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Abstract
We work towards a vocabulary to represent pro-
cesses and temporal logic specifications as graph-
structured data. Different fields use incompatible
terminologies for describing essentially the same
process-related concepts. In addition, processes can
be represented from different perspectives and levels
of abstraction: both state-centric and event-centric
perspectives offer distinct insights into the underly-
ing processes. In this work, we strive to unify the
representation of processes and related concepts
by leveraging the power of knowledge graphs. We
survey approaches to representing processes and
reasoning with process descriptions from different
fields and provide a selection of scenarios to help

inform the scope of a unified representation of pro-
cesses. We focus on processes that can be executed
and observed via web interfaces. We propose to
provide a representation designed to combine state-
centric and event-centric perspectives while incor-
porating temporal querying and reasoning capabilit-
ies on temporal logic specifications. A standardised
vocabulary and representation for processes and
temporal specifications would contribute towards
bridging the gap between the terminologies from
different fields and fostering the broader applica-
tion of methods involving temporal logics, such as
formal verification and program synthesis.
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1 Introduction

Representing knowledge – describing what is true – is a mature field with a well-established
terminology and existing standards. Knowledge representation with ontologies, using graph-
structured representations, is standardised with W3C recommendations around the Resource
Description Framework (RDF) [27], RDF Schema [17] and the Web Ontology Language OWL [11].
The languages specified by the W3C enjoy mature tool support, are widely applied in many
different domains and have a clear connection with web architecture (Linked Data) to share and
access data. The adoption of principles for sharing data in research, especially regarding findability,
accessibility, interoperability and reusability (FAIR data [107]) provides organisational guidance.
However, knowledge representation with ontologies has a focus on describing what is the case.
Although OWL Time [26] provides primitives to represent time, support for representing changes
and temporal aspects is often limited in the existing languages.

Representing processes – describing what is happening – is, in contrast, less standardised and
there is less agreement on terminology and languages across fields. While many research fields
are concerned with the temporal representation of processes and related concepts, each field has
developed their own terminology and methods to address their requirements. Although many fields
try to represent essentially the same concepts, terminology is often incompatible across approaches.
Especially in the Semantic Web community, there is a lack of agreed-upon terminology and lack
of actively-used vocabularies for representing processes and related concepts.

The literature on research around representing and reasoning with processes is vast and scattered
across many fields. There is potential to bring hitherto unconnected languages, approaches and
systems together and put sophisticated methods around model checking and planning into the
hands of more users. Our aim is to try to capture the core of processes and process-related
concepts, applicable to many different domains, by trying to distil essential aspects of events and
processes.

We start with giving a brief historical overview of a selection of general works on events and
processes from a selection of fields.

Philosophy of Language and Linguistics: Publications from the field of philosophy of language
and linguistics provide arguments for approaches to represent actions and events, but little
in terms of mathematical formalisation. Linguistics and philosophy of language had notable
publications starting in the 1950s and 1960s with a focus on understanding the nature of
events. Vendler [105] investigates verb types and distinguishes temporal entities according
to whether they occur gradually or instantaneously and whether they have an endpoint or
not. States describe what is the case and last for a period of time (“A loved somebody from
t1 to t2”), activities are ongoing and do not have an endpoint (“A was running at time t”),
accomplishments are incremental and have an endpoint (“A was drawing a circle at t”), and
achievements occur instantaneously and have an endpoint (“A won a race between t1 and
t2”). Davidson investigates the structure of action sentences [28], assuming a universe that
contains particular events. In a follow-up work, Davidson addresses a criticism regarding
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recurrence of events, i.e., that certain events can occur multiple times [29] and discusses the
possibility of events as universals. More recently, Galton argues that processes are “patterns
of occurrences” [43] and thus treats processes as a kind of universal. The works in the field of
philosophy of language and linguistics provide only rudimentary material that would lead to a
mathematically rigorous formalisation that supports deductive reasoning.

