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Abstract: A new iron(III) complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1) where
H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol has been synthesised and characterised by
single crystal XRD, elemental analysis and DC magnetic susceptibility measurements. The dianionic
ligands L2− coordinate in a tridentate fashion with the Fe(III) through their deprotonated pheno-
lic oxygens and azomethine nitrogen atoms, resulting in a trans-FeO4N2 chromophore. Variable-
temperature magnetic measurements were performed between 300 and 5 K under an applied field of
0.1 T and show that 1 is in the high spin state (S = 5/2) over the whole measured temperature range.
This is confirmed by Mössbauer spectroscopy at 77 and 300 K.

Keywords: iron(III); Schiff base; complex; spin state; Mössbauer spectroscopy

1. Introduction

The design and synthesis of a particular ligand field are crucial factors in generating
coordination compounds with desired properties. Schiff base ligands have drawn much
attention due to their ease in bringing the required coordination sites together by a simple
imine condensation reaction [1] and their complexes have been involved in catalysis and
enzymatic reactions [2–6] magnetic studies and molecular architectures [7,8].

With respect to magnetically interesting systems, Schiff base complexes with a six-coordinate
environment with N6 and N4O2 coordination for Fe(II) or N4O2, N2S2O2, and S6 coordination
for Fe(III) may lead to the generation of spin crossover compounds [9]. In this paper, we have
employed a Schiff base ligand, formed by condensing o-aminophenol and salicylaldehyde, which
can chelate Fe(III), generate an octahedral geometry with a N2O4 coordination environment, and
have investigated its spin state.

There are few reports in the recent literature on the synthesis, characterisation, and
magnetic properties of N2O4-coordinated Fe(III) complexes with a Schiff base formed from
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o-aminophenol and salicylaldehyde [10–12]. Such N2O4-Fe(III) complexes are reported [9]
to show a wide range of magnetic behaviours, including high spin, low spin, and SCO
behaviour, depending on the fine tuning of the ligand field. It is interesting to note that
many of these types of complexes have a counter cation along with the counter anions to
balance the overall charge [10–12]. In the complexes mentioned above, the significance
of the o-aminophenol moiety is the possibility of chelation. This can occur as part of a
larger Schiff base ligand, as in the present case, or in its original form. The biological
and spectroscopic relevance of this moiety was highlighted in an insightful review by
Abdallah et al. [13], and the use of it as a feedstock for oxidation catalysis was summarised
by Jana et al. [14].

As part of our ongoing interest in SCO Schiff base iron complexes and their spin states [15–19],
we report here our investigations on the structure and spin state of an iron(III) complex with
the doubly deprotonated form of the proligand 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol
(H2L) (Scheme 1). The ligand L2− coordinates in a tridentate chelating mode through the
two deprotonated phenolate oxygens and the azomethine nitrogen. The +3 oxidation state
of iron is balanced by two protonated triethylammonium cations as well as a perchlorate anion.
The complex remains in a HS condition throughout the measured temperature range of 5–300 K.
This is supported by Mössbauer spectra performed at 77 and 300 K, which are influenced by
paramagnetic relaxation effects.

Scheme 1. Schematic representation of the Schiff base 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol (H2L).

2. Results and Discussion

The synthesis of the ligand and complex is displayed in Scheme 2.

Scheme 2. Reaction scheme leading to product 1.

2.1. Crystal Structure

The crystal structure of 1, (Et3NH)2[Fe(L)2](ClO4)·MeOH is ionic and consists of two
(Et3NH)+ cations, one complex [Fe(L)2]− anion, one ClO4

− anion, and one solvent molecule
of methanol. The central Fe(III) is coordinated by two tridentate dianionic ligands, L2−,
formed from the doubly deprotonated Schiff base H2L (Scheme 2, Figure 1).

