
Provable Security for the Onion Routing and
Mix Network Packet Format Sphinx

Philip Scherer

KIT Karlsruhe

firstname.lastname@student.kit.edu

Christiane Weis

NEC Laboratories Europe

firstname.lastname@neclab.eu

Thorsten Strufe

KIT Karlsruhe

firstname.lastname@kit.edu

ABSTRACT
Onion routing and mix networks are fundamental concepts to pro-

vide users with anonymous access to the Internet. Various corre-

sponding solutions rely on the Sphinx packet format. However,

flaws in Sphinx’s underlying proof strategy were found recently. It

is thus currently unclear which guarantees Sphinx actually provides,

and, even worse, there is no suitable proof strategy available.

In this paper, we restore the security foundation for all these

works by building an analytical framework for Sphinx. We dis-

cover that the previously-used Decisional Diffie-Hellman (DDH)

assumption is insufficient for a security proof and show that the

Gap Diffie-Hellman (GDH) assumption is required instead. We ap-

ply it to prove that a slightly adapted version of the Sphinx packet

format is secure under the GDH assumption. We are thus, to the

best of our knowledge, the first to provide a detailed, in-depth se-

curity proof for Sphinx that holds. Our adaptations to Sphinx are

necessary, as we demonstrate with an attack on sender privacy that

would otherwise be possible in Sphinx’s adversary model.

KEYWORDS
Privacy, Anonymity, Provable Security, Onion Routing, Mix Net-

works, Sphinx

1 INTRODUCTION
Themajority of today’s Internet traffic discloses private information

about its users since the exposed IP addresses serve as identifiers.

Onion routing (OR) [16] and mix networks [7] are techniques that

address this issue by hiding the users’ IP addresses. OR and mix

networks are similar in the sense that both use relays together with

multiple layers of encryption to hide the link between the sender

and the message and receiver. The sender wraps the message in

multiple encryption layers, thus creating an “onion” packet. The

layers are peeled off one by one while traversing the relays on

the onion’s path. As a critical distinction, mix networks protect

against a global adversary by changing the order of packets at each

relay (hencemixing the communications). This comes at the cost of

introducing additional delays. OR networks avoid these delays, but

become vulnerable to global passive adversaries. Proposed works

for both OR and mix networks exist in two network models: In the

integrated-system model, the receiver acts as the last relay. On the

contrary, in the service model, the receiver is unaware of the OR or

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(4), 755–783
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0140

mix network. The last relay, which is called the exit relay, retrieves

and forwards the message to the receiver in plaintext.

To hide the relationship between senders and their messages

and receivers, protocol designers aim to make all incoming and

outgoing packets at honest relays unlinkable for the adversary. This

requires special care when designing the packet formats, as any

part of the packet could include linkable information. Tor [14] is an

OR scheme that is being broadly applied against local adversaries,

but mix networks against global adversaries are being increasingly

developed. The most efficient and commonly used mix network

packet format is Sphinx [12]. In fact, Sphinx is not only used as a

foundation for mix networks [26], but also for OR protocols [8, 9],

and even inspired a recent improvement of Tor [20].

Sphinx [12] is built for systems in the service model and assumes

an additional party, the nymserver.
1
Senders send onions with reply

information to the nymserver. Exit relays send anonymous reply

messages via the nymserver, which uses the reply information

to build a reply packet. Sphinx packets consist of a header and a

payload. The header contains encrypted routing information and

keys. The payload contains the encrypted message. Using only

group exponentiations and well-known symmetric cryptography,

Sphinx is highly efficient [12].

Sphinx’s privacy has been proven using a proof strategy by

Camenisch and Lysyanskaya [5].
2
Camenisch and Lysyanskaya’s

proof strategy first proposes an idealized version of OR in the form

of an ideal functionality in the Universal Composability frame-

work [6]. This ideal functionality is effectively an abstract version

of an OR protocol, from which privacy guarantees can be derived

more readily. As proving that a protocol securely realizes this func-

tionality directly is cumbersome, they also create a set of game-

based properties which they claim imply realization of the ideal

functionality [5]. As it turns out, those properties, which were

used in Sphinx’s privacy proof, are insufficent to realize the ideal

functionality [21].

While Kuhn et al. propose new properties that indeed imply the

ideal functionality [21], Sphinx is not able to achieve them for two

reasons. First, Sphinx, along with many real-world applications,

works in the service model, while Camenisch and Lysyanskaya’s

ideal functionality is in the integrated-system model. Secondly,

Sphinx does not protect the integrity of the payload at each hop

and thus allows for a malleability attack on the payload: If the adver-

sary tags (i.e., flips bits of the payload) an onion leaving its sender,

the exit relay processing the Sphinx packet will notice that the

payload has been modified and drop the message. If Sphinx is used

1
While the name is the same, this server is unrelated to the anonymization network

“Nym” [13].

2
In order to comply with [5] and to honor Sphinx’s applicability for OR protocols, we

(ab-)use the onion terminology in the rest of this paper, while always meaning OR and
mix networks and considering a global adversary.

755

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0140

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

in the integrated-system model, this attack allows an adversarial

receiver colluding with the first relay to learn which user was con-

tacting it. As this violates the desired privacy goal, it follows that

Sphinx does not achieve the integrated-system properties proposed

by Kuhn et al. [21]. In the service model, this attack only allows

an adversary to link the sender to the exit relay and completely

destroys the message in the process. Hence, there is hope that the

highly efficient Sphinx packet format is still secure to use as long

as it is in its intended service model. Indeed, this question is highly

relevant since all known protocols that prevent this attack while

supporting anonymous replies incur extremely high overhead due

to heavy, relatively new cryptographic primitives [22]. As it stands,

the Sphinx packet format is used in multiple OR and mixnet proto-

cols, which use it in different settings [8, 9, 13, 19, 26, 27]. Some of

these instantiations are known to be insecure due to the tagging

attack on Sphinx [21].

In addition to the problems noted above, we discover that the

Decisional Diffie-Hellman (DDH) assumption used by Danezis and

Goldberg to prove that Sphinx satisfies Camenisch and Lysyan-

skaya’s game-based properties [12] is insufficient for Sphinx’s se-

curity proof.

In this paper, we hence set out to perform a thorough analysis

and provide the missing privacy proofs for Sphinx. We first pro-

vide the necessary framework for the service model: A reusable

game-based proof strategy which is of independent interest for

future work on packet formats as well as as ideal functionality in

the UC framework for use in analyzing the privacy guarantees of

service-model OR protocols. We first define this new ideal function-

ality, which incorporates both the relaxed privacy accounting for

payload malleability as well as the changes required for the service

model. We then construct our game-based “onion properties” and

prove that a protocol satisfying them implies that that protocol

also realizes the ideal functionality. During the work on this proof,

we also discover and fix mistakes and details in the proof for the

related work in the integrated-system model [22].

Secondly, we turn to an analysis of Sphinx and realize that an

adaptation must be made to the packet format and its operation in

order to achieve provable security. As originally defined, Sphinx

uses a nymserver to enable its reply functionality. However, the use

of such third parties allows for an additional tagging attack based

on payload malleability. For secure operation of Sphinx, we hence

propose an adaptation of the Sphinx protocol that works without

a nymserver, but still supports anonymous replies. This works by

simply embedding the reply information in the packet’s payload

instead of sending it separately. Lastly, we discuss the effect of our

privacy relaxation and detail criteria for the secure usage of Sphinx.

In summary, our main contributions are:

• the definition of repliable service OR schemes,

• the construction of an ideal functionality tailored to Sphinx

as well as corresponding game-based properties,

• minor fixes in the proof for the related integrated-system

model work,

• the discovery that the GDH assumption is required to prove

Sphinx secure instead of the DDH assumption,

• the first detailed security proof for (a slightly adapted) Sphinx

under the GDH assumption, and

• a discussion of criteria for secure usage of Sphinx.

Outline. Section 2 introduces the required background. Section 3

constructs the formal foundations for repliable OR in the service

model, which Section 4 uses to analyze and adapt Sphinx. Section 5

discusses the privacy achieved by our adapted Sphinx as well as

relevant criteria under which the adapted Sphinx is considered

secure. Finally, Section 6 concludes this paper.

2 BACKGROUND AND RELATEDWORK
We first introduce our privacy requirements, onion routing and

mix networks and the general network model before providing

background on the formal analysis in this work and the Sphinx

packet format itself.

2.1 Onion Routing and Mix Network Packet
Formats

Onion routing and mix networks aim to hide the sender of a packet

in a set of users called the anonymity set. They thereby prevent

linking the sender both to the sent message and the receiver. The

networks employ multiple relays between the sender and receiver

that process packets and forward them to the next relay or the

receiver. As the message in the packet is typically wrapped into

multiple layers of encryption, it is also called an onion and every

processing result on an onion’s relay path is an onion layer [16].
Relay services are typically run by volunteers that want to help

the sender increase its privacy against adversarial receivers, but also

internet providers and possibly even nation-state adversaries. Due

to this open nature of the network, it is assumed that a fraction of the

relays is controlled by the adversary as well [14]. Mix networks aim

to protect against a global adversary and therefore not only change

the representation of the onion packet, but also reorder incoming

packets before forwarding them. Onion routing networks, however,

traditionally protect only against local adversaries and prioritize

low-latency service over stronger protection [14]. In terms of the

packet format, however, the networks are similar — they share the

underlying idea of layered encryption. For the sake of compatibility

with related work, we use OR as a representative for both OR and

mix network packet formats. We stress that we nonetheless target

a global adversary.

2.2 Network Models and Functionalities
We distinguish between two network models for OR protocols: The

integrated-system model assumes that the receiver is aware of and

runs the OR protocol, while the service model assumes that the

receiver can be unaware of the OR protocol. The last relay before

the receiver, the exit relay, translates the packets accordingly.
We further distinguish between two functionalities:Non-repliable

OR only sends messages from senders to receivers in one direc-

tion and repliable OR acts as two-way communication. Repliable

OR schemes involve sending requests as forward messages and

receiving responses as reply messages.

By design, the anonymity of the sender is required to hold even

against a malicious replying receiver. Thus, the receiver must not

know to whom it sends its reply. To achieve this, the sender can

prepare an anonymized “return envelope” and include it in its onion.

Some repliable OR protocols (including Sphinx) additionally require

forward and reply packets to be indistinguishable from each other

756

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

while they are moving through the network in order to increase

the anonymity set of each packet [12].

2.3 Formally Analyzing Mix Network Packet
Formats

The state of the art uses the Universal Composability (UC) frame-

work [6] to formalize OR security for packet formats. In UC, the

desired security is defined by an ideal functionality F, which is

an optimal, abstract version of the protocol. F performs all com-

putations on a trusted third party and clearly specifies how the

environment (which controls the honest parties) and the adversary

are allowed to interact with that third party. The goal is then to

show that a real protocol is as secure as F and thus securely realizes
F. This means all attacks against the real protocol must also work

in F (which is secure by definition). In this model, the environment

controls all of the honest parties and the adversary controls the

corrupted parties. To show that a protocol securely realizes F, one
constructs a simulator that translates the actions of the real-world

adversary into the ideal-world F’s adversarial entity’s behavior
and the ideal world’s honest parties’ actions into real-world pro-

tocol messages. The environment and the adversary are allowed

to collaborate and the environment’s view after the protocol ends

is given to a distinguisher. Only if the view of the environment

when it is interacting with the simulator and F is indistinguishable

from the view created from an interaction of the environment with

the real-world adversary and the real protocol does the protocol

securely realize F [6].

2.3.1 Overview of Analyses. The first approach to consider OR in

the UC framework was proposed by Camenisch and Lysyanskaya.

They create an ideal functionality and (as they claim) corresponding

game-based security properties for the integrated-system model

without replies [5]. The reason for the creation of the game-based

properties is that proving that a protocol securely realizes an ideal

functionality is complex and involves multiple steps: One must

construct a simulator for every adversary and then prove that the

simulator simulates the adversary indistinguishably. Since many

OR protocols operate in a similar way, Camenisch and Lysyanskaya

reduce this overhead by defining their game-based properties. Their

secure realization proof works for any OR protocol in their model

that satisfies the game-based properties, taking advantage of the

similarities between protocols. For authors of packet formats, this

means that they only need to prove that their format satisfies the

game-based properties in order to securely realize the ideal func-

tionality [5].

A series of protocols have based their security proofs on Ca-

menisch and Lysyanskaya’s game-based properties [8, 9, 12]. Kuhn

et al. find flaws in the proposed properties as well as in the corre-

sponding protocols [21]. They fix the proof strategy by proposing

new OR properties that imply the ideal functionality as originally

proposed by Camenisch and Lysyanskaya.

Ando and Lysyanskaya extend the ideal functionality and OR

properties to include replies in the integrated-system model and

propose a new OR scheme [2] for this model.

Kuhn et al. [22] improve on Ando and Lysyanskaya’s work by

improving the privacy in the schemes, ideal functionality, and the

onion properties for repliable integrated-system-model OR.

2.3.2 Summary of Integrated-System Framework. In the follow-

ing, we give a high-level summary of the integrated-system frame-

work [22], which we will adapt for our repliable service-model

formalization.

The ideal functionality F𝑅 for repliable OR in the integrated-

system model offers an interface to the environment and adversary

that allows relays to send and forward onions. The honest and

corrupted parties send messages to the trusted third party to trig-

ger these actions. F𝑅 then provides the appropriate outputs to the

parties — these correspond to the ideal outputs one would expect

from a secure OR protocol. For example, the adversary is notified

when an onion is forwarded by an honest relay and receives a tem-

porary onion identifier that it can send back to F𝑅 when it decides

to deliver that onion to the next honest relay. However, F𝑅 never

constructs or outputs any “real” onions. Instead, the parties only

receive information about the onions associated with the aforemen-

tioned temporary onion identifiers, These identifiers include no

information about the sender, the receiver, the path, or the message

of the respective onion. The identifiers are also replaced with a

new random temporary identifier at each honest relay. This is done

because any honest relay in an OR network breaks the link between

the onion layers before and after itself.

Proving UC-realization for each OR protocol individually in-

volves a lot of redundant work. In line with earlier work, Kuhn

et al. thus define onion properties that are sufficient to prove that

an integrated-system packet format securely realizes F𝑅 . These
are Correctness, Forwards Layer Unlinkability (LU→), Backwards
Layer Unlinkability (LU←), and Repliable Tail Indistinguishability
(TI↔) [22].

Correctness requires that onions follow their set paths and de-

crypt correctly if they are honestly processed.

In the Forwards Layer Unlinkability (LU→) game, onion layers

between honest relays on the forward path of the onion are replaced

with random onion layers taking the same path. The adversary is

required to distinguish the replacement from the original. If the

adversary cannot do so, the packet format ensures that onion layers

on the forward path of an onion cannot be linked across an honest

relay.

In the Backwards Layer Unlinkability (LU←) game, onion lay-

ers on the reply path (instead of the forward path) are replaced

with random onion layers. Notably, it replaces them with random

forward onion layers. Again, the adversary must distinguish the

replacement from the original. If it cannot do so, the packet for-

mat ensures unlinkability of reply onion layers. This property also

implies indistinguishability of forward and reply onions.

In the Repliable Tail Indistinguishability (TI↔) game, onion layers

going to a corrupted receiver relay are replaced with random onion

layers with the same path and message contents. The adversary

must once again tell the difference between the two. If it cannot,

the packet format guarantees that different onions with the same

message going to a corrupted receiver are indistinguishable.

Note that, if all four properties are satisfied, every layer of an

onion can be replaced with a random layer such that only the

respective subpaths between honest relays stay the same (and the

message, if the layer goes to a corrupted receiver). Effectively, this

means that an adversary learns no more from any given sequence

757

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

of onion layers than it would if given a temporary onion identifier

and the corresponding subpath like in F𝑅 .
These onion properties combine to allow us to prove secure

realization: When constructing the simulator that simulates the

adversary, but interacts only with F𝑅 , the simulator does not learn

the full path or message of onions from honest senders, but only

the subpaths between two honest relays. This is by construction

of F𝑅 . In order to translate the ideal-world onion into a real-world

onion, it must thus replace the real onion layers that the adversary

and environment would expect to see with random (forward) onion

layers that only match the original onion in their subpath (and their

message if an adversarial receiver gets the onion). The properties

ensure that the replacement cannot be detected, allowing the proof

to be completed in this manner.

2.4 Sphinx
Sphinx [12] is a compact repliable mix packet format in the service

model following the adversary model and privacy goals described

above.

2.4.1 The Sphinx Packet. A Sphinx packet consists of a header

𝜂 and a payload 𝛿 . The header of the packet contains all of the

routing information for the packet while the payload contains the

message and the receiver address. The sender of the packet builds

both components layer by layer, starting at the final innermost

layer and adding one additional layer of encryption for each relay

on the packet’s “path” as chosen by the sender. If the path is shorter

than the configured maximum path length, padding is added to

the final layer of the header. The relays each remove one layer

of that encryption when they process the packet. The final relay

removes the last layer of encryption from the packet and discovers

the message and receiver address. It then delivers the message to

the receiver [12]. The packet format is described in more detail in

Section 4.1.

The separation of the header and payload allows for Sphinx’s

replies: A sender forms a repliable packet by creating a header for

the reply as well as a key for the reply payload before sending the

“forward” packet. The reply header and the key are sent to a third-

party nymserver using another forward packet and stored under

a pseudonym there. After receiving a reply from the receiver, the

exit relay of the packet sends the nymserver the reply message and

the pseudonym it learned from the forward packet. The nymserver

encrypts the reply payload using the key and attaches it to the reply

header before sending it [12].

2.4.2 Sphinx Security. Sphinx (as defined in [12]) has two known

flaws. The first is due to the padding in the final layer of the header.

In the original Sphinx definition, this padding consists of only 0

bits and depends on the chosen path length [15, 21]. As this pattern

is recognizable, a corrupted exit relay learns information about the

path length. The Sphinx implementation [15] fixes this issue by

using random bits instead. In the following, we consider the version

of Sphinx that includes this fix.

Payload Tagging. Sphinx’s second flaw concerns the integrity

of the payload. Due to how Sphinx handles replies, it cannot use

a standard integrity check like a MAC of the payload 𝛿 at each

relay: In order to calculate a MAC of the payload, the payload

contents must be known. This is trivial for forward packets, but

impossible for replies since the sender does not know what the

receiver’s reply will be ahead of time. Since the exit relay is not

trusted, it cannot be used to calculate the payload MACs either: A

global adversary could re-identify MACs it calculated at exit relays

elsewhere in the network. As it stands, providing integrity for reply

payloads has yet to be done efficiently. Some OR schemes provide

integrity using complex cryptographic primitives like SNARGS and

updatable encryption, but these are too computationally expensive

to be viable in practice [22].

A different option is to provide integrity only for forward pay-

loads, but not reply payloads. However, this comes at the cost of

the adversary being able to distinguish forward and reply packets,

which Sphinx is deliberately designed to avoid. We consider the

indistinguishability of forward and reply packets an important fea-

ture of Sphinx since it doubles the size of the potential anonymity

set of a packet. As a result, we choose to preserve this property

of Sphinx at the expense of payload malleability. Adversarial mod-

ifications of Sphinx payloads thus go unnoticed until the packet

reaches its exit relay, which notices (and drops) the modified packet

during the integrity check on the payload. Crucially, this allows

the adversary to link the packet it “tagged” (by, e.g., flipping bits in

its payload) to the packet that was dropped by the exit relay. The

payload is completely destroyed in the process. If Sphinx is used

in the integrated-system model, (as, e.g., in [8]), this attack links

sender and receivers and thereby completely breaks the scheme’s

security. However, if Sphinx is used in its intended service model,

the attack only links the sender to its corresponding exit relay. This

can be an acceptable leak in some settings, as we discuss later.
3

2.4.3 Current Relevance of Sphinx. As of the writing of this paper,

the Sphinx packet format is used in several different mix networks

and OR protocols. However, many of these instantiations of Sphinx

are insecure due to the tagging attack allowing adversaries to link

senders to their chosen final relay, which is not independent of the

sender’s choice of receiver.

Sphinx was originally designed in 2009 by Danezis and Goldberg.

In 2015, HORNET was developed, which uses Sphinx in its setup

phase to negotiate circuits before switching to a different format

for data transmission [8]. Beato et al. created a modified version

of Sphinx without replies, but with payload integrity in 2016 [3].

Loopix, a mix network built in 2017, uses Sphinx in its original

form but without its reply functionality [26]. TARANET (2018) uses

Sphinx in a similar way as HORNET does [9]. In 2020, Kuhn et al.

discovered that Sphinx is vulnerable to tagging attacks especially

in the integrated-system model, demonstrating that HORNET and

TARANET’s setup phases are insecure [21]. The Nym mix network

is in active deployment since 2021 and is based on the Loopix design

and Sphinx packet format with replies [13]. Hugenroth et al. also

published their Loopix- and Sphinx-based multicast mix scheme

Rollercoaster in 2021 [18]. Pudding, a user discovery protocol again

based on Loopix with replies, was created in 2023 [19]. Designed

as recently as 2024, PolySphinx is a modified version of Sphinx

3
Note that tagging the Sphinx header in this manner is not possible: The header’s

integrity is protected by a MAC that is checked at every relay for both forward and

reply onions. The reason for this being easier to achieve than payload integrity is that

the reply header can be built by the sender ahead of time, while the reply payload

cannot (as the sender does not know the reply message).

758

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

that allows users to efficiently send a message to multiple receivers

at once [27]. Sphinx has also been used in other works including

measurement studies and payment channel networks such as the

Lightning Network [1, 17, 25].

3 REPLIABLE SERVICE ONION ROUTING
We formalize repliable OR in the service model, hereafter referred to

as repliable service OR (RSOR), and construct an ideal functionality

and corresponding onion properties that allow for the payload

malleability attack on Sphinx. We base our formalization on Kuhn

et al.’s work [22].

3.1 Defining Repliable Service Onion Routing
3.1.1 Notation. In general, we follow the notation of the corre-

sponding related work ([12, 22]) as much as possible. We represent

messages with𝑚, headers with 𝜂, and payloads, which include𝑚

along with other metadata, with 𝛿 . A packet is the combination

of 𝜂 and 𝛿 . We also refer to packets as onion layers and shorten

the term onion layer to onion where appropriate. Onion paths

P = (𝑃1, . . . , 𝑃𝑛) consist of a sequence of relays with 𝑃𝑖 being

the 𝑖-th relay’s name and 𝑃𝑛 being the exit relay. 𝑅, the receiver, is

not part of the onion’s path. 𝑃𝐾𝑖 and 𝑆𝐾𝑖 are the public and secret

key of relay 𝑃𝑖 . 𝑂𝑖 is the 𝑖-th onion layer, i.e., the processing result

that 𝑃𝑖−1 produces and sends to 𝑃𝑖 . For reply information, we use

the same notation with an additional superscript arrow: 𝑥← indi-

cates the reply counterpart to the forward component 𝑥 . A notation

table is provided in Table 1.

3.1.2 Assumptions. We make use of the following standard as-

sumptions regarding the OR protocol, which we inherit from related

work [21, 22]. Note that none of them require additional trust, but

just limit the packet schemes our model applies to. To the best of our

knowledge, every previously-proposed OR scheme and protocol

adheres to these assumptions.

Assumption 1. A maximum path length (number of relays on
the path) of 𝑁 is used (inclusive upper bound).

Assumption 2. Honest senders choose acyclic paths (to increase
the chance of picking at least one honest relay).

Assumption 3. Replay protection at honest relays drops onions
whose headers are bit-for-bit identical to ones that have already been
seen at that relay. A non-duplicate onion is only dropped with a
negligible probability.

Assumption 4. A sender always knows the public keys 𝑃𝐾𝑖 of
any relays 𝑃𝑖 it uses for its onions’ paths.

Assumption 5. An onion 𝑂 consists of a header 𝜂 and a payload
𝛿 such that 𝑂 = (𝜂, 𝛿).

Next, we introduce new assumptions related to the service model.

Assumption 6. Receivers drop any onions sent to them. Similarly,
relays drop any onions they get from links to receivers.

Since we assume that receivers are unaware of the OR network,

they cannot process onions. Traffic between receivers is not part of

our OR model.

Notation Definition

F Ideal Functionality

LU→ Forwards Layer Unlinkability

TLU→ Tagging-Forward Layer Unlinkability

LU← Backwards Layer Unlinkability

SLU← RSOR-Backwards Layer Unlinkability

TI↔ Tail Indistinguishability

STI↔ RSOR-Tail Indistinguishability

𝜂 Onion header

𝛿 Onion payload

𝑚 Plaintext message

P Onion path

𝑃 Onion relay

𝐸 Exit relay

𝑃𝑠 Onion sender

𝑅 Message receiver

𝑃𝐾 , 𝑆𝐾 Public and secret keys

𝑂 Onion

𝑂𝑖 Onion layer

𝜆 Security parameter

𝑝 Public parameters

N Set of onion relays

R Randomness

rid Reply ID

Z Environment

S UC Simulator

A Adversary

Table 1: Notation used throughout the paper.

Assumption 7. An onion in an RSOR packet format never has
an empty forward path. If it is repliable, it does not have an empty
backward path.

An onion with an empty forward path is effectively not an onion

at all since the sender is also the exit relay. The packet format

should thus not allow a valid onion to have an empty path. We

use an empty backward path as a sentinel value for a non-repliable

onion.

Assumption 8. An honest relay will always drop an unsolicited re-
ply (i.e., a reply with a header the relay does not recognize as belonging
to the final reply layer of an onion it sent).

This is not a surprising limitation. Honest relays will only pro-

cess replies that they expect. Finally, we add one cryptographic

assumption that we require for our game-based properties and UC

realization proof:

Assumption 9. Onion payloads are encrypted with a pseudoran-
dom permutation (PRP).

With this assumption, any modification of a payload (i.e., a tag-

ging attack) will completely randomize and thus destroy the payload

contents, which we require for security against these attacks.

759

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

3.1.3 Formal RSOR Schemes. We build an RSOR scheme using the

following algorithms (following [22]):

• Key generation algorithm 𝐺 for 𝑃 ∈ N:
(𝑃𝐾, 𝑆𝐾) ← 𝐺 (1𝜆, 𝑝, 𝑃),

where 𝑝 are the public parameters of the protocol and N is

the set of participating onion relays.