Temporal Logic and Formal Methods: Many of today’s knowledge representation languages
build on subsets or variants of first-order logic, often formalised using interpretations and
models over a universe (or world). The introduction of modal logic brought ways to talk
about necessity and possibility and truth relative to multiple worlds. The formalisation is
based on Kripke structures (or transition systems). Prior developed Tense Logic [91] in the
1950s using modal operators to represent temporal aspects. Pnueli [90] introduced Linear-time
Temporal Logic (LTL) in the 1970s and 1980s to represent and reason about the behaviour of
computer programs. Computational Tree Logic (CTL) [40] is an alternative formalisation to
represent and reason about the behaviour of (technical) systems. While LTL uses a linear time
model, CTL uses a branching time model. Both temporal logics provide the basis for formally
proving correctness of programs via model checking. While LTL and CTL typically operate
over states expressed in propositional logic formulas, Abstract State Machines (ASMs) [53]
(initially called Evolving Algebras) provide support for full first-order logic structures as state
representation. ASMs have been used to formalise the semantics of programming languages,
for instance. A related approach for formally treating the behaviour of systems is described
by McDermott [76]. With the right descriptions of operations (with pre- and postconditions),
a planner can synthesise a program (a sequence of operations) that reaches a given goal.
Many of these approaches focus on representing the dynamics of systems as a progression
of state. Other approaches focus on representing the behaviour and the interaction between
processes. Communicating State Machines [16] formalise processes that can send and receive
messages. Similarly, Communicating Sequential Processes [56] and Milner’s work on a Calculus
of Communicating Systems [77] and the π-calculus [78] have a focus on communication and
interaction between processes.

Business Processes and Workflows: While approaches from the philosophy of language and
linguistics and from temporal logics and formal methods provide theory, the field of business
processes and workflows apply process descriptions and executions in a business context. The
focus in modelling business processes is on what is happening (events) and not what is true
(states). That is, in the business process community [96], processes are primarily modelled as
collections of activities (diverging from Vendler’s definition of activity). Event-driven process
chains [68] are an early approach to represent business processes. Often, Petri nets [88] are
used to formalise the different business process and workflow languages. Process models
(or workflows, i.e., processes that have a unique source place and a unique end place [36])
use a “directly-follows” relation between activities to describe a process. MOBILE [58]
provides a modular workflow model and architecture for implementing business processes
in office environments and distinguishes between functional, behavioural, organisational and
informational aspects. In the workflow field, researchers have identified patterns related to
control flow and data (states) [96] to be able to catalogue the features of workflow languages
and systems. More recently, approaches such as DECLARE [87] and Guard-Stage-Milestone
(GSM) [57] break up the rather rigid description of traditional process models and encode
relations and dependencies between temporal entities in a more flexible manner. Rather
than just using the immediate-next relation to describe processes, these approaches allow for
describing sets of “directly-follows” processes. Finally, in the last decades the field of process
mining [103] has gained prominence, to re-discover the control flow from traces of process
executions.

TGDK
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Next to the overview of general approaches from various fields, we survey the state of the
art concerning representing processes and related concepts with ontological modelling in RDF in
Section 2.

In this work we identify the main concepts that allow the formal representation of processes,
which could later form the basis for a common vocabulary using Semantic Web standards. We
try to be as general as possible, but focus our investigation on processes that can be executed
and observed via a web interface. While our focus is on describing technical processes, we try to
be generic enough to not explicitly exclude physical, chemical, biological or social processes. We
believe that such a formalisation of processes can help going beyond description of physical and
abstract entities, expanding towards the specification of changes, including temporal relationships
and reasoning. To illustrate the different ways of how these process description concepts might
be used, in Section 3 we provide a set of scenarios in which we highlight their respective main
requirements, in terms of process modelling patterns as well as querying and reasoning tasks.

Our idea of process representation includes the definition of steps, events and other elements
relative to process modelling, catering for both the state-centric and the event-centric perspective.
We also identify the need to provide means for distinguishing between particulars (occurrences)
and universals (events, states, processes) and keeping a trace of the events and states during the
unfolding of a process. Moreover, we illustrate how the specification of temporal properties can
be used to encode restrictions on the temporal order of process elements. We develop the core
concepts required for a core process ontology in Section 4.

