied in each time step (see (72d)), one even-
tually arrives at

En+1 − En = 0, (77)

which concludes the proof. �

Remark 4.5 In compliance with Noether’s theorem (see Proposition 2.6), the present inte-
grator preserves momentum maps also in the discrete setting, i.e.,

Ln+1
ξ − Ln

ξ = 0. (78)

See Sect. 4.4 for the proof of the preserved angular momentum map for rigid body rotations.
An analogous proof for the general case can be found in [32].

Proposition 4.6 The discrete fiber derivative (72c) in general does not imply a pointwise ful-
fillment of the continuous fiber derivative. That is, pn = M(qn)vn does not hold in general.
However, the relation pn = Mvn is satisfied for constant mass matrices. As a consequence,
the discretized Hamiltonian

Hn = 1

2
pn · M(qn)−1pn + V (qn) (79)

and the discrete total energy

En
tot =

1

2
vn · M(qn)vn + V (qn) (80)

are only identical to the discrete energy function (74) if the mass matrix is constant.
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Proof With the kinetic energy from (8) it can be verified that

∂vT (qn,vn+1/2) = M(qn)vn+1/2, (81)

∂vT (qn+1,vn+1/2) = M(qn+1)vn+1/2, (82)

such that with the discrete gradient design from Appendix A, eventually

∂vT (q,v) = 1

2

(
M(qn) + M(qn+1)

)
vn+1/2. (83)

Consequently, the discrete fiber derivative (72c) yields

pn+1/2 = 1

2

(
M(qn) + M(qn+1)

)
vn+1/2. (84)

In the case of a constant mass matrix, the discrete derivative is given by
∂vT (q, v) = Mvn+1/2. Accordingly, the discrete fiber derivative (72c) yields
pn+1/2 = Mvn+1/2. Consequently, provided that pn = Mvn is satisfied, pn+1 = Mvn+1 is
fulfilled, too. Assuming that consistent initial values are chosen, such that p0 = M(q0)v0,
by (84), the proposition has been proven. �

Remark 4.7 (Discrete time equivalence to Lagrangian methods) As a consequence of
Proposition (4.6), one can show that the proposed Livens-based EM method (72a)–(72d)
can be written as a Lagrangian scheme if the mass matrix is constant. The scheme reads

qn+1 − qn = hvn+1/2,

M(vn+1 − vn) = h∇V (q) − h

m∑

k=1

λk∇gk(q),

g(qn+1) = 0

(85)

and represents a direct approximation of (26a)–(26c). Due to the mixed nature of the dis-
crete fiber derivative (84), there exists no such equivalence if the mass matrix depends on
the generalized coordinates. In this case, an EM-consistent method cannot be derived in a
Lagrangian framework in a straightforward way.

4.3 Application to rigid body rotations

For the rotational dynamics of rigid bodies in terms of Livens’ principle and unit quater-
nions, governed by (47a)–(47d), the method is specified by

qn+1 − qn = hvn+1/2, (86a)

pn+1 − pn = h∂qT − hλ∇g, (86b)

pn+1/2 = ∂vT , (86c)

g(qn+1) = 0. (86d)

Since the kinetic energy may be formulated in terms of one invariant quantity, the convective
angular velocity, see Corollary 3.2, the partitioned discrete derivatives for the present case
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become

∂qT = ∂�

∂q

∣∣∣
T

n+1/2

∂T̃

∂�n+1/2 , ∂vT = ∂�

∂v

∣∣∣
T

n+1/2

∂T̃

∂�n+1/2 , (87)

where

�n+1/2 = 1

2
(�n + �n+1) = G(qn)vn + G(qn+1)vn+1, (88)

which differs from �(qn+1/2, vn+1/2). We refer to [21] for more details on so-called G-
equivariant discrete gradients. It can be shown that the specification above satisfies the di-
rectionality condition

∂qT · (qn+1 − qn) + ∂vT · (vn+1 − vn)

= ∂T̃

∂�n+1/2 ·
(

∂�

∂q

∣
∣∣
n+1/2

(qn+1 − qn) + ∂�

∂v

∣
∣∣
n+1/2

(vn+1 − vn)

)

= ∂T̃

∂�n+1/2 · (�n+1 − �n) = T̃ (�n+1) − T̃ (�n). (89)

Note that we have taken into account the fact that � is bilinear in q and v , see (88), and
that T̃ (�) is a quadratic function, see (38). Moreover, the integrator meets the orthogonality
conditions (see [21])

∂qL · ξ+qn+1/2 + ∂vL · ξ+vn+1/2 = 0, (90)

