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Abstract

Shared mobility solutions such as bike sharing services play a key role to reduce greenhouse gas emissions in urban areas. In
this paper, we present an approach to model station-based bike sharing in the multi-modal agent-based travel demand model
mobiTopp. We compare different implementations of how agents choose their bike pick-up and drop-off stations. In addition
to two variations of distance minimization, we also present a gravity approach to represent the reliability of a system. By also
comparing different behavioral attitudes of the agents towards walking, a total of six scenarios were implemented and tested. The
presented approach allows to easily test scenarios with a varying number of bikes and stations. We apply our algorithm to a model
for the city of Hamburg, Germany, where the mobility behavior of a total of 1.9 million agents is modeled. Our simulations show
plausible results. The average distances, utilization shares of each station, and other parameters match with values from the actual
service. While the different strategies result in significantly different access times, and provide further new valuable insights and
options for parameterization, differences in resulting demand are small. Overall, this model provides new methods to simulate
bike sharing in travel demand models, thus helps to simulate an important mode of transport of the future.
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1. Introduction

A variety of measures are needed to reduce greenhouse gas emissions with the target of mitigating climate change.
The transportation sector, in particular, is responsible for a large proportion of emissions and therefore offers signif-
icant potential for reduction [1, 22]. According to Wiedenhofer et al. [23], densely populated areas are particularly
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well suited to provide low-emission mobility, suggesting that urbanization may present an opportunity. To increase the
sustainability of transport systems, especially in urban areas, it is necessary to create attractive alternatives to private
cars that are tailored to the local context. Thus, decision makers need to be provided with reliable information on how
the existence and design of new and sustainable mobility services, such as sharing systems, influence individual travel
behavior. This can be most accurately represented with agent-based travel demand models that allow for microscopic
analysis.

Especially bike sharing, as active travel mode, is popular, sustainable and facilitates multi- and inter-modal travel
behavior. According to DeMaio et al. [7], there are currently 2023 active bike sharing systems with more than nine
million bikes around the world. Europe and Asia account for 85 % of active systems, followed by North America.
However, there are different types of systems around the world [8]. The most common distinction is between station-
based and free-floating systems, also known as dockless. In station-based systems, bikes can exclusively be picked-up
and dropped-off at designated physical stations, whereas in free-floating systems, bikes can be found anywhere in the
service area. Due to the different bike sharing systems, but also the behavioral and geographical differences, diverse
and flexible modeling approaches are required to reflect reality [11]. Therefore, in this paper, we present a station-
based bike sharing approach in an agent-based travel demand model and compare different strategies of how users
select bike sharing stations on their trips.

The remainder of this paper is structured as follows. In Section 2 an overview of different bike sharing modeling
approaches is given, before the implementation of our station-based bike sharing system is carried out in Section 3
and different strategies for how agents can choose their pick-up and drop-off stations are presented. Afterwards, we
discuss the results in Section 4 and finally summarize our findings in Section 5.

2. Literature

Shui and Szeto [20] provide an extensive literature review on bike sharing planning problems. They differentiate in
strategic, tactical and operational problems, ranging from optimal station location to bike relocation problems. While
some modeling approaches focus solely on station-based [5, 10, 21, 24] or free-floating [16] systems, others integrate
both in their models [6, 11]. Most research analyzes bike sharing systems exclusively, without considering multi-
modal behavior and interactions with the remaining transport system [11]. According to Calderón and Miller [4] as
well as Yang et al. [24] re-balancing bikes within the system is also a major challenge when modeling bike sharing
services, which is addressed for example by [5, 10, 21]. However, different approaches of modeling the decision-
making process by which agents select stations to pick-up or drop-off bikes has received little attention in current
research.