Our endeavour has the potential to address not only representation of events and processes but
also operational and reasoning tasks, beyond previous attempts with mixed success, such as those
related to Semantic Web Services [75, 94]. Thus, next to aligning terminology and vocabulary, the
overall challenge is to bring the sophisticated methods from temporal logics and formal methods
to the Semantic Web community. We could use process representations to query the graphs
describing the processes (interface with systems around first-order logic, e.g., a query processor
or a reasoner), to query the temporal structure (interface with systems around temporal logic,
e.g., a model checker or a planner), or to generate and accept a sequence of events (interface with
process engines or stream reasoners). Thus, we propose a research agenda focusing on the core
properties needed to represent processes and related concepts and their semantics. We discuss the
main challenges for representing processes on the web in Section 5.

To begin to structure the discussion of processes and related concepts, we have identified five
dimensions, based on a combination of classifications found in the literature [96, 14]. While the
work in [96] distinguishes control, data and resource, the approach in [14] distinguishes process,
knowledge and trace. We believe that process/control and data/knowledge capture a similar
notion, respectively. We also consider that [96] and [14] do not cover operational and architectural
concerns. We want to distinguish between systems that operate offline (e.g., on historical recordings
of process executions) and those that operate online (e.g., managing a set of currently running
processes). See Table 1 for an overview.

The remainder of the paper is structured as follows. We start with a survey of the state
of the art in Section 2. We continue with the presentation of scenarios in Section 3 and then
introduce the assumptions and core concepts related to describing processes in Section 4. Next, we
identify the main challenges for representing processes on the web in Section 5 before concluding
in Section 6.
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Table 1 Dimensions for representing processes and related concepts.

Dimension Description

Control The dimensions refers to the representation of the process control flow, i.e. the
dependencies (temporal or otherwise) between different parts that make up a process.
The most basic control flow construct is that of a sequence. Other constructs include
branching conditions and repetitions. Note that control flow can apply to the level of
particulars (i.e., an occurrence of a process) as well as universals (i.e., a process).

Data The dimension refers to the representation data (i.e., data objects, data items,
knowledge) related to processes. The data related to the various steps could refer to
the state or the lifecycle of the domain objects created or manipulated by the process
at a given point in time. We assume the regular distinction between particulars (i.e.,
instances) and universals (i.e., classes) as in traditional knowledge representation
languages, though not all approaches use an object-oriented paradigm for data.

Resource The dimension refers to the resources that drive the progress of a process (e.g., human
workers, compute threads, organisation and roles). In the resource dimension, often
the distinction between particulars and universals comes up again.

Trace The dimension refers to the representation of “instances” of a process (i.e., an
occurrence of a process) and the associated history of evolution. A trace can contain
both occurrences of events and states. A trace needs to connect the constituent
elements, possibly via shared data objects with unique identifiers (’case ids’).

Online The dimension refers to the underlying system architecture. In particular we dis-
tinguish between online and offline processing. Information about processes and
process executions can be available in batch for offline processing or can be available
at runtime in a live system that makes control information available (e.g., upcoming
next, the process branches according to some conditions).

2 State of the art

Given that process representations are investigated in many fields, in the following we can only
provide an overview of a selection of publications. Our litmus test for inclusion of a work in this
section is that the work considers both processes and ontological modelling or data represented
in RDF. Such works contain ideas, concepts and use-cases from fields such as Upper Ontologies,
(Scientific) Workflow Provenance, Semantic Web Services, Stream and Event Processing, Formal
Methods and Business Process Management.

We group the presentation of publications according to fields. We start each group with a
description of the aim of the field and then present related works and contrast them with our
proposed approach. For comprehensive surveys, see [93], [31] and [9]. We give an overview in
Table 2.

2.1 Upper ontologies
Upper ontologies aim to describe general concepts in modelling such that domain ontologies built
using these upper ontologies follow a principled approach and do not conflate (metaphysical)
categories. Often, upper ontologies distinguish between continuants (endurants) and occurrents
(perdurants). Continuants are “three-dimensional”, i.e., exist in space only, while occurrents are
“four-dimensional”, i.e., can exist in space and time.