∇g · ξ+qn+1/2 = 0 (91)

pertaining to the symmetry conditions in continuous time (61). Making use of the augmented
Lagrangian (9), the last two equations yield

∂qLλ · ξ+qn+1/2 + ∂vLλ · ξ+vn+1/2 = 0. (92)

Lastly, due to the quadratic structure of the unity constraint (30), its discrete gradient can be
introduced as

∇g = ∇g(qn+1/2) = qn+1/2. (93)

Remark 4.8 The present method satisfies the velocity constraint (41) in the midpoint tn+1/2

but not in the endpoint. This can be derived from the premultiplication of (86a) with qn+1/2

and using the normality condition (86d) such that

hqn+1/2 · vn+1/2 = 1

2

(
qn+1 · qn+1 − qn · qn

) = 0. (94)

Assuming qn · vn = 0, one arrives at

qn+1 · vn+1 = qn+1 · vn + qn · vn+1 �= 0. (95)

Consequently, this method should not be applied to the augmented system with regular mass
matrix (140). See also Remark D.1. This has no negative impact if the scheme is applied, as
recommended, to the system with singular mass matrix (46).
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4.4 Conservation principles in discrete time

Proposition 4.9 The generalized energy function is a conserved quantity in discrete time,
provided by solutions of (86a)–(86d), viz.

En+1 − En = 0. (96)

Proof Multiplying (86b) with (qn+1 − qn), adding (86c) multiplied by (vn+1 − vn), and
inserting (86a) leads to

pn+1 · vn+1 − pn · vn = ∂qT · (qn+1 − qn) + ∂vT · (vn+1 − vn) − λ∇g · (qn+1 − qn),

(97)

which, using (86d), and making use of the directionality condition (89), yields

pn+1 · vn+1 − pn · vn = T n+1 − T n, (98)

which confirms the proposition. �

Proposition 4.10 The angular momentum map (65) is a conserved quantity in discrete time,
provided by solutions of (86a)–(86d).

Proof It can be shown that

Ln+1
ξ − Ln

ξ = 1

2
(pn+1 − pn) · ξ+qn+1/2 − 1

2
(qn+1 − qn) · ξ+pn+1/2. (99)

Inserting (86a), (86b), and (86c) yields

Ln+1
ξ − Ln

ξ = h

2

(
∂qLλ · ξ+qn+1/2 + ∂vLλ · ξ+vn+1/2

) = 0, (100)

which is zero due to (92). �

4.5 Size reduction procedures

To obtain the mentioned beneficial numerical properties without the drawback of an in-
creased numerical effort due to the enhanced state space with independent velocities and
momenta, an implementation variant is proposed. We perform a size reduction such that
the scheme can be enhanced to increase computational efficiency. By eliminating pn+1 and
vn+1 from the set of unknowns in the implementation, we reduce the amount of nonlinear
equations to be solved in each time step. From (86a) we can determine

vn+1 = ṽn+1
(qn+1) = 2

h
(qn+1 − qn) − vn, (101)

and (86c) serves to recast

pn+1 = p̃n+1
(qn+1, ṽn+1

(qn+1)) = 2∂vT − pn. (102)
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By inserting these relations into (86b), together with (86d) we end up with five nonlinear
equations

R1(q
n+1, λ) = 04×1

R2(q
n+1) = 0,

(103)

for five unknowns, namely four components of the quaternion and one scalar value for the
Lagrange multiplier. After solving (103), equations (101) and (102) yield the updated veloc-
ities and momenta.

Remark 4.11 (Discrete null-space method) An alternative size reduction procedure is given
by a discrete null-space method [5] along the lines of Sect. 4.5 in [7]. It consists of an
elimination of the Lagrange multiplier and a replacement of qn+1 by an incremental rota-
tion vector ϑ ∈ R

3. In this context, G(qn+1/2) can be used as a discrete null space matrix.
Premultiplication of (86b) with that matrix eliminates the constraint forces due to (93), i.e.,

G(qn+1/2)qn+1/2 = 03×1, (104)

where property (135) has been used. Moreover, the unity constraint can be neglected by
replacing the update formula for the quaternion (86a) with

qn+1 = expS3

((
0,

1

2
ϑ

))
◦ qn, (105)

where the exponential map on S3 is given in (40). Note that the last relation (105) automat-
ically ensures the unity constraint such that qn+1 ∈ S3. Using a similar elimination of the
velocities and momenta as above eventually yields a minimal set of three nonlinear equa-
tions for the unknown ϑ for each time step. The incremental rotation vector can be computed
for each time step individually such that, in contrast to minimal representations using Euler
angles, singularities due to the trigonometric functions are avoided.