Hebenstreit and Fellendorf [11] develop a bike sharing extension for the agent-based travel demand model
MATSim, considering both, station-based and free-floating systems including an e-bike sub-fleet. Agents opt for
the nearest stations in terms of distance to their start and end locations for bike pick-up and drop-off. Nevertheless,
the study does not provide a specific recommendation regarding the optimal radius within which stations should be
considered for selection. According to Lin et al. [15] and Lu et al. [16] bikes should not be further away than 500
meters. Coretti Sanchez et al. [6] choose an agent-based approach implemented in Python to model bike sharing. In
their model, agents always go to the nearest station. However, in the event that all bikes at the closest station have been
rented, agents redirect to an alternative station where bikes are still available. In contrast, Fernández et al. [10] allow
agents to reserve bikes, mitigating the need for redirection when bikes are unavailable. But it is not specified which
station is selected. In the approach of Soriguera et al. [21] all agents choose the nearest station within their catchment
area, too. However, two groups of agents can be differentiated. Agents equipped with an app benefit from enhanced
information and only choose stations with bikes available. Agents lacking the app can still use the service but do not
receive any availability information. Also e-bike sharing and re-balancing is included in the model. Chemla et al. [5]
aim to minimize the total discomfort experienced by agents. Therefore, the access and egress time on foot as well as
the leg by bike are weighted with individual prices and are subsequently minimized.

Thus, it can be stated that in most approaches the nearest station is chosen by an agent. As far as the authors are
aware, there is no published research that tests and compares different strategies for how agents determine which
station to choose.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.06.040&domain=pdf
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3. Methodology

3.1. mobiTopp

In our research, we employ and advance the agent- and activity-based travel demand model mobiTopp [14, 17, 18].
The modeling framework consists of two sequential steps. Initially, in a long-term module, a synthetic population is
generated, and long-term decisions are modeled. Following this, a short-term module simulates the travel demand of
the population over an entire week.

In the long-term module, person agents are generated and grouped to households. These agents and households
are provided with socio-demographic attributes based on a representative national household travel survey [19]. As a
result, each agent is affiliated with a workplace or educational site [12], has a household income, and is equipped with
an individual set of mobility tools. These include personal bikes, a driver’s license, shared household vehicles, transit
passes, and a range of memberships with shared mobility service providers, such as bike sharing.

In the subsequent short-term module, all agents are modeled throughout an entire week at a time resolution of one
minute. Different discrete choice models are applied to model agents decision making process of their destination and
travel mode choice. Impedance values used in these choices (e.g., travel time and travel cost) are pre-calculated on a
traffic analysis zone level, no route assignment is performed inside of mobiTopp.

In the following, we use a mobiTopp instance of the city of Hamburg for our research. In total, 1.9 million agents
are modeled in their mobility behavior. Although our model is capable of modeling an entire week, we show our
results for a typical Monday. The bike sharing infrastructure of the model mirrors StadtRAD, the largest bike sharing
service in Hamburg. The station-based service features 301 stations distributed across the city with a total of 3,700
bikes [9]. Historical information about the stations and their respective usage behavior was obtained from Hamburg’s
Urban Data Platform [2].

3.2. Bike Sharing Algorithm

We implement a station-based bike sharing algorithm capable of adding, removing and relocating stations. Ad-
ditionally, the initial number of bikes available per station can be adjusted. Thus, this algorithm may help decision
makers in expanding and enhancing their bike sharing service. In the following, we explain the underlying methodol-
ogy and distinguish three different scenarios for how agents select their pick-up and drop-off station.

The implemented bike sharing algorithm has components in both, the long- and short-term module of mobiTopp.
Within the long-term module, multinomial logit models are used to allocate bike sharing memberships to agents. In
the membership model, we differentiate between people living in the city or the surrounding area and those who are
tourists. In the subsequent simulation, therefore, only agents possessing a membership can choose bike sharing as a
means of transportation. The actual mode choice is implemented in a cross-nested logit model. Among others, both
travel times as well as travel costs are explanatory variables in the model. When using bike sharing, the travel time
consists of three components: the travel time by bike in between the two stations, along with additional time allocated
for access to and egress from the bike sharing station by foot.