• Onion sending algorithm FormOnion (𝑛, 𝑛← ≤ 𝑁):
𝑂𝑖←FormOnion(𝑖,R,𝑚, 𝑹,P,P←, 𝑃𝐾P, 𝑃𝐾P←),

P (←) = (𝑃 (←)
1

, . . . , 𝑃
(←)
𝑛 (←)
) ∈ N𝑛

(←)
,

𝑃𝐾P (←) = (𝑃𝐾
(←)
1

, . . . , 𝑃𝐾
(←)
𝑛 (←)
),

where 𝑖 is the index of the onion layer to output (in practice,

𝑖 = 1, but our proofs require 𝑖 > 1 as well) and R is the

randomness to be used. If 𝑖 > 𝑛, 𝑅 is ignored and the onion

𝑂𝑖 is formed like a reply with the message𝑚. P← may be

empty if no reply is desired. Otherwise, P← contains the

“reply receiver” (which is the sender 𝑃𝑠) as its final relay.

FormOnion is deterministic in its inputs.

• Onion processing algorithm ProcOnion at 𝑃 :

(𝑂 ′, 𝑃 ′) ← ProcOnion(𝑆𝐾,𝑂, 𝑃) .
𝑃 processing𝑂 with its secret key 𝑆𝐾 results in an onion𝑂 ′

to send to the next relay 𝑃 ′. In case of an error, (𝑂 ′, 𝑃 ′) =
(⊥,⊥). ProcOnion may use internal randomness.

(𝑚,𝑅) = ProcOnion(𝑆𝐾𝐸 ,𝑂𝑛, 𝐸) if 𝐸 is the exit relay of the

onion.𝑚 is the message for receiver 𝑅.

(𝑚←,⊥) = ProcOnion(𝑆𝐾𝑠 ,𝑂𝑛+𝑛← , 𝑃𝑠) if sender 𝑃𝑠 (with
private key 𝑆𝐾𝑠) received the reply onion𝑂𝑛+𝑛← containing

reply message𝑚←.

• Reply sending algorithm FormReply:

(𝑂←, 𝑃←) ← FormReply(𝑚←,𝑂, 𝐸, 𝑆𝐾) .
The reply onion 𝑂← to be sent to 𝑃← is created from the

reply message𝑚← and the original onion𝑂 as processed by

𝑂’s exit relay 𝐸 with the secret key 𝑆𝐾 . If an error occurs,

(𝑂←, 𝑃←) = (⊥,⊥). FormReply may use internal random-

ness.

Definition 1
An RSOR scheme is a tuple of the polynomial-time algorithms (𝐺 ,

FormOnion, ProcOnion, FormReply), as defined above.

Using an RSOR scheme, we can construct a corresponding RSOR
protocol as follows:

(1) A sender selects the parameters for its onion, builds it using

FormOnion, and sends 𝑂1 to 𝑃1.

(2) Each relay 𝑃𝑖 processes the onion in turn using ProcOnion

and sends 𝑂𝑖+1 to 𝑃𝑖+1.
(3) The onion’s exit relay 𝑃𝑛 gets (𝑚,𝑅) ← ProcOnion(𝑆𝐾𝑛 ,

𝑂𝑛 , 𝑃𝑛). It generates a random “reply ID” 𝑟𝑖𝑑 , remembers

𝑂𝑛 in a map as (𝑟𝑖𝑑,𝑂𝑛), and sends (𝑚, 𝑟𝑖𝑑) to 𝑅.
(4) 𝑅 receives (𝑚, 𝑟𝑖𝑑) and decides to reply to the message. It

sends its reply (𝑚←, 𝑟𝑖𝑑) back to 𝑃𝑛 .

(5) 𝑃𝑛 gets the reply message and finds (𝑟𝑖𝑑 , 𝑂𝑛) in its map. It

calculates (𝑂←, 𝑃←) ← FormReply(𝑚←,𝑂𝑛, 𝑃𝑛, 𝑆𝐾𝑛) and
sends 𝑂← to 𝑃←.

(6) The reply onion follows its reply path like in step four until

the sender receives𝑂←
𝑛← and processes it to receive (𝑚←,⊥).

We introduce the concept of “reply IDs” (𝑟𝑖𝑑s) in the protocol de-

scription. These IDs are intended to be abstractions of some stateful

delivery and reply mechanism used by the receivers (e.g., TCP con-

nections in the case of web servers). To avoid the complexity these

mechanisms would bring into our definitions, we represent them as

a simple device that allows a receiver to send a reply directly to the

relay it received the 𝑟𝑖𝑑 from. Our protocols do not protect 𝑟𝑖𝑑s, so

they can be manipulated by adversaries.
4
This corresponds to the

adversaries’ capability to control links and the delivery of packets

on those (unauthenticated) links, which cannot be mitigated in the

service model.

In addition to the algorithms defined above, we also require the

algorithm RecognizeOnion(𝑖 ,𝑂 , R ,𝑚, 𝑅, P, P←, 𝑃𝐾P , 𝑃𝐾P←) to
be defined for RSOR analogously to its original definition by Kuhn

et al. [22]: The algorithm compares the header of𝑂 to the 𝑖-th layer

of the onion originally created from the given inputs including the

secret randomness R . For our RSOR schemes, this means that the

message is not checked since it is in the payload. Note that this

algorithm is required even though FormOnion is deterministic

in its inputs because ProcOnion and FormReply may introduce

internal randomness.

3.2 RSOR Ideal Functionalities
In this section, we provide an overview of our ideal functionality

FRSOR for RSOR, focusing on the core ideas and issues in its con-

struction. We base it on Kuhn et al.’s F𝑅 [22]. We also explain the

differences between FRSOR and F𝑅 . FRSOR is given in pseudocode

in Appendix A.

3.2.1 Ideal Functionality. Recall from Section 2.3 that, in an UC

ideal functionality F, all processing happens on a trusted party

with a set of interfaces and procedures that the environmentZ and

the adversary S interact with and receive information from.

Fundamental concept. Following the related work, onion layers

are abstracted into a series of random temporary identifiers, the

temp IDs (𝑡𝑖𝑑s). When an onion is forwarded through an honest

relay, it receives a new 𝑡𝑖𝑑 , thus rendering the layers before the relay

and after the relay unlinkable. Corrupted relays do not cause the 𝑡𝑖𝑑

to be replaced. As an onion is forwarded between honest relays, S
receives the 𝑡𝑖𝑑s for the layers along with information on the layers’

paths. This corresponds to the intuition that the adversary learns

nothing about the content of the onion and cannot link the layers

before and after an honest relay to each other. FRSOR models all of

the interactions between relays and between relays and receivers

in the network including all possible adversarial capabilities in our

adversary model. This includes corner cases and unusual adversary

behavior.

Detailed Interaction. To send a new onion in FRSOR,Z (for honest

parties) or S (for adversarial parties) notify FRSOR with the desired

receiver, message, and forward and reply paths. The resulting temp

ID 𝑡𝑖𝑑 is given to S, which controls the links and may choose to

deliver the 𝑡𝑖𝑑 (i.e., the onion) to the next honest relay. If the onion

was sent by a corrupted sender, S receives all of the information

4
Note that these 𝑟𝑖𝑑s must not be linkable to the onion they are mapped to, or an

adversary could use them to link the onion’s receiver to the onion layers before an

honest exit relay.

760

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

on the onion for every path segment.
5 Z can decide when honest

relays are done processing an onion and forward it to the next relay.

While the onion is being forwarded through the network, S
can also choose to tag it. This feature behaves like the tagging of

a Sphinx packet (which is explained in Section 2.4.2). When the

onion is forwarded by its last honest relay, it is either discarded (if

it was tagged) or the message and receiver are leaked to S.
Reply handling comes in two variants: If the last honest relay

is the exit relay of the onion, FRSOR generates a reply ID 𝑟𝑖𝑑 (an

abstraction of a connection that could be established by a protocol

like TCP) and gives it toS.S can use the 𝑟𝑖𝑑 to provide the exit relay

with a message for the reply onion. On the other hand, if the exit

relay of the onion is corrupted, S receives a 𝑡𝑖𝑑 it can use to send

the reply onion with a reply message from any corrupted relay.
6

Since the channels between the relays and receivers are not secure,

we have to assume that S has complete control over message and

reply delivery. Honest receivers can also initiate sending a reply to

a message with an 𝑟𝑖𝑑 .

3.2.2 Comparison with Repliable Integrated-System OR. While we

are able to reuse large parts of Kuhn et al.’s F𝑅 [22] to build FRSOR,
switching to the service model requires several additions to the

existing F𝑅 .
First, the new tagging feature marks onions to be discarded

when they reach their last honest relay.
7
Notably, tagging behaves

asymmetrically: when a forward onion is tagged, the last honest

relay discards it. On the reply path, a tagged onion is noticed by

the reply receiver. If the reply receiver is honest, S is not informed

about the tag.

Second, FRSOR adds handling of message and reply delivery on

the final link. Since these links are not secure, a real-life adversary

is capable of manipulating the traffic on them in many ways. These

include delivering messages and 𝑟𝑖𝑑s to the wrong receivers or exit

relays, swapping 𝑟𝑖𝑑 and message pairs, impersonating exit relays

to receivers and vice versa, and sending reply onions from other

corrupted relays if the exit relay is corrupted. FRSOR permits all of

these adversarial behaviors in its interface to S.
In particular, the first of these two changes relaxes FRSOR’s secu-

rity requirements, which allows RSOR schemes to have malleable

payloads. Accordingly, using RSOR protocols requires additional

care, as detailed in Section 5.1.

3.3 RSOR Onion Properties
Our properties are based on the properties defined byKuhn et al. [22]

with appropriate adjustments for the new algorithms and function-

ality. We detail one property and sketch the others here. For a

formal definition of the other properties see Appendix B.

3.3.1 RSOR-Correctness. This property requires that the scheme

works as intended if no adversarial actions take place. Precisely,

this means that, as the onion is processed using ProcOnion, each

5
This matches the behavior of real packet formats like Sphinx, where the sender

calculates every layer itself and can thus recognize them.

6
A packet format cannot prevent the adversary from sending messages using any of

the relays under its control.

7
Since the ideal functionality itself does not model adversarial processing, this is the

case even when the last honest relay is not the exit relay. In that case, S is provided

with the remainder of the onion’s path.

𝑃1𝑃𝑠

(b)

(a)

𝑃 𝑗−1

𝑃 𝑗
= 𝑃𝐻

𝑃 𝑗+1 𝑃𝑛+1 𝑃←
𝑛←−1

𝑃𝑠

(𝑚,𝑅) 𝑚←

𝑂1

�̄�1

𝑂 𝑗

�̄� 𝑗

𝑂 𝑗+1

Figure 1: The TLU→ onion property. The adversary is given
either its chosen onion𝑂1 (a) or the random onion𝑂1 (b) and
must distinguish the two cases. Relays marked in this style
are adversarial, while those in the normal style are honest.
Omitted adversary-chosen paths are shownwith dashed lines.
The secondary output𝑂 𝑗+1 after 𝑃 𝑗 is the same in both cases.

relay decrypts the correct address of the next relay and the next

onion layer and the final layer decrypts to the message chosen by

the sender. The same applies to the corresponding reply onion.

3.3.2 Tagging-Forwards Layer Unlinkability (See Figure 1). TLU→

is the RSOR equivalent of LU→. It replaces onion layers between

the honest sender and the first honest relay of an onionwith random

layers using that path segment. The introduction of tagging requires

us to adjust this property. The original definition of LU→ provides

the adversary with the challenge onion𝑂1 or its replacement onion

𝑂1 as produced by the sender and recognizes the processed layer

𝑂 𝑗 or 𝑂 𝑗 when the adversary submits it to the processing oracle

of the first honest relay. This recognition is based on the onion’s

header, so a tagged onion is still recognized. In the 𝑏 = 0 case, the

tagged𝑂 𝑗 is processed normally and a tagged𝑂 𝑗+1 is output to the

adversary. However, in the 𝑏 = 1 case, the tagged 𝑂 𝑗 is recognized

by the oracle and the original 𝑂 𝑗+1 is output without being tagged.

The adversary can simply finish the onion’s processing to tell the

difference.

To alleviate this issue, TLU→’s oracle recognizes when the pay-

load of the challenge onion has been tagged and “forwards” the

tag by tagging𝑂 𝑗+1 before sending it. If the honest relay is the exit

relay, the oracle outputs nothing in this case. Since we assume that

the payload is encrypted using a PRP, tagging the onion simply

involves replacing the payload with randomness.

The following full definition of TLU→ is derived from Kuhn

et al. [22]. Our modifications are given in this style. We also abbre-

viate RecognizeOnion as ROnion for the sake of formatting.

Definition 2
Tagging-Forwards Layer Unlinkability is defined as:

(1) The adversary receives the router names 𝑃𝐻 , 𝑃𝑠 and chal-

lenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , chosen by the challenger as

(𝑃𝐾𝐻 , 𝑆𝐾𝐻) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻) and (𝑃𝐾𝑆 , 𝑆𝐾𝑆) ← 𝐺 (1𝜆, 𝑝, 𝑃𝑠).
(2) Oracle access: The adversary may submit any number of

Proc and Reply requests for 𝑃𝐻 or 𝑃𝑠 to the challenger.

For any Proc(𝑃𝐻 ,𝑂), the challenger checks whether 𝜂 is

on the 𝜂𝐻 -list. If it is not on the list, it sends the output

of ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻), stores 𝜂 on the 𝜂𝐻 -list and 𝑂

on the 𝑂𝐻 -list. For any Reply(𝑃𝐻 ,𝑂,𝑚), the challenger

checks if 𝑂 is on the 𝑂𝐻 -list and if so, the challenger sends

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻) to the adversary. (Similar for re-

quests on 𝑃𝑠 with the 𝜂𝑆 -list).

(3) The adversary submits a message𝑚, a receiver 𝑅, a position

𝑗 with 1 ≤ 𝑗 ≤ 𝑛, a path P = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛) with
761

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

𝑃 𝑗 = 𝑃𝐻 , a path P← = (𝑃←
1
, . . . , 𝑃←

𝑛← = 𝑃𝑠) and public keys

for all relays 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the relays on the path and

𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the chosen paths are acyclic, the

router names and public keys are valid and that the same

key is chosen if the router names are equal, and if so, sets

𝑃𝐾𝑗 = 𝑃𝐾𝐻 and 𝑃𝐾←
𝑛← = 𝑃𝐾𝑆 and picks 𝑏 ∈ 0, 1 at random.

(5) The challenger creates the onion 𝑂1 with the adversary’s

input choice and honestly chosen randomness R :
FormOnion(1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)

and a replacement onion𝑂1 with the first part of the forward

path
¯P = (𝑃1, . . . , 𝑃 𝑗), a random message �̄� ∈ 𝑀 , another

honestly chosen randomness
¯R , an honestly chosen random

receiver 𝑅, and an empty backward path
¯P← = ():

FormOnion(1, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←)
(6) If 𝑏 = 0, the challenger gives 𝑂1 to the adversary.

Otherwise, the challenger gives 𝑂1 to the adversary.

(7) Oracle access: If 𝑏 = 0 the challenger processes all oracle

requests as in step 2).

Otherwise, the challenger processes all requests as in step 2)

except for:

• If 𝑗 < 𝑛:

– Proc(𝑃𝐻 ,𝑂) with
ROnion(𝑗,𝑂, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←),
and the expected payload 𝛿 𝑗 , 𝜂 is not on the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻) ≠ (⊥,⊥):
The challenger outputs (𝑃 𝑗+1,𝑂𝑐) with

𝑂𝑐 ← FormOnion(𝑗 + 1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)
and adds 𝜂 to the 𝜂𝐻 -list and 𝑂 to the 𝑂𝐻 -list.

– Proc(𝑃𝐻 ,𝑂) with
ROnion(𝑗,𝑂, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←)
but the incorrect payload 𝛿 ′, 𝜂 is not on the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻) ≠ (⊥,⊥):
The challenger outputs (𝑃 𝑗+1, �̃�𝑐) with

𝑂𝑐 ← FormOnion(𝑗 + 1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)
and �̃�𝑐 being 𝑂𝑐 with a tagged payload and adds 𝜂 to

the 𝜂𝐻 -list and 𝑂 to the 𝑂𝐻 -list.

• If 𝑗 = 𝑛:

– Proc(𝑃𝐻 ,𝑂) with
ROnion(𝑗,𝑂, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←),
𝜂 is not in the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻) ≠ (⊥,⊥):
The challenger outputs (𝑚,𝑅) and adds 𝜂 to the 𝜂𝐻 -list

and 𝑂 to the 𝑂𝐻 -list.

– Reply(𝑃𝐻 ,𝑂,𝑚←) with
ROnion(𝑗,𝑂, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←)
𝑂 is on the 𝑂𝐻 -list and has not been replied before and

FormReply(𝑚←,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻) ≠ (⊥,⊥):
The challenger outputs (𝑂𝑐 , 𝑃←

1
) with

𝑂𝑐 ← FormOnion(𝑗 + 1,R,𝑚←, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←) .
(8) The adversary produces guess 𝑏 ′.

TLU→ is achieved if any PPT adversary A cannot guess 𝑏 ′ = 𝑏

with a probability non-negligibly better than
1

2
.

𝑃←
𝑗←+1

𝑃←
𝑗←

= 𝑃𝐻

(b)

(a)

𝑃←
𝑛←−1

𝑃𝑠𝑃←
𝑗←−1

𝑃𝑛+1𝑃1𝑃𝑠

(𝑚,𝑅)

𝑂←
𝑗←+1

�̄�1

𝑂←
𝑛←

�̄�𝑛←−𝑗←

𝑂←
𝑗←𝑂1

Figure 2: The SLU← onion property. The adversary is initially
given its chosen onion 𝑂1. The oracle at the relay 𝑃←

𝑗← will
then return either its chosen onion 𝑂←

𝑗←+1 (a) or the random
onion 𝑂1 (b) and must distinguish the two scenarios. Relays
marked in this style are adversarial, while those in the nor-
mal style are honest. Omitted adversary-chosen paths are
shown with dashed lines.

𝑃 𝑗
= 𝑃𝐻

(b)

(a)

𝑃 𝑗+1 𝑃𝑛+1 𝑃 𝑗←−1

𝑃 𝑗←
= 𝑃←

𝐻

(𝑚,𝑅)

𝑂 𝑗+1

�̄�1

𝑂←
𝑗←

�̄� 𝑗←

Figure 3: The STI↔ onion property. The adversary is given
either its chosen onion 𝑂 𝑗+1 (a) or the random onion 𝑂1 (b)
and must distinguish the two cases. Relays marked in this
style are adversarial, while those in the normal style are hon-
est. Omitted adversary-chosen paths are shown with dashed
lines.

3.3.3 RSOR-Backwards Layer Unlinkability (See Figure 2). The def-
inition of the SLU← property is analogous to the TLU→ property,

but replaces the challenge onion on a path segment of the reply

path. Additionally, the replacement onion is a forward onion, not

a reply onion. This ensures that a scheme satisfying SLU← will

have indistinguishable forward and reply onions in the OR network.

We do not need to adapt SLU← to account for the tagging attack

since the reply receiver processing oracle never produces output for

onions with the challenge headers, so it cannot produce a wrong

(untagged) output.

3.3.4 RSOR-Tail Indistinguishability (See Figure 3). The STI↔ prop-

erty is RSOR’s counterpart for the TI↔ property in the integrated-

system model. It replaces the challenge onion with a random onion

using the same path segment between an honest relay on the for-

ward path and a second honest relay on the reply path. In STI↔,

we do not allow the exit relay to be the honest relay since that

situation is already covered by SLU←.

3.3.5 Comparison with Integrated-System Properties. Besides the
adaptions necessary for the different representation of the receiver

and path, themain difference between the integrated-system proper-

ties and RSOR properties is the introduction of tagging into TLU→.

The other two properties do not require provisions for tagging

mitigation: SLU← remains unaffected because of the previously-

described asymmetry of the tagging attack on the reply path, while

STI↔ never outputs a challenge onion from its oracles.

762

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

3.4 Properties imply FRSOR
With the properties defined above, we can now define secure RSOR
schemes and protocols as those that satisfy the properties and

behave in the way described in Section 3.1.3.

Definition 3
An RSOR scheme (𝐺 , FormOnion, ProcOnion, FormReply) that

satisfies the four onion properties RSOR-Correctness, TLU→, SLU←,

and STI↔ is a secure RSOR scheme.

Definition 4
A secure RSOR protocol is based on a secure RSOR scheme and

behaves as defined in Section 3.1.3. A full definition of the protocol

behavior is given in Appendix C.

Theorem 1. A secure RSOR protocol securely realizes FRSOR.

The proof of this theorem is analogous to Kuhn et al.’s original

proof for integrated-system protocols and F𝑅 [22]. We provide a

brief sketch of the proof and the required changes here. The full

proof is given in Appendix D. First, we construct a simulator S
that interacts with the adversary A and FRSOR, replicating the ad-

versary’s real-world actions in FRSOR and vice versa. After that, we

use a hybrid proof to show that any RSOR protocol that satisfies the

RSOR properties is indistinguishable from our simulator interacting

with FRSOR.
When interacting with FRSOR andA , S must correctly translate

the onions and messages sent by honest relays in FRSOR into the

real world without complete information on the contents or paths

of the onions. The RSOR properties ensure that the simulator can

create replacement onions with randomized contents and truncated

paths whenever it needs to do so without A or Z noticing the

replacement.

Differences to F𝑅 . Introducing tagging requires additional logic in
the simulator. When the adversary tags an onion from an honest

sender, the simulator can tell that the payload has been manipulated

and tag the onion in FRSOR. If the onion is from a corrupted sender,

S notices the manipulation when it processes the onion at its honest

exit relay and can tag it in FRSOR at that point. This behavior allows

the simulator to handle tagging attacks correctly.

In addition, S now also needs to handle communication with

external receivers involving messages and reply IDs. Translating

these between FRSOR and the real world involves forwarding the

appropriate communications while potentially impersonating exit

relays or receivers.

In our hybrid machine construction, we fix an error in Kuhn

et al.’s proof: They apply the LU→ (and LU←) properties to path

segments that do not start at the honest sender (or end at the honest

reply receiver) [22]. However, the properties do not apply to these

situations. We fix this problem by applying the STI↔ property

once in these situations to truncate the paths of the corresponding

onions. Afterwards, we can apply the TLU→ or SLU← properties

as before. The same change (using TI↔) can be used to repair the

proof in [22].

4 ANALYZING SPHINX’S SECURITY
We now aim to show that the Sphinx securely realizes FRSOR. There-
fore, we use our RSOR properties and show that Sphinx satisfies

each of them. However, to be able to do so, we have to make two

further adjustments to the Sphinx protocol: Firstly, we remove the

nymserver, as it allows for attacks (in Section 4.2). Doing so is pos-

sible by including reply headers in payloads instead of forwarding

them to the nymserver separately. Secondly, we need to change

the underlying cryptographic assumption to enable our proof (in

Section 4.3.2).

4.1 The Sphinx Packet
A Sphinx packet consists of a header 𝜂 = (𝛼, 𝛽,𝛾) and a payload 𝛿

(see Section 2.4.1 for an overview). 𝛼 contains the shared secret keys

encrypted for each relay, 𝛽 holds the routing information padded

by the sender, and𝛾 is a MAC for 𝛽 . Note that we adopt the notation

of the original Sphinx paper [12].

Each relay 𝑃𝑖 has an asymmetric key pair of the form (𝑥𝑖 , 𝑦𝑖 :=

𝑔𝑥𝑖) with 𝑥𝑖 ∈ Z∗𝑞 and 𝑔 as a generator of a cyclic group G with

the prime order 𝑞. 𝑞 should be approximately 2
2𝜅
, where 𝜅 is the

security parameter [12]. The public keys are used along with ran-

dom oracles in order to encapsulate the shared secret keys used

for the symmetric cryptographic primitives in each layer of the

Sphinx packet. We refer to this part of the packet format as Sphinx’s

random oracle-key encapsulation mechanism (RO-KEM). The RO-

KEM’s ciphertext is 𝛼 , the first component of the Sphinx packet

header [12].

𝛼 is formed using the public keys of the relays on the sender’s

chosen path. First, the sender chooses a secret 𝑥 ∈ Z∗𝑞 , where Z∗𝑞 is

the multiplicative group of whole numbers modulo 𝑞 without 0. 𝑥

is the only source of randomness in the Sphinx packet. Using 𝑥 , the

sender generates the 𝛼-key encapsulation for the first onion layer

(which is layer 0):
8 𝛼0 = 𝑔𝑥 . The sender then derives the shared

secret for the first relay: 𝑠0 = 𝑦𝑥
0
, where 𝑦0 is the public key of the

first relay.
9
When the first layer of the onion reaches the first relay,

it can derive 𝑠0 using its secret key: 𝑠0 = 𝛼
𝑥0

0
. The keys and random

values used in the cryptographic primitives in the Sphinx packet

are all derived from 𝑠0 using the random oracles ℎ𝑏 , ℎ𝜌 , ℎ𝜇 , and

ℎ𝜋 [12].

In particular, the random oracle ℎ𝑏 is used to build the key encap-

sulations for the following onion layers: To calculate 𝛼1, the sender

lets 𝑏0 = ℎ𝑏 (𝛼0, 𝑠0) and 𝛼1 = 𝑔𝑥𝑏0
. The corresponding shared secret

is similarly calculated as 𝑠1 = 𝑦
𝑥𝑏0

1
, using the public key of the

second relay on the onion’s path. The 𝑏𝑖 are referred to as blinding
factors. When the first relay processes the first onion layer, it can

calculate 𝛼1 = 𝛼
𝑏0

0
with the blinding factor 𝑏0 that it gets from the

same random oracle ℎ𝑏 . With this, the second relay can derive its

shared secret using its private key. This process is repeated for each

onion layer. Note that only 𝛼0 is included in the “final first onion

layer” — the later 𝛼𝑖 are calculated by the relays themselves and

replace the respective 𝛼𝑖−1 in the packet during processing [12].

8
In this section, onion layer indices start at 0 for consistency with Sphinx’s original

definition in [12].

9
Note that our indices 𝑖 for relay names are relative to a single packet’s path for clarity.

763

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

Since we focus on Sphinx’s RO-KEM in the following sections,

we only give a short overview of the remaining packet structure

here. For a more detailed and technical description, see Appendix E.