Note that the above size reduction techniques do not alter the above-mentioned conser-
vation properties of the proposed EM scheme.

5 Numerical studies

In the following, the newly proposed scheme (72a)–(72d) is applied to some numerical ex-
amples. Since this involves the solution of an implicit set of equations, Newton’s method
is used in every time step with a tolerance of εNewton = 10−9. The computations have been
performed using the code package available at [30], which can also be used for verification.
The first two examples represent model problems dealing with singular and configuration-
dependent mass matrix, respectively. Examples 3 and 4 show rigid body rotation prob-
lems, which are known from literature. Here we apply the newly proposed EM scheme
(86a)–(86d). We moreover target a comparison to an established Hamiltonian EM method
from [7] as well as two midpoint schemes, based on the Hamiltonian and Livens-based
equations of motion, see Table 1. The last example shows how our approach can be adapted
to more complex multibody systems, which include translational motion and external con-
straints.
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Table 1 Overview of integration methods

Integration scheme Label Section Governing equations

Livens-based energy-momentum scheme EML Sects. 4.2 and 4.3 (72a)–(72d) and (86a)–(86d)

Hamiltonian energy-momentum scheme EMH Appendix D (146)

Livens-based midpoint rule MPL Appendix B (132)

Hamiltonian midpoint rule MPH Appendix B (133)

The time step size for each example has been chosen according to the existing literature.
When differing from that, we have made choices such that all methods under investigation
converge to a solution. Due to the enhanced robustness of EM methods, this value is only
restricted by the convergence of Newton’s method in each time step.

5.1 Mass-spring system with redundant coordinates

We take up an example with singular mass matrix from [59, Sect. 5, Example 3] as de-
picted in Fig. 1 with masses mi and springs with constants ki and resting lengths li0, where
i ∈ {1,2}. The system can be considered as a modular multibody system with two sepa-
rate subsystems and two degrees of freedom. However, we use two coordinates describing
the springs’ elongations (x1 and x2) and one coordinate q2 where the two subsystems are
interconnected such that n = 3. Correspondingly, we use

q =
⎡

⎣
x1

q2

x2

⎤

⎦ and v =
⎡

⎣
v1

v2

v3

⎤

⎦ =
⎡

⎣
ẋ1

q̇2

ẋ2

⎤

⎦ , (106)

and the interconnection constraint q2 = x1 + l10 + w arises, which can be recast as

g(q) = 1

2

(
(q2 − x1)

2 − (l10 + w)2
) = 0, (107)

such that m = 1. The total kinetic energy is given by

T (v) = 1

2
m1v

2
1 + 1

2
m2(v2 + v3)

2 = 1

2
vT

⎡

⎣
m1 0 0
0 m2 m2

0 m2 m2

⎤

⎦v, (108)

and thus we identify a mass matrix, which is constant and singular for all configurations.
Thus, the inverse M−1 does not exist, and we cannot find a Hamiltonian for this problem.
Moreover, the discrete generalized energy (74) and the discrete total energy of system (80)
are equivalent, see Proposition 4.6. The potential is given by the elastic potential of the two
springs, which is assumed to be nonlinear, such that

V (q) = 1

4
k1(x

2
1 + x4

1 ) + 1

4
k2(x

2
2 + x4

2 ). (109)

The initial conditions are q0 = [0 1.1 0]T and v0 = [1 1 −1]T, and the simulation parameters
have been chosen as shown in Table 2.

The simulation yielded the energy evolutions displayed in Fig. 1, where energy transfer
between kinetic and potential energy becomes visible. The energy-consistent approximation
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Fig. 1 Mass-spring system (left) and energy quantities (right)

Table 2 Simulation parameters
for mass-spring system with
i ∈ {1,2}

h tend mi ki li0 w

0.1 10 {1,1} {1,3} {1,1} 0.1

Fig. 2 Positional constraint (107) (left) and energy increments (right)

provided by the proposed method becomes obvious in Fig. 2, where the temporal increment
of the generalized energy is close to computer precision. Furthermore, Fig. 2 underlines the
computationally exact treatment of the constraint equation in each time step.