The notion of a process appears in domain-independent and upper ontologies. While in the
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [15] itself does not
specifically consider processes, other works use DOLCE to talk about processes and plans, e.g.,

TGDK
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Table 2 Ontological and RDF-based works around processes with ideas, concepts and use-cases from
different fields. We give whether (+) or not (-) a work allows for the representation of Control, Data,
Resource, Trace or Online dimension of processes. Note that a + does not imply that semantics are
defined for the representations. For the BPM works, we give their foundation (e.ġ. standard, process
calculus), if applicable.

Field Work C D R T O

Upper Ontologies

DOLCE [15] - - - - -
BFO [84] - - - - -
OntoUML/UFO-B [4] + - + - -
Schema.org [52] + - - - -

(Scientific) Workflow Provenance

PROV-O [59] - - - + -
OPMW [47] + - - + -
ProvONE6 + + - + -
ProvONE+ [18] + + - + -
PWO [44] + - - + -
Taverna [101] + - - + -
Pegasus [50] + - - + -
Kepler [5] + - - + -

Semantic Web Services
Agarwal et al. [1] (π-calculus) + + + - -
OWL-S/DAML-S [8] + + + - -
WSMO [55] + + + - -

Stream and Event Processing
RDF Stream Processors [13, 89, 20] - + - + +
Stream Reasoners [12, 80, 106] - + - + +
Complex Event Processors [7, 6] + + - + +

Formal Methods

Program Ontologies [10, 72, 30] + - - + -
Data Access Tools [73, 85, 98, 71] - + - - +
Transition Systems with KGs [66, 22, 38] + + + - +
Model Checkers [109] + + + + -
Runtime Enforcement [64, 22] + + + - +
Runtime Checking [66, 38] + + + - +

Business Process Management

BPMN ontology [95] (BPMN) + + + - -
BPMO [19] (BPEL/BPMN) + + - - -
Bertoli et al. [14] (BPMN) + + - + -
Koschmider et al. [69] (Petri Nets) + - - - -
Gasevic et al. [48] (Petri Nets) + - - - -
Thomas et al. [99] (EPC) + - + + -
WiLD [61] + + - - +
GSM4LD [63] (GSM/CMMN) + + - - +

[83]. The Basic Formal Ontology (BFO) [84] contains a term for Process1, and [97] details how to
represent continuants (covering space) and occurrents (covering space and time). In the Unified
Foundational Ontology part B (UFO-B), or UFO’s incarnation OntoUML, events are considered [4],

1 http://purl.obolibrary.org/obo/BFO_0000015

http://purl.obolibrary.org/obo/BFO_0000015
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where an event is something that has a beginning and an end in time and where other things
(specifically endurants) may participate. One could compare an event in UFO-B to an activity or
process in the terminology of the other surveyed fields. Then, the participants in an event could
be regarded as the resource dimension. In addition, the mereological (i.e., part-of) and historical
relations between events could be regarded as the control dimension, albeit with only very few
language constructs.

In Schema.org [52], there are no terms to model processes. However, special kinds of processes
can be modelled, such as a how-to description or a (cooking) recipe2, which, at least in the JSON
representation, can consider sequential flow. However, in the translation to RDF, the ordering
gets lost, but there is an ongoing discussion to change that3.

2.2 (Scientific) workflow provenance
Works in Scientific Workflows and Provenance are mainly concerned with modelling entities,
activities that transformed them and agents who carry out the activities. Those works were
developed first for the recording of the activity of scientific labs that process samples, e.g., in
biology.

The Open Provenance Model for Workflows (OPMW) is an ontology to describe the workflow
traces and their templates of scientific processes [45]. Part of the OPMW work is the Provenance
and Plans ontology [46] (P-Plan4), which extends the Provenance Ontology [59] (PROV-O5) with
terminology to describe the plans (that is, the control flow) that govern the execution of scientific
processes. P-Plan can be used to describe plans and establish a relationship between such plans
and the provenance records in PROV-O that provide details with a focus on the entities and steps
of past executions of scientific workflows. However, P-Plan does not capture elaborate control-flow
constructs that are used in other types of workflows. A more recent approach is ProvONE6 for
the publication of scientific workflows [47]. ProvONE provides constructs to model workflow
specifications and workflow execution provenance. The OPMW and ProvONE capture traces
of workflow executions. They aim to provide detailed records of how each step is performed,
which aligns with the trace dimension. ProvONE+ is an extension of ProvONE that specifically
addresses the requirements for capturing the provenance of control-flow-driven workflows [18],
including sequence, parallel split and synchronisation in the control category. ProONE and
ProvONE+, address aspects of the data dimension in terms of how data is managed and utilised in
control-flow-driven workflows. Outside the domain of scientific lab work, the Publishing Workflow
Ontology (PWO) is an ontology for the description of workflows in scientific publishing [44]. They
use ontology design patterns to address modelling requirements of workflows. PWO includes
sequence, parallel split, synchronisation, exclusive choice and simple merge.