The other two components of the Sphinx header are 𝛽 and 𝛾 . In

each onion layer 𝑖 , 𝛾𝑖 is simply a MAC 𝜇 of 𝛽𝑖 keyed with ℎ𝜇 (𝑠𝑖).
Here, ℎ𝜇 is one of the random oracles keyed with that layer’s shared

secret. 𝛽𝑖 contains the address of the next relay 𝑃𝑖+1, the next MAC

𝛾𝑖+1, and a prefix of the next 𝛽𝑖+1 in that order. This information

is XORed with the output of a PRG 𝜌 keyed with ℎ𝜌 (𝑠𝑖). When

processing an onion layer, the relay 𝑃𝑖 creates 𝛽𝑖+1 from 𝛽𝑖 by

appending a string of zero bits to 𝛽𝑖 , XORing the PRG output onto

the result, and cutting off the relay address and MAC at the start of

the end result. The construction of Sphinx’s padding scheme means

that the XORing the zero-bit extension with the PRG output results

in exactly the missing suffix of 𝛽𝑖+1.
Finally, the Sphinx packet payload 𝛿 is simply constructed tho-

rugh multiple layers of encryption with a pseudorandom permu-

tation (PRP) 𝜋 , which is keyed with ℎ𝜋 (𝑠𝑖) in the 𝑖-th layer.
10

The

payload is constructed by the sender in reverse order, layering en-

cryption from the final onion layer to the first. The innermost layer

contains a zero padding of length equal to the security parame-

ter, the receiver address, and the message in that order. When a

relay processes an onion, it simply removes one layer of encryption

from the payload. The final relay performs an integrity check by

checking that the zero padding at the beginning of the payload is

intact.

4.2 Nymserver
The original Sphinx definition by Danezis and Goldberg [12] uses a

nymserver to hold the reply headers for the onions in the network.

To create a repliable onion, the sender first sends a non-repliable

onion containing the reply header and a symmetric key for the

payload to the nymserver under a pseudonym. The sender is re-

sponsible for embedding that pseudonym in the forward onion for

the exit relay to find. If the receiver decides to reply, it sends its

reply message back to the exit relay. The exit relay sends the reply

message and the pseudonym to the nymserver. The nymserver finds

the reply header associated with the pseudonym in its database,

encrypts the payload, attaches it to the reply header, and sends the

reply onion [12].

We observe that this nymserver construction is insecure in the

presence of an attacker that can tag or drop onions and controls the

nymserver or observes its traffic: A sender that wants to send a repli-

able onion actually sends two onions, one going to the nymserver.

The attacker tags (or drops) one of these onions, hoping that it

picked the nymserver onion. If it is successful, the reply header

is not stored in the nymserver. When the exit relay (on behalf of

the receiver, which is trivally linkable to the exit relay) sends the

message and pseudonym to the nymserver, the attacker can observe

that no onion is produced by the nymserver,
11

thus learning the

connection between the sender and the receiver.

10
Note that using a PRP here means that every added layer of encryption is indistin-

guishable from a random permutation to an attacker. In particular, tagging one of the

layers will completely destroy the payload after decryption.

11
If the attacker controls the nymserver itself, it can simply see that the requested

pseudonym does not exist.

To fix this problem and create a version of Sphinx that can be

proven secure, we adapt Sphinx to include the reply header and pay-

load symmetric key in the forward onion payload directly.
12

In the

original definition of Sphinx, a forward payload has the contents

0𝜅 ∥𝑅∥𝑚 and a reply payload has the contents 0𝜅 ∥𝑚← [12].
13
In

our adaptation, a forward payload is now formed as 0𝜅 ∥𝑅∥𝜂0∥ ˜𝑘 ∥𝑚
with 𝑅 as the receiver address, 𝜂0 as the reply header, and

˜𝑘 as

the symmetric key. Non-repliable forward payloads and reply pay-

loads contain zero paddings pad
→
𝜅,𝑁

and pad
←
𝜅,𝑁

of the appropriate

lengths instead of 𝜂0∥ ˜𝑘 and 𝑅∥𝜂0∥ ˜𝑘 respectively. This means a

non-repliable forward payload contains 0𝜅 ∥𝑅∥pad→𝜅,𝑁 ∥𝑚 and a re-

ply payload contains 0𝜅 ∥pad←𝜅,𝑁 ∥𝑚
←
. This change fixes the issue

while removing a third party from the protocol and simplifying

Sphinx. With this change, the exit relay is now responsible for tak-

ing the reply message from the receiver, embedding it in the reply

payload, and sending the completed reply onion.

Efficiency. Including the reply header in the Sphinx payload leads
to an increase in the overhead of a Sphinx packet. The size of

a Sphinx header in bytes is given by Danezis and Goldberg as

𝑝 + (2𝑁 + 1)𝑠 , where 𝑝 is the size of a group element, 𝑁 is the

fixed maximum hop count, and 𝑠 is the security parameter in bytes.

The total overhead of an original Sphinx packet thus comes out to

𝑝 + (2𝑁 +2)𝑠 bytes when accounting for the additional zero padding

in the payload [12]. Our modification adds another header and one

key to the payload, exactly doubling the overhead: 2𝑝 + (4𝑁 + 4)𝑠
bytes of overhead go into a nymserverless Sphinx packet. Using

Danezis and Goldberg’s calculations for a Sphinx instantiation on

an EC group with 𝑝 = 32, 𝑠 = 16, and 𝑁 = 5, the total overhead is

now 448 bytes. This is less overhead than incurred by Mixminion,

which needs 848 bytes [11]. Möller’s scheme has less overhead than

our modified Sphinx at only 400 bytes using the same parameters,

but at the cost of not supporting replies [23].

In addition, our modified Sphinx does not send a packet to the

nymserver, which would otherwise incur its own overhead of 𝑝 +
(2𝑁 + 2)𝑠 bytes in addition to the reply header and symmetric key

in the payload. Accounting for this, the total traffic caused by a

single repliable Sphinx packet is reduced by our modification. If

the reduction in the number of packets is a concern for practical

instantiations, cover traffic can be added to replace the packets to

the nymserver.

4.3 Sphinx Key Encapsulation Mechanism
(KEM)

Before we move on to the RSOR properties, we discuss the security

of Sphinx’s random oracle (RO-)KEM, which is used to form the 𝛼

in each header. To simplify its analysis in isolation, we define the

KEM separately from the rest of the packet format and prove that

it satisfies a modified version of the IND-CCA property for KEMs

(KEM-IND-CCA) as defined by Cramer and Shoup [10]
14

where

12
Note that there are other feasible mitigations for this attack, e.g., sending multiple

reply headers ahead of time to make linking the missing reply header to the original

sender more difficult for an attacker. However, our adaptation both completely prevents

the attack and simplifies the Sphinx protocol while being very simple itself. We thus

consider it the most appropriate fix for the problem.

13
Messages are always padded to the full length of the PRP’s message space.

14
The property we use here is defined in Section 7.1.2.

764

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

the challenger outputs additional information that we require in

our later onion property proofs. In those proofs, we will make

use of our Sphinx-KEM-IND-CCA property in order to randomize

the blinding factors and symmetric keys used in the challenge

onion. In this section, we abbreviate the concatenation of the three

random oracles ℎ𝜌 , ℎ𝜇 , and ℎ𝜋 as ℎ∗ for legibility since they operate
identically with regards to the KEM.

Definition 5 (Sphinx RO-KEM)

The Sphinx RO-KEM is a tuple of polynomial-time algorithms

(KeyGen, Encap, Decap) with:

• Key generation:

KeyGen(1𝜅) := (𝑃𝐾 = 𝑔𝑥 , 𝑆𝐾 = 𝑥)
with 𝑥 ←𝑅 Z∗𝑞 and 𝑔 as the public generator of the group G.
• Encapsulation:

Encap(1𝜅 , 𝑃𝐾 = 𝑔𝑥) := ((ℎ∗ (𝑃𝐾𝑥
′
), ℎ𝑏 (𝑔𝑥

′
, 𝑃𝐾𝑥

′
)), 𝑔𝑥

′
)

for a random 𝑥 ′ ∈ Z∗𝑞 , with ℎ∗ and ℎ𝑏 being the random

oracles used to key the components of the Sphinx header.

• Decapsulation:

Decap(1𝜅 , 𝑆𝐾 = 𝑥, 𝛼 = 𝑔𝑥
′
) := (ℎ∗ (𝛼𝑆𝐾), ℎ𝑏 (𝛼, 𝛼𝑆𝐾)),

where 𝛼 is an encapsulation produced by Encap [12].

4.3.1 Sphinx-KEM-IND-CCA. The basic KEM-IND-CCA game as

defined by Cramer and Shoup [10] is unfortunately insufficient for

our later proofs, where we require information on the RO outputs

used in other (non-challenge) layers. We thus define a modified

Sphinx-KEM-IND-CCA that outputs all of the information required

to build a Sphinx packet while embedding the KEM challenge at an

adversary-chosen index.

Definition 6 (Sphinx-KEM-IND-CCA)

(1) The challenger chooses (𝑃𝐾, 𝑆𝐾) ← KeyGen(1𝜅) and sends
𝑃𝐾 to the adversary.

(2) Oracle access: The adversary can submit requests to the

decapsulation oracle O and the random oracles ℎ∗ and ℎ𝑏 .
(3) The adversary submits

• 𝑛 − 1 public keys 𝑦0, . . . , 𝑦 𝑗−1, 𝑦 𝑗+1, . . . , 𝑦𝑛−1 with 𝑛 < 𝑁 .

These are the public keys for the non-honest relays on the

“KEM’s path”,

• and a position 𝑗 with 0 ≤ 𝑗 < 𝑛.
(4) The challenger checks that the 𝑦𝑖 are all distinct and valid

public keys.

(5) The challenger creates the KEM challenge for the adversary

by choosing a random 𝑥 ′ ∈ Z∗𝑞 and generating the first

𝑗 encapsulations 𝛼0 through 𝛼 𝑗−1 and secrets 𝑠𝑖 like for a

Sphinx header: 𝛼𝑖 ← 𝑔𝑥
′𝑏0 · · ·𝑏𝑖−1

, 𝑠𝑖 ← 𝑦
𝑥 ′𝑏0 · · ·𝑏𝑖−1

𝑖
, 𝑏𝑖 ←

ℎ𝑏 (𝛼𝑖 , 𝑠𝑖).
(6) The challenger sends the adversary its “auxiliary informa-

tion”:
15

• The first encapulation 𝛼0,

• the ℎ∗ outputs ℎ∗ (𝑠0), . . . , ℎ∗ (𝑠 𝑗−1),
• and the blinding factors 𝑏0, . . . , 𝑏 𝑗−1.

(7) The challenger provides the adversary with the KEM chal-

lenge: It picks 𝑏 ∈ {0, 1} at random. If 𝑏 = 0, the challenger

lets 𝑏 𝑗 = ℎ𝑏 (𝛼 𝑗 , 𝑠 𝑗) and gives the adversary (𝛼 𝑗 , ℎ∗ (𝑠 𝑗), 𝑏 𝑗).

15
Note that this is all of the information required to build any layer of the Sphinx

packet preceding the challenge layer 𝑗 .

Otherwise, the adversary gets (𝛼 𝑗 , 𝑟1, 𝑏 𝑗) for 𝑟1 ←𝑅 {0, 1}3𝜅
and 𝑏 𝑗 ←𝑅 Z∗𝑞 . Finally, the challenger generates the rest of
the KEM layers 𝛼 𝑗+1, . . . , 𝛼𝑛 with 𝑠 𝑗+1, . . . , 𝑠𝑛 and 𝑏 𝑗+1, . . . , 𝑏𝑛
the same way as the previous layers (using the correspond-

ing 𝑏 𝑗) and gives the adversary ℎ∗ (𝑠 𝑗+1), . . . , ℎ∗ (𝑠𝑛) and 𝑏 𝑗+1,
. . . , 𝑏𝑛 .

(8) Oracle access: The adversary gets access to the same O, ℎ∗,
and ℎ𝑏 oracles.

(9) The adversary submits its guess 𝑏 ′ to the challenger.

Sphinx-KEM-IND-CCA is achieved if any PPT adversary A can-

not guess 𝑏 ′ = 𝑏 with a probability non-negligibly better than

1

2
.

4.3.2 Security. In order to show that the Sphinx RO-KEM satis-

fies our security property, we can perform a reduction proof to

a Diffie-Hellman assumption. The original Sphinx definition uses

the Decisional Diffie-Hellman (DDH) assumption for the Sphinx

RO-KEM in order to show that the blinding factors and symmetric

keys are indistinguishable from randomness for the adversary [12].

However, a more detailed analysis reveals that the DDH assumption

is insufficient to prove the Sphinx RO-KEM secure: In a reduction

from Sphinx-KEM-IND-CCA to the DDH assumption, the DDH

attacker must simulate both the decapsulation oracle O as well as

the random oracles ℎ∗ and ℎ𝑏 consistently for the Sphinx-KEM-

IND-CCA attacker. Doing so correctly for adversary-chosen inputs

involves identifying which encapsulations 𝛼 and secrets 𝑠 belong

together. Since being able to do so efficiently would already break

DDH, the reduction is not possible in this form. We use the Gap
Diffie-Hellman assumption instead. It states that the CDH problem

is hard even given an oracle that solves the DDH problem. It is

generally assumed that the GDH assumption holds in the standard

elliptic curve groups, which Sphinx already uses [24]. For our re-

duction, this means that we are reducing Sphinx-KEM-IND-CCA

to the CDH problem, but our CDH attacker additionally receives a

DDH oracle O𝐺 . Using O𝐺 , the CDH attacker can correctly identify

matching secrets and encapsulations. It follows that:

Theorem 2. The Sphinx RO-KEM satisfies Sphinx-KEM-IND-CCA
under the GDH assumption.

Proof Sketch. We use a Sphinx-KEM-IND-CCA attackerA on

the Sphinx RO-KEM to construct a GDH attacker BO𝐺 with the

DDH oracle O𝐺 . B uses its CDH challenge (𝑔,𝑔𝑥1 , 𝑔𝑥2) as a public
key 𝑃𝐾 = 𝑔𝑥1

and a challenge 𝛼 = 𝑔𝑥2
. After getting the challenge

index 𝑗 and the other public keys from A , B sets 𝛼 𝑗 = 𝛼 and

constructs the rest of the KEM’s path by choosing random blinding

factors 𝑏𝑖 and ℎ∗ outputs for every layer, programming its choices

into the ROs. B also randomly chooses a bit 𝑏 ∈ {0, 1} to determine

which scenario it simulates. The only difference between the two

is whether the random oracle outputs on layer 𝑗 are programmed

into the ROs. B then simulates the oracles, keeping the outputs

consistent using its DDH oracle O𝐺 . In order for A to tell the

scenarios apart, it must request ℎ∗ or ℎ𝑏 with 𝑔𝑥1𝑥2
, allowing B to

win the GDH game. For the full proof see Appendix F.

4.4 Sphinx Security Analysis
In order to prove that Sphinx securely realizes FRSOR, we show

that it satisfies our new properties. For the sake of brevity, we only

765

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

sketch the proof for TLU→ here along with short proof outlines

for SLU← and STI↔. The full proofs for all three properties can be

found in Appendix G.1, Appendix G.2 and Appendix G.3. RSOR-

Correctness follows from inspection of the Sphinx scheme.

Theorem 3. Sphinx satisfies TLU→ under the GDH assumption.

Proof Sketch. To show that Sphinx satisfies TLU→, we prove

that an adversary cannot distinguish the 𝑏 = 0 scenario of the

TLU→ game from the 𝑏 = 1 scenario through a hybrid argument

starting at 𝑏 = 0 and ending at 𝑏 = 1. We gradually move from the

𝑏 = 0 scenario to the𝑏 = 1 scenario by constructing one hybrid after

another. The first hybrid game is simply the 𝑏 = 0 scenario. Each

hybrid changes the challenge onion or the challenger’s behavior

in an indistinguishable way until the final hybrid is identical to

the 𝑏 = 1 scenario. We summarize the hybrids’ construction here,

see Appendix G.1 for details. For clarity, we also separate the proof

into two cases: One where 𝑗 = 𝑛 and the other where 𝑗 < 𝑛. In

the TLU→ game, 𝑗 determines the index of the honest relay on the

challenge onion’s path.

Case 1 (𝑗 = 𝑛): In this case, the honest relay on the forward path

is also the exit relay of the onion and thus also the sender of the

reply onion. This case demands that the entire forward onion is

replaced with an onion using the same forward path, but containing

a random message and receiver as well as having an empty reply

path.

To perform this replacement, we take advantage of the inner-

most layer of the PRP protecting the payload’s contents: Since the

adversary cannot tell what the contents of the payload are, we

can replace the message, receiver, and reply header with a random

message, a random receiver, and padding (i.e., an empty reply path)

respectively.

The original reply header is still used to form the actual reply

onion at the honest exit relay. We use the PRP’s security and the im-

plicit integrity check in the forward payload (via the zero padding)

to show that the adversary does not notice this change and cannot

manipulate the payload in order to to affect the reply header. With

this, the forward onion given to the adversary is completely inde-

pendent of the challenge onion and contains a random message, a

random receiver, and an empty reply path. The reply header of the

challenge onion is still used on the reply path. This is identical to

the 𝑏 = 1 scenario.

Case 2 (𝑗 < 𝑛): Now, we consider the case where the honest relay
on the forward path is not the exit relay. This case is more complex

since the forward path of our replacement onion is not the same as

the forward path of the challenge onion. Our hybrids thus need to

truncate the forward path of the challenge onion at the honest relay

in order to move to the 𝑏 = 1 scenario. In addition, our hybrids must

also handle a potential tagging attack by the adversary correctly.

Proceed as follows:

(1) First, we need to handle tagging attacks. If the adversary

tags the challenge onion in the 𝑏 = 0 scenario, the payload

will be mangled by the PRP decryption step in the honest

relay’s processing. The key aspect of this mangling is that

the PRP’s output in that case is indistinguishable from a

random bitstring of the same length. We take advantage

of this fact in the first hybrids: Instead of processing the

challenge payload normally at the honest relay, the hybrid

checks whether the payload has been modified. If not, the

next layer of the challenge onion with the correct next pay-

load layer is output. If the payload has been modified (i.e.,

tagged), then the payload output is replaced with a random

bitstring. This change reduces to the PRP’s security at the

honest relay and the reply receiver.

With the new payload handling, we have effectively decou-

pled the onion layers before and after the honest relay: Any

adversary modification to the layers before the honest relay

either results in a failure in processing (due to the MAC if

the header is modified) or in the payload being replaced with

randomness (if the payload is modified). We can thus change

the contents of both the header and payload layers before

the honest relay and replace the changed onion with the

original challenge onion at the honest relay oracle without

the adversary being able to “sneak” information through the

honest relay. The contents of the payload layers before the

honest relay are replaced with a random message, a random

receiver, and an empty reply path like in the 𝑗 = 𝑛 case.

(2) Next, we “detach” the layers of the challenge onion’s header

before the honest relay (which we will refer to as 𝐴) from

the layers after it (referred to as 𝐵).

As a first step, the final layer of𝐴 is no longer processed at the

honest relay. The first layer of 𝐵 is always output as the next

layer’s header instead. We detach𝐴 from 𝐵 in multiple steps:

First, replace the innermost contents of 𝐴’s header layers

with the contents of a final Sphinx header layer such that the

𝐴 layers are now formed as if the onion’s path ended at the

honest relay.We can do so since the PRG protects that header

information until the honest relay. Second, the KEM keys

used to build 𝐵 are replaced with a new instance of the KEM

that starts at the honest relay. We use the randomness of the

blinding factor multiplied onto the exponent at the honest

relay to secure this step. Finally, the padding in 𝐵, which still

contains 𝐴’s padding, is changed: The bits corresponding

to 𝐴’s padding are replaced with random bits in the last

header layer of 𝐵. This is possible due to Sphinx’s padding

construction and the PRG’s security. After these steps, the 𝐴

header layers are completely independent of the 𝐵 header

layers.

(3) In a last step, we adjust 𝐵’s padding and KEM construction so

that the 𝐵 layers are built like part of the complete challenge

onion again. Now,𝐴 is an independent forward onion with a

truncated path, an empty reply path, and a random message

and receiver, while 𝐵 is built like the original challenge onion.

This corresponds to the 𝑏 = 1 scenario of TLU→.

SLU←: The SLU← proof works similarly to the TLU→ proof. First,

the part of the challenge reply onion after the honest relay is “de-

tached” from the first part. Then, the second part’s header and

payload contents are adapted into those of a forward onion.

STI↔: For the STI↔ proof, we have to truncate the forward and

reply paths of the challenge onion to move from one scenario to

the other. Truncating the forward path is like performing hybrid

766

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

H9 from the TLU→ proof and adjusting the padding accordingly.

Truncating the reply path is analogous to hybridH7.

Given that Sphinx satisfies each of the RSOR properties, it follows

that

Theorem 4. Nymserverless Sphinx securely realizes FRSOR under
the GDH assumption.

5 DISCUSSION
In this section, we argue that the relaxation used in our ideal func-

tionality is acceptable in practice under certain specific conditions.

5.1 Relaxed Security Requirements of FRSOR
We stress that FRSOR still prevents all tagging attacks except for the

malleability attack on the payload. Thus, if an adversary is able to

link layers of an honest sender’s onion that do not involve the exit

relay, both FRSOR and our properties are not achieved.

However, we also emphasize that the reduction in security due to

allowing the malleability attack can be critical and RSOR protocols

should only be used under two conditions:

(1) On the forward path, the link between a sender and its cho-

sen exit relay must not leak any critical information about

the sender’s communication. Since the tagging attack lets

the adversary learn sender-exit relay links, these must not

contain information that would help the adversary break the

protocol’s privacy goals.

For example, the sender’s choice of exit relay cannot depend

on the receiver
16

or the message of the onion. Instead, (as in

many protocols) the exit relays must be chosen uniformly

at random or randomly according to their capacities. In par-

ticular, this means an RSOR protocol cannot be used in the

integrated-system model, where the exit relay is identical to

the receiver.

As another example, RSOR protocols also cannot use sessions

visible to the exit relay. If they did, the adversary could tag

one of the onions in the session to learn the sender-exit relay

link and observe another onion from the same session at the

exit relay to discover the receiver and message.

Several existing instantiations of Sphinx violate this con-

dition. These include HORNET [8] and TARANET [9], as

discovered by Kuhn et al. [21], but also Loopix [26], where

the exit relays are long-term service providers chosen by

receivers. Since Pudding [19] is built upon Loopix, it suffers

from the same issue. PolySphinx [27], on the other hand,

modifies Loopix to use random exit relays instead of fixed

service providers, mitigating the vulnerability.

(2) Similarly, on the reply path, tagging a reply payload must

not leak any information about the sender of the forward

message (who is the reply receiver). Note that a tagging

attack on the reply path will only be discovered by the honest

reply receiver. Hence, it is crucial that whether the reply

receiver received a tagged reply payload or a well-formed

payload must not be visible to the adversary. If it was visible,

a corrupted exit relay could tag the reply payload to link the

16
This might be considered in order to have an exit relay that is topologically close to

the receiver.

sender and the receiver (which is known to the exit relay).

As an example, if an RSOR packet format is used as part of a

larger protocol, an honest sender receiving a reply message

must not trigger any output to the adversary.

The examples listed for each condition are intended to provide an

intuition for the aspects of OR protocol design that must be carefully

considered when using FRSOR. We stress that these examples are

by no means exhaustive. An in-depth analysis of when protocols

satisfy our two generic conditions is interesting future work.

5.2 Using Sphinx in a Network
We want to give practical advice on the cases in which we consider

the usage of Sphinx in its intended RSOR model a secure choice.

First of all, Sphinx should only be used with the changes we apply

in this paper. Precisely, one must include the fix for path padding

(random bits instead of zero bits) as described in Section 2.4.2 and

the Sphinx reply header has to be included in the forward payload

to avoid attacks based on the nymserver (see Section 4.2). Finally,

it is important to ensure that all of the conditions mentioned for

security in Section 5.1 are met.

6 CONCLUSION
The widely-used Sphinx packet format has thus far lacked a suitable

analytical framework as well as a security proof.With this paper, we

aim to rectify this. We provide the privacy formalization for repli-

able service-model OR protocols with our ideal functionality FRSOR
and the four new onion properties RSOR-Correctness, Tagging-

Forward Layer Unlinkability, RSOR-Backwards Layer Unlinkability,

and RSOR-Tail Indistinguishability, which we prove imply FRSOR.
Our formalization pays close attention to consider all the new edge

cases of the service model and to relax the security in an acceptable

way to allow for payload malleability.

To prove Sphinx’s security, we change the cryptographic group

assumption for the Sphinx scheme from DDH to GDH. Additionally,

we realize that a security proof is not possible in the presence of the

nymserver. We propose to include the reply header in the forward

payload instead. With our formal groundwork, we are then able

to prove this adapted version of Sphinx secure according to FRSOR.
To our knowledge, we are the first to provide a security proof for

Sphinx at our level of detail. We thereby ensure that the OR and

mix networks that base their protocols on the Sphinx packet format

can rely on a thoroughly-analyzed foundation again. Considering

that Sphinx is currently actively used in real-world mix networks

like Nym, this is a very important step.

Of course, there is still progress in OR, mix networks, and packet

formats to be expected in future works. Authors of new OR and

mix network protocols benefit from our investigation of the criteria

for using Sphinx in a secure way to decide whether or not to base

their protocols on Sphinx. In addition, future works on OR and mix

network packet formats profit from our formalization in the service

model, especially by using our new onion properties to build their

algorithms and prove their privacy.

767

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

ACKNOWLEDGMENTS
We thank Dennis Hofheinz for pointing us towards the GDH as-

sumption. This work has been funded by the Helmholtz Association

through the KASTEL Security Research Labs (HGF Topic 46.23), and

by funding of the German Research Foundation (DFG, Deutsche

Forschungsgemeinschaft) as part of Germany’s Excellence Strat-

egy — EXC 2050/1 — Project ID 390696704 — Cluster of Excellence

“Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of

Technische Universität Dresden.

REFERENCES
[1] 2024. Lightning Network Specifications BOLT #4. Git version control. 04-onion-

routing.md in the Lightning Bolts repository - available at https://github.com/

lightning/bolts/blob/master/04-onion-routing.md.

[2] Megumi Ando and Anna Lysyanskaya. 2021. Cryptographic Shallots: A Formal

Treatment of Repliable Onion Encryption. In Theory of Cryptography, Kobbi Nis-
sim and Brent Waters (Eds.). Springer International Publishing, Cham, 188–221.