5.2 Nonlinear spring pendulum with spherical coordinates

We analyze a nonlinear spring pendulum in three dimensions, which is a popular finite–
dimensional model problem for nonlinear elastic mechanical systems (see, e.g., [40]). We
consider spherical coordinates for three degrees of freedom

q =
⎡

⎣
r

θ

ϕ

⎤

⎦ , (110)

such that the distance of the mass m from the Cartesian origin is given by r ∈ R≥0 and
two angles θ and ϕ describe the orientation, as depicted in Fig. 3. The mass matrix for this
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Fig. 3 Spring pendulum system (left) and energy quantities (right)

Table 3 Simulation parameters
for spring pendulum h tend m EA l0

0.01 1 1 300 1

example is given by

M(q) = m

⎡

⎣
1 0 0
0 r2 0
0 0 r2 sin2(θ)

⎤

⎦ (111)

and depends on the coordinates.3 The potential energy is given by the nonlinear internal
potential with spring constant EA ∈R≥0 such that

V (q) = 1

2
EAε2(r), (112)

where we consider Green–Lagrangian strains ε(r) = (r2 − l2
0)/(2l2

0) and l0 denotes the
spring’s resting length. Initial conditions have been chosen as q0 = [1.05 π/2 0]T and
v0 = [0 1 1]T to achieve an initial elongation of the spring by 5% and a tangential initial
velocity. Further simulation parameters are given in Table 3.

The evolution of the energetic quantities can be seen in Fig. 3. While the conservation of
the discrete total energy is captured down to an order of 10−4 (cf. Fig. 4, left), the generalized
energy function is again exactly preserved by the newly proposed scheme (see Fig. 4, right).

5.3 Free rotation of a rigid body

This example simulation is concerned with the free rotation of a rigid body, which is
specified by a convective inertia tensor (39) corresponding to principal axes given by
J0 = diag(6,8,3). This problem has been taken from [7] and originates in [9] with the same
parameter choices. Similarly, the initial state is given by an initial orientation angle ϑ0 = 0
and an arbitrary orientation vector n0, see (40), such that q(t = 0) = q0 = (1, 0) and the

3Note that the mass matrix (111) undergoes an additional singularity for θ = kπ for all integers k ∈ Z.
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Fig. 4 Discrete total energy (80) increments (left) and generalized energy function (74) increments (right)

Fig. 5 Snapshots for t ∈ {0,0.25,0.75,1.25,1.75,2}

Fig. 6 Generalized energy function (left) and increments En+1 − En (right)

initial convective angular velocity is given by �0 = �(t = 0) = [10 20 20]T. Correspond-
ingly, initial quaternion velocities and momenta are determined from v 0 = 1

2 G(q0)
T�0 and

p0 = M̃4v 0. The time-step size has been set to h = 0.05 and the problem has been simulated
for t ∈ T = [0,2], leading to a rotational motion (see snapshots depicted in Fig. 5).

As of before, the energy-consistent behavior of our method is verified in Fig. 6. The
method preserves the configuration space, i.e., the unity constraint (30) is computationally
conserved (see Fig. 7, left). The discrete total energy (80) is not preserved by EML (see
Fig. 7 (right)), due to the configuration-dependence of the quaternion mass matrix (46). The
additional conservation of the spatial angular momentum (65) according to Proposition 4.10
can be observed in Fig. 8.

Lastly, we investigate the increase in numerical efficiency with regard to the size reduc-
tion techniques mentioned in Sect. 4.5. To this end, the current problem is simulated with
different time step sizes for a prolonged simulation period of T = [0,10], and we display
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Fig. 7 Unity constraint on position-level (left) and discrete total energy (80) (right)

Fig. 8 Angular momentum components (left) and increments Ln+1
i

− Ln
i

(right)

Fig. 9 Computational effort with and without size reduction

an average real runtime tcomp for representative simulations.4 Solving the EML scheme with
size reduction (103) (labeled “REML”) reduces the computational effort by nearly 50%, see
Fig. 9. An application of the discrete null space method as outlined in Remark 4.11 (labeled
“Null-EML”), yielding a minimal set of nonlinear time-stepping equations, again lowers the
computational costs notably.

5.4 Steady precession of a heavy top

This example is concerned with the motion of a symmetrical and heavy top, see Fig. 10
for a depiction. It is a well-known benchmark problem for rigid body rotations and has yet

4The exact runtime may vary slightly from simulation to simulation.
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Fig. 10 Heavy top system sketch (left) and total energy increment comparison (right). Legend follows Table 1

Table 4 Simulation parameters
for heavy top problem h tend ρ a g ϑ0

0.01 2 2700 0.1 9.81 π/3

been addressed in, inter alia, [6, 7, 20, 32, 34, 47]. More specifically, the gyroscopic top
undergoes a motion characterized by steady precession, i.e., its center of mass rotates on a
circular trajectory with constant vertical height.