A search in the CSD [20] has shown that the crystal structure of the Schiff base H2L has
been reported four times at RT, of which the best refinement appears to be that of Tunc et al. [21].
An additional search in the CSD shows that the title complex is novel, although the mononu-
clear complex anion has previously been reported with a range of counterions and/or sol-
vents: K[Fe(L)2]·MeOH [10], (NH4)[Fe(L)2]·H2O [11], (Me4N)[Fe(L)2] [12], K[Fe(L)2]·H2O [22],
(Pr3NH)[Fe(L)2]·2CH3OH [22], [Fe(L)(bpyO2)(CH3OH)][Fe(L)2]·MeOH [22], and [Fe(L)(HL)]2 [23].
In addition to this, a polynuclear Fe4 propeller-type complex [Fe4(L)6]·2(CH3)2CO has been re-
ported with the same ligand system, in which the iron ions are bridged by deprotonated hydroxy
groups of the ligands [10].
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Figure 1. View of the structure of complex 1 along with the atom numbering scheme. Hydrogen
bonds are shown as dashed orange lines. Hydrogen atoms bonded to carbon are omitted for clarity.
For the sake of clarity, only atoms with higher occupation factors are shown. The thermal ellipsoids
are drawn at a 30% probability level.

Various synthetic protocols have been adopted to target the complexes mentioned
above. In most cases, a base was employed, facilitating the deprotonation of the Schiff
base ligand and simultaneously balancing the charge of the complexes by counteraction
formation.

Among the mentioned complexes, K[Fe(L)2]·MeOH [10] and (NH4)[Fe(L)2]·H2O [11] were synthe-
sised by reacting the metal salt and ligand in non-aqueous solvents with the corresponding bases, with
only [Fe(L)(HL)]2 [23] accessible without base. (Me4N)[Fe(L)2] [12] was synthesised from the complex
precursor K[Fe(azp)2]·MeOH·(C2H5)2O in the presence of the base trimethyl amine. It is interesting
to note that K[Fe(L)2]·H2O and (Pr3NH)[Fe(L)2]·2CH3OH [22] was generated in situ by mixing the
individual components in one pot. In addition to this, [Fe(L)(bpyO2)(CH3OH)][Fe(L)2]·MeOH [22] was
synthesised from the respective complex entities in methanolic medium.

It is worth noting that the synthetic procedure we report in the present article is
consistent with the synthetic protocols mentioned above.

In the present complex, the central Fe(III) exhibits a rather distorted octahedral trans-
FeO4N2 coordination environment (Figure 1). The two tridentate chelating ligands are
coordinated in a mer-fashion. It should be noted that both anionic ligands L2− are posi-
tionally disordered (Figure 2). A similar disorder has been previously observed [22]. The
SHAPE analysis [24] shows that the Fe(III) coordination environment is best described as a
distorted octahedron (Table S1).

Figure 2. View on the positional disorder of the ligand L2−-coordinating the Fe(III) central atom.
Only one ligand is shown for clarity; the second ligand displays the same type of disorder. The site
occupation factors for the two disordered positions A and B are 0.777(3) and 0.223(3), respectively.
Hydrogen atoms are omitted.
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The Fe-O and Fe-N bond distances (Table 1) are in the ranges 1.957(2)–2.031(2) Å and
2.076(19)–2.140(4) Å, respectively. These compare well with the corresponding distances in
the previously reported compounds [22,23]. The negative charges of the perchlorate anion
and of the complex anion are counterbalanced by the positive charges of two crystallo-
graphically independent (Et3NH)+ cations.

The methanol solvate molecule is involved in two rather strong hydrogen bonds. The
OH···O type hydrogen bond links the methanol molecule to the complex anion via O1
acting as acceptor, while the methanol oxygen itself accepts a hydrogen bond of the N-H···O
type from the triethylammonium nitrogen atom N3. The second triethylammonium cation
forms a N-H···O hydrogen bond from N4 to O3 of the complex anion (Figures 1 and 3,
Table 2).

Figure 3. Packing view of the crystal structure of 1. For the sake of clarity, the complex anions are
represented only by coordination polyhedral, and from tetraethylammonium cations, only the carbon
atoms bonded to the nitrogen atoms are shown. All hydrogen atoms not involved in hydrogen bonds
(shown as dashed orange lines) are also omitted.