[3] Filipe Beato, Kimmo Halunen, and Bart Mennink. 2016. Improving the Sphinx

Mix Network. In Cryptology and Network Security, Sara Foresti and Giuseppe

Persiano (Eds.). Springer International Publishing, Cham, 681–691.

[4] Mihir Bellare and Phillip Rogaway. 2005. The Birthday Problem. In Introduction
to Modern Cryptography. 273–274. https://web.cs.ucdavis.edu/~rogaway/classes/

227/spring05/book/main.pdf

[5] Jan Camenisch and Anna Lysyanskaya. 2005. A Formal Treatment of Onion

Routing. In Advances in Cryptology – CRYPTO 2005, Victor Shoup (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 169–187.

[6] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, Newport Beach, CA, USA, 136–145.

https://doi.org/10.1109/SFCS.2001.959888

[7] David L Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[8] Chen Chen, Daniele E. Asoni, David Barrera, George Danezis, and Adrain Perrig.

2015. HORNET: High-Speed Onion Routing at the Network Layer. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Denver, Colorado, USA) (CCS ’15). Association for Computing Machinery, New

York, NY, USA, 1441–1454. https://doi.org/10.1145/2810103.2813628

[9] Chen Chen, Daniele E. Asoni, Adrian Perrig, David Barrera, George Danezis, and

Carmela Troncoso. 2018. TARANET: Traffic-Analysis Resistant Anonymity at

the Network Layer. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE Computer Society, Newport Beach, CA, USA, 137–152. https:

//doi.org/10.1109/EuroSP.2018.00018

[10] Ronald Cramer and Victor Shoup. 2004. Design and Analysis of Practical

Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext

Attack. SIAM J. Comput. 33, 1 (Jan 2004), 167–226. https://doi.org/10.1137/

S0097539702403773

[11] George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion:

Design of a Type III Anonymous Remailer Protocol. In 2003 Symposium on Security
and Privacy, 2003. IEEE Computer Society, Newport Beach, CA, USA, 2–15. https:

//doi.org/10.1109/SECPRI.2003.1199323

[12] George Danezis and Ian Goldberg. 2009. Sphinx: A Compact and Provably Secure

Mix Format. In 2009 30th IEEE Symposium on Security and Privacy. IEEE Computer

Society, Newport Beach, CA, USA, 269–282. https://doi.org/10.1109/SP.2009.15

[13] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Network.

(2021). https://nymtech.net/nym-whitepaper.pdf

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

Generation Onion Router. In 13th USENIX Security Symposium (USENIX Security
04). USENIX Association, San Diego, CA. https://www.usenix.org/conference/

13th-usenix-security-symposium/tor-second-generation-onion-router

[15] Ian Goldberg. 2016. SphinxClient.py - Padding Fix. Git version con-

trol system. Python source file SphinxClient.py in the UCL-InfoSec

Sphinx repository - available at https://github.com/UCL-InfoSec/sphinx/blob/

c05b7034eaffd8f98454e0619b0b1548a9fa0f42/SphinxClient.py#L67.

[16] David Goldschlag, Michael Reed, and Paul Syverson. 1996. Hiding Routing

Information. In Proceedings of the First International Workshop on Information
Hiding. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-

540-61996-8_37

[17] Daniel Hugenroth and Alastair R. Beresford. 2023. Powering Privacy: On the

Energy Demand and Feasibility of Anonymity Networks on Smartphones. In

32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,

Anaheim, CA, 5431–5448. https://www.usenix.org/conference/usenixsecurity23/

presentation/hugenroth

[18] Daniel Hugenroth, Martin Kleppmann, and Alastair R. Beresford. 2021. Roller-

coaster: An Efficient Group-Multicast Scheme for Mix Networks. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, San Diego, CA,

3433–3450. https://www.usenix.org/conference/usenixsecurity21/presentation/

hugenroth

[19] Ceren Kocaoğullar, Daniel Hugenroth, Martin Kleppmann, and Alastair R. Beres-

ford. 2023. Pudding: Private User Discovery in Anonymity Networks. (2023).

arXiv:2311.10825 [cs.CR]

[20] Chelsea H Komlo, Nick Mathewson, and Ian Goldberg. 2020. Walking Onions:

Scaling Anonymity Networks while Protecting Users. In Proceedings of the 29th
USENIX Conference on Security Symposium. USENIX Association, San Diego, CA,

USA, 1003–1020.

[21] Christiane Kuhn, Martin Beck, and Thorsten Strufe. 2020. Breaking and (Partially)

Fixing Provably Secure Onion Routing. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Newport Beach, CA, USA, 168–185.

https://doi.org/10.1109/SP40000.2020.00039

[22] Christiane Kuhn, Dennis Hofheinz, Andy Rupp, and Thorsten Strufe. 2021. Onion

Routing with Replies. In Advances in Cryptology – ASIACRYPT 2021, Mehdi

Tibouchi and Huaxiong Wang (Eds.). Springer International Publishing, Cham,

573–604.

[23] Bodo Möller. 2003. Provably Secure Public-Key Encryption for Length-Preserving

ChaumianMixes. In Topics in Cryptology — CT-RSA 2003, Marc Joye (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 244–262.

[24] Tatsuaki Okamoto and David Pointcheval. 2001. The Gap-Problems: A New

Class of Problems for the Security of Cryptographic Schemes. In Public Key
Cryptography, Kwangjo Kim (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

104–118.

[25] Lennart Oldenburg, Marc Juarez, Enrique Argones Rúa, and Claudia Diaz. 2024.

MixMatch: Flow Matching for Mixnet Traffic. Proceedings on Privacy Enhancing
Technologies 2024, 2 (2024). https://lirias.kuleuven.be/4133083

[26] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. 2017. The Loopix Anonymity System. In 26th USENIX Security Sympo-
sium (USENIX Security 17). USENIX Association, San Diego, CA, 1199–1216.

[27] Daniel Schadt, Christoph Coijanovic, Christiane Weis, and Thorsten Strufe. 2024.

PolySphinx: Extending the Sphinx Mix Format With Better Multicast Support. In

2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los

Alamitos, CA, USA. https://doi.org/10.1109/SP54263.2024.00044

768

https://github.com/lightning/bolts/blob/master/04-onion-routing.md
https://github.com/lightning/bolts/blob/master/04-onion-routing.md
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2810103.2813628
https://doi.org/10.1109/EuroSP.2018.00018
https://doi.org/10.1109/EuroSP.2018.00018
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1109/SP.2009.15
https://nymtech.net/nym-whitepaper.pdf
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://github.com/UCL-InfoSec/sphinx/blob/c05b7034eaffd8f98454e0619b0b1548a9fa0f42/SphinxClient.py#L67
https://github.com/UCL-InfoSec/sphinx/blob/c05b7034eaffd8f98454e0619b0b1548a9fa0f42/SphinxClient.py#L67
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/3-540-61996-8_37
https://www.usenix.org/conference/usenixsecurity23/presentation/hugenroth
https://www.usenix.org/conference/usenixsecurity23/presentation/hugenroth
https://www.usenix.org/conference/usenixsecurity21/presentation/hugenroth
https://www.usenix.org/conference/usenixsecurity21/presentation/hugenroth
https://arxiv.org/abs/2311.10825
https://doi.org/10.1109/SP40000.2020.00039
https://lirias.kuleuven.be/4133083
https://doi.org/10.1109/SP54263.2024.00044

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

A IDEAL FUNCTIONALITY
Modifications to Kuhn et al.’s F𝑅 are highlighted in this style in the

pseudocode.

Algorithm 1 Ideal Functionality FRSOR (1)

⊲ Data structures:
Bad: Set of corrupted relays and receivers

𝐿𝑜 : List of onions processed by adversarial relays

𝐵𝑖 : List of onions held by relay 𝑃𝑖
𝐵𝑟
𝑖
: List of receiver replies held by relay 𝑃𝑖

𝐿𝑡𝑎𝑔 : List of messages tagged by the adversary

𝐵𝑎𝑐𝑘 : Map from 𝑡𝑖𝑑s to reply paths and forward IDs

𝐼𝐷𝑓 𝑤𝑑 : Map from a reply onion ID to a forward onion ID

𝑅𝑒𝑝𝑖 : Map of reply identifiers to 𝑡𝑖𝑑s at exit relay 𝑃𝑖

On message ProcessNewOnion(𝑅,𝑚, P, P←) from Z or S via 𝑃𝑠
if |P | > 𝑁 or |P← | > 𝑁 then reject
else

𝑠𝑖𝑑 ←𝑅
session ID

𝑂 ← (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅,𝑚, P, 0, 𝑓)
Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑅,𝑚, P, P←, start, 𝑓)
Proc.NextStep(𝑂)

procedure ProcessNewReply(𝑚, 𝑡𝑖𝑑)

if (𝑡𝑖𝑑, . . .) ∉ 𝐵𝑎𝑐𝑘 then reject
else
(𝑡𝑖𝑑, 𝑃𝑠 , P, P←, 𝑠𝑖𝑑′, _) ← 𝐵𝑎𝑐𝑘

𝑠𝑖𝑑 ←𝑅
session ID

Store (𝑠𝑖𝑑, 𝑠𝑖𝑑′) in 𝐼𝐷𝑓 𝑤𝑑

𝑂 ← (𝑠𝑖𝑑, 𝑃𝑖 , 𝑃𝑠 ,𝑚, P←, (), 0, 𝑏)
Out.Cor.Sender(𝑃𝑖 , 𝑠𝑖𝑑, 𝑃𝑠 ,𝑚, P, P←, start, 𝑏)
Proc.NextStep(𝑂)

On message DeliverOnion(𝑡𝑖𝑑) from S
if (𝑡𝑖𝑑, _, _) ∈ 𝐿𝑜 then
(𝑡𝑖𝑑,𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅/𝑃𝑟 ,𝑚, P, P←, 𝑖, 𝑑), 𝑗) ← 𝐿𝑜
𝑂 ← (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅/𝑃𝑟 ,𝑚, P, P←, 𝑗, 𝑑)
if 𝑑 = 𝑏 and 𝑗 = |P | then

if𝑚 ≠ ⊥ and𝑂 ∉ 𝐿𝑡𝑎𝑔 then
Send(𝑃𝑟 , “Message𝑚 received as reply”)

⊲ Not forwarded to Z
else

𝑡𝑖𝑑′ ←𝑅
temporary ID

Send(𝑃𝑜𝑗 , “𝑡𝑖𝑑
′
received”)

Store (𝑡𝑖𝑑′,𝑂) in 𝐵𝑜𝑗

On message ForwardOnion(𝑡𝑖𝑑′) from Z or S via 𝑃𝑖
if (𝑡𝑖𝑑′, _) ∈ 𝐵𝑖 then

Pop (𝑡𝑖𝑑′,𝑂) from 𝐵𝑖
Proc.NextStep(𝑂)

else if (𝑡𝑖𝑑′, _) ∈ 𝐵𝑟
𝑖
then

Pop (𝑡𝑖𝑑′,𝑚, 𝑡𝑖𝑑) from 𝐵𝑟
𝑖

ProcessNewReply(𝑚, 𝑡𝑖𝑑)

On message Tag(𝑡𝑖𝑑) from S
if (𝑡𝑖𝑑, _, _) ∈ 𝐿𝑜 then

Retrieve (𝑡𝑖𝑑,𝑂, _) from 𝐿𝑜
Store𝑂 in 𝐿𝑡𝑎𝑔

procedure Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑅/𝑃𝑟 ,𝑚, P, P←, 𝑡𝑖𝑑,𝑑)
if 𝑑 = 𝑓 and 𝑃𝑠 ∈ Bad then

Send(S, “𝑡𝑖𝑑 is from 𝑃𝑠 with 𝑠𝑖𝑑 , 𝑅,𝑚, P, P← , 𝑑”)

else if 𝑑 = 𝑏 and 𝑃𝑟 ∈ Bad then
Send(S, “𝑡𝑖𝑑 is reply from 𝑃𝑠 with 𝑠𝑖𝑑 , 𝑃𝑟 ,𝑚, P, P←,

𝑑 , replying to onion from 𝑃𝑟 with 𝐼𝐷𝑓 𝑤𝑑 (𝑠𝑖𝑑)”)

Algorithm 2 Ideal Functionality FRSOR (2)

procedure Proc.ToRelay(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅/𝑃𝑟 ,𝑚, P, P←, 𝑖, 𝑑))
𝑃𝑜𝑗 ← 𝑃𝑜𝑘 with smallest 𝑘 > 𝑖 such that 𝑃𝑜𝑘 ∉ Bad

𝑡𝑖𝑑 ←𝑅
temporary ID

Send(S, “𝑃𝑜𝑖 sends 𝑡𝑖𝑑 to 𝑃𝑜𝑗 via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑗−1
)”)

Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)
Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑅,𝑚,𝑛, P, 𝑡𝑖𝑑,𝑑)
if 𝑑 = 𝑏 and 𝑖 = 0 then

Send(S, “𝑡𝑖𝑑 belongs to 𝑠𝑖𝑑”)

Add (𝑡𝑖𝑑,𝑂, 𝑗) to 𝐿𝑜
procedure SetupReply(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅,𝑚, P, P←, 𝑖, 𝑑), 𝑟𝑖𝑑)

𝑡𝑖𝑑 ←𝑅
temporary ID

Store (𝑡𝑖𝑑, 𝑃𝑠 , P, P←, 𝑃𝑜𝑖 , 𝑠𝑖𝑑) in 𝐵𝑎𝑐𝑘
if 𝑖 = |P | then

Store (𝑟𝑖𝑑, 𝑡𝑖𝑑) in 𝑅𝑒𝑝𝑜𝑖
Send(S, “Reply with reply ID 𝑟𝑖𝑑”)

else
P←

1
← prefix of P←up to (including) the first honest relay

Send(S, “Reply with 𝑡𝑖𝑑 , reply path begins with P←
1
”)

procedure LeakMessage(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅,𝑚, P, P←, 𝑖, 𝑑))
if𝑚 = ⊥ then return
Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑅,𝑚, P, P←, end, 𝑑)
if P ≠ () then

𝑟𝑖𝑑 ←𝑅
temporary ID

SetupReply(𝑂, 𝑟𝑖𝑑)

if 𝑖 = |P | then Send(𝑃𝑜𝑖 , “Sent message to 𝑅”)

else Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)
Send(S, “𝑃𝑜𝑖 sends onion with message𝑚 to 𝑅

via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛)”)

On message DeliverMessage(𝑚,𝑟𝑖𝑑, 𝑅) from S
Send(𝑅, “Message𝑚 received”)

if 𝑟𝑖𝑑 ≠ ⊥ then
Send(𝑅, “Message is repliable with 𝑟𝑖𝑑”)

On message InitiateReply(𝑚,𝑟𝑖𝑑) from Z or S via 𝑅
Send(S, “𝑅 replies to 𝑟𝑖𝑑 with message𝑚”)

⊲ 𝑃𝑖 creates an onion from 𝑅’s reply request

On message DeliverReply(𝑃𝑖 ,𝑚, 𝑟𝑖𝑑) from S
Send(𝑃𝑖 , “Reply (𝑚,𝑟𝑖𝑑) received”)
if (𝑟𝑖𝑑, _) ∈ 𝑅𝑒𝑝𝑖 then
(𝑟𝑖𝑑, 𝑡𝑖𝑑) ← 𝑅𝑒𝑝𝑖
𝑡𝑖𝑑′ ←𝑅

temporary ID

Store (𝑡𝑖𝑑′,𝑚, 𝑡𝑖𝑑) in 𝐵𝑟
𝑖

Send(𝑃𝑖 , “Send reply onion with 𝑡𝑖𝑑′”)

⊲ S uses a 𝑡𝑖𝑑 ID to bypass replying via an exit relay

On message BypassReply(𝑚, 𝑡𝑖𝑑) from S via 𝑃𝑖
if (𝑡𝑖𝑑, . . .) ∈ 𝐵𝑎𝑐𝑘 then

ProcessNewReply(𝑚, 𝑡𝑖𝑑)

procedure LeakReply(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑃𝑟 ,𝑚, P, P←, 𝑖, 𝑑))
Send(S, “𝑃𝑜𝑖 sends reply 𝑡𝑖𝑑 with message𝑚 to 𝑃𝑟

via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛−1
)”)

Send(𝑃𝑜𝑖 , “Sent onion to 𝑃𝑜𝑖+1 ”)
Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑃𝑟 ,𝑚, P, P←, 𝑡𝑖𝑑,𝑏)

procedure Proc.NextStep(𝑂 = (𝑠𝑖𝑑, 𝑃𝑠 , 𝑅/𝑃𝑟 ,𝑚, P, P←, 𝑖, 𝑑))
if ∀𝑗 > 𝑖 : 𝑃𝑜𝑗 ∈ Bad or 𝑖 = |P | then

if 𝑂 ∈ 𝐿𝑡𝑎𝑔 then
Out.Cor.Sender(𝑃𝑠 , 𝑠𝑖𝑑, 𝑅/𝑃𝑟 ,𝑚, P, tagged, 𝑑)
if 𝑖 < 𝑛 then

Send(S, “𝑃𝑜𝑖 sends tagged via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛)”)
Send(Z, “𝑃𝑜𝑖 sends onion to 𝑃𝑜𝑖+1 ”)

else Send(Z, “Onion at 𝑃𝑜𝑖 fails integrity check”)

else
if 𝑑 = 𝑓 then LeakMessage(𝑂)

else LeakReply(𝑂)

else ProcessToRelay(𝑂)

769

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

B RSOR ONION PROPERTIES
The following definitions are copied from Kuhn et al. [22]. Our

modifications are given in this style. We also abbreviate Recog-

nizeOnion as ROnion for the sake of formatting.

B.1 RSOR-Correctness
RSOR-Correctness is defined as:

17

Let (𝐺 , FormOnion, ProcOnion, FormReply) be a RSOR scheme

with maximal path length N and polynomial |N| and |𝐷 |. Then for

all 𝑛, 𝑛← < 𝑁, 𝜆 ∈ N, all choices of the public parameter 𝑝 , all

choices of randomness R , all choices of receiver 𝑅, all choices of
the paths P = (𝑃1, . . . , 𝑃𝑛) and P← = (𝑃←

1
, . . . , 𝑃←𝑛), all keypairs

(𝑃𝐾 (←)
𝑖

, 𝑆𝐾
(←)
𝑖
) generated by𝐺 (1𝜆, 𝑝, 𝑃 (←)

𝑖
), all messages𝑚,𝑚←,

all possible choices of internal randomness used by ProcOnion

and FormReply, the following needs to hold:

Correctness of forward path.
𝑄𝑖 = 𝑃𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 and 𝑄1 := 𝑃1,

𝑂1 ← FormOnion(1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←),
(𝑂𝑖+1, 𝑄𝑖+1) ← ProcOnion(𝑆𝐾𝑖 ,𝑂𝑖 , 𝑄𝑖) .

Correctness of request reception.
(𝑚,𝑅) = ProcOnion(𝑆𝐾𝑛,𝑂𝑛, 𝑃𝑛).

Correctness of backward path.
𝑄←𝑖 = 𝑃←𝑖 for 1 ≤ 𝑖 ≤ 𝑛

and (𝑂←
1
, 𝑄←

1
) ← FormReply(𝑚←,𝑂𝑛, 𝑃𝑛, 𝑆𝐾𝑛),

(𝑂←𝑖+1, 𝑄
←
𝑖+1) ← ProcOnion(𝑆𝐾←𝑖 ,𝑂←𝑖 , 𝑄

←
𝑖) .

Correctness of reply reception.
(𝑚←,⊥) = ProcOnion(𝑆𝐾←𝑛← ,𝑂

←
𝑛← , 𝑃

←
𝑛←).

B.2 RSOR-Backw. Layer Unlinkability (SLU←)
RSOR-Backward Layer Unlinkability is defined as:

(1) The adversary receives the router names 𝑃𝐻 , 𝑃𝑠 and chal-

lenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , chosen by the challenger as

(𝑃𝐾𝐻 , 𝑆𝐾𝐻) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻) and (𝑃𝐾𝑆 , 𝑆𝐾𝑆) ← 𝐺 (1𝜆, 𝑝, 𝑃𝑠).
(2) Oracle access: The adversary may submit any number of

Proc and Reply requests for 𝑃𝐻 or 𝑃𝑠 to the challenger.

For any Proc(𝑃𝐻 ,𝑂), the challenger checks whether 𝜂 is

on the 𝜂𝐻 -list. If it is not on the list, it sends the output

of ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻), stores 𝜂 on the 𝜂𝐻 -list and 𝑂

on the 𝑂𝐻 -list. For any Reply(𝑃𝐻 ,𝑂,𝑚), the challenger

checks if 𝑂 is on the 𝑂𝐻 -list and if so, the challenger sends

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻) to the adversary. (Similar for re-

quests on 𝑃𝑠 with the 𝜂𝑆 -list).

(3) The adversary submits a message𝑚, a receiver 𝑅, a position

𝑗← with 0 ≤ 𝑗← ≤ 𝑛←, a path P = (𝑃1, . . . , 𝑃𝑛) where
𝑃𝑛 = 𝑃𝐻 if 𝑗← = 0, a path P← = (𝑃←

1
, . . . , 𝑃←

𝑗← , . . . , 𝑃
←
𝑛← =

𝑃𝑠) with the honest relay 𝑃𝐻 at backward position 𝑗← if

1 ≤ 𝑗← ≤ 𝑛←, and the second honest relay 𝑃𝑠 at position

𝑛←, and public keys for all relays 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the

relays on the path and 𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the chosen paths are acyclic, the

router names and public keys are valid and that the same

key is chosen if the router names are equal, and if so, sets

17
This definition was originally proposed by Camenisch and Lysyanskaya [5] in a

slightly different format.

𝑃𝐾←
𝑗← = 𝑃𝐾𝐻 (resp. 𝑃𝐾𝑛 if 𝑗← = 0), 𝑃𝐾←

𝑛← = 𝑃𝐾𝑆 and sets

bit 𝑏 at random.

(5) The challenger creates the onion 𝑂1 with the adversary’s

input choice and honestly chosen randomness R :
FormOnion(1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)

and sends 𝑂1 to the adversary.

(6) The adversary gets oracle access as in step 2) except if:

(a) The request is. . .

• for 𝑗← > 0: Proc(𝑃𝐻 ,𝑂) with
ROnion(𝑛 + 𝑗←,𝑂,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←) = 𝑇𝑟𝑢𝑒,

𝜂 is not on the 𝜂𝐻 -list and

ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻) ≠ (⊥,⊥):
stores 𝜂 on the 𝜂𝐻 and 𝑂 on the 𝑂𝐻 -list and . . .

• for 𝑗← = 0: Reply(𝑃𝐻 ,𝑂,𝑚←) with
ROnion(𝑛,𝑂,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←) = 𝑇𝑟𝑢𝑒,

𝑂 is on the 𝑂𝐻 -list and no onion with this 𝜂 has been

replied to before and

FormReply(𝑚←,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻) ≠ (⊥,⊥) . . .
. . . then: The challenger picks the rest of the return path

¯P = (𝑃←
𝑗←+1, . . . , 𝑃

←
𝑛←), an empty backward path

¯P← =

(), and a random message �̄�, another honestly chosen

randomness
¯R , an honestly chosen random receiver 𝑅,

and generates an onion 𝑂1:

FormOnion(1, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←)
• If 𝑏 = 0, the challenger calculates

(𝑂 𝑗←+1, 𝑃←𝑗←+1)=
{
ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃←𝑗←) , 𝑗← > 0,

FormReply(𝑚←,𝑂, 𝑃←
𝑗←, 𝑆𝐾𝐻) , 𝑗← = 0

and gives 𝑂 𝑗←+1 for 𝑃←
𝑗←+1 to the adversary.

• Otherwise, the challenger gives 𝑂1 for 𝑃←
𝑗←+1 to the

adversary.

(b) Proc(𝑃𝑠 ,𝑂) with𝑂 being the challenge onion as processed

for the final receiver on the backward path, i.e.:

• for 𝑏 = 0:

ROnion(𝑛 + 𝑛←,𝑂,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←) = 𝑇𝑟𝑢𝑒
• for 𝑏 = 1:

ROnion(𝑛←− 𝑗←,𝑂, ¯R, �̄�, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←) = 𝑇𝑟𝑢𝑒
. . . then the challenger outputs nothing.

(7) The adversary produces guess 𝑏 ′.

SLU← is achieved if any PPT adversary A cannot guess 𝑏 ′ = 𝑏

with a probability non-negligibly better than
1

2
.

B.3 RSOR-Tail Indistinguishability (STI↔)
RSOR-Tail Indistinguishability is defined as:

(1) The adversary receives the router names 𝑃𝐻 , 𝑃
←
𝐻
, 𝑃𝑠 , and

challenge public keys 𝑃𝐾𝑆 , 𝑃𝐾𝐻 , 𝑃𝐾
←
𝐻
, which are chosen

by the challenger by letting (𝑃𝐾𝐻 , 𝑆𝐾𝐻) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻),
(𝑃𝐾←

𝐻
, 𝑆𝐾←

𝐻
) ← 𝐺 (1𝜆, 𝑝, 𝑃←

𝐻
), (𝑃𝐾𝑆 , 𝑆𝐾𝑆) ← 𝐺 (1𝜆, 𝑝, 𝑃𝑠).

(2) Oracle access: The adversary may submit any number of

Proc and Reply requests for 𝑃𝐻 , 𝑃
←
𝐻
, or 𝑃𝑠 to the chal-

lenger. For any Proc(𝑃𝐻 ,𝑂), the challenger checks whether
𝜂 is on the 𝜂𝐻 -list. If it is not on the list, it sends the out-

put of ProcOnion(𝑆𝐾𝐻 ,𝑂, 𝑃𝐻), stores 𝜂 on the 𝜂𝐻 -list and

𝑂 on the 𝑂𝐻 -list. For any Reply(𝑃𝐻 ,𝑂,𝑚), the challenger
checks if 𝑂 is on the 𝑂𝐻 -list and if so, the challenger sends

770

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

FormReply(𝑚,𝑂, 𝑃𝐻 , 𝑆𝐾𝐻) to the adversary. (Similar for re-

quests on 𝑃←
𝐻
, 𝑃𝑠).