The simulation parameters are comprised in Table 4. The parameters are set accord-
ing to a cone shape with height a, radius r = a/2, the center of mass located along the
symmetry axis with a distance of l = 3/4a away from the tip. The total mass amounts to
m = 1/3ρπr2a. Moreover, the momenta of inertia with respect to the center of mass are
given by

J 1
0 = 3

80
m(4r2 + a2) = J 2

0 , J 3
0 = 3

10
mr2, (113)

yielding J 1
0 = J 2

0 = J 3
0 = 5.3014 · 10−4. With respect to the fixed point of rotation, the

momenta of inertia can be computed using the parallel axis theorem as

J1 = J2 = J 1
0 = J 2

0 , J3 = J 3
0 + ml2, (114)

which represent the principal values of the convective inertia tensor such that
J0 = diag(J1, J2, J3). Additionally, we assume gravity with magnitude g acting in the neg-
ative vertical direction, i.e., b = −ge3, such that the external potential reads

V (q) = mgzcm(q) = mgle3 · R(q)e3 = mglR33(q) = mgl(q2
0 − q2

1 − q2
2 + q2

3 ), (115)

where zcm is the vertical Cartesian coordinate of the center of mass and the 33-component of
the rotation matrix can be extracted from (51). Correspondingly, potential forces are given
by

∇V (q) = −2mgle−
3 E(q)Te3 = 2mgl(q0,−q1,−q2, q3)

T. (116)
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Fig. 11 Angular momentum components (left) and increments of component about 3-axis (right), obtained
using EML

The heavy top starts with an initial configuration inclined by the nutation angle ϑ0 about the
e1-axis, such that in accordance with (40), one obtains

q(t = 0) = (cos(ϑ0/2), sin(ϑ0/2)e1) . (117)

The steady precession condition, which allows for an analytical reference solution, is given
by

ωs = mgl

J3ωp
+ J1 − J3

J3
ωp cos(ϑ0) (118)

(see [20, 45]), where ωp is the precession rate and ωs is the spin rate. In detail, to be consis-
tent with [7, 32], we choose ωp = 10 and obtain the initial spatial angular velocity

ω(t = 0) = ωpe3 + ωsd3(t = 0) (119)

with d3(t = 0) = R(q0)e3.
The simulation again verifies the structure-preserving properties of the proposed integra-

tor, yielding energy-conservation in discrete time. In Fig. 10 the results from our method
EML are compared with the results obtained from the comparison methods,5 see Table 1.
It can be observed that standard integration methods should not be used if one desires an
accurate energy approximation for the present problem.

The conservation of the angular momentum map is for this example problem restricted
to the component about the e3-axis since the present gravity prohibits symmetry about the
other two axes. With respect to Proposition 3.3, this means that the present potential energy
(115) satisfies V (qα) = V (q) with xα = expS3(0, αe3), leading to the results depicted in
Fig. 11.

In Fig. 12 we display the results for the 1- and 3-component of the center of mass for
both the present integrator and the EMH scheme and compare it with the analytical solution
for the Euclidean position of the center of mass

ϕref(t) = l sin(ϑ0) sin(ωpt)e1 − l sin(ϑ0) cos(ωpt)e2 + l cos(ϑ0)e3. (120)

5For the Hamiltonian methods, the quaternion velocities taking place in the generalized energy function
have been computed via vn = M4(qn)−1pn , using relation (139) for all n. Moreover, the application of
an advanced initial guess for Newton’s method is necessary for EMH and MPH, using the initialization
qn+1 ← qn + hvn .
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Fig. 12 Vertical (left) and horizontal component (right) of center of mass

Fig. 13 h-convergence of
investigated schemes. Legend
follows Table 1

While there is no visible difference in the quality of the approximation for the vertical com-
ponent between the two EM methods (see Fig. 12, left), the novel EML method seems to
yield more accurate results for the 1-component (see Fig. 12, right).

We moreover target a convergence analysis comparing the four above-mentioned
schemes. To this end, we define the error measure

e = ‖ϕref(t = 0.1) − ϕnum(t = 0.1)‖
‖ϕref(t = 0.1)‖ , (121)

where ϕnum denotes the numerical solution obtained using the different methods. The results
in Fig. 13 highlight the good performance of the present EML method compared to EMH.
It can be observed that the Livens-based integrators exhibit lower errors than the Hamilto-
nian methods. Interestingly, the MPL scheme performs better than the EML scheme. For a
prescribed time step size it yields the lowest error for the present example. As expected, all
methods show a second order convergence behavior.