Table 1. Selected geometric parameters [Å, ◦] in 1 and comparison with the same parameters in
selected analogous complexes [22,23].

Complex 1 (170 K) (Pr3NH)[Fe(L)2] (150 K) [22] [Fe(L)(HL)]2 (150 K) [23]

Fe1-O1 1.988(2) 1.9851(19) 2.078(2) 2.091(2)
Fe1-O2A 1.963(5) 1.947(2) 1.926(2) 1.915(2)
Fe1-O3 2.031(2) 2.004(2) 2.083(2) 2.067(2)
Fe1-O4 1.958(2) 1.948(2) 1.912(2) 1.919(2)

Fe1-N1A 2.144(4) 2.117(5) 2.108(3) 2.133(2)
Fe1-N2A 2.139(4) 2.167(4) 2.105(2) 2.127(3)

O1-Fe1-N1A 76.70(12) 75.75(12) 77.69(8) 76.36(8)
O2A-Fe1-N1A 87.85(19) 89.79(12) 88.39(9) 86.75(9)
O3-Fe1-N2A 75.99(12) 72.00(13) 77.53(9) 76.68(9)
O4-Fe1-N2A 85.89(13) 90.18(14) 88.13(9) 87.05(9)
O1-Fe1-O2A 164.43(17) 163.68(9) 164.13(8) 159.80(8)
O4-Fe1-O3 161.85(11) 161.80(10) 164.00(8) 161.23(9)

Table 2. Hydrogen bonds in 1 [Å, ◦].

D-H···A D-H D···A H···A DHA

O5A-H5A1···O1 0.84 1.85 2.386(4) 173
N3-H1N3···O5A 1.07 1.66 2.720(5) 173
N3-H1N3···O5B 1.07 2.02 2.804(14) 127
N4-H1N4···O3 0.92 1.88 2.796(4) 173

N4-H1N4···O2B 0.92 2.57 3.023(3) 122
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2.2. Magnetic Properties

The magnetic susceptibility measurements of the complex (Et3NH)2[Fe(L)2](ClO4)·MeOH
were recorded in both heating (↑) and cooling cycles (↓) in the temperature range 5–300 K in
an MPMS3 SQUID magnetometer at two different temperature scan rates of 3 K/min and
5 K/min using an applied magnetic field of 0.1 T. The XMT vs. T plot is shown in Figure
S2. The room-temperature XMT value of the complex is 4.95 cm3 K mol−1, consistent with
the HS state. On decreasing the temperature, the XMT value decreases slightly to reach a
minimum of 4.5 cm3 K mol−1 at 5 K, confirming that the compound is locked in the HS
condition throughout the measured temperature range of 5–300 K. An N2O4 environment is
usually considered to be a weak ligand field for Fe(III), and such complexes are expected to
be in the HS state [12].

2.3. Mössbauer Spectroscopy

The Mössbauer spectrum of compound 1 obtained at 77 K is shown in Figure 4a. The
spectrum has an isomer shift δ = 0.50 mm s−1, which is characteristic for Fe(III) in its high
spin S = 5/2 state [25]. The spectrum is broadened because of the magnetic relaxation of the
S = 5/2 system. Such effects happen when the electronic spin relaxation time is comparable
to the Larmor frequency of the 57Fe nucleus in the magnetic hyperfine field of the iron
atom, which can be up to 55 T in S = 5/2 systems. Raising the temperature to 300 K still
leads to significant magnetic broadening in the Mössbauer spectrum (Figure 4b). Such
nearly-temperature-independent behaviour is typical for spin-spin relaxation processes [26].
The fact that the isomer shift decreases to 0.40 mms−1 at 300 K is due to a second-order
Doppler shift effect. In conclusion, Mössbauer spectroscopy confirms that compound 1 is a
ferric high-spin system independent of temperature.

Figure 4. Mössbauer spectra of 1 at (a) 77 K and (b) 300 K. The open circles and error bars show the
experimental data, and the red solid lines are from simulations with the parameters given in Table 3.