Various systems have been proposed to provide the environment for specifying and enacting
workflows such as Taverna and Kepler but each of them partially provides all the patterns in the
control-flow category. Taverna [101] uses SCUFL (the simple conceptual unified flow language, a
data-flow language) to specify control constraints for execution ordering and conditional constructs,
which can encompass various control flow patterns such as if/else or case structures. Kepler [5]
provides support for branching and synchronisation. Wings for Pegasus [50] is a workflow system
that uses semantic representations to describe the constraints of the data and computational

2 http://schema.org/Recipe
3 https://github.com/schemaorg/schemaorg/issues/1910
4 http://purl.org/net/p-plan
5 https://www.w3.org/TR/prov-o/
6 http://purl.org/provone
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steps in the workflow. These works aim to fulfil various requirements related to representing
workflows, capturing provenance information, describing plans and steps, creating workflow
templates, accommodating domain-specific extensions and managing control flow. In provenance
execution, the focus is on capturing the detailed record of the actual execution steps. However,
some of these models have limitations in accurately and fully specifying control-flow patterns for
scientific workflows. This limitation primarily impacts the prospective provenance, which includes
the structure and static context of a workflow. However, their primary focus is not on representing
data or instances of processes but on control and provenance aspects. Moreover, they do not
consider the representation of resources like human resources, computational resources, or roles in
the workflow.

2.3 Semantic web services
Works in Semantic Web Services aim to annotate Web Services in order to facilitate automated
discovery, composition (e.g., into a process), invocation and re-use of such services. Their work
builds on the works in Web Services that typically come without such annotations.

When business processes (e.g., BPMN) are used to describe choreographies and orchestrations
of electronic business activities, even beyond organisational boundaries [79], their execution
requires interoperability between the electronic interfaces. Interoperability standards emerged
from these needs, which in the context of process integration led to the creation of Web Services.
Web Services7 allow for invoking operations tunnelled through HTTP POST requests. There is an
entire family of standards, called ‘WS-*’, in the area of Web Services, which allow for, e.g., service
description or service discovery. To allow for the composition of Web Services, compositions via an
orchestrator can be achieved using process languages such as BPEL8 (also known as BPEL4WS or
WS-BPEL). [79] discusses that the life cycle of process instances and data items can be regarded
as state machines.

Beyond these functionalities, Semantic Web Services aim at describing services through machine
understandable representations, allowing the automated discovery, composition, invocation and
reuse of services on the Web. Different alternatives have been proposed for representing Semantic
Web services most prominently: OWL-S (Web Ontology Language for Web Services)9 and WSMO
(Web Service Modelling Ontology)10. OWL-S (previously called DAML-S [8] – DARPA (Defense
Advanced Research Projects Agency) Agent Markup Language for Services – consist of three main
parts: an ontology describing what a service does; an ontology to describe the service process and
an ontology to specify how to interact with the service. OWL-S contains terminology to describe
(hierarchical) process models with the following control flow elements: Sequence, Split, Split-Join,
Any-Order, Choice. The ‘service grounding’ aspect of OWL-S could be argued to hint at the
resource aspect of processes. The input, output, precondition, effect of OWL-S’s ‘service profiles’
loosely relate to the data aspect. WSMO [94] proposes a conceptual model for describing Web
services, separating the goals or expectations of service requesters from the actual descriptions of
the service features, capabilities and interfaces. WSMO also introduces the concept of mediators
allowing the conciliation of potential discrepancies between services. Execution in the context
of WSMO, WSMX (Web Service Execution Environment) [55], is event-based. The ‘interface’
aspect of WSMO could be argued to hint at the resource aspect of processes. The input, output,
precondition, effect of WSMO’s ‘capability’ loosely relate to the data aspect. Another approach

7 https://www.w3.org/2002/ws/
8 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
9 http://www.w3.org/Submission/OWL-S/
10 http://www.w3.org/Submission/WSMO/

https://www.w3.org/2002/ws/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
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from Semantic Web Services [1] contains a process language with formal semantics based on
the π calculus. This language can express sequential, parallel (‘composition’) and conditional
(‘summation’) control flow. The approach can model agents and services (corresponding to the
resource aspect) next to involved ontologies (corresponding to the data aspect).

2.4 Stream and event processing
Stream processing addresses the problem of efficient managing and querying rapidly changing flows
of data and events, typically augmented with time annotations. Hereby, time is a fundamental
element for representing concepts such as order, simultaneity or concurrence of a given process.
Systems, processing frameworks and query languages have been developed over the years, targeting
the increasing demands of high-velocity data consumers, in multiple domains like healthcare
monitoring, security surveillance, environmental sensing and the industrial Internet of Things.

Nevertheless, traditional stream processing often faces the challenge of handling heterogeneous
data sources and thus different models, which are hard to integrate and reason upon. RDF stream
processing, stream reasoning and complex event processors have been presented in the literature,
addressing this challenge form different perspectives [34].

RDF stream modelling has been presented as an approach to extend RDF with explicit
temporal annotations, in order to enable continuous query processing over events or stream
items [34]. Following a graph-based representation with explicit semantics provides a richer
modelling approach for data streams, also offering ways of overcoming semantic heterogeneity
through streaming data integration, e.g., through methods like ontology-based data access [21].
Existing modelling approaches like RDF Stream Processing in SPARQL (RSP-QL) [33], use
point-in-time or interval semantics to represent time, defined at either the triple or graph level.
Compatible implementations of continuous query processors for RDF streams include Continuous
SPARQL (C-SPARQL) [13], Continuous Query Evaluation over Linked Streams (CQELS) [89],
or SPARQLStream [20]. Processes in these RDF stream systems are often represented as states
that may change over time (e.g., sensor observations denoting the state of a monitored subject)
and the queries are used to formalise specific types of instances or patterns – thus reflecting the
control flow. A first attempt to formalise the description of RDF stream resources and endpoints
is the Vocabulary and Catalog of Linked Streams (VoCaLS) [100], although it does not explicitly
include the specification of streaming processes.

Stream reasoning has taken a step beyond continuous queries, exploring the possibility of
exploiting the semantic relationships among events through reasoning tasks [34]. This sub-field
has studied different approaches, many of which implement variations of incremental reasoning.
View maintenance-inspired approaches include systems like the system by Volz et al. [106], which
is based on the delete and re-derive (DReD) algorithm and in which axioms are added and
removed according to the entailment rules. In these stream reasoners, processes and activities are
not explicitly modelled, but such reasoners allow for reasoning tasks that involve the temporal
structure. Such tasks typically allow for deriving new knowledge (e.g., new events) as a result
stream, thus generating new occurrences. Benchmarking and evaluation of different stream
reasoning approaches is still an area under active exploration [51], given the heterogeneity of
existing reasoning approaches and underlying temporal logics.

Semantic complex event processing (CEP) has studied the modelling and querying of streaming
events, allowing the continuous querying of complex patterns. These patterns include, for example,
finding sequences of events (i.e., when an event e1 is followed by another event e2); or two
evaluate if two events happen simultaneously [7]. CEP query languages like Event Processing
SPARQL (EP-SPARQL) [6] allow using RDF triples to represent these events and add query
language extensions that allow to express these temporal order and simultaneousness patterns,
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which represent the control flow among events. The language includes the SEQ operator to find
sequences of triple patterns according to a time-based order. Similarly, the simultaneous presence
of triple patterns can be detected using the EQUALS operator. Later on, these CEP operators
were formalised and incorporated into the RSEP-QL model that combines both CEP and RSP
query models [32]. In these CEP implementations, the activities and processes are reflected in the
queries, where the expected order of sequences, patterns and other conditions are specified. While
this is convenient for monitoring tasks and summarisation, the definition of explicitly defined
processes could potentially facilitate and optimise the execution of CEP and reasoning query
patterns in streaming environments.

2.5 Formal methods
Formal methods are formal techniques to model and analyse the behaviour of systems. Those
techniques are concerned with modelling a general notion of process, i.e., describing any sequence
of state changes and the nature of these state changes. They can be applied to system designs or
specifications as they can be found in engineered systems, e.g., railway systems [42]. They can also
be applied to more abstract systems, such as programs, where they form the basis to describe both
program semantics [108] and program correctness [54], or indeed any kind of system that inhibits
behaviour, including natural and sociological ones. As such, formal methods, in particular those
targeting programs and program development, are closely related to process modelling, because
both are concerned with describing possible and allowed sequences of states and events. Therefore,
we believe that the rich toolkit of languages and tools from formal methods can successfully be
applied in process modelling.

As we are eventually looking for a formal grounding for a core process ontology, which shall
allow for reasoning about control flow and data as prescribed by a process, we also summarise
related work that connects ontologies with formal methods to describe programs.

Programs are similarly concerned with describing control flow and data, but even though
programs focus on generating traces, the ontologies describing programs and traces formalise
similar ideas as process ontologies and can be a valuable source of inspiration, in particular for
domain-aware simulation.

We subdivide our discussion of ontologies and programs into three groups, depending on their
task: ontologies that describe programs and their output, ontologies that enable data access from
a running program and approaches that tightly couple programs and ontologies that interact
during program execution.

2.5.1 Describing programs and software systems
The following approaches are concerned with the syntax of a program, or the processes and the
final traces generated by the program – during execution these systems are not applicable. On a
purely syntactic level, Atzeni and Atzori [10] propose an ontology to describe the source code of
Java programs, but are not concerned with the runtime semantics, i.e., the generated traces.

On a higher level of abstraction, Diepenbrock et al. [35] focus on describing the architecture
of a microservices system, while Oberle et al. [81, 82] give an ontology for general concepts in
software systems, aiming for, among others, conceptual clarity for middleware. Lee et al. [72]
elaborate an ontology of concepts in Java to help introduce them in courses to novice programmers,
by connecting them to concepts from education. Similarly, de Aguiar [30] have produced an
ontology for concepts in object-oriented programming. Such systems are not targeting to describe
processes, but the concepts in the language and methodology in which the programs/processes
are implemented.
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As for the output of programs, the BOLD tool of Pattipati et al. [86] and Al Haider et al. [2]
use ontologies to describe execution traces, i.e., logs, of programs with the aim to simplify access
to these quickly growing structures for static analysis [110]. In a more specific setting, Din et
al. [37] describe a simulator for the geological process, where the final output trace is exported as a
knowledge graph for easy query access by domain experts. If the program is the description of the
process in question, or a part of the program, e.g., a method, then the output is a description of
the generated traces. The approach is, however, not suitable for the kind of modelling we envision,
as it heavily tends towards low-level implementation details.

2.5.2 Enabling safe data access
To ensure safe interactions between ontologies and programs, one approach is to ensure that data
loaded by some query language adheres to the type system of the program. These approaches
focus exclusively on the relation of occurrence and data. This has been implemented to express
loadable data by using SHACL (Shapes Constraint Language) shapes [73] or SPARQL query
containment [65] as static approaches at compile time, or by generating classes in the programming
language from OWL ontologies, see, e.g., [85, 98, 71].

These approaches focus on RDF data, which may contain the description or parameters of a
process serialised in it, but again focus on low-level implementation details, specifically the class
system of, mostly, object-oriented languages.

2.5.3 Making knowledge available at runtime
The final task we examine is to make knowledge available at runtime. These works are, thus,
concerned with processes (as procedures, etc.), occurrences (as runtime objects) data (as data
types) and resources (as environment). While there are several languages that are concerned
with connecting some kind of knowledge with programs, we focus on those that are designed to
operate either on description logics models or on RDF graphs, or at least have an extension that
does so. One such language is Golog [74] and its concurrent extension ConGolog [49], that uses
first-order logic guards to examine and pick elements from its own state. Zarriess et al. [109]
extend ConGolog to integrate description logic into a concurrent extension of Golog. They also
investigate model checking against CTL (Computation Tree Logic). Model checking does not
execute the program and, thus, has no occurrences. ConGolog is minimalistic and, thus, more
suited for high-level modelling of workflows than low-level approaches.

A more direct connection between knowledge and transition is established by language where
the knowledge, e.g., as a knowledge graph, is external to the program state, but can be queried
and manipulated using special operators. Fagin et al. [41] use epistemic operators to explicitly
distinguish between what an agent believes and what is the case in the world, leading to the concept
of knowledge-based programs. An extension, again using description logics to model knowledge, is
presented by Calvanese et al. [22], which instead of learning focuses on revision [67]: actions change
the (global) knowledge, which must then be revisited and repaired to remain consistent. The
approach is interesting for modelling the behaviour of ‘agents’ and is naturally concurrent, thus
being another possible basis for modelling workflows in collaborative or competitive settings. This
is akin to runtime enforcement, where an additional component fixes the trace during execution
to ensure its some property, which Calvanese et al. understand as logical consistency.

The most direct connection is realised by semantically lifted programs [66], which interpret the
runtime state as a knowledge graph using an external ontology and allow the program to access
this knowledge graph at runtime. Semantically lifted programs support a modelling approach
where knowledge and program data are unified, and a process is ontological and computational at
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the same time, depending on how it is accessed. Ontology-mediated programs [38] work similarly
and interpret parts of the knowledge graph as program variables, but the user must provide the
mapping from program variables themselves. Furthermore, their approach requires the number
of instances to be known upfront. Both approaches allow for checking conditions at runtime to
realise (internalised) runtime monitoring.

Finally, semantic lifting can also be used to enforce that a program adheres to domain knowledge
by a universal guard to check that a transition will result in a consistent, lifted knowledge graph [64].
This is implementing runtime enforcement on a trace level.

2.6 Business process management
The field of Business Process Management is concerned with the modelling of processes in businesses
with the aims of this modelling ranging from communicating how (i.e., according to which process)
things should get done in a business to automating the process using information systems.

Business Process Model and Notation (BPMN) is a visual language to represent processes11.
The BPMN ontology provides a formal representation of the visual concepts defined in BPMN,
such as steps, events, gateways and sequence flows [95]. The ontology in [95], as a representation
of BPMN, covers the corresponding wide range of control flow patterns and allows for the
specification of data requirements, such as input and output data and the assignment of roles
or agents responsible for specific steps. The aim of the ontology was to faithfully represent the
constraints of the visual modelling language, thus the necessary semantics for workflow execution
is out of scope. The BPMN ontology has only limited support for modelling organisational or
resource-related aspects of business processes.

The business process modelling ontology (BPMO) [19] has been developed to represent high-
level business process workflow models, abstracting from existing notations and languages such
as BPMN and BPEL (short for Business Process Execution Language12). BPMO focuses on
the representation of process specification and includes various workflow elements such as tasks,
events, block patterns (inspired by BPEL) and graph patterns (inspired by BPMN 1.0). These
block and graph patterns serve as control flows, representing decision points within the workflow.

The work in [14] builds on [95] and also allows for modelling the data coming from process
executions to enable querying and reasoning over the representations. The representations contain
especially traces of past process executions next to the involved resources and data items. The
authors use OWL reasoning (RDFS and OWL 2 RL) or SPARQL queries (with entailment regimes)
to query processes, data and traces. The inferencing they consider is concerned with the resources
that have been involved in specific traces.

Other works study the representation of Petri Nets using semantic technologies [69, 48]. Petri
Nets are directed graphs consisting of places and transitions representing states and events/activities
respectively. These works aim to enable the sharing of Petri nets in RDF or OWL. While the
foundations of Petri Nets representations allow capturing different workflow patterns (e.g., AND-
Split, OR-Split, Loops, etc.), they are limited in their expressivity to the basic Petri Net language
elements lacking consideration for extensions.

Another graphical modelling notation for business processes is the so-called event-driven process
chain (EPC). EPC can be used to represent process models. Core language elements in EPC are
functions (activities), events, control flow transitions, logical connectors (OR, AND, XOR) and
resources. The authors of [99] investigate the semantic annotation of EPC process