5.5 Closed loop multibody system

This example is concerned with a multibody system consisting of four rigid bars intercon-
nected by four spherical joints according to [10, Sect. 4.1.2], see Fig. 14. The bars have
length l and a unit square cross section A = 1 such that the total mass of each bar amounts
to m = ρAl. In addition to the orientation of each rigid body, which is parametrized with a
unit-quaternion q(a), a ∈ {1,2,3,4}, the coordinates are completed by the Cartesian coordi-
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Fig. 14 Closed loop multibody system sketch (left) and temporal function of external loads (right)

nates of the respective center of mass ϕ(a) ∈R
3 such that

q = (ϕ(1),q(1),ϕ(2),q(2),ϕ(3),q(3),ϕ(4),q(4)) (122)

and n = 28. The kinetic energy sums over all bodies and contains the translational parts as
well, i.e.,

T (q, q̇) =
4∑

a=1

1

2
mϕ̇(a) · ϕ̇(a) +

4∑

a=1

1

2
q̇(a) · M̃

(a)

4 (q(a))q̇(a), (123)

with the singular and configuration-dependent rotation-related mass matrices for each body
(46).

This induces a singular and configuration-dependent overall mass matrix with block-
diagonal structure

M(q) = diag
{
mI3×3,M̃

(1)

4 (q(1)),mI3×3,M̃
(2)

4 (q(2)),mI3×3,M̃
(3)

4 (q(3)),mI3×3,M̃
(4)

4 (q(4))
}

.

(124)

Besides the internal constraints enforcing the unit-condition of each quaternion, the spheri-
cal joints induce the external constraints

g(a,b)(q) = ϕ(a) + x(a,b) − ϕ(b) − x(b,a) (a, b) ∈ {(1,2), (2,3), (3,4), (4,1)}, (125)

where x(a,b) = R(q(a))X(a,b) denotes the spatial vector from the center of mass of body
(a) to the joint with body (b) and involves the rotation matrix (50). The total amount of
constraints is m = 16 and the pertaining external constraint forces are given by, for exam-
ple,

∇g(1,2)(q) =
[
I3×3 2E(q(1))X

(1,2) − I3×3 − 2E(q(2))X
(2,1)

03×14

]
, (126)

using the notation from equation (137). Deriving this relation makes use of equations (136)
and (137) contained in the Appendix. During t ∈ [0,1] the system is subject to an external
force and torque, respectively, given by

f = 8f (t)e1, τ = 6f (t)e1 with f (t) =

⎧
⎪⎨

⎪⎩

2fm t for t ∈ [0,0.5],
2fm (1 − t) for t ∈ (0.5,1],
0 for t ∈ (1, tend],

(127)
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Table 5 Simulation parameters
for closed loop multibody system h tend ρ l fm

0.1 10 1 10 100

Fig. 15 Snapshots for t ∈ {0,2,4,6,8,10}

Fig. 16 Generalized energy function (left) and total angular momentum (right)

both acting in the center of mass of the first bar, i.e., at X = l/2e1. The time function
is depicted in Fig. 14. To find an equivalent quaternion representation, one can consider
the externally induced power. In view of (43), this yields an external loading vector given
by

F ext(q) = [
fT (2E(q(1))Tτ )T 01×21

]T
, (128)

which is added to the balance of momentum on the right-hand side of (19b). The simulation
parameters are shown in Table 5, and the resulting motion can be viewed in the snapshots
contained in Fig. 15. Figure 16 shows that, as soon as the system is closed, the conserva-
tion principles concerning energy and angular momentum are numerically identically ful-
filled. This example underlines the applicability of the proposed approach to forced (i.e.,
open) systems as well as more advanced multibody systems, including closed loop struc-
tures.

6 Conclusion and outlook

The present approach to the numerical integration of holonomically constrained dynamical
systems is based on Livens’ principle. This variational principle is characterized by combin-
ing Lagrangian and Hamiltonian viewpoints on mechanics by accounting for independent
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coordinates, velocities, and momenta. Thus, the need for the inversion of the mass matrix is
avoided, which allows for a novel approach to the simulation of mechanical systems with
singular and/or configuration-dependent mass matrix. Moreover, a generalized total energy
function depending on position, velocity, and momentum is introduced, which serves as a
conserved quantity of the equations of motion pertaining to Livens’ principle (see previ-
ous works [32, 33]) and shows how to overcome the restrictions therein to constant and
non-singular mass matrices.

In this work we have also targeted the modeling of rigid body rotations in terms of
unit quaternions. The standard derivation yields a configuration-dependent mass matrix with
rank-deficiency. In contrast to the existing literature, the usage of Livens’ principle avoids to
set up an additional inertia parameter by circumventing a purely Hamiltonian setup. We
have shown that the proposed approach can directly account for the singular mass ma-
trix.