Table 3. Mössbauer parameters of compound 1 as obtained from the analysis displayed in Figure 4.
The data has been analysed with a doublet having Lorentzian line shape with full width at half
maximum Γ. The red lines in Figure 4 are the results of free fits which resulted in artificially large
values of Γ due to electronic relaxation effects.

77 K 300 K

δ (mms−1) 0.50(4) 0.40(5)
∆EQ (mms−1) 0.00(5) 0.00(5)

Γ (mms−1) 4.50(30) 1.50(30)

3. Experimental Section
3.1. Materials and Methods

All chemicals and reagents were purchased from commercial sources and were of
analytical reagent grade. They were used without further purification except for ethanol,
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which was purified by standard methods. FTIR spectra were measured in the range on a
PerkinElmer FTIR spectrometer (Wellesley, MA, USA). Elemental analyses were carried out
on an Elementar Vario MicroCube (Elementar Analysensysteme, Langenselbold, Germany).
Single crystal XRD measurements were performed with Xcalibur Oxford Diffraction (Rik-
agu) diffractometer (Oxford Diffraction Limited, Oxfordshire, UK). Magnetic susceptibility
measurements were carried out on an MPMS-3 SQUID magnetometer (Quantum Design
GmbH, Pfungstadt, Germany) operating between 5 and 300 K with an applied magnetic
field of 0.1 T. Mössbauer spectra were recorded using a 57Co source in transmission ge-
ometry in the time-scale mode in conjunction with a 512-channel analyzer (WissEl GmbH,
Starnberg, Germany). Variable temperature experiments were performed using a contin-
uous flow cryostat (OptistatDN, Oxford Instruments, Abingdon, UK). The spectrometer
was calibrated against α-Fe at room temperature, and analysis of the spectral data was
performed using the public domain programme Vinda running on Excel 2003® platform
with least-squares fits of Lorentzian line shapes [27].

3.2. Synthesis
3.2.1. Synthesis of the Ligand 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol (H2L)

The tridentate Schiff base H2L = 2-{(E)-[2-hydroxyphenyl)imino]methyl}phenol was
prepared by the reported procedure [21].

3.2.2. Synthesis of the Complex (Et3NH)2[Fe(L)2](ClO4)·MeOH (1)

To a stirred solution of H2L (0.106 g, 0.5 mmol) in methanol (20 mL), was added
triethylamine (0.1 g, 1 mmol) and further stirred for half an hour. Fe(ClO4)3·6H2O (0.0885 g,
0.25 mmol) was added to the resultant solution and refluxed for 2 h. The brown solution
obtained was allowed to cool and then filtered. Slow vapour diffusion of diethyl ether
into the filtrate gave black needle-like crystals suitable for X-ray diffraction measurements.
Yield: 47% (0.091 g): Anal. C39H54FeN4O9Cl. Calcd. C, 57.53; H, 6.69; N, 6.88%: Found
C, 57.39; H, 6.56; N, 7.01% FT-IR (cm−1): 3440 (s), 1603 (s), 1532 (m), 1465 (s), 1385 (m),
1297 (m), 1118 (s), 921 (w), 830 (m), 758 (m), 622 (w), 522 (m) (Figure S1).

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive
and should be handled in small quantities with care.

3.3. Single Crystal Structure Analysis

X-ray diffraction data were collected at 173(2) K on an Xcalibur Oxford Diffraction
(Rigaku) diffractometer equipped with a Sapphire2 detector and graphite-monochromated
Mo-Kα radiation (λ = 0.71073 Å) using the CrysAlisPro software (Version 1.171.41.93a) [28]. The
data were corrected for absorption using numerical absorption correction based on gaussian
integration over a multifaceted crystal model, with Tmin = 0.813 and Tmax = 0.931. The
structure was solved by direct methods and refined by full-matrix least-squares techniques
on F2 using programmemes SHELXT and SHELXL [29,30], which were incorporated in
the WinGX programme package (https://journals.iucr.org/paper?S0021889812029111) [31].
All non-hydrogen atoms, including the disordered atoms of the ligands (common thermal
ellipsoids were used for the same atom in the two disordered positions), were refined with
anisotropic thermal parameters. Organic hydrogen atoms on the ligands and counteractions
were placed in calculated positions with a riding model. The positional coordinates of the
hydroxyl hydrogen atoms in the methanol (C39A/C39B, O5A/O5B atoms) solvate molecule
were treated as idealised hydroxyl groups. During the refinement process, it became clear that
both chelating L ligands show head-to-tail positional disorder. The disorder was modelled
using the distinct positions of several atoms of L. Their site occupation factors were refined,
and the final values were 0.777(3) for the major component (labelled with A) and 0.223(3) for
the minor one (B). The thermal parameters of the disordered atoms were treated with common
thermal motion using EADP commands. Structural figures were drawn using Diamond [32].
Crystal data and refinement results for the complex are summarised in Table 4, and the
selected bond lengths and bond angles of the complex are presented in Table 1.