(3) The adversary submits a message 𝑚, a receiver 𝑅, a path

P = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛) with the honest relay 𝑃𝐻 or 𝑃←
𝐻

at

position 𝑗, 0 ≤ 𝑗 < 𝑛, a path P← = (𝑃←
1
, . . . , 𝑃𝑛

←) with the

honest relay 𝑃←
𝐻

at position 1 ≤ 𝑗← ≤ 𝑛← and public keys

for all relays 𝑃𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛← for the relays on the path and

𝑛 < 𝑖 for the other relays).

(4) The challenger checks that the given paths are acyclic, the

router names and public keys are valid and that the same

key is chosen if the router names are equal, and if so, sets

𝑃𝐾𝑗 = 𝑃𝐾𝐻 (or 𝑃𝐾 𝑗 = 𝑃𝐾
←
𝐻
, if the adversary chose 𝑃←

𝐻
at

this position as well), 𝑃𝐾←
𝑗← = 𝑃𝐾←

𝐻
, 𝑃𝐾←

𝑛← = 𝑃𝐾𝑆 and sets

bit 𝑏 at random.

(5) The challenger creates the onion 𝑂 𝑗+1 with the adversary’s

input choice and honestly chosen randomness R :
FormOnion(𝑗 + 1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)

and a replacement onion 𝑂1 with the path from the honest

relay 𝑃𝐻 to the corrupted exit relay
¯P = (𝑃 𝑗+1, . . . , 𝑃𝑛) and

the backward path ending at 𝑗←:
¯P← = (𝑃←

1
, . . . , 𝑃←

𝑗←); and
another honestly chosen randomness

¯R :
FormOnion(1, ¯R,𝑚, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←)

(6) If 𝑏 = 0: The challenger sends 𝑂 𝑗+1 to the adversary.

Otherwise: The challenger sends 𝑂1 to the adversary.

(7) Oracle access: the challenger processes all requests as in step

2) except for. . .

. . .Proc(𝑃←
𝐻
,𝑂) with 𝑂 being the challenge onion as pro-

cessed for the honest relay on the backward path, i.e.:

• for 𝑏 = 0:

ROnion(𝑛 + 𝑗←,𝑂,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←) = 𝑇𝑟𝑢𝑒
• for 𝑏 = 1:

ROnion((𝑛 − 𝑗) + 𝑗←,𝑂, ¯R,𝑚, 𝑅, ¯P, ¯P←, 𝑃𝐾 ¯P, 𝑃𝐾 ¯P←) = 𝑇𝑟𝑢𝑒
. . . then the challenger outputs nothing.

(8) The adversary produces guess 𝑏 ′.

STI↔ is achieved if any PPT adversaryA cannot guess 𝑏 ′ = 𝑏 with
a probability non-negligibly better than

1

2
.

C SECURE RSOR DEFINITIONS
The following definition is adapted from Kuhn et al.’s definition

for repliable integrated-system-model OR (as shown in Section 2.3).

Our changes compared to their definitions are shown in this style,

and [. . .] indicates a deletion.

Definition 7
An RSOR protocol is secure in the F𝑃𝐾𝐼 -F𝑆𝐶 -hybrid model if and

only if it is built on a secure RSOR scheme according to Definition 3

and operates the following way:

• Setup: Each relay 𝑃𝑖 generates a keypair (𝑆𝐾𝑖 , 𝑃𝐾𝑖) ← 𝐺 (1𝜆)
and publishes 𝑃𝐾𝑖 by using F𝑃𝐾𝐼 .
• Sending a message: If 𝑃𝑠 wants to send 𝑚 ∈ M to 𝑅 over

the path P = (𝑃1, . . . , 𝑃𝑛) with 𝑛 ≤ 𝑁 and wants to allow a

reply over the path P← = (𝑃←
1
, . . . , 𝑃←

𝑛←) with 𝑛
← ≤ 𝑁 and

𝑃←
𝑛← = 𝑃𝑠 , it chooses a randomness R and calculates

𝑂1←FormOnion(1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾←P←)
and sends 𝑂1 to 𝑃1 using F𝑆𝐶 .

• Processing an onion: 𝑃𝑖 receives 𝑂𝑖 and runs

(𝑂 𝑗 , 𝑃 𝑗) ← ProcOnion(𝑆𝐾𝑖 ,𝑂𝑖 , 𝑃𝑖) .
If 𝑃 𝑗 = ⊥, 𝑃𝑖 outputs “Received𝑚 = 𝑂 𝑗 as a reply” if𝑂 𝑗 ≠ ⊥
[. . .]. If 𝑃 𝑗 ≠ ⊥, 𝑃 𝑗 is a valid relay name or receiver. and

𝑃𝑖 generates a random 𝑡𝑖𝑑 and stores (𝑡𝑖𝑑, (𝑂 𝑗 , 𝑃 𝑗)) in its

outgoing buffer and notifies the environment about 𝑡𝑖𝑑 .

• Sending an onion: When the environment instructs 𝑃𝑖 to for-

ward 𝑡𝑖𝑑 , 𝑃𝑖 looks up 𝑡𝑖𝑑 in its buffer. If 𝑃𝑖 does not find such

an entry, it aborts. Otherwise, it finds (𝑡𝑖𝑑, (𝑂 𝑗 , 𝑃 𝑗)). If 𝑃 𝑗 is
a relay name, it sends 𝑂 𝑗 to 𝑃 𝑗 using F𝑆𝐶 . If 𝑃 𝑗 = 𝑅 for a re-

ceiver 𝑅, 𝑃𝑖 checks whether FormReply(𝑚←,𝑂𝑖 , 𝑃𝑖 , 𝑆𝐾𝑖) ≠
⊥ for an arbitrary𝑚←. If so, 𝑃𝑖 chooses a random 𝑟𝑖𝑑 , stores

(𝑟𝑖𝑑,𝑂𝑖) in its reply buffer, and sends (𝑂 𝑗 , 𝑟𝑖𝑑) to 𝑃 𝑗 without
F𝑆𝐶 . If not, 𝑃𝑖 sends (𝑂 𝑗 ,⊥) to 𝑃 𝑗 without F𝑆𝐶 .
• Receiving a message:When a receiver gets a message (𝑚, 𝑟𝑖𝑑)
from a relay 𝑃𝑖 , it outputs “Received message𝑚 from 𝑃𝑖 ” to

the environment. If 𝑟𝑖𝑑 ≠ ⊥, it additonally outputs “It is

repliable with 𝑟𝑖𝑑”.

• Sending a reply message: When the environment instructs

𝑅 to reply to 𝑃𝑖 with 𝑟𝑖𝑑 and𝑚←, 𝑅 sends (𝑚←, 𝑟𝑖𝑑) to 𝑃𝑖
without F𝑆𝐶 .
• Creating a reply onion:When 𝑃𝑟 receives (𝑚←, 𝑟𝑖𝑑) from a

receiver 𝑅, 𝑃𝑟 looks up 𝑟𝑖𝑑 in its reply buffer. If there is no

entry with 𝑟𝑖𝑑 , 𝑃𝑟 stops. If it finds (𝑟𝑖𝑑,𝑂) in its buffer, it

calculates

(𝑂←
1
, 𝑃←

1
) ← FormReply(𝑚←,𝑂, 𝑃𝑟 , 𝑆𝐾𝑟)

and sends 𝑂←
1

to 𝑃←
1

using F𝑆𝐶 .

D FRSOR UC REALIZATION PROOF
Theorem 1. An RSOR protocol according to Section 3.1.3 with a PRP-
encrypted payload that satisfies RSOR-Correctness, Tagging-Forward
Layer Unlinkability, RSOR-Backward Layer Unlinkability, and RSOR-
Tail Indistinguishability securely realizes FRSOR.

This proof is taken from Kuhn et al. [22] andmodified to fit RSOR.

Our modifications are given in this style. Some parts of the proof

also make use of elements from Kuhn et al.’s proof of UC-realization

in [21] — these parts are explicitly marked with citations.

Proof. For UC-realization, we show that every attack on the

real world protocol Π can be simulated by an ideal world attack

without the environment being able to distinguish those. We first

describe the simulator S. Then we show indistinguishability of the

environment’s view in the real and ideal world.

Constructing SimulatorS. S interacts with the ideal functionality

FRSOR as the ideal world adversary, and simulates the real-world

honest parties for the real world adversary A . All outputs A does

are forwarded to the environment by S. First, S carries out the

trusted set-up stage: It generates public and private key pairs for all

the real-world honest parties. S then sends the respective public

keys toA and receives the real world corrupted parties’ public keys

from A . The simulator S maintains four internal data structures:

• The 𝑟 -list consisting of tuples of the form (onion, prevRelay,
nextRelay, tid, 𝑎). Each entry in this list corresponds to a stage
in processing an onion that belongs to a communication of

an honest sender or an onion that was injected into FRSOR
by S. By “stage”, we mean that the next action to this onion

771

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

is adversarial (i.e., it is sent over a link or processed by an

adversarial router).

• The 𝑂-list containing onions sent by corrupted senders to-

getherwith the information about the communication (onion-
list, path, currentPosition, information).
• The 𝑅𝑒𝑝𝑙𝑦-list containing reply information together with

the forward id for communications with a corrupted sender

(𝑠𝑖𝑑 𝑓 𝑤𝑑 , reply information).
• The𝐶-list containing reply information with the tid for com-

munications with an honest sender (𝑃𝑖 , 𝑟𝑒𝑝𝑙𝑦, 𝑡𝑖𝑑).
S’s behavior on a message from FRSOR: In case the received

output belongs to an adversarial sender’s communication:
Case I: “start belongs to reply from 𝑃𝑠 with 𝑠𝑖𝑑, 𝑃𝑟 ,𝑚, 𝑛,P,P←, 𝑑 ,
replying to onion from 𝑃𝑟 with 𝑠𝑖𝑑”; an honest relay is replying

to an onion of a corrupted sender. S knows that the next output

“Onion 𝑡𝑖𝑑 in direction 𝑑 from . . . ” includes the first part of this

backward path, that he chose to consist of the correct sequence of

honest relays potentially followed by one adversarial relay [. . .].
To construct the right real world reply onion, S looks up the reply

information (𝑠𝑖𝑑, replyinfo) for this 𝑠𝑖𝑑 in the 𝑅𝑒𝑝𝑙𝑦-list and uses

the information to construct the reply onion

(𝑂1, 𝑃1) ← FormReply(𝑚, replyinfo, 𝑃𝑠 , 𝑆𝐾𝑠)
followed by the next onion layers as far as S can process them with

the secret keys of the honest relays. Since the sender of the forward

onion is corrupted, there must be at least one adversarial relay on

the reply path of the onion, so S will be able to process the onion

up to the pair (𝑂 ′, 𝑃 ′) with an adversarial 𝑃 ′. This results in a list of

onions O = (𝑂1, . . . ,𝑂𝑙𝑎𝑠𝑡) and a list of relays P = (𝑃1, . . . , 𝑃𝑙𝑎𝑠𝑡).
P is identical to the reply path of the onion that was already created

in the ideal world. S sends 𝑂1 to 𝑃1, if 𝑃1 is adversarial, or to A’s

party representing the link between 𝑃𝑠 and 𝑃1, if 𝑃1 is honest. (Note

that 𝑃𝑠 cannot be adversarial for this output as then both sender

and receiver would be corrupted, which only activates cases VIIIb
and II (as it works without including any reply onion from the

view of the ideal world). If the next relay 𝑃1 on the reply onion’s

path is honest, then S needs to be able to associate that onion layer

and the ones following it in the real world with the ideal-world

onion as the layers are processed and sent along the honest relays.

Conversely, if 𝑃1 is adversarial, then the onion leaves S’s control
after this case.

18

(1) If the first relay 𝑃1 is an honest relay, S adds the tuple

(O,P, 0, (𝑃𝑠 , 𝑠𝑖𝑑, 𝑃 ′,𝑚,P, ())) onto the 𝑂-list and the tuple

(𝑂1, 𝑃𝑠 , 𝑃1, 𝑡𝑖𝑑, 𝑎) to the 𝑟 -list, where 𝑡𝑖𝑑 is the ID that S re-

ceived along with the output from FRSOR and 𝑎 is the index

of the 𝑂-list entry.

(2) If 𝑃1 is adversarial, S does no additional work.

Case II: “start belongs to onion from 𝑃𝑠 with 𝑠𝑖𝑑, 𝑅,𝑚,P,P←, 𝑑”.
This is just the result of S’s reaction to an onion from A that

was not the protocol-conform processing of an honest sender’s

communication (Case VIII). S does nothing.

Case IIIa: any output together with “𝑡𝑖𝑑 belongs to onion/reply

from 𝑃𝑠 with 𝑠𝑖𝑑, 𝑅/𝑃𝑟 ,𝑚,P,P←, 𝑑” for 𝑡𝑖𝑑 ∉ {start, end}. This
means an honest relay is done processing an onion received fromA
that was not the protocol-conform processing of an honest sender’s

18
If 𝑃1 is adversarial, the reply path of the ideal-world onion S created for this reply

in case VIII will also end at 𝑃1 .

communication (processing that follows Case VII). S finds (onion-
list, path, 𝑐 := currentPosition, information) with these inputs as

information and P[𝑐] = 𝑃𝑜𝑖 where 𝑃𝑜𝑖 is the relay that sent the

onion 𝑡𝑖𝑑 in FRSOR [21] in the 𝑂-list (notice that there has to be

such an entry). Let 𝑎 be the index of the entry in the 𝑂-list [21].

S must now send the correct onion from the list in the 𝑂-list

entry over the next link while keeping track of it so that it can

reassociate it with the 𝑂-list entry when it next receives it as the

following honest relay. To this end, S stores (O[𝑐],P[𝑐],P[𝑐 +
1], 𝑡𝑖𝑑, 𝑎) to the 𝑟 -list and sends O[𝑐] to the link to P[𝑐 + 1] from
P[𝑐] [21].
Case IIIb: any output together with “end belongs to onion/reply

from 𝑃𝑠 with 𝑠𝑖𝑑, 𝑅/𝑃𝑟 ,𝑚,P,P←, 𝑑”. This case occurs whenever

one of the onions S creates in FRSOR in case VIII reaches the end of
its path and either an adversarial relay or the receiver of the onion

comes next. S can tell the difference by examining whether another

relay P[𝑐 + 1] and onion O[𝑐] remain in the lists of the𝑂-list entry

(onionlist, path, 𝑐 := currentPosition, information) corresponding to
this onion (S finds the entry like in case IIIa).

(1) If another relay follows, S sends O[𝑐] to the link to P[𝑐 + 1]
from P[𝑐] [21].

(2) If there is no next relay, then S must send the message

contained in the onion to the receiver along with the correct

reply ID if the onion is repliable (if it is, S also receives

“Reply with reply ID 𝑟𝑖𝑑” in the output). S sends (𝑚, 𝑟𝑖𝑑)
(or (𝑚,⊥) if the onion is not repliable) to the link to 𝑅 from

𝑃𝑜𝑖 in the real world, where 𝑃𝑜𝑖 is the relay that sent the

message in FRSOR, triggering this case.
Case IIIc: Any output together with the new output “tagged be-

longs to onion from 𝑃𝑠 with 𝑠𝑖𝑑, 𝑅,𝑚, 𝑛,P”. If S receives this mes-

sage, the final honest relay on the forward path of a corrupted

sender’s onion just processed a tagged onion over either the final

path segment consisting of only corrupted relays or the final link

to the receiver itself. Depending on which is the case, S performs

different actions:

(1) If P[𝑐 + 1] is set: The onion is not at the exit relay yet and

the tagging will not be discovered by an honest router. S
behaves like in case IIIa.

(2) If P[𝑐 + 1] is not set: The honest exit relay has noticed the

tagging. The protocol would discard such an onion, so no

action is required from S.
In case the received output belongs to an honest sender’s communi-

cation:
Case IV: “𝑃𝑜𝑖 sends onion 𝑡𝑖𝑑 to 𝑃𝑜𝑖+1 via ()”. In this case, S needs

to make it look as though an onion was passed from the honest

party 𝑃𝑜𝑖 to the honest party 𝑃𝑜𝑖+1 : S picks the path P = (𝑃𝑜𝑖 , 𝑃𝑜𝑖+1)
and random message𝑚𝑟𝑑𝑚 . S honestly picks a randomness R and

a random receiver 𝑅 and calculates

𝑂1 ← FormOnion(1,R,𝑚𝑟𝑑𝑚, 𝑅,P, (), 𝑃𝐾P, ())
and sends the onion 𝑂1 to A’s party representing the link be-

tween the honest relays as if it was sent from 𝑃𝑜𝑖 to 𝑃𝑜𝑖+1 . S stores

(𝑂1, 𝑃𝑜𝑖 , 𝑃𝑜𝑖+1 , 𝑡𝑖𝑑,⊥) on the 𝑟 -list.

Case V: “𝑃𝑜𝑖 sends onion 𝑡𝑖𝑑 to 𝑃𝑜 𝑗 via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 𝑗−1
)”. To handle

this case, S picks the path P = (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 𝑗−1
), a randomness R

and a random receiver 𝑅 and a message𝑚𝑟𝑑𝑚 and calculates

𝑂1 ← FormOnion(1,R,𝑚𝑟𝑑𝑚, 𝑅,P, (), 𝑃𝐾P, ())
772

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

and sends the onion 𝑂1 to 𝑃𝑜𝑖+1 , as if it came from 𝑃𝑜𝑖 . S stores

(𝑂 𝑗−𝑖−1, 𝑃𝑜 𝑗−1
, 𝑃𝑜 𝑗 , 𝑡𝑖𝑑,⊥) on the 𝑟 -list.

Case VIa: S receives the message “𝑃𝑜𝑖 sends onion with message

𝑚 to 𝑅 via (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜 𝑗−1
)”. The behavior in this case depends on

whether the onion is repliable and whether 𝑃𝑜𝑖 is the onion’s exit

relay or not:

(1) The onion is not repliable and 𝑃𝑜𝑖 is its exit relay. In this

case, S sends (𝑚,⊥) to the adversary’s link to 𝑅 as 𝑃𝑜𝑖 in

the real world.

(2) The onion is not repliable and 𝑃𝑜𝑖 is not its exit relay. Here,

S needs to build an onion that will carry the message across

the remaining adversarial relays to the receiver. This hap-

pens just like in the original case: S picks the path P =

(𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛), randomness R , calculates
𝑂1 ← FormOnion(1,R,𝑚, 𝑅,P, (), 𝑃𝐾P, ())

and sends the onion 𝑂1 to 𝑃𝑜𝑖+1 , as if it came from 𝑃𝑜𝑖 .

(3) The onion is repliable and 𝑃𝑜𝑖 is the exit relay. S receives

the additional output “Reply with reply ID 𝑟𝑖𝑑” and sends

(𝑚, 𝑟𝑖𝑑) to the adversary’s link to 𝑅 as 𝑃𝑜𝑖 in the real world.

(4) The onion is repliable and 𝑃𝑜𝑖 is not the exit relay. Now, S
needs to use the extra output “Reply with 𝑡𝑖𝑑 . Its reply path

begins with P←” to construct an onion that will carry the

message to the receiver and allow it to reply such that the

reply onion will follow the beginning of the reply path to

the first honest relay on it, where S will expect it. S picks

the path P = (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛), randomness R , calculates
𝑂1←FormOnion(1,R,𝑚,𝑅,P,P←, 𝑃𝐾P,𝑃𝐾P←)

and sends the onion 𝑂1 to the relay 𝑃𝑜𝑖+1 , as if it was sent

from the relay 𝑃𝑜𝑖 . Further, S stores (P← .𝑙𝑎𝑠𝑡, 𝑖𝑛𝑓 𝑜, 𝑡𝑖𝑑)
with info = (𝑛 + P←.𝑙𝑎𝑠𝑡𝑃𝑜𝑠,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←)
on the𝐶-list. (Note that, as this is an honest communication,

P← .𝑙𝑎𝑠𝑡 is honest.)
Case VIb: S receives the message “𝑃𝑜𝑖 sends tagged onion via

(𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛)”. This means that an honest relay has processed a

tagged onion from an honest sender on the forward path and is

delivering it to the exit relay. (𝑃𝑜𝑖+1 , . . . , 𝑃𝑜𝑛) is never empty when

S receives this input since FRSOR guards against that case with

the condition 𝑖 < 𝑛. To translate this onion into the real world, S
behaves like in case VIa2, but doesn’t learn the message or the

receiver of the onion and must additionally tag the new onion

before sending it. To this end, S chooses a random𝑚𝑟𝑑𝑚 ∈ 𝑀 and

𝑅𝑟𝑑𝑚 ∈ 𝐷 and builds the onion using those. Before sending it, S
tags the onion.

Case IX: “𝑅 replies to 𝑟𝑖𝑑 with message𝑚 ”. S needs to recreate

this reply in the real world by sending (𝑚, 𝑟𝑖𝑑) to the adversary

from the honest receiver 𝑅.19

S’s behavior on a message from A : S, as real world honest

party 𝑃𝑖 , received an onion 𝑂 = (𝜂, ˜𝛿) or a message-reply ID-pair

(𝑚, 𝑟𝑖𝑑) from A as adversarial player 𝑃𝑎 .

Case VIIa: ((𝜂, ˜𝛿), 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖𝑑, 𝑎) is on the 𝑟 -list for some 𝑡𝑖𝑑 . In this

case,𝑂 is the protocol-conform processing of an onion from an hon-

est sender’s communication. S calculates ProcOnion(𝑆𝐾𝑃𝑖 ,𝑂, 𝑃𝑖).
If it returns a fail (𝑂 is a replay or modification that is detected and

dropped by 𝑃𝑖), S does nothing. Otherwise, S sends the message

19S can keep track of which relay to send (𝑚,𝑟𝑖𝑑) to by remembering which relay

originally sent a forward message with 𝑟𝑖𝑑 .

DeliverOnion(𝑡𝑖𝑑) to FRSOR and increments currentPosition for

the 𝑎-th entry in the 𝑂-list if 𝑎 ≠ ⊥ [21].

Case VIIb: ((𝜂, 𝛿 ′), 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖𝑑, 𝑎) is on the 𝑟 -list for some 𝑡𝑖𝑑

and a 𝛿 ′ ≠ ˜𝛿 . A has tagged the onion in flight. S calculates

ProcOnion(𝑆𝐾𝑃𝑖 ,𝑂, 𝑃𝑖). If it returns a fail (e.g., 𝑂 is a replay that

is detected and dropped by the protocol), S does nothing. If Pro-

cOnion does not return a fail, S calls Tag(𝑡𝑖𝑑) to tag the onion

in the ideal world as well before calling DeliverOnion(𝑡𝑖𝑑). If
𝑎 ≠ ⊥, S increases the position of the 𝑎-th entry in the 𝑂-list. To

forward the tag in the real world, S also replaces the onion list

O = (𝑂1, . . . ,𝑂, . . . ,𝑂𝑘) in the 𝑂-list entry with the new onion list

O′ = (𝑂1, . . . ,𝑂
′, . . . ,𝑂 ′

𝑘
), where 𝑂 ′

𝑖
is the result of processing 𝑂 ′

repeatedly like in case VIII.
Case VIII: (𝜂, 𝑃𝑖−1, 𝑃𝑖 , 𝑡𝑖𝑑, 𝑎) is not on the 𝑟 -list for any 𝑡𝑖𝑑 . This

onion must have been sent by the 𝑃𝑎 relay itself since the links

between relays are secure channels due to F𝑆𝐶 . In order to replicate

this onion in the ideal world,Smust first process it until it cannot be

processed any further because either: 1) the next relay is a receiver,

in which case the reply path must also be processed, 2) there is

no next relay because the onion is a reply, 3) the next relay is

adversarial, soS does not know the necessary keys, 4) or processing

the onion fails [21].

In any case, S processes𝑂 repeatedly until it has the final result

(𝑂 ′, 𝑃 ′) along with the list of onions O = (𝑂1, . . . ,𝑂𝑙𝑎𝑠𝑡) and re-

lays P = (𝑃𝑖 , . . . , 𝑃𝑙𝑎𝑠𝑡) encountered along the way. The following

behavior depends on what form (𝑂 ′, 𝑃 ′) takes [21]:

(1) (𝑂 ′, 𝑃 ′) = (𝑚,𝑅): First, S checks whether 𝑂𝑙𝑎𝑠𝑡 is repliable.

If so, then S forms a reply

(𝑂←
1
, 𝑃←

1
) ← FormReply(𝑚′,𝑂𝑙𝑎𝑠𝑡 , 𝑃𝑖 , 𝑆𝐾𝑖)

to it with an arbitrary message𝑚′ and processes it until it

cannot proceed, resulting in a list of reply onions O← =

(𝑂←
1
, . . . ,𝑂←

𝑘
) and relays P← = (𝑃←

1
, . . . , 𝑃←

𝑘
). If the onion

is not repliable, let O← = P← = ().
Now, S creates the ideal-world onion by sending the mes-

sage ProcessNewOnion(𝑅,𝑚,P,P←) to FRSOR in the role

of 𝑃𝑎 . After doing so, S immediately delivers the first onion

by calling DeliverOnion(𝑡𝑖𝑑) with the 𝑡𝑖𝑑 ID it received

from FRSOR without running case IIIa. It does so because

A has already delivered the onion from 𝑃𝑎 to 𝑃𝑖 . S also

stores (O,P, 0, (𝑃𝑎, 𝑠𝑖𝑑, 𝑅,𝑚,P,P←)) on the 𝑂-list [21] and

(𝑠𝑖𝑑,𝑂𝑙𝑎𝑠𝑡) on the 𝑅𝑒𝑝𝑙𝑦-list.

(2) (𝑂 ′, 𝑃 ′) = (𝑚,⊥): [. . .] 𝑃𝑖 is the recipient and 𝑂 ′ is a mes-

sage. This means the adversary possibly replied to an hon-

est senders forward onion with a corrupted exit relay. S
checks for all (𝑃𝑖 , 𝑟𝑒𝑝𝑙𝑦, 𝑡𝑖𝑑) tuples in the 𝐶-list to see if

𝜂 matches any 𝑟𝑒𝑝𝑙𝑦-info on this list. If so (it was a reply

to 𝑡𝑖𝑑), S sends the message BypassReply(𝑚, 𝑡𝑖𝑑) to FRSOR
on 𝑃𝑎 ’s behalf and, as A already delivered this message

to the honest party, sends DeliverOnion(𝑡𝑖𝑑 ′) for the be-
longing 𝑡𝑖𝑑 ′. Otherwise, this onion is an unsolicited reply

to an honest sender and will be ignored. S (creating this

onion in the FRSOR) sends the invalid onion on behalf of 𝑃𝑎 :

ProcessNewOnion(⊥,⊥,P, ()) and DeliverOnion(𝑡𝑖𝑑)
for the corresponding 𝑡𝑖𝑑 without running case IIIa. (Notice

773

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

that S knows which 𝑡𝑖𝑑 and 𝑠𝑖𝑑 belongs to this communi-

cation as it is started at an adversarial party 𝑃𝑎). S adds

(O,P, 0, (𝑃𝑎, 𝑠𝑖𝑑,⊥,⊥,P, ())) to the 𝑂-list.