Based on the novel formulation, a structure-preserving discretization has been applied.
As the corresponding scheme makes use of Gonzalez discrete gradients, the proposed inte-
grator preserves the discrete generalized total energy, which differs (in case of configuration-
dependent mass matrices) from the total energy in the Lagrangian setting. Moreover, the
proposed scheme discretely covers the conservation of momentum maps corresponding to
system symmetries and the holonomic constraints. Due to the relation to the midpoint rule,
the scheme exhibits second-order accuracy. The newly proposed structure-preserving inte-
gration scheme enhances the method presented by Gonzalez [22] with respect to the for-
mulation in a more general (not necessarily Hamiltonian) framework, which makes possible
the EM-consistent simulation of systems with configuration-dependent and/or singular mass
matrices comprising rigid body rotations in unit quaternions. In contrast to Lagrangian or
Hamiltonian mechanics, the usage of Livens’ principle largely facilitates the design of such
a method, see Remark 4.7.

The numerical properties of the present method have been demonstrated in model prob-
lems from multibody dynamics. Three examples, including a closed loop multibody sys-
tem, have shown the method’s properties when dealing with rigid body dynamics in terms
of unit quaternions. In one of the investigated examples, the Livens-based EM scheme
(and also a standard midpoint scheme) shows a better approximation behavior than es-
tablished Hamiltonian schemes. Additionally, the use of size reduction techniques allows
computationally efficient implementations while keeping the desired conservation proper-
ties.

It should be noted that in the present work we have focussed on the design of an EM-
consistent scheme. The development of variational integrators based on Livens’ principle
with configuration dependent and/or singular mass matrices is interesting as well. Espe-
cially the design of higher order methods by following the ideas presented in Wenger
et al. [61] might be in the scope of future research. In this connection, the approach by
Altmann and Herzog [2] should also be applicable. While we have restricted ourselves
to conservative systems, an extension can be obtained using the Lagrange–d’Alembert
principle for non-conservative systems [43], as for example in [33, Sect. 4.3]. Lately,
unit quaternions have been used for the modeling of the 3D mathematical pendulum in
[14], which therefore seems to be yet another interesting application case of unit quater-
nions for rigid body rotations. To this end, the dynamics on S2 could be regarded as a
special case of SO(3) allowing for unit quaternion representations with additional con-
straints. Lastly, the presented framework could be extended to infinite-dimensional systems
where finite rotations need to be parameterized as well, e.g., geometrically exact shells
[11].
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Appendix A: Implementation details for partitioned discrete
derivatives

The two partitioned discrete derivatives used in the time-stepping scheme (72a)–(72d) can
be specified as ∂qL(q, v) = ∂qT (q, v) − ∇V (q) and ∂vL(q, v) = ∂vT (q, v), where

∂qT (q,v) = 1

2

(
∂qT

∣
∣
vn + ∂qT

∣
∣
vn+1

)
,

∂vT (q,v) = 1

2

(
∂vT

∣∣
qn + ∂vT

∣∣
qn+1

)
.

(129)

In further detail, the last relation makes use of

∂qT
∣
∣
vn = ∂qT (qn+1/2,vn)

+ T (qn+1,vn) − T (qn,vn) − ∂qT (qn+1/2,vn) · 
q

||
q||2 
q,

∂qT
∣
∣
vn+1 = ∂qT (qn+1/2,vn+1)

+ T (qn+1,vn+1) − T (qn,vn+1) − ∂qT (qn+1/2,vn+1) · 
q

||
q||2 
q

(130)

and

∂vT
∣∣
qn = ∂vT (qn,vn+1/2)

+ T (qn,vn+1) − T (qn,vn) − ∂vT (qn,vn+1/2) · 
v

||
v||2 
v,

∂vT
∣∣
qn+1 = ∂vT (qn+1,vn+1/2)

+ T (qn+1,vn+1) − T (qn+1,vn) − ∂vT (qn+1,vn+1/2) · 
v

||
v||2 
v.

(131)

We refer to [17] for the general construction details.

Appendix B: Reference integrators

Here we display the governing equations for two integrators, which are used for comparison
in Sect. 5.

Definition B.1 A midpoint discretization of the Euler–Lagrange equations (19a)–(19d) with
consistent constraint approximation is given by

qn+1 − qn = hvn+1/2,

pn+1 − pn = h∂qL(qn+1/2,vn+1/2) − h

m∑

k=1

λk∇gk(q
n+1/2),

pn+1/2 = ∂vL(qn+1/2,vn+1/2),

g(qn+1) = 0.