https://journals.iucr.org/paper?S0021889812029111
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Table 4. Crystal data and structure refinement for Complex 1.

Empirical formula C39 H54ClFeN4O9
Formula weight 814.16

Temperature 173(2) K
Wavelength 0.71073 A

Crystal system, space group Monoclinic, P21/c

Unit cell dimensions [Å, ◦]
a = 17.0219(6) α = 90

b = 15.1654(3) β = 117.540(4)
c = 17.7368(6) γ = 90

Volume [Å3] 4059.8(3)
Z, Calculated density [Mg/m3] 4, 1.332

Absorption coefficient 0.495
F(000) 1724

Crystal size [mm] 0.578 × 0.343 × 0.199
θ range for data collection [◦] 2.918 to 26.000

Limiting indices −20 ≤ h ≤ 20, −18 ≤ k ≤ 18, −20 ≤ l ≤ 21
Reflections collected / unique 41,409/7954 [R(int) = 0.0247]

Completeness to θ = 26.000 99.8 %
Absorption correction Analytical

Max. and min. transmission 0.931 and 0.813
Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7954/0/566
Goodness-of-fit on F2 1.044

Final R indices [I>2σ(I)] R1 = 0.0631, wR2 = 0.1717
R indices (all data) R1 = 0.0783, wR2 = 0.1830

Largest diff. peak and hole [e.Å−3] 0.972 and −0.506

4. Conclusions

In summary, an Fe(III) complex with a tridentate Schiff base ligand derived from
o-aminophenol and salicylaldehyde (H2L) has been synthesised and characterised by
elemental analysis, FTIR, single crystal XRD, magnetic susceptibility measurements and
Mössbauer spectroscopy. The ligand coordinates with the central metal ion through both the
deprotonated phenolate oxygen and azomethine nitrogen. Two ligand molecules chelate
the central metal ion, leading to a distorted octahedral geometry with two protonated
triethylammonium countercations along with a perchlorate counteranion to balance the
charge. Variable-temperature magnetic measurements prove that the compound is locked
in its HS state over the whole measured temperature range (300–5 K), while Mössbauer
measurements at 77 and 300 K reveal paramagnetic relaxation effects.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics12060159/s1; Figure S1: FT-IR spectra of Complex
(Et3NH)2[Fe(L)2](ClO4)·MeOH; Figure S2: XMT vs. T curve for the complex (Et3NH)2[Fe(L)2](ClO4)·MeOH.
Figure S3: ESI-MS of (Et3NH)2[Fe(L)2](ClO4)·MeOH measured in negative-ion mode. The 100% peak
corresponds to the monoanionic complex. Figure S4: ESI-MS of (Et3NH)2[Fe(L)2](ClO4)·MeOH measured
in positive-ion mode. Table S1: The geometry of coordination polyhedrons was calculated in the SHAPE
v2.1 program.
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editing. The fourth and fifth authors, J.K. and J.Č., were responsible for solving the crystal structure,
analysis, and writing, as well as funding acquisition. The six author (T.S.) was participated in data
curation. The other authors (A.G., T.H. and V.S.), were responsible for Mössbauer measurement,
analysis, editing, and reviewing of this article. In addition, the authors (J.Č., C.E.A., A.K.P. and M.T.)
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