The locations where activities are performed are referenced with precise geocoordinates, they are obtained using
the method proposed by Klinkhardt et al. [13]. Since bike sharing stations are also georeferenced, access and egress
travel times by foot to and from the stations can be accurately calculated. The travel time considered for the actual
bike sharing leg is identical to the one of private bikes. Since most other components of mobiTopp are based on
traffic analysis zones, the travel times are also approximated at zone level, to ensure consistency. Instead of using the
same travel times as for private bikes, a separate travel time matrix for bike sharing could also be integrated without
additional effort and thus reflect slightly slower speeds observed in reality [26]. The price for using bike sharing for
a specific trip is based on StadtRAD’s standard fare [9]. As a result, no costs are incurred for trips of less than 30
minutes, while a fee of ten cents is charged for each additional minute. Theoretically, additional fare options could
also be included.

For each trip, in the mode choice decision model it is first determined, whether a zone with a bike sharing station
is within a catchment area. Our algorithm allows to specify the catchment area of bike sharing stations by providing
a radius for zones included. For this paper, we applied a 500 meter radius as suggested in previous research [15, 16].
As the walking distance to the chosen station has a negative influence on the travel time and thus on the attractiveness
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Fig. 1. Implemented scenarios for selecting the pick-up and drop-off station

of the means of transportation, even larger catchment areas can be suitable to allow agents a more flexible behavior.
Furthermore, the subset of stations is reduced to only those having bikes available at the time of departure. In times
of mobility apps and the possibility to reserve bikes, the assumption of well informed agents seems reasonable.
Consequently, only stations within the subset of zones with bikes available can be selected by an agent. The determined
catchment area also applies to the subset of return stations for the bikes. However, there is no limit to the number of
bikes per station in the city of Hamburg [9]. Hence, we did not include a limitation in our model either. The only
constraint is that pick-up and drop-off stations cannot be the same, to avoid infeasible solutions, as an activity must
occur in between two trips.

Particularly in the city center, it is likely that several stations have to be included in an agent’s decision-making
process, as they are all located in the determined catchment area and bikes are available. A decision must therefore be
made on which station to choose. As described in Section 2, most studies simply use the closest station. However, there
are different strategies for selecting pick-up and drop-off stations for the rented bikes. We distinguish and implement
the following in our algorithm:

• Scenario 1:
In the first scenario, for each bike sharing trip, the nearest station to the start and end of the planned trip is
selected. The proximity is determined by the walking distance.
• Scenario 2:

In this scenario, reliability is taken into account. Thus, the pick-up station within the catchment area having
most bikes available is chosen. Therefore, this model can be understood as a gravity model. However, bikes are
returned at the nearest station to the destination, as done in Scenario 1.
• Scenario 3:

In the third scenario, not necessarily the closest station is taken, but the entire distance to be covered is mini-
mized, leading to more direct connections.

The three main scenarios are illustrated in Figure 1. O and D represent origin and destination of an agent’s trip,
while S1 to S5 are the stations available within the respective catchment area C for an agent. The size of the station
indicates the number of bikes available. Each bike sharing trip comprises of three legs L. An access leg L1 to the
pick-up station and an egress leg L3 from the drop-off station as well as the main leg by bike L2. In Figure 1, Lx,y

denotes leg x in scenario y.
Furthermore, our algorithm is tested on two different representations of agents’ attitudes towards station proximity,

resulting in a total of six simulations. In the cases where a behavioral parameter was adjusted, the value was set to the
estimate of walking to an e-scooter, which is slightly more sensitive in our model but still appears comparable.

Once the most suitable stations for pick-up and drop-off have been selected, the overall travel time and subsequently
the travel cost is computed for all three legs. Thus, all required information to calculate the agents utility for bike
sharing as means of transportation is available and the utility is calculated. Then, a discrete choice model is applied
to determine the mode of transport used by the agent for this trip. If bike sharing is preferred over the other available
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In the third scenario, not necessarily the closest station is taken, but the entire distance to be covered is mini-
mized, leading to more direct connections.

The three main scenarios are illustrated in Figure 1. O and D represent origin and destination of an agent’s trip,
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denotes leg x in scenario y.
Furthermore, our algorithm is tested on two different representations of agents’ attitudes towards station proximity,

resulting in a total of six simulations. In the cases where a behavioral parameter was adjusted, the value was set to the
estimate of walking to an e-scooter, which is slightly more sensitive in our model but still appears comparable.