(132)
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Definition B.2 A standard midpoint scheme for the Hamiltonian equations of motion
(16a)–(16c) is given by

qn+1 − qn = hM(qn+1/2)−1pn+1/2,

pn+1 − pn = −h∂qT (qn+1/2,pn+1/2) − h∇V (qn+1/2) − h

m∑

k=1

λk∇gk(q
n+1/2),

g(qn+1) = 0

(133)

and is only applicable to systems with known Hamiltonian, where the mass matrix is non-
singular.

Appendix C: Linear algebra relations

This appendix contains useful relations for the linear algebra relations of quaternions a,b ∈
H, the transformation matrices from (35a)–(35b), and vectors x ∈ R

3. The inverses of the
multiplication matrices (33a)–(33b) are given by

Ql(a)−1 = 1

||a||Ql(a)T = 1

||a||Ql(a),

Qr(b)−1 = 1

||b||Qr(b)T = 1

||b||Qr(b).

(134)

Other helpful identities read as follows:

E(a)a= G(a)a= 0,

E(a)E(a)T = G(a)G(a)T = ‖a‖2I3×3,

E(a)TE(a) = G(a)TG(a) = ‖a‖2I4×4 − a⊗ a,

(135)

as well as

E(a)b= −E(b)a,

G(a)b= −G(b)a,

E(a)G(b)T = E(b)G(a)T.

(136)

Lastly, we have the relation

G(a)Tx = x̄a with x̄ =
[

0 −xT

x −x̂

]
∈R

4×4. (137)

Appendix D: Hamiltonian reference framework

One possible way to obtain a geometric integration for rigid body rotations using unit quater-
nions in a Hamiltonian setup (see [7]), i.e., using the kinetic co-energy

T ∗(q,p) = 1

2
p · M4(q)−1p, (138)
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is based on the extended convective inertia matrix J4 = diag(J0, J0) ∈ R
4×4, with J0 =

1/2tr (J0), taking place in the invertible and configuration-dependent mass matrix with its
inverse

M4 = 4Ql(q)J4Ql(q)T, M−1
4 = 1

4
Ql(q)J−1

4 Ql(q)T. (139)

This mass matrix can be linked to the singular mass matrix (46), which we have derived in
a straightforward way, by

M4 = M̃4 + 2tr (J)q⊗ q, (140)

which resembles a rank-one augmentation. Note that this is only possible due to

T (q,v) = 1

2
vTM̃4(q)v = 1

2
vTM4(q)v − tr (J) (q · v)2, (141)

where the second part vanishes in view of the velocity-level constraint (41) in continuous
time.

Remark D.1 Note that the use of this augmented formulation is only valid if the velocity
constraint is fulfilled. Using numerical integration, the scheme must provide

qn+1 · vn+1 = 0, (142)

given that qn · vn = 0. If the used method violates the velocity constraint, the condition for
the rank-augmentation of the mass matrix (140) is not met. Correspondingly, the scheme
would solve the motion of a system with a different (non-physical) kinetic energy.

The canonical Hamiltonian equations of motion pertaining to (138) read

q̇ = 1

4
Ql(q)J−1

4 Ql(q)Tp,

ṗ = −1

4
Ql(p)J−1

4 Ql(p)Tq− ∇V (q) − λ∇g(q),

0 = g(q),

(143)

and are identical to the invariant representation

q̇ = (
∂pt

)T
∂t T̂

∗, (144a)

ṗ = − (
∂qt

)T
∂t T̂

∗ − ∇V (q) − λ∂qηg′(η), (144b)

0 = g(η). (144c)

This latter formulation takes account of T̂ ∗(t(q,p)) = T ∗(q,p) and makes use of the in-
variant quantity

t = Ql(q)Tp =
[

qT

G(q)

]
p =

[
pT

−G(p)

]
q, (145)

as well as the constraint invariant (60).
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Definition D.2 A Hamiltonian EM method for unit quaternions rigid body rotations (see [7],
in this work referred to as “EMH”) is given by

qn+1 − qn = h

4

[
qn+1/2 G(qn+1/2)T

]
J−1

4 tn+1/2

pn+1 − pn = −h

4

[
pn+1/2 −G(pn+1/2)T

]
J−1

4 tn+1/2 − h∇V (qn,qn+1) − hλqn+1/2

0 = g(qn+1)

(146)
with tn+1/2 = 1/2(tn+1 + tn).

The scheme conserves the Hamiltonian, as well as momentum maps and the constraint.
We moreover highlight that the scheme provides a consistent approximation of the velocity
constraints in the sense of Remark D.1, such that the usage of the augmented mass matrix is
valid. For more details, see [7].
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