(3) (𝑂 ′, 𝑃 ′ ≠ ⊥): 𝑃 ′ is the next adversarial relay and 𝑂 ′ is the
onion it should receive. S picks a message 𝑚 ∈ M and

a new random receiver 𝑅. S sends on 𝑃𝑎 ’s behalf the mes-

sage, ProcessNewOnion(𝑅,𝑚,P, ()) (notice that this onion
cannot be replied to) [. . .] and DeliverOnion(𝑡𝑖𝑑) for the
belonging 𝑡𝑖𝑑 to FRSOR without running case IIIa (notice that
S knows the 𝑡𝑖𝑑 as in case (a)). As the last step, S adds the

entry (O∥(𝑂 ′),P∥(𝑃 ′), 0, (𝑃𝑎, 𝑠𝑖𝑑, 𝑅,𝑚,P, ())) to the 𝑂-list.

(4) (𝑂 ′, 𝑃 ′) = (⊥,⊥): This onion failed to be processed at 𝑃𝑙𝑎𝑠𝑡 ,

so S must also send an invalid onion that takes this path

in FRSOR: S sends ProcessNewOnion(⊥,⊥,P, ()) in the

role of 𝑃𝑎 . If the header of the onion processes correctly

as a last layer header, but the payload does not, S calls

Tag(𝑡𝑖𝑑) on the corresponding 𝑡𝑖𝑑 ID. Then, S follows it

with DeliverOnion(𝑡𝑖𝑑) without running case IIIa. S adds

(O,P, 0, (𝑃𝑎, 𝑠𝑖𝑑,⊥,⊥,P, ())) to the 𝑂-list.

Case X: S receives (𝑚, 𝑟𝑖𝑑) as the honest receiver 𝑅. S sends the

message DeliverMessage(𝑚, 𝑟𝑖𝑑, 𝑅) to FRSOR.
Case XI: S receives (𝑚, 𝑟𝑖𝑑) as the honest relay 𝑃𝑖 S sends the

message DeliverReply(𝑃𝑖 ,𝑚, 𝑟𝑖𝑑) to FRSOR.
Indistinguishability:

Notation:H𝑖 describes the first hybrid that replaces a certain

part of any communication for the first communication. InH<𝑥
𝑖

this part of the communication is replaced for the first 𝑥 −1 commu-

nications. Finally inH∗
𝑖
this part of the communication is replaced

in all communications.

HybridH0: This machine sets up the keys for the honest parties

(so it has their secret keys). Then it interacts with the environment

and A on behalf of the honest parties. It invokes the real protocol

for the honest parties in interacting with A .

Replacing between honest - Forward Onion: We replace the

onion layers in the way they appear in the communication. So the

first onion layers (close to the sender) are replaced first.

HybridH1: In this hybrid, for the first one forward communi-

cation the onion layers from its honest sender to the next honest

relay on the forward path (relay or receiver) are replaced with

random onion layers embedding the same path. More precisely,

this machine acts likeH0 except that the consecutive onion layers

𝑂1,𝑂2, . . . ,𝑂 𝑗 from an honest sender 𝑃0 to the next honest relay 𝑃 𝑗
are replaced with 𝑂1 and its following processings by calculating

(with honestly chosen randomness R ′ and a random receiver 𝑅𝑟𝑑𝑚)

𝑂1 ← FormOnion(1,R ′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′, (), 𝑃𝐾P′, ())
where𝑚𝑟𝑑𝑚 is a randommessage, P ′ = (𝑃1, . . . , 𝑃 𝑗).H1 nowmain-

tains a new𝑂-list, which it uses to recognize replacement onions. It

stores (𝑖𝑛𝑓 𝑜 = (R ′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′, (), 𝑃𝐾P, ()), 𝛿 𝑗 , 𝑃 𝑗 , (𝑂𝑅1 , 𝑃 𝑗+1))
there, where 𝑖𝑛𝑓 𝑜 are the randomness and parameters used for the

replacement onion’s creation, 𝛿 𝑗 is the payload of the 𝑗-the onion

layer, and 𝑂𝑅
1
is calculated as

𝑂𝑅
1
←FormOnion(𝑗 + 1,R,𝑚, 𝑅,P,P←, 𝑃𝐾P, 𝑃𝐾P←),

where the randomness, receiver, paths and message are chosen as

in the original sender’s call inH0. If an onion �̃� is sent to 𝑃 𝑗 , the

machine tests if processing results in a fail (replay/modification

detected and dropped). If it does not,H1 uses

ROnion(𝑗, �̃�,R ′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′,P←, 𝑃𝐾P, 𝑃𝐾P←)
for every recognize-information stored in the𝑂-list where the third

entry is 𝑃 𝑗 . If it finds a match, it compares �̃�’s payload to the

𝛿 𝑗 in the entry. If those also match, the belonging 𝑂𝑅
1
is sent to

𝑃 𝑗+1 as the processing result of 𝑃 𝑗 . If only the payload comparison

fails, the onion has been tagged.H1 adds the original onion’s input

parameters to a Tag-list for later recognition. If 𝑃 𝑗 is the onion’s exit
relay (𝑃 𝑗+1 = ⊥),H1 produces no output. Otherwise,H1 recreates

the tag on 𝑂𝑅
1
and sends it to 𝑃 𝑗+1. If no onion with a matching

header is found, ProcOnion(𝑆𝐾𝑃 𝑗 , �̃�, 𝑃 𝑗) is used.
H0 ≈𝐼 H1: The environment gets notified when an honest party

receives an onion layer (and about their repliability) and inputs

when this party is done. As we just exchange onion layers with

others (with the same repliability), the behavior to the environment

is indistinguishable for both machines.A observes the onion layers

after 𝑃0 and, if it sends an onion to 𝑃 𝑗 , the result of the processing

after the honest relay. Depending on the behavior ofA , three cases

occur: A drops the onion belonging to this communication before

𝑃 𝑗 , A behaves protocol-conform and sends the expected onion to

𝑃 𝑗 orA modifies the expected onion before sending it to 𝑃 𝑗 . Notice

that dropping the onion leaves the adversary with no further output.

Thus, we can focus on the other cases:

We assume there exists a distinguisher D betweenH0 andH1

and construct a successful attack on TLU→.

The attack receives key and name of the honest relay and uses

the input of the replaced communication as choice for the challenge,

where it replaces the name of the first honest relay with the one

that it got from the challenger. For the other relays, the attack

decides on the keys as A (for corrupted) and the protocol (for

honest) do. It receives �̃� from the challenger. The attack uses D.

For D, it simulates all communications except the one chosen for

the challenge, with the oracles and knowledge of the protocol and

keys. For simulating the challenge communication, the attack hands

�̃� to A as soon as D instructs to do so. To simulate further for D
it uses �̃� to calculate the later layers and does any actions A does

on the onion.

A either sends the honest processing of �̃� to the challenge router

or A modifies it. The attack uses the oracle to simulate the further

processing of �̃� or its modification. IfA chooses to tag �̃� , then the

challenger will output an onion with a random payload in bothH0

andH1 since the tag completely randomizes the payload contents.

Thus, either the challenger chose 𝑏 = 0 and the attack behaves

like H0 under D; or the challenger chose 𝑏 = 1 and the attack

behaves like H1 under D. The attack outputs the same bit as D
does for its simulation to win with the same advantage as D can

distinguish the hybrids.

HybridH<𝑥
1

: In this hybrid, for the first 𝑥−1 forward communi-

cations, onion layers from an honest sender to the next honest relay

on the forward path are replaced with a random onion sharing this

path. [Note that H1 = H<2

1
and let H∗

1
be the hybrid where the

replacement happened for all communications.]

H<𝑥−1

1
≈𝐼 H<𝑥

1
: Analogous to above. Apply argumentation of

indistinguishability (H0 ≈𝐼 H1) for every replaced subpath.

Hybrid H2𝑎 : In the two hybrids H2𝑎 and H
2𝑏 , for the first

forward communication for which, in the adversarial processing,

774

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

no recognition-falsifying modification (i.e. on 𝜂) occurred and other

modification does not result in a fail, onion layers between two

consecutive honest relays on the forward path (the second might

be the exit relay) are replaced with random onion layers embedding

the same path. We do so in two hybrid steps because we require

both the STI↔ and TLU→ properties to truncate the forward path

of the onion before the first of the two honest relays and then

replace the onion layers between the honest relays. Additionally,

for all forward communications, replacements between the sender

and the first relay happen as inH∗
1
. More precisely,H2𝑎 acts like

H∗
1
except for the processing of 𝑂 𝑗 . The onion layers 𝑂 𝑗+1, . . . , 𝑂𝑛 ,

𝑂←
1
, . . . , 𝑂←

𝑛← are replaced with 𝑂1, . . . , 𝑂𝑛−𝑗 , 𝑂←
1
, . . . , 𝑂←

𝑛← ; the

hybrid sends 𝑂1 instead of 𝑂 𝑗+1. The replacement is formed as

𝑂1 ← FormOnion(1,R ′,𝑚, 𝑅,P ′,P←, 𝑃𝐾P′, 𝑃𝐾P←)
with an honestly chosen randomness R ′ and P ′ = (𝑃 𝑗+1, . . . , 𝑃𝑛).
If the onion’s information is on the Tag-list, the tag is recreated on

𝑂1 before it is sent.

H∗
1
≈𝐼 H2𝑎 :H2𝑎 replaces the onion layers on the path after an

honest relay and does so for an onion that has already had all

of its subpaths between honest relays prior to this honest relay

replaced before. The original onion layers before this honest relay

are thus never output to the adversary while the layers used as

replacements are chosen independently at random. We can reduce

the new replacement to STI↔ with 𝑗STI↔ = 𝑗 and 𝑗←STI↔ = 𝑛← as the

positions of the honest relays in the challenge thanks to this. Since

the layers before 𝑃 𝑗 are independent of the challenge, the attack

can recognize tagged payloads on those layers and recreate the tag

on the challenge onion from the STI↔ challenger if necessary.

HybridH
2𝑏 : In this hybrid, we perform the actual replacement

of the onion layers between the honest relays for the onion whose

forward path was truncated in H2𝑎 . In essence, the consecutive

onion layers 𝑂1, . . . ,𝑂 𝑗 ′−𝑗 from a communication of an honest

sender, starting at the next honest relay 𝑃 𝑗 to the next following

honest relay 𝑃 𝑗 ′ , are replaced with �̂�1, . . . , �̂� 𝑗 ′−𝑗 by sending �̂�1.

Thereby, for honestly chosen randomness R ′ and a random receiver

𝑅𝑟𝑑𝑚 :

�̂�1←FormOnion(1,R ′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′′, (), 𝑃𝐾P′′, ()),
where𝑚𝑟𝑑𝑚 is a random message, P ′′ = (𝑃 𝑗+1, . . . , 𝑃 𝑗 ′) is the path
between the honest relays.H

2𝑏 stores

((R ′′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′′, (), 𝑃𝐾P′′, ()),

𝛿 𝑗 ′−𝑗 , 𝑃 𝑗 ′, (𝑂𝑅1 , 𝑃 𝑗 ′+1)),
where 𝑂𝑅

1
is calculated with

FormOnion(𝑗 ′− 𝑗+1,R ′,𝑚,𝑅,P ′,P←, 𝑃𝐾P′,𝑃𝐾P←),
where the randomness, receiver, paths and message are chosen as

H2𝑎 chose them, on the 𝑂-list. Like in H∗
1
, if an onion �̃� is sent

to 𝑃 𝑗 ′ , processing is first checked for a fail. If it does not fail,H
2𝑏

checks

ROnion(𝑗 ′− 𝑗, �̃�,R ′′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′′, (), 𝑃𝐾P′′, ())
for any info on the 𝑂-list where the second entry is 𝑃 𝑗 ′ . If it finds

a match, it checks whether the original onion’s information is on

the Tag-list and compares �̃�’s payload to 𝛿 𝑗 ′−𝑗 . If the information

is on the list or the payloads do not match, one of the previous

replacements were tagged or the current replacement was tagged.

If the original onion’s information is not on the Tag-list yet, it is
added. If 𝑃 𝑗 is the onion’s exit relay,H2𝑏 does nothing. Otherwise,

H
2𝑏 recreates the tag on 𝑂𝑅

1
and sends it to 𝑃 𝑗 ′+1. On the other

hand, if the onion was not tagged until now, the belonging 𝑂𝑅
1
is

used as the processing result of 𝑃 𝑗 ′ . If no onion with a matching

header is found, ProcOnion(𝑆𝐾𝑃 𝑗′ , �̃�, 𝑃 𝑗 ′) is used.
H2𝑎 ≈𝐼 H2𝑏 :H2𝑏 replaces, for one communication (and all its

replays), the first subpath between two consecutive honest relays

after an honest sender. The output toA includes the earlier (byH∗
1
)

replaced onion layers 𝑂𝑒𝑎𝑟𝑙𝑖𝑒𝑟 before the first honest relay (these

layers are identical inH2𝑎 andH
2𝑏) that take the original subpath

but are otherwise chosen randomly; the original onion layers after

the first honest relay for all communications not considered byH
2𝑏

(output byH∗
1
) or in case of the communication considered byH

2𝑏 ,

the newly drawn random replacement (generated byH
2𝑏); and the

processing after 𝑃 𝑗 ′ .

Similarly to our argument forH2𝑎 , the 𝑂𝑒𝑎𝑟𝑙𝑖𝑒𝑟 layers are ran-

dom and independent of the replaced layers, so they can be built

without needing the TLU→ challenger.

Thus, all that is left are the original/replaced onion layer after

the first honest relay and the processing afterwards. This is the

same output as inH0 ≈𝐼 H1. Hence, if there exists a distinguisher

betweenH2𝑎 andH
2𝑏 there exists an attack on TLU→.

Counting explanation for H<𝑥
2

: From here, we refer to the

combination ofH2𝑎 andH
2𝑏 asH2 for convenience. Communica-

tion paths consist of multiple possible honest subpaths (paths from

an honest relay to the next honest relay). We count (and replace)

all these subpaths from the subpath closest to the sender until the

one closest to the receiver. We first replace all such subpaths for

the first communication, then for the second and so on. Below we

use < 𝑥 to signal how many such subpaths will be replaced in the

current hybrid. [Note that H2 = H<2

2
and let H∗

2
be the hybrid

where the replacement happened for all such subpaths.]

Hybrid H<𝑥
2

: In this hybrid, the first 𝑥 − 1 honest subpaths

(honest relay to next honest relay) of honest senders’ forward com-

munications is replaced with a random onion sharing the path. Ad-

ditionally, for all forward communications, replacements between

the sender and the first relay happen as in H∗
1
. If A previously

(i.e., in onion layers up to the honest relay starting the selected

subpath) modified 𝜂 of an onion layer in this communication or

modifies other parts such that processing fails, the communication

is skipped.

H<𝑥−1

2
≈𝐼 H<𝑥

2
: Analogous to above.

Replacing between Honest - Backward Onion
On the backward path, we replace the last onion layers first,

then the second last and so on. Each machine only starts replacing

at a certain point and if a message does not come that far (it is

modified or dropped), they simply do not use any replacement. For

all following hybrids, the replacements on the forward path are

done as inH∗
2
.

Hybrid H←
1
: Similar to H1, but this time one backward com-

munication between the last honest relay (which could be the exit

relay) until the honest (forwards) sender is replaced. More precisely,

this machine acts likeH∗
2
except that the consecutive onion layers

𝑂←
𝑗+1, . . . ,𝑂

←
𝑛← from a reply to an honest (forward) sender from the

last honest relay 𝑃←
𝑗

to the (forward) sender 𝑃←
𝑛← = 𝑃0 are replaced

with 𝑂1, . . . ,𝑂𝑛←−𝑗 with (for an honestly chosen R ′ and a random

775

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

receiver 𝑅𝑟𝑑𝑚):

𝑂1 ← FormOnion(1,R ′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′, (), 𝑃𝐾P′, ())
where𝑚𝑟𝑑𝑚 is a random message, P ′ = (𝑃←

𝑗+1, . . . , 𝑃
←
𝑛←) is the path

from 𝑃←
𝑗+1 to 𝑃←

𝑛← .H
←
1

stores (info, 𝑃←
𝑛← = 𝑃0,𝑚𝑟𝑑𝑚) on the 𝑂-list.

When looking up entries (with ROnion) on the 𝑂-list,H←
1

checks

the belonging last entry to be an onion before sending it to the next

relay.

H∗
2
≈𝐼 H←1 : The environment gets notified when an honest

party receives an onion layer and inputs when this party is done.

As we just exchange onion layers with others (with the same repli-

ability), the behavior to the environment is indistinguishable for

both machines.

A observes the onion layers before 𝑃←
𝑗

and, if it sends an onion

to 𝑃←
𝑛← , the result of the processing after the honest relay. Depend-

ing on the behavior of A , three cases occur: A drops the onion

belonging to this communication before 𝑃←
𝑛← , A behaves protocol-

conform and sends the expected onion to 𝑃←
𝑛← or A modifies the

expected onion before sending it to 𝑃←
𝑛← . Notice that dropping the

onion leaves the adversary with no further output. Thus, we can

focus on the other cases.

We assume there exists a distinguisherD betweenH∗
2
andH←

1

and construct a successful attack on SLU←:

The attack receives key and name of the honest relay and uses the

input of the replaced communication as the choice for the challenge,

where it replaces the name of the honest relay with the one that

it got from the challenger. For the other relays, the attack decides

on the keys as A (for corrupted) and the protocol (for honest) do.

It receives 𝑂1 from the challenger and forwards it to A for the

corrupted first relay (on the forward path). The attack simulates all

other communications with oracles (or their replacements as in the

games before) and at some point, asA replies to𝑂1 (after receiving

its processing 𝑂𝑛+1), so does our attack. The reply is processed

(with the knowledge of the keys) until the honest relay, where the

replaced onion layers start and this processed reply is forwarded

to the oracle of the challenger as 𝑂 to process it. The challenger

returns �̃� . The attack sends �̃� , as the processing of the answer, to

A as soon asD instructs to do so. To simulate further forD it uses

�̃� to calculate the later layers and does any actions A does on the

onion. Further, the attack simulates all other communications with

the oracles and knowledge of the protocol and keys (or the random

replacement onions, if replaced before).

Thus, either the challenger chose 𝑏 = 0 and the attack behaves

like H∗
2
under D; or the challenger chose 𝑏 = 1 and the attack

behaves likeH←
1

under D. The attack outputs the same bit as D
does for its simulation to win with the same advantage as D can

distinguish the hybrids.

Hybrid H<𝑥←
1

: In this hybrid, for the first 𝑥 − 1 backward

communications, onion layers from the last honest relay to the

honest sender (=backwards receiver) are replaced with a random

onion sharing this path. The replacement is again stored on the

𝑂-list as before.

H<𝑥−1←
1

≈𝐼 H<𝑥←
1

: Analogous to above. Apply argumentation

of indistinguishability (H∗
2
≈𝐼 H←1) for every replaced subpath.

HybridH←
2𝑎

: In the hybridsH←
2𝑎

andH←
2𝑏

, for the first backward

communication (and all its replays) for which, in the adversarial

processing, no recognition-falsifying modification occurred and

other modification did not lead to failed processing, onion layers

between the two last consecutive honest relays (the first might be

the forward receiver (=backward sender)) are replaced with random

onion layers embedding the same path. We separate this hybrid

into two just like H2 for the same reason. Let 𝑗 be the index of

the first of the two honest relays in question and 𝑗 ′ the index of

the second. H←
2𝑎

acts likeH∗←
1

except for the processing of 𝑂 𝑗 ′′ ,

where 𝑗 ′′ is the index of the last honest relay on the forward path of

the onion. Due toH2, the onion’s path starts at the second-to-last

honest relay on the original onion’s forward path. The onion layers

𝑂 𝑗 ′′+1, . . . , 𝑂𝑛 , 𝑂1, . . . , 𝑂 𝑗 ′ are replaced with 𝑂 𝑗 ′′+1, . . . , 𝑂𝑛 , 𝑂1, . . . ,

𝑂 𝑗 ′ , where 𝑂 𝑗 ′′+1 is formed as

FormOnion(𝑗 ′′ + 1,R ′,𝑚, 𝑅,P,P←′, 𝑃𝐾P, 𝑃𝐾P←′)
with honestly chosen randomness R ′ and P←′ = (𝑃←

1
, . . . , 𝑃←

𝑗 ′),
effectively cutting off the end of the onion’s reply path. If the onion’s

information is on the Tag-list, the tag is recreated on 𝑂 𝑗 ′′+1 before

it is sent.

H∗←
1
≈𝐼 H←2𝑎 : We construct an attacker on STI↔ with 𝑗STI↔ = 0

and 𝑗←STI↔ = 𝑗 ′ from any distinguisher of the two hybrids the same

way as for H2𝑎 . Due to the previous hybrid, the original onion

layers after relay 𝑃 𝑗 ′ are never output to the adversary since they

have been replaced with random layers.

HybridH←
2𝑏

: In this hybrid, we perform the actual replacement

of the onion layers between the honest relays for the onion whose

backward path was truncated inH←
2𝑎

. In essence, the consecutive

onion layers 𝑂←
𝑗+1, . . . ,𝑂

←
𝑗 ′ from a backward communication of an

honest (forward) sender, starting at the second last honest relay

𝑃←
𝑗

to the next following honest relay 𝑃←
𝑗 ′ (on the backward path),

are replaced with �̂�1, . . . , �̂� 𝑗 ′−𝑗 . Thereby for an honestly chosen

R ′′ and a random receiver 𝑅𝑟𝑑𝑚 :

�̂�1 ← FormOnion(1,R ′′,𝑚𝑟𝑑𝑚, 𝑅𝑟𝑑𝑚,P ′, (), 𝑃𝐾P′, ())
where𝑚𝑟𝑑𝑚 is a random message, P ′ = (𝑃←

𝑗+1, . . . , 𝑃
←
𝑗 ′) is the path

from 𝑃←
𝑗

to 𝑃←
𝑗 ′ .

Further, the hybrid calculates (and stores) another replacement

for the next part after the current replacement (𝑃←
𝑗 ′+1, �̃�𝑘) (by ex-

ploiting the fact that the sender knows the backward path and can

infer the message from any layer) as in the hybrid H∗←
1

before.

Then it also stores (info, 𝑃←
𝑗 ′ , (�̃�𝑘 , 𝑃

←
𝑗 ′+1)) to the 𝑂-list (to ensure

the replacement of the later path is used as well). As before, the

𝑂-list will be checked to pick the right processing of an onion.

H←
2𝑎
≈𝐼 H←

2𝑏
:H←

2𝑏
replaces for one backward communication,

the last subpath between two consecutive honest relay before an

honest (forward) sender. The output to A includes the later (by

H∗←
1

) replaced onion layers 𝑂𝑙𝑎𝑡𝑒𝑟 after the second honest re-

lay (these layers are identically generated in H←
2𝑎

and H←
2𝑏
) that

take the original subpath but are otherwise chosen randomly; the

original onion layers after the first of the honest relays for all com-

munications not considered byH←
2𝑏

(output byH←
2𝑎

) or, in case of

the communication considered byH←
2𝑏

, the newly drawn random

replacement (generated by H←
2𝑏
); and the processing before the

first honest relay 𝑃←
𝑗
.

Similarly to our argument forH←
2𝑎

, the𝑂𝑙𝑎𝑡𝑒𝑟 layers are random

and independent of the replaced layers, so they can be built without

needing the SLU← challenger.

776

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

Thus, all that is left are the original/replaced onion layer after the

honest relay and the original layers before. This is the same output

as in H∗
2
≈𝐼 H←1 . Hence, if there exists a distinguisher between

H←
2𝑎

andH←
2𝑏

, there exists an attack on SLU←.

HybridH<𝑥←
2

: From here, we refer to the combination ofH2𝑎←

andH←
2𝑏

asH←
2

for convenience. In this hybrid, for the first 𝑥 − 1

honest subpaths on backwards communications are replaced with

a random onion sharing the path and the other replacements cal-

culated as before and all are stored on the 𝑂-list. If A previously

(i.e., in onion layers up to the honest relay starting the selected

subpath) modified 𝜂 of an onion layer in this communication or

modified another part such that processing fails, the communication

is skipped.

H<𝑥−1←
2

≈𝐼 H<𝑥←
2

: Analogous to above.

Onion replacement for corrupted receivers
We replace the missing part between the onion layers already

replaced on the forward path and the onion layers already replaced

on the backward path. Due to the structure of RSOR, this part exists

for every onion and includes the link between the exit relay and

the receiver. Note that if the exit relay is the last honest relay on

the onion’s path, then no replacement can take place because the

message is simply sent to the receiver in plaintext. We thus only

consider onions that still have at least one adversarial relay left on

their path (which also implies that their exit relay is adversarial).

HybridH3: In this hybrid, for the first forward communication

for which, in the adversarial processing, no recognition-falsifying

modification (i.e., a modification on 𝜂) occurred (and no other mod-

ification caused the processing to fail) so far, forward onion layers

from its last honest relay to the corrupted exit relay are replaced

with random onions sharing this path, receiver, and message and

the first part of the reply-path. More precisely, this machine acts

likeH∗←
2

except for the processing of 𝑂 𝑗 ; in essence, the consecu-

tive onion layers 𝑂 𝑗+1, . . . ,𝑂𝑛 from a communication of an honest

sender, starting at the last honest relay 𝑃 𝑗 to the corrupted exit

relay 𝑃𝑛 are replaced with 𝑂1, . . . ,𝑂𝑛−𝑗 ; Thereby, for an honestly

chosen R ′:
𝑂1 ← FormOnion(1,R ′,𝑚, 𝑅,P ′,P ′←, 𝑃𝐾P′, 𝑃𝐾P′←),

where𝑚 is the message of this communication, 𝑅 is the receiver,

P ′ = (𝑃 𝑗 , . . . , 𝑃𝑛) is the path from 𝑃 𝑗 to 𝑃𝑛 and P ′← is the first

part of the reply-path (until the first honest relay), that a reply to

the original onion would have taken. If the onion’s information is

on the Tag-list, then the tag is recreated on 𝑂1 before it is sent.

H3 further checks for every onion (ending at) P← .𝑙𝑎𝑠𝑡 , if it was
a reply to these replaced onion layers (by using the information info
stored and ROnion). If so, it uses its knowledge about the original

forward onion (before replacement) and the sender to construct

the belonging original reply. With it, it computes the replacement

of the later onion layers for this communication as in hybridH∗←
2

and stores the corresponding information on the 𝑂-list. As before,

the 𝑂-list will be checked to pick the right processing of an onion.

H∗←
2
≈𝐼 H3: Similar to H∗

1
≈𝐼 H2, the forward onion layers

before 𝑃 𝑗 are independent and hence can be simulated for the dis-

tinguisher by an attack on STI↔. If the adversary tags one of those

layers, the attack can recognize the tag since it knows the expected

payload it should be receiving at each honest relay. The attack can

then recreate the tag after getting the challenge onion from the

STI↔ challenger. Similarly toH∗←
1
≈𝐼 H←2 , the backward onion

layers after P← .𝑙𝑎𝑠𝑡 are independent and hence can be simulated

for the distinguisher by an attack on STI↔. The remaining outputs

suffice to construct an attack on STI↔ similar to the one on TLU→

inH∗
1
andH2.

HybridH<𝑥
3

: In this hybrid, for the first 𝑥 − 1 forward commu-

nications for which, in the adversarial processing, no recognition-

falsifying modification (and no other modification that results in

failed processing) occurred so far, the onion layers between its last

honest relay to corrupted exit relay are replaced with random onion

layers sharing the path, message, receiver, and first part of the reply

path.

H<𝑥−1

3
≈𝐼 H<𝑥

3
: Analogous to above.

HybridH4: This machine acts the way that S acts in combina-

tion with FRSOR. Note thatH∗3 only behaves differently from S in

(a) routing onions through the honest parties and (b) where it gets

its information needed for choosing the replacement onion layers:

(a) H∗
3
actually routes them through the real honest parties that

do all the computation. H4 instead runs the way that FRSOR and

S operate: there are no real honest parties, and the ideal honest

parties do not do any crypto work. (b)H∗
3
gets inputs directly from

the environment and gives output to it. InH4, the environment in-

stead gives inputs to FRSOR and S gets the needed information (i.e.,

parts of path and the included message, if the receiver is corrupted)

from outputs of FRSOR as the ideal world adversary. FRSOR gives

the outputs to the environment as needed.

H∗
3
≈𝐼 H4: For the interaction with the environment from the

protocol/ideal functionality, it is easy to see that the simulator

directly gets the information it needs from the outputs of the ideal

functionality to the adversary: Whenever an honest relay is done

processing, it needs the path from it to the next honest relay or path

from it to the corrupted receiver and in this case also the message

and beginning of the backward path. This information is given to

S by FRSOR.
Further, in the real protocol, the environment is notified by hon-

est relays when they receive an onion together with some random

ID that the environment sends back to signal that the honest relay

is done processing the onion. The same is done in the ideal function-

ality. Notice that the simulator ensures that every communication

is simulated in FRSOR such that those notifications arrive at the

environment without any difference (this includes them having the

same repliability).

For the interaction with the real world adversary, we distinguish

the outputs in communications from honest and corrupted senders.

(0) Corrupted (forward) senders: In the case of a corrupted

sender, both H∗
3
and H4 (i.e., S + FRSOR) do not replace

any onion layers except that with negligible probability a

collision on the 𝑂-list resp. 𝑂-list occurs. (Notice that even

for honest receivers (and thus backward senders) layers fol-

lowing the protocol can be and are created.)

(1) Honest senders:

1.1) No recognition-falsifying modification of the onion by the

adversary happens (and if modification happens at all, the

processing does not fail [note that a failing processing is

the same as dropping; see 1.3)]): All parts of the path are

777

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

replaced with randomly drawn onion layers 𝑂𝑖 . The way

those layers are chosen is identical for H∗
3
and H4 (i.e.,

S + FRSOR).
1.2) The onion is tagged by the adversary: If the tagging oc-

curs on the forwards path between two honest relays, the

onion’s information is added to the Tag-list at the next
honest relay. This list exactly corresponds to the 𝐿𝑡𝑎𝑔 list

in FRSOR for forward onions and the onion is treated ac-

cordingly at the last honest relay: If that relay is the exit

relay, no output is produced. If it is not the exit relay, the

steps inH∗
3
ensure that the corrupted exit relay receives

a tagged onion. If the tagging occurs on the backwards

path, the onion’s information is not added to the Tag-list
and the final onion layer delivered to the reply receiver is

not tagged. This does not change the output toZ because

received replies are never output to the environment by

honest relays.

1.3) Some recognition-falsifying modification of the onion or a

drop or insert happens: As soon as a recognition-falsifying

modification happens, both H∗
3
and H4 continue to use

the bit-identical onion for the further processing except

when, with negligible probability, a collision on the 𝑂-list

resp.𝑂-list occurs. In case of a dropped onion, it is simply

not processed further in any of the two machines.

Note that the view of the environment in the real protocol is

the same as its view in interacting with H0. Similarly, its view

in the ideal protocol with the simulator is the same as its view

in interacting withH4. As we have shown indistinguishability in

every step, we have indistinguishability in their views. □

E SPHINX: PACKET FORMAT DESCRIPTION
This section is meant as a compact reference for the structure of

the Sphinx packet, which is used in the following appendices. For

a complete introduction to the Sphinx packet format, see [12]. A

Sphinx packet is made of a header 𝜂 = (𝛼, 𝛽,𝛾) and a payload

𝛿 . 𝛼 is built using the public keys 𝑦𝑖 := 𝑔𝑥𝑖 for each relay 𝑃𝑖 on

the onion’s path. The sender chooses a secret 𝑥 ∈ Z∗𝑞 and lets

𝛼𝑖 = 𝑔
𝑥𝑏0 · · ·𝑏𝑖−𝑖

and 𝑠𝑖 = 𝑦
𝑥𝑏0 · · ·𝑏𝑖−1

𝑖
, where 𝑏𝑖 = ℎ𝑏 (𝛼𝑖−1, 𝑠𝑖−1). 𝛼𝑖 is

the group element contained in the 𝑖-th layer of the header, and 𝑠𝑖
is the corresponding secret it shares with 𝑃𝑖 .

20
The 𝑏𝑖 are blinding

factors that transform 𝛼 at each relay. They are calculated with a

random oracle ℎ𝑏 . The remainder of the header is built using the

shared secrets 𝑠𝑖 after passing them through more random oracles:

ℎ𝜌 , ℎ𝜇 , and ℎ𝜋 are each used to key a different primitive. The 𝛽𝑖 are

built starting at the final layer:

𝛽𝜈−1 := {∗/𝑃𝑠 ∥𝐼 ∥𝑟𝑎𝑛𝑑 (2(𝑁−𝑛)+2)𝜅−|𝑅 |}⊕
{𝜌 (ℎ𝜌 (𝑠𝑛−1)) [...(2(𝑁−𝑛)+3)𝜅−1] }∥Φ𝑛−1 .

21

In this definition, ∗/𝑃𝑠 is either a sentinel value indicating that

this is a forward packet or the address of the original sender in a

reply packet. 𝐼 is an identifier used by 𝑃𝑠 to recognize replies. 𝑁

is the global maximum path length in this Sphinx instance. 𝜌 is

a PRG keyed with ℎ𝜌 (𝑠𝑖). Φ𝑖 is padding formed via the repeated

20
Note that our indices 𝑖 for relay names are relative to a single packet’s path for

clarity.

21
Note that we use the randomized padding described in Section 2.4.2 here.

application of the 𝜌 PRG: Φ0 is empty, while

Φ𝑖 = {Φ𝑖−1∥02𝜅 } ⊕ 𝜌 (ℎ𝜌 (𝑠𝑖)) [(2(𝑁−𝑖)+3)𝜅...(2𝑁+3)𝜅−1] .
The remaining 𝛽𝑖 are built as

𝛽𝑖 = {𝑃𝑖+1∥𝛾𝑖+1∥𝛽𝑖+1[...(2𝑁−1)𝜅−1] } ⊕ 𝜌 (ℎ𝜌 (𝑠𝑖)) [...(2𝑁+1)𝜅−1] .
Effectively, the construction of the padding is designed such that

Φ𝑖 is a suffix of 𝛽𝑖 . 𝛾𝑖 is the MAC 𝜇 (ℎ𝜇 (𝑠𝑖), 𝛽𝑖) of 𝛽𝑖 . Finally, a
forward payload 𝛿 is formed as 𝛿𝑛−1 = 𝜋 (ℎ𝜋 (𝑠𝑛−1), 0𝜅 ∥𝑅∥𝑚) and
𝛿𝑖 = 𝜋 (ℎ𝜋 (𝑠𝑖), 𝛿𝑖+1), where 𝜋 is a PRP keyed with ℎ𝜋 (𝑠𝑖).

The packet sent by the sender is ((𝛼0, 𝛽0, 𝛾0), 𝛿0). Each relay 𝑃𝑖
then processes the packet it gets into ((𝛼𝑖+1, 𝛽𝑖+1, 𝛾𝑖+1), 𝛿𝑖+1) [12].

F SPHINX: ADAPTED KEM-IND-CCA
Proof. We will use a PPT attacker A on the Sphinx-KEM-IND-

CCA property for the Sphinx RO-KEM to construct an attacker

BO𝐺 on the GDH assumption using the DDH oracle O𝐺 .
The GDH attacker B maintains five lists:

• 𝐿: List of group elements 𝑔𝑧 with their associated oracle

outputs (ℎ∗ (𝑔𝑧), ℎ∗ (𝑔𝑥1∗𝑧), ℎ𝑏 (𝑔𝑧 , 𝑔𝑥1∗𝑧)).
• 𝐿𝑦 : List of up to 𝑁 tuples, one for each adversarial relay on

the KEM path: Each holds (𝛼𝑖 , ℎ∗ (𝑠𝑖), ℎ𝑏 (𝛼𝑖 , 𝑠𝑖)).
• 𝐿𝑏 : List of (𝑔𝑎, 𝑔𝑧) element pairs with their corresponding

ℎ𝑏 (𝑔𝑎, 𝑔𝑧) values.
• 𝐿O : List of 𝛼 ′s that have been requested from O.
• 𝐿ℎ : List of group elements that have been requested from ℎ∗.

B receives a CDH challenge (𝑔,𝑔𝑥1 , 𝑔𝑥2) from the GDH chal-

lenger C. B uses 𝑔𝑥1
as the public key 𝑃𝐾 of the “honest relay”

and 𝑔𝑥2
as the challenge 𝛼 𝑗 . The attacker sends 𝑃𝐾 to A and gives

A access to the programmed random oracles ℎ∗ and ℎ𝑏 and the

decapsulation oracle O (which are described below). Next, B re-

ceives 𝑗 and 𝑦𝑖 for 𝑖 ≠ 𝑗 from A and checks that the public keys

are valid. B now chooses 𝑏0, . . . , 𝑏𝑛 randomly from Z∗𝑝 . To cal-

culate 𝛼𝑖 for 𝑖 < 𝑗 , B calculates the inverses 𝑏−1

0
, . . . , 𝑏−1

𝑗−1
and

uses them to form 𝛼𝑖 = 𝛼
𝑏−1

𝑖 ...𝑏−1

𝑗−1

𝑗
. To make 𝛼𝑖 for 𝑖 > 𝑗 , let

𝛼𝑖 = 𝛼
𝑏 𝑗 ...𝑏𝑖−1

𝑗
. Next, B chooses 𝑛 random 𝑟0, . . . , 𝑟𝑛 values as out-

puts for ℎ∗ (𝑠𝑖). To remember these choices in the programmed

random oracles, B stores (𝛼𝑖 , 𝑟𝑖 , 𝑏𝑖) in 𝐿𝑦 for 𝑖 ≠ 𝑗 . Now, it flips a

bit 𝑏 to determine whether it will simulate the KEM game for 𝑏 = 0

or 𝑏 = 1. If 𝑏 = 0, B sets 𝐿[𝛼] [1] := 𝑟 𝑗 , and 𝐿[𝛼] [2] := 𝑏 𝑗 . Finally,

𝛼0, 𝑟0, . . . , 𝑟 𝑗−1, 𝑟 𝑗+1, . . . , 𝑟𝑛 and 𝑏0, . . . , 𝑏 𝑗−1, 𝑏 𝑗+1, . . . , 𝑏𝑛 are sent to

A along with (𝛼 𝑗 , 𝑟 𝑗 , 𝑏 𝑗).
To simulate the decapsulation oracle O and the random oracles

ℎ∗ and ℎ𝑏 , B behaves as described in Algorithm 3.

Using a bad-flag analysis, we can see that any attackerA with a

non-negligible advantage in the KEM game must trigger the 𝑏𝑎𝑑

flag non-negligibly often, so B can also win the GDH game non-

negligibly often. The random oracles ℎ∗ and ℎ𝑏 are set up to behave
correctly in combination with O except if a “collision” is created

in the challenge creation phase (steps 3–7). Here, a collision refers

to B assigning two different random values to the same random

oracle inputs on accident. This can occur in two ways:

(1) The attacker already requested O(𝛼) in step two.

(2) The attacker already requested ℎ∗ (𝑠𝑖) or ℎ𝑏 (𝛼𝑖 , 𝑠𝑖) for 0 ≤
𝑖 ≤ 𝑛 in step two orB generates its own collision on accident

when 𝑠𝑖1 = 𝑠𝑖2 for 𝑖1 ≠ 𝑖2.

778

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

Algorithm 3 KEM attacker B’s oracles
function O(𝛼′)

if 𝛼 generated and 𝛼′ = 𝛼 then abort
if 𝐿 [𝛼′] [1] is not set then

Add 𝛼′ to 𝐿O
for 𝑔𝑧 ∈ 𝐿ℎ do

if O𝐺 (𝑔, 𝑃𝐾, 𝛼′, 𝑔𝑧) then
𝐿 [𝛼′] [1] ← 𝐿 [𝑔𝑧] [0]

if 𝐿 [𝛼′] [1] is not set then
𝐿 [𝛼′] [1] ←𝑅 {0, 1}3𝜅

for (𝑔𝑎, 𝑔𝑧) ∈ 𝐿𝑏 where 𝑔𝑎 = 𝛼′ do
if O𝐺 (𝑔, 𝑃𝐾, 𝛼′, 𝑔𝑧) then

𝐿 [𝛼′] [2] ← 𝐿𝑏 [(𝛼′, 𝑔𝑧)]
if 𝐿 [𝛼′] [2] is not set then

𝐿 [𝛼′] [2] ←𝑅 Z∗𝑞

return (𝐿 [𝛼′] [1], 𝐿 [𝛼′] [2])
function ℎ∗(𝑔𝑧)

if 𝐿 [𝑔𝑧] [0] is not set then
Add 𝑔𝑧 to 𝐿ℎ
if 𝛼 generated and O𝐺 (𝑔, 𝑃𝐾, 𝛼,𝑔𝑧) then

bad← 1

for (𝛼𝑖 , 𝑟𝑖 , _) ∈ 𝐿𝑦 do
if O𝐺 (𝑔, 𝑦𝑖 , 𝛼𝑖 , 𝑔𝑧) then

𝐿 [𝑔𝑧] [0] ← 𝑟𝑖

for 𝛼′ ∈ 𝐿O do
if O𝐺 (𝑔, 𝑃𝐾, 𝛼′, 𝑔𝑧) then

𝐿 [𝑔𝑧] [0] ← 𝐿 [𝛼′] [1]
if 𝐿 [𝑔𝑧] [0] is not set then

𝐿 [𝑔𝑧] [0] ←𝑅 {0, 1}3𝜅

return 𝐿 [𝑔𝑧] [0]
function ℎ𝑏 (𝑔𝑎, 𝑔𝑧)

if 𝐿𝑏 [(𝑔𝑎, 𝑔𝑧)] is not set then
if O𝐺 (𝑔, 𝑃𝐾,𝑔𝑎, 𝑔𝑧) then

if 𝛼 generated and 𝑔𝑎 = 𝛼 then
bad← 1

if 𝐿 [𝑔𝑎] [2] is set then
𝐿𝑏 [(𝑔𝑎, 𝑔𝑧)] ← 𝐿 [𝑔𝑎] [2]

if (𝑔𝑎, _, _) ∈ 𝐿𝑦 at index 𝑖

and O𝐺 (𝑔, 𝑦𝑖 , 𝑔𝑎, 𝑔𝑧) then
Retrieve (𝑔𝑎, _, 𝑏𝑖) from 𝐿𝑦

𝐿𝑏 [(𝑔𝑎, 𝑔𝑧)] ← 𝑏𝑖

if 𝐿𝑏 [(𝑔𝑎, 𝑔𝑧)] is not set then
𝐿𝑏 [(𝑔𝑎, 𝑔𝑧)] ←𝑅 Z∗𝑞

return 𝐿 [(𝑔𝑎, 𝑔𝑧)]

In any of the above cases, B simulates the oracles incorrectly.
22

Let the number of requests A makes to each oracle O, ℎ∗, and ℎ𝑏
be bounded by the polynomial 𝑝 (𝜅). The probability of each case

is bounded by 1/𝑞 and ⪅ (𝑝 (𝜅)+𝑁)
2

2𝑞 each for a collision on ℎ∗ and

ℎ𝑏 respectively.
23

According to Sphinx’s definition, the order 𝑞 of

the group G is on the order of 2
2𝜅
, meaning that both of these

probabilities are negligible.

22
Unless B happened to choose the same randomness in both cases, which only

happens negligibly often.

23
This corresponds to an upper bound for the likelihood for a successful birthday

attack given 𝑝 (𝜅) + 𝑁 requests and a pre-image set with 𝑞 members [4].

If neither of these events occur, B simulates the oracles correctly

and wins the GDH game whenever A wins the Sphinx-KEM-IND-

CCA game. □

G SPHINX ONION PROPERTY PROOFS
G.1 RSOR-Tagging Layer Unlinkability (TLU→)
Theorem 3. Sphinx satisfies TLU→ under the GDH assumption.

Proof. We prove that an adversary cannot distinguish the 𝑏 = 0

scenario from the𝑏 = 1 scenario through a hybrid argument starting

at 𝑏 = 0 and ending at 𝑏 = 1. For clarity, we separate the proof into

two cases: One where 𝑗 = 𝑛 and the other where 𝑗 < 𝑛. Initially,

this may seem problematic since the adversary chooses 𝑗 adaptively

after the first round of oracle accesses, so we cannot predict which

it will choose beforehand for our reductions. However, every step

in our proofs is either common to both cases (so it does not require

predicting 𝑗) or only applies after the adversary has made its choice.

Note that Danezis and Goldberg index Sphinx packet layers starting

at 0 [12]. Here, this means that 𝑃0 (= 𝑃𝑠) would send the Sphinx

layer with 𝛼0 in its header.

Case 1 (𝑗 = 𝑛): In this case, the honest relay on the forward path

is also the exit relay of the onion and thus the sender of the reply

onion.

HybridH0: This hybrid is just the 𝑏 = 0 scenario of TLU→ with

𝑗 = 𝑛.

Hybrid H1: As a first step, we replace the secrets used at the

honest relay (the exit relay) with randomness. H1 replaces the

random oracle outputs ℎ∗ (𝑠𝑛−1) with random {0, 1}𝜅 bitstrings

when building the reply header.
24 Proc requests for onions with

the challenge 𝛼𝑛−1 are also served using these random keys to keep

the oracle’s behavior consistent.

H0 ≈𝐼 H1: The difference between these hybrids reduces to

Exp
RO-KEM-IND-CCA

RO-KEM,A (𝜅): The Sphinx-KEM-IND-CCA attacker A
uses its inputs from the challenger and the assumed hybrid dis-

tinguisher D to build the challenge onion and serves requests to

the Proc and Reply oracles using its decapsulation oracle. Proc
requests with the challenge 𝛼𝑛−1 are served using the keys provided

by the challenger.

Hybrid H2: To ensure that only the challenge onion is recog-

nized for “challenge processing” by the exit relay, the Proc oracle
at the relay now returns (⊥,⊥) on every request with 𝛼𝑛−1 in its

header except if the rest of the header also matches the expected

header of the challenge onion.

H1 ≈𝐼 H2: This reduces to Exp
sEUF-CMA-vq

𝜇,A (𝜅) using the fact

that the PRF 𝜇 can be viewed as a MAC with the randomized key

ℎ𝜇 (𝑠𝑛−1). Any request to the Proc oracle at the exit relay with 𝛼𝑛−1

must contain a valid 𝛾 MAC for the 𝛽 in the header to be processed.

To notice a difference between the two hybrids, a distinguisher

must submit such a request with a modified 𝛽 or 𝛾 . Since 𝜇 is sEUF-

CMA-vq-secure, this request constitutes a MAC forgery.

Hybrid H3: This hybrid swaps 𝜋 (ℎ𝜋 (𝑠𝑛−1), ·) with a random

permutation (RP). Note that ℎ𝜋 (𝑠𝑛−1) is already a random key be-

fore this hybrid. Since Sphinx requires 𝜋 to be a strong PRP [12],

both 𝜋 and 𝜋−1
can be used as RPs after the replacement.

24
It also randomizes 𝑏𝑛−1 , but we do not need that for this proof.

779

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

H2 ≈𝐼 H3: A distinguisher D for these hybrids is easily con-

verted into an attacker A on Exp
prp

𝜋,A (𝜅).
HybridH4: In this hybrid, the honest exit relay 𝑃𝐻 only sends

the challenge reply in response to a Reply request if the onion

received in the corresponding Proc request has a payload that

matches the expected payload 𝛿𝑛−1 of the forward onion exactly.

H3 ≈𝐼 H4: Since 𝜋
−1 (ℎ𝜋 (𝑠𝑛−1), ·) is now an RP, every input is

mapped to a random output. In order for a distinguisher to notice

a difference between the two hybrids, it must submit a modified

payload attached to the challenge header that is accepted by the

oracle. After decrypting the payload, the oracle checks that the first

𝜅 bits of the contents are all zero and discards the onion it that is

not the case. A manipulated payload only starts with 0𝜅 negligibly

often, so the distinguisher only has a negligible chance of success.

Hybrid H5: This hybrid replaces the contents of the forward

payload with the contents as they would be in the 𝑏 = 1 scenario.

The original contents are 0𝜅 ∥𝑅∥𝜂0∥ ˜𝑘 ∥𝑚, while the replacements are

0𝜅 ∥𝑅∥𝑝𝑎𝑑→𝜅,𝑁 ∥�̄� with a random receiver 𝑅, a random message �̄�,

and padding instead of a reply header. When building the challenge

reply onion, 𝑃𝐻 still uses the original 𝜂0 reply header. The Proc
oracle also outputs the original message and receiver.

H4 ≈𝐼 H5: The Proc and Reply oracles at the exit relay behave

the same way inH4 andH5. 𝑃𝐻 consistently uses 𝜂0 as the chal-

lenge reply header in both hybrids. The replacement of the payload

contents reduces to Exp
1-LR-CPA

𝜋,A (𝜅).
HybridH6: In this hybrid, we rewind the temporary changes

made in the hybridsH4,H3,H2, andH1.

H5 ≈𝐼 H6: Apply the previous arguments in reverse. This con-

cludes the 𝑗 = 𝑛 case of the TLU→ proof.

Case 2 (𝑗 < 𝑛): For the second part of this proof, the honest relay

on the forward path is not the exit relay, i.e., 𝑗 < 𝑛.

HybridH0: The 𝑏 = 0 case of TLU→ with 𝑗 < 𝑛.

HybridH1: This hybrid performs the same steps as the hybrids

H1 andH2 in the 𝑗 = 𝑛 case.

H0 ≈𝐼 H1: See the corresponding hybrids in the 𝑗 = 𝑛 case.

Hybrid H2: In this hybrid, we replace 𝜋 (ℎ𝜋 (𝑠 𝑗−1), ·) with an

RP.

H1 ≈𝐼 H2: Analogous to Case 1’sH2 ≈𝐼 H3.

HybridH3: Previously (inH2), if 𝛿
′
𝑗−1

matches the original 𝛿 𝑗−1,

the resulting output is the correct 𝛿 𝑗 . Otherwise, the RP causes the

output to be a uniformly random {0, 1}𝑙𝜋 (𝜅) string.
InH3, instead of actually processing 𝛿 ′

𝑗−1
, the honest relay only

checks whether 𝛿 ′
𝑗−1

= 𝛿 𝑗−1. If so, 𝛿 𝑗 is used as the output onion’s

payload. Otherwise, a random {0, 1}𝑙𝜋 (𝜅) string is output instead.
H2 ≈𝐼 H3: If a distinguisher D chooses to submit the correct

challenge payload, the output in both hybrids is identical. IfD sends

a manipulated payload,H2 outputs a new RP output whileH3 pro-

duces a completely random string. These two distributions are only

distinguishable ifH3 happens to choose 𝛿 𝑗 as its random output,

which H2 would never do. The probability of that happening is

negligible.

HybridH4: This hybrid is analogous to Case 1’sH5. It replaces

the contents of 𝛿 𝑗−1 (which were originally 𝛿 𝑗) with the new con-

tents 0𝜅 ∥𝑅∥𝑝𝑎𝑑→𝜅,𝑁 ∥�̄�, 𝑅 and �̄� being a random receiver and mes-

sage.

H3 ≈𝐼 H4: Analogous toH5 in Case 1.

HybridH5: In the honest relay’s challenge processing,H5 al-

ways produces the same challenge header (the one belonging to the

challenge onion’s layer 𝑂 𝑗) without actually processing the header

input the relay is given. The challenge output of 𝑃𝐻 now only

depends on whether the payload was manipulated (i.e., tagged).

H4 ≈𝐼 H5: Due toH1, the honest relay only performs the chal-

lenge processing steps on headers that match the challenge header

exactly. Thus, both hybrids always output the same challenge

header for the challenge onion.

HybridH6: This hybrid replaces the PRG output 𝜌 (ℎ𝜌 (𝑠 𝑗−1))
with a random string.

H5 ≈𝐼 H6: Given a distinguisher D for the two hybrids, con-

struct an attacker A on Exp
𝑝𝑟𝑔

𝜌,A (𝜅).
HybridH7: In this hybrid, we replace the first (2(𝑁 − 𝑗) + 3)𝜅

bits of the contents of 𝛽 𝑗−1. These bits correspond to the address

of the relay 𝑃 𝑗+1, the MAC 𝛾 𝑗 , and 𝛽 𝑗 [...(2𝑁−1)𝜅−1] . The rest of 𝛽 𝑗
constitutes padding that we leave unchanged. The replacement is

{∗∥0𝜅 ∥𝑟𝑎𝑛𝑑 [(2(𝑁−𝑗)+2)𝜅−|𝛿 |] }.
H6 ≈𝐼 H7: Since 𝜌 (ℎ𝜌 (𝑠 𝑗−1)) is a random string, this change

can be reduced to Exp
1-LR-CPA

OTP,A . The new contents are exactly what

𝛽 𝑗−1 would contain if 𝑃←
𝐻

were the last relay on the path. The suffix

[(2(𝑁 − 𝑗) + 3)𝜅 . . . (2𝑁 + 1)𝜅 − 1]
of 𝛽 𝑗−1 is Φ𝑗−1 by construction.

25
With this change, the layers 𝛽0,

. . . , 𝛽 𝑗−1 are now independent of the later layers 𝛽 𝑗 , . . . , 𝛽𝑛−1.

HybridH8: The second part of the challenge onion still contains
the padding Φ0, . . . , Φ𝑗−1 nested in 𝛽 𝑗 ’s Φ𝑗 padding. To alleviate

this,H8 replaces Φ𝑗 with a random string of length 2 𝑗𝜅.

H7 ≈𝐼 H8: InH7, Φ𝑗 is calculated from Φ𝑗−1 as

Φ𝑗 ← 𝜌 (ℎ𝜌 (𝑠 𝑗−1)) [(2(𝑁−𝑗)+3)𝜅...] ⊕ {Φ𝑗−1∥02𝜅 }.
Since 𝜌 (ℎ𝜌 (𝑠 𝑗−1)) is a random string, the replacement

Φ𝑗 ← 𝜌 (ℎ𝜌 (𝑠 𝑗−1)) [(2(𝑁−𝑗)+3)𝜅...]
is indistinguishable from the original. As a result, this change re-

duces to Exp
1-LR-CPA

OTP,A .

HybridH9: This hybrid replaces the KEM instance used for the

second part of the challenge onion after the honest relay. Previously,

𝛼 𝑗 = 𝛼
𝑏 𝑗−1

𝑗−1
and 𝑠 𝑗 = 𝑦

𝑥𝑏0 · · ·𝑏 𝑗−1

𝑗
. Now, H9 picks a new 𝑥 ′ ←𝑅 Z∗𝑞 ,

setting 𝛼 𝑗 = 𝑔𝑥
′
and 𝑠 𝑗 = 𝑦𝑥

′
𝑗

and adjusting the later 𝛼𝑖 and 𝑠𝑖

following them accordingly.

H8 ≈𝐼 H9:H1 randomizes 𝑏 𝑗−1 into a unformly distributed ele-

ment of Z∗𝑞 . It follows that 𝛼
𝑏 𝑗−1

𝑗−1
and 𝑔𝑥

′
are identically distributed.

The same argument holds for the later 𝛼s and secrets.

HybridH10: This hybrid “fixes” the second part of the onion so

that it becomes a complete onion starting at 𝑃𝑆 again. To that end,

H10 starts building new 𝑂 ′
0
, . . . , 𝑂 ′

𝑗−1
onion layers that follow the

same path as the original 𝑂0, . . . , 𝑂 𝑗−1. These new layers are built

as a prefix to 𝑂 𝑗 , so the payload content of 𝛿 ′
𝑗−1

is 𝛿 𝑗 and 𝛽
′
𝑗−1

is

formed with 𝛽 𝑗 in its contents. The random oracle outputs ℎ∗ (𝑠 ′𝑗−1
)

and ℎ𝑏 (𝛼 ′𝑗−1
, 𝑠 ′
𝑗−1
) are randomized.

25
Technically, Sphinx uses the output of 𝜌 twice when building a header: Once to

generate the padding and a second time to encrypt 𝛽 . However, these use different

substrings of the PRG output. A can thus submit the two different 𝛽 contents with

an appropriate zero padding to the 1-LR-CPA challenger to extract the random string

required for the padding calculation.

780

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

Most importantly, 𝛼 𝑗 is now formed as 𝛼
′𝑏′𝑗−1

𝑗−1
, with the secrets

being built analogously.

H9 ≈𝐼 H10: The new layers𝑂 ′
0
, . . . ,𝑂 ′

𝑗−1
are never actually given

to the adversary. Their construction is thus entirely invisible to

the attacker except for the change in how 𝛼 𝑗 is formed. Using

H8 ≈𝐼 H9’s argument, 𝛼 𝑗 still has the same distribution in both

hybrids.

HybridH11: This hybrid replaces 𝜌 (ℎ𝜌 (𝑠 ′𝑗−1
)) with a random

string.

H10 ≈𝐼 H11: SeeH5 ≈𝐼 H6.

HybridH12: InH8, Φ𝑗 is replaced with a random string instead

of containing the previous Φ𝑗−1. Now, we replace that random

string with

𝜌 (ℎ𝜌 (𝑠 ′𝑗−1
)) [(2(𝑁−𝑗)+3)𝜅...] ⊕ {Φ𝑗−1∥0𝜅 },

so that Φ𝑗 is formed as the 𝑗-th layer of padding in the 𝑂 ′
0
, . . . , 𝑂 𝑗 ,

. . . , 𝑂𝑛−1 onion.

H11 ≈𝐼 H12: Analogous toH8.

HybridH13: This hybrid replaces the randomized oracle outputs

for 𝑠 ′
𝑗−1

with the actual outputs ℎ∗ (𝑠 ′𝑗−1
) and ℎ𝑏 (𝛼 ′𝑗−1

, 𝑠 ′
𝑗−1
).

H12 ≈𝐼 H13: SeeH1 ≈𝐼 H0.

Hybrid H14: In this hybrid, we rewind all of the temporary

changes made in the previous hybrids in the reverse order: H11,

H6,H2, andH1.

H13 ≈𝐼 H14: Apply the previous arguments in reverse. This con-

cludes the 𝑗 < 𝑛 case of the TLU→ proof.

We have proven that Sphinx satisfies TLU→. □

G.2 RSOR-Backw. Layer Unlinkability (SLU←)
Theorem 5. Sphinx satisfies SLU← under the GDH assumption.

Proof. We prove that an adversary cannot distinguish the 𝑏 = 0

scenario from the𝑏 = 1 scenario through a hybrid argument starting

at 𝑏 = 0 and ending at 𝑏 = 1. For clarity, we separate the proof into

two cases: One where 𝑗← = 0 and the other where 𝑗← > 0.

Case 1 (𝑗← = 0): In this case, the honest relay on the return path

is identical to the exit relay on the forward path and is thus also

the sender of the reply onion.

Hybrid H0: This hybrid is just the 𝑏 = 0 case of SLU← with

𝑗← = 0.

HybridH1:H1 replaces the random oracle outputs ℎ∗ (𝑠←𝑛←−1
)

with random {0, 1}𝜅 bitstrings when building the reply header. Proc
requests for onions with the challenge 𝛼←

𝑛←−1
are also served using

these random keys.

H0 ≈𝐼 H1: This difference reduces to Sphinx-KEM-IND-CCA.

See hybridH1 in the TLU→ proof for details.

Hybrid H2: To ensure that only the challenge reply onion is

“absorbed” by the reply receiver, the Proc oracle now returns (⊥,⊥)
on every request with the challenge 𝛼←

𝑛←−1
except if the rest of the

header also matches the challenge reply (in that case, no output is

produced at all).

H1 ≈𝐼 H2: See hybridH2 in the TLU→ proof.

Hybrid H3: We repeat the changes in hybrids H1 and H2 for

the honest relay 𝑃𝐻 to randomize ℎ∗ (𝑠𝑛−1) and reject challenge

onions with modified headers in Proc at 𝑃𝐻 .
H2 ≈𝐼 H3: Analogous toH0 ≈𝐼 H1 andH1 ≈𝐼 H2.

HybridH4: This hybrid exchanges 𝜋 (ℎ𝜋 (𝑠𝑛−1), ·) with an RP.

H3 ≈𝐼 H4: A distinguisher D for these hybrids is easily con-

verted into an attacker A on Exp
prp

𝜋,A (𝜅).
HybridH5: In this hybrid, the honest exit relay 𝑃𝐻 only sends

the challenge reply in response to a Reply request if the onion

received in the corresponding Proc request has a payload that

matches the expected payload 𝛿𝑛−1 of the forward onion exactly.

H4 ≈𝐼 H5: See hybridH4 in TLU→’s Case 1.

HybridH6: This hybrid replaces the reply header 𝜂0 and sym-

metric key
˜𝑘 in the contents of 𝛿𝑛−1 with a new reply header that

uses the same path, but different randomness and a random
˜𝑘 ′when

building the forward onion. The challenge reply onion’s header is

no longer read from the payload of the forward onion. Instead, the

actual reply header and symmetric key are built “at” 𝑃𝐻 when the

challenge Reply is requested.

H5 ≈𝐼 H6: The behavior of the Proc and Reply oracles is in-

distinguishable between the two hybrids, since both process the

onion and reply to it using the same header. The only other change

is to the contents of 𝛿𝑛−1. We can construct an attacker A on

Exp
1-LR-CPA

𝜋,A (𝜅) using any distinguisher D.

HybridH7: In this hybrid, replace 𝜋 (ℎ𝜋 (𝑠←𝑛←−1
), ·) and 𝜋 (˜𝑘, ·)

with RPs when building the reply onion.

H6 ≈𝐼 H7: Analogous toH3 ≈𝐼 H4.

Hybrid H8: Previously, the first layer 𝑂←
1

of the reply onion

had a payload encrypted with the RP 𝜋 (˜𝑘, ·). We now replace this

permutation with 𝜋 (ℎ𝜋 (𝑠←
0
), 𝜋 (ℎ𝜋 (𝑠←

1
), · · · 𝜋 (ℎ𝜋 (𝑠←𝑛←−1

), ·) · · ·))
while encrypting the same contents. The new permutation corre-

sponds to how a forward onion payload is encrypted at the sender.

H7 ≈𝐼 H8: Since chaining the permutations 𝜋 (ℎ𝜋 (𝑠←𝑖), ·) after
the RP 𝜋 (ℎ𝜋 (𝑠←𝑛←−1

), ·) results in a new RP, we have simply replaced

one RP with another.

HybridH9: Until now, the contents of the reply onion payload

were 0𝜅 ∥pad←𝜅,𝑁 ∥𝑚
←
, where𝑚← is the adversary-chosen message.

We replace them with 0𝜅 ∥𝑅∥pad→𝜅,𝑁 ∥�̄�, where 𝑅 and �̄� are ran-

domly chosen receivers and messages.

H8 ≈𝐼 H9: Analogous toH5 ≈𝐼 H6.

HybridH10: This hybrid replaces 𝜌 (ℎ𝜌 (𝑠←𝑛←−1
)) with a random

string when building the “reply” onion header.

H9 ≈𝐼 H10: Reduce to Exp
prg

𝜌,A (𝜅).
HybridH11: When building the “reply” onion header,H11 uses

∗∥0𝜅 instead of 𝑃𝑠 ∥𝐼 in the contents of 𝛽←
𝑛←−1

.

H10 ≈𝐼 H11: Since the change in 𝛽
←
𝑛←−1

’s contents does not af-

fect the padding, we can reduce this change to Exp
1-LR-CPA

OTP,A without

further provisions. At this stage, 𝑂←
1

is built just like 𝑂1 in the

𝑏 = 1 case of SLU←.

HybridH12: This hybrid rewinds all of the temporary changes

made in the previous hybridsH10,H7,H5,H4,H3,H2, andH1 in

that order.

H11 ≈𝐼 H12: Apply the previous arguments in reverse. This con-

cludes the 𝑗← = 0 case of the SLU← proof.

Case 2 (𝑗← > 0): Now, we consider the case where the honest
relay is on the reply path of the challenge onion.

HybridH0: The 𝑏=0 scenario of SLU← with 𝑗←>0.

HybridH1: This hybrid performs the same steps as the hybrids

H1,H2, andH3 in Case 1.

781

Proceedings on Privacy Enhancing Technologies 2024(4) Philip Scherer, Christiane Weis, and Thorsten Strufe

H0 ≈𝐼 H1: See the corresponding hybrids in Case 1.

HybridH2: In this hybrid, we exchange the two permutations

𝜋−1 (ℎ𝜋 (𝑠←𝑗←−1
), ·) and 𝜋 (ℎ𝜋 (𝑠←𝑛←−1

), ·) for RPs.
H1 ≈𝐼 H2: A distinguisher D for this hybrid is easily converted

into attackers A and B on Exp
prp

𝜋−1,A (𝜅). and Exp
prp

𝜋,B (𝜅).
HybridH3: In this hybrid, we change how the challenge onion’s

payload 𝛿←
𝑗←−1

is processed at 𝑃𝐻 . Normally, Sphinx calculates 𝛿←
𝑗←

by applying the 𝜋−1
(P)RP to the payload. We replace 𝜋−1

with the

RP 𝜋 (ℎ𝜋 (𝑠←𝑗←), 𝜋 (ℎ𝜋 (𝑠
←
𝑗←+1), · · · 𝜋 (ℎ𝜋 (𝑠

←
𝑛←−1

), ·) · · ·)).
H2 ≈𝐼 H3: Analogous to Case 1’sH8.

HybridH4:Now, instead of running the RP on 𝛿←𝑗←−1
during the

challenge processing,H4 runs it on 0𝜅 ∥𝑅∥pad→𝜅,𝑁 ∥�̄� for a random

receiver 𝑅 and message �̄�. This completely replaces the original,

adversary-chosen payload with a forward payload.

H3 ≈𝐼 H4: SeeH5 ≈𝐼 H6 in Case 1.

HybridH5: In this hybrid, 𝑃𝐻 does not process the challenge

onion. Instead, it outputs the header of 𝑂←
𝑗← and the payload as

defined inH3 andH4.

H4 ≈𝐼 H5: The processing output to the adversary is identical

in bothH4 andH5.

HybridH6:H6 replaces 𝜌 (ℎ𝜌 (𝑠←𝑗←−1
)) with a random string of

the same length when building 𝑂←
1
.

H5 ≈𝐼 H6: See Case 1’sH10.

HybridH7: In this hybrid, we replace the first (2(𝑁 − 𝑗←) + 3)𝜅
bits of the contents of 𝛽←

𝑗←−1
with randomness when building 𝑂←

1
.

This corresponds to the next relay address and the next MAC as

well as the (2(𝑁 − (𝑗← − 1)) + 3)𝜅-bit prefix of 𝛽←
𝑗← that does not

contain padding. 𝛽←
𝑗← itself is still used for the 𝑂←

𝑗← reinserted at

𝑃𝐻 .

H6 ≈𝐼 H7: Reduce this change to Exp
1-LR-CPA

OTP,A (𝜅) like in Case

1’sH11. After this change, 𝛽
←
𝑗←−1

can be built without using any of

the secrets 𝑠←
𝑗←−1

, . . . , 𝑠←
𝑛←−1

or the random oracle outputs derived

from them.

HybridH8: This hybrid replaces the keys used to generate𝑂←𝑗← .

Instead of choosing 𝛼←
𝑗← = 𝛼

←𝑏←
𝑗←−1

𝑗←−1
and 𝑠←

𝑗← = 𝑦
𝑥←𝑏←

0
· · ·𝑏←

𝑗←−1

𝑗← ,H8

picks a new 𝑥 ′ ←𝑅 Z∗𝑞 and lets 𝛼←
𝑗← = 𝑔𝑥

′
and 𝑠←

𝑗← = 𝑦𝑥
′
𝑗← . The later

𝛼←
𝑖
, 𝑠←
𝑖
, 𝑖 > 𝑗← are calculated accordingly.

26

H7 ≈𝐼 H8: See hybridH9 in TLU→’s Case 2.

HybridH9: InH9, we move the first 2 𝑗←𝜅 bits of Φ𝑛←−1 (cor-

responding to Φ𝑗←) into the 𝑟𝑎𝑛𝑑-padding inside 𝛽←
𝑛←−1

. To do so,

the 𝑟𝑎𝑛𝑑-padding is extended by 2 𝑗←𝜅 bits and Φ𝑛←−1 is truncated

to Φ𝑛←−1[2𝑗←𝜅...] .
H8 ≈𝐼 H9: For this step, assume a distinguisher D for the two

hybrids. We will construct an attacker A on Exp
1-LR-CPA

OTP,A (2 𝑗𝜅). A
submits

𝜌 (ℎ𝜌 (𝑠←𝑗←)) [(2(𝑁−(𝑗←+1))+3)𝜅...(2(𝑁−1)+3)𝜅−1]
⊕ · · ·
⊕𝜌 (ℎ𝜌 (𝑠←𝑛−2

)) [(2(𝑁−(𝑛−1))+3)𝜅...(2(𝑁−(𝑛−1−𝑗←))+3)𝜅−1]

26
InH1 , the random oracle outputs for 𝑠←

𝑛←−1
at the reply receiver 𝑃𝑆 are randomized.

H8 remains consistent with this behavior by also randomizing the random oracle

outputs for the “new” 𝑠←
𝑛←−1

. Since the “original” 𝑠←
𝑛←−1

is not in use, there is still

exactly one set of randomized oracle outputs at 𝑃𝑆 .

and

𝜌 (ℎ𝜌 (𝑠←𝑛−1
)) [(2(𝑁−𝑛)+3)𝜅...(2(𝑁−(𝑛−𝑗←))+3)𝜅−1]

to the challenger and uses the challenge ciphertext as the substring

[(2(𝑁 − (𝑗← + 1)) + 3)𝜅 . . . (2(𝑁 − 1) + 3)𝜅 − 1]
of 𝛽←

𝑛−1
. Φ←

𝑗← is already a random string due to it being the result

of an XOR operation with the random string 𝜌 (ℎ𝜌 (𝑠←𝑗←−1
)), so the

first scenario simulatesH3 and the second simulatesH4.

HybridH10: This hybrid replaces 𝜌 (ℎ𝜌 (𝑠←𝑛←−1
)) with a random

string when building 𝑂←
𝑗← .

H9 ≈𝐼 H10: Analogous to this case’sH5 ≈𝐼 H6.

HybridH11: Just like in Case 1’sH11, we use ∗∥0𝜅 instead of

𝑃𝑠 ∥𝐼 in the contents of 𝛽←
𝑛←−1

.

H10 ≈𝐼 H11: Analogous to Case 1’sH10 ≈𝐼 H11.

HybridH12: This hybrid rewinds the temporary changes made

in the previous hybrids:H10,H7,H6,H2, andH1 are unwound in

that order. Note that unwindingH7 means replacing the random

contents in 𝛽←
𝑗←−1

with the “legitimate” rest of the reply header, not

the 𝛽s that were transformed into the 𝑂1 header.

H11 ≈𝐼 H12: Apply the previous arguments in reverse. This con-

cludes the 𝑗← > 0 case of the SLU← proof.

We have now shown that H0 ≈𝐼 H12 with H0 = SLU←
𝑏=0

and

H12 = SLU←
𝑏=1

for both the 𝑗← = 0 and 𝑗← > 0 cases, proving that

Sphinx satisfies SLU←. □

G.3 RSOR-Tail Indistinguishability (STI↔)
Theorem 6. Sphinx satisfies STI↔ under the GDH assumption.

Proof. We prove that an adversary cannot distinguish the 𝑏 = 0

scenario from the𝑏 = 1 scenario through a hybrid argument starting

at 𝑏 = 0 and ending at 𝑏 = 1. We gradually transform the 𝑂 𝑗 onion

into the 𝑂0 onion in successive hybrids.

HybridH0: This hybrid is just the 𝑏 = 0 case of STI↔.

Hybrid H1: If 𝑗 = 0, the following hybrids do nothing. Skip

to hybridH6 in that case. In this hybrid, we begin truncating the

forward path. When building 𝑂 𝑗 , choose 𝛼𝑖 := 𝑔𝑥
′
and 𝑠𝑖 := 𝑦𝑥

′
𝑖

with a random 𝑥 ′ ∈ Z∗𝑞 .
H0 ≈𝐼 H1

1
: See hybrid H9 in the TLU→ proof’s Case 2. Note

that 𝑏 𝑗−1 is a random oracle output that is never used elsewhere.

HybridH2:When building the Sphinx packet, replace ℎ𝜌 (𝑠 𝑗−1)
with a random {0, 1}𝜅 -bitstring. ℎ𝜌 (𝑠 𝑗−1) is only required to calcu-

late Φ𝑗 .

H 𝑗

1
≈𝐼 H2: 𝑠 𝑗−1 behaves like a uniformly random group element.

By definition of a random oracle, these hybrids are indistinguish-

able.

Hybrid H3: Replace 𝜌 (ℎ𝜌 (𝑠 𝑗−1)) with a random string. Since

Φ𝑗 is calculated from an XOR operation with 𝜌 (ℎ𝜌 (𝑠 𝑗−1)), it is now
also a random string.

H2 ≈𝐼 H3: See hybridH6 in the TLU→’s Case 2.

HybridH4:When building 𝛽𝑛−1,H3 extends the random bits

in its contents by 2 𝑗𝜅 extra random bits and truncates Φ𝑛−1 by the

same amount.

H3 ≈𝐼 H4: See hybridH9 in SLU←’s Case 2.

HybridH5: This hybrid does not generate 𝛼0, . . . , 𝛼 𝑗−1, 𝛽0, . . . ,

𝛽 𝑗−1, 𝛾0, . . . , 𝛾 𝑗−1, 𝛿0, . . . , 𝛿 𝑗−1, or Φ0, . . . , Φ𝑗−1.

782

Provable Security for the Onion Routing and Mix Network Packet Format Sphinx Proceedings on Privacy Enhancing Technologies 2024(4)

H4 ≈𝐼 H5: The parts of the packet destined for the path prefix

are not used inH4, so not generating them in the first place goes

unnoticed by any distinguisher.

Hybrid H6: If 𝑗← = 𝑛←, we can skip the following hybrids

because the original and truncated paths are identical. We thus

assume 𝑗← < 𝑛 in the following. This hybrid replaces ℎ𝜌 (𝑠←𝑗←−1
),

ℎ𝜇 (𝑠←𝑗←−1
), and ℎ𝜋 (𝑠←𝑗←−1

) with random {0, 1}𝜅 strings. In order to

process Proc requests for 𝑃←
𝐻

with 𝛼s that are identical to the 𝛼 of

the challenge header,H6 uses the new random keys.

H5 ≈𝐼 H6: See hybridH1 in TLU→’s Case 1.

HybridH7: This hybrid adjusts the processing of onions at the

second honest relay 𝑃←
𝑗← by returning (⊥,⊥) for any Proc request

with the challenge 𝛼 unless the entire header matches the one of

the challenge onion.

H6 ≈𝐼 H7: See hybridH2 in TLU→’s Case 1.

HybridH8: This hybrid replaces 𝜌 (ℎ𝜌 (𝑠←𝑗←−1
)) with a random

string when forming 𝛽←
𝑗←−1

and Φ𝑗← .

H7 ≈𝐼 H8: The difference between these two hybrids reduces to

Exp
𝑝𝑟𝑔

𝜌,A (𝜅).
HybridH9: This hybrid replaces the actual contents of 𝛽←

𝑗←−1
.

InH8, these were

{𝑛←𝑗← ∥𝛾
←
𝑗← ∥𝛽

←
𝑗← [...(2𝑁−1)𝜅−1] }.

H9 replaces the first (2(𝑁 − 𝑗←) + 3)𝜅 bits of that with

{𝑃𝑠 ∥𝐼←∥𝑟𝑎𝑛𝑑 [(2(𝑁−𝑗←)+2)𝜅−|Δ |] }.
The rest of 𝛽←

𝑗←−1
is unchanged padding.

H8 ≈𝐼 H9: SeeH3 ≈𝐼 H4.

HybridH10: This hybrid reverts the temporary changes in the

previous hybrids:H8,H7, andH6 are unwound in that order.

H9 ≈𝐼 H10: Apply the previous arguments in reverse.

Hybrid H13: This hybrid does not generate 𝛼←
𝑗← , . . . , 𝛼

←
𝑛←−1

,

𝛽←
𝑗← , . . . , 𝛽

←
𝑛←−1

, 𝛾←
𝑗← , . . . , 𝛾

←
𝑛←−1

, ℎ𝜋 (𝑠←𝑗←), . . . , ℎ𝜋 (𝑠
←
𝑛←−1

), or Φ←
𝑗← ,

. . . , Φ←
𝑛←−1

.

H12 ≈𝐼 H13: These components are no longer required to form

the challenge packet: The later 𝛽←s have been replaced by the new

contents of 𝛽←
𝑗←−1

along with the later Φ←s.

H13 is the 𝑏 = 1 case of STI↔. SinceH0 ≈𝐼 H13, Sphinx satisfies

STI↔. □

783

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Onion Routing and Mix Network Packet Formats
	2.2 Network Models and Functionalities
	2.3 Formally Analyzing Mix Network Packet Formats
	2.4 Sphinx

	3 Repliable Service Onion Routing
	3.1 Defining Repliable Service Onion Routing
	3.2 RSOR Ideal Functionalities
	3.3 RSOR Onion Properties
	3.4 Properties imply FRSOR

	4 Analyzing Sphinx's Security
	4.1 The Sphinx Packet
	4.2 Nymserver
	4.3 Sphinx Key Encapsulation Mechanism (KEM)
	4.4 Sphinx Security Analysis

	5 Discussion
	5.1 Relaxed Security Requirements of FRSOR
	5.2 Using Sphinx in a Network

	6 Conclusion
	Acknowledgments
	References
	A Ideal Functionality
	B RSOR onion properties
	B.1 RSOR-Correctness
	B.2 REOR-Backward Layer Unlinkability
	B.3 REOR-Tail Indistinguishability

	C Secure RSOR Definitions
	D FRNRE UC Realization Proof
	E Sphinx: Packet Format Description
	F Sphinx: Adapted KEM-IND-CCA
	G Sphinx Onion Property Proofs
	G.1 RSOR-Forward Layer Unlinkability
	G.2 RSOR-Backward Layer Unlinkability
	G.3 RSOR-Tail Indistinguishability