Once the most suitable stations for pick-up and drop-off have been selected, the overall travel time and subsequently
the travel cost is computed for all three legs. Thus, all required information to calculate the agents utility for bike
sharing as means of transportation is available and the utility is calculated. Then, a discrete choice model is applied
to determine the mode of transport used by the agent for this trip. If bike sharing is preferred over the other available
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modes of transportation, a bike at the desired pick-up station is reserved for the agent. Since all agents are simulated
subsequently within a one minute time step, it cannot happen that bikes are overbooked and agents arrive at a station
without bikes available. Once a bike has been returned at the drop-off station, it can be included in a new mode choice
request of another agent. All steps of the implemented station-based bike sharing algorithm as part of a multi-modal
travel demand model are illustrated in Figure 2.

4. Results

In total, we performed six simulations that include each of the three scenarios illustrated in Fig. 1 with two different
behavioral attitudes of the agents with respect to station proximity. This allows both between and within-scenario
comparisons. Figure 3 illustrates the usage behavior over the simulated day in Scenario 1. The graph shows the total
number of bike rentals within a 60-minute period. A typical demand profile with a distinct morning peak and a broader
peak in the afternoon can be observed, indicating plausible results of our simulation. Since all agents are at their home
location at the beginning of the simulation, there are only a few bookings at the beginning. When modeling more than
one day, this would no longer occur from Tuesday onwards. This also explains the difference between the number
of rented bikes at the beginning and at the end of the simulation. All other scenarios lead to similar and therefore
plausible demand profiles, too.

In Figure 4, each point represents a station. The number of bikes available at each station at the start of the sim-
ulation is compared to the relative frequency of use for bike pick-ups at each station. For clarity, the two associated
regression lines are also included. In Scenario 1, there is almost no correlation with cor1 = 0.06. In Scenario 2, how-
ever, there is a high correlation of cor2 = 0.59. This is reasonable since Scenario 1 only minimizes walking distances,
while Scenario 2 considers the number of bikes available, leading to bigger stations being used more frequently. It
can also be seen that stations with no bikes at the beginning of the simulation are used during the day anyway in
both scenarios, as bikes have been returned at these stations previously. In addition, a positive correlation between the
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number of traffic analysis zones in the catchment area of a station and the relative frequency of use of bike pick-ups
at the respective station between 0.16 and 0.41 can be determined.

To further prove the plausibility of the results, we carried out a spatial analysis. 98 % of the stations were used,
either for bike pick-up or drop-off. In the case of the more sensitive behavioral parameter for access and egress walking
legs, 86 % of the stations were used. Stations not selected by agents are neither exclusively in the city center nor in
more rural suburbs. Comparing the three scenarios, the observed behavior is identical in Scenario 1 and Scenario 3,
while the modal split for bike sharing in Scenario 2 is significantly lower by 12 % (p < 0.0001). When agents become
more sensitive to walking to or from a station, there is a significant decrease in the modal split for bike sharing,
too. This statistical significance remains consistent across all scenarios, as verified by a two-proportions z-test with
p < 0.0001. Between 95 % and 97 % of all bike sharing trips had a maximum duration of 30 minutes with an average
ranging from 12.5 to 13.0 minutes, which is consistent with the behavior observed in Hamburg [3] and can be partly
explained by the fact that the first 30 minutes are free [9]. Table 1 compares the average distances observed for all
three legs in the six simulations, with the index β indicating the changed behavioral parameter.

Table 1. Simulated mean distances for access, main and egress leg in kilometers

Scenario 1 Scenario 1β Scenario 2 Scenario 2β Scenario 3 Scenario 3β

Ø Distance L1 (access, foot) 0.654 0.392 0.939 0.604 0.654 0.392
Ø Distance L2 (main, bike sharing) 3.850 3.715 3.870 3.833 3.850 3.715
Ø Distance L3 (egress, foot) 0.589 0.410 0.589 0.421 0.589 0.410

Although the differences and similarities between the scenarios seem obvious, we analyzed these statistically. Since
the distances shown in Table 1 are not normally distributed (Shapiro-Wilk test p < 0.0001), no ANOVA can be per-
formed to compare the scenarios. Therefore, non-parametric Kruskal-Wallis tests and a pairwise post-hoc comparison
with Dunn’s test were carried out.

Only the access time in Scenario 2 differs significantly from the two other scenarios. This is reasonable, as agents
are not forced to minimize the distance traveled. As stated previously, Scenarios 1 and 3 yield identical results,
although they could theoretically be different, as shown in Figure 1. This was also verified by simulations with different
initial random numbers. Consequently, there may be differences if the number of bike sharing stations in the model is
changed or if the model is transferred to a different planning area.

All scenarios produce reasonable results. Although we could identify differences in the three scenarios imple-
mented, the impact of precise estimates of people’s behavior is of greater influence. Thus it can be sufficient for most
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more rural suburbs. Comparing the three scenarios, the observed behavior is identical in Scenario 1 and Scenario 3,
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Table 1. Simulated mean distances for access, main and egress leg in kilometers

Scenario 1 Scenario 1β Scenario 2 Scenario 2β Scenario 3 Scenario 3β

Ø Distance L1 (access, foot) 0.654 0.392 0.939 0.604 0.654 0.392
Ø Distance L2 (main, bike sharing) 3.850 3.715 3.870 3.833 3.850 3.715
Ø Distance L3 (egress, foot) 0.589 0.410 0.589 0.421 0.589 0.410

Although the differences and similarities between the scenarios seem obvious, we analyzed these statistically. Since
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with Dunn’s test were carried out.
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are not forced to minimize the distance traveled. As stated previously, Scenarios 1 and 3 yield identical results,
although they could theoretically be different, as shown in Figure 1. This was also verified by simulations with different
initial random numbers. Consequently, there may be differences if the number of bike sharing stations in the model is
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All scenarios produce reasonable results. Although we could identify differences in the three scenarios imple-
mented, the impact of precise estimates of people’s behavior is of greater influence. Thus it can be sufficient for most



402	 Lucas Schuhmacher  et al. / Procedia Computer Science 238 (2024) 396–403
Schuhmacher et al. / Procedia Computer Science 00 (2024) 000–000 7

applications to let agents choose the closest station with bikes available as stated in Section 2. However, we showed
that there can be different strategies of agents behavior implemented in agent-based travel demand models depending
on the actual circumstances and behavioral attitudes. For a precise representation of real behavior, in our opinion this
approach provides a greater flexibility and accuracy in modeling station-based bike sharing.

5. Summary

We presented an approach to model station-based bike sharing in an agent-based travel demand model that allows
to easily add and remove bike sharing stations, as well as to manipulate the number of bikes available at the beginning
of the simulation at each station. Further, our algorithm allows modeling different strategies for how agents select
their pick-up and drop-off bike sharing stations. While there are no differences between minimizing access and egress
distances compared to minimizing the total travel distance in our model, a significant difference can be observed
when considering bike availability as done in Scenario 2. The authors are aware that this scenario is exaggerated.
However, in the case of unreliable systems, it may still make sense to walk a bit further but have a greater number
of bikes to choose from. To determine which scenario is most appropriate for a particular use case, behavioral or
tracking data is needed to account for regional differences. Depending on the planning area, also further scenarios
and influencing factors could be implemented, such as considering topography. However, since our model region
has almost no differences in height, we dispensed this factor. In our approach, we minimized distances, as usually
done in the literature. With a precise bicycle network as a basis, allowing for different speeds depending on the
infrastructure, it would be interesting to minimize travel times instead. As explained in Section 2, the re-balancing of
bikes between stations is of great interest to practitioners. Therefore, it is beneficial to include this in our model to
also test different bike re-balancing strategies. Furthermore, we aim to extend our methodology to inter-modal trips,
e.g. to study the changing behavior between bike sharing and public transport. Due to the high computation time of
agent-based travel demand models [25], it is reasonable to investigate whether our approach results in a significant
increase in computation time compared to a heuristic at traffic analysis zone level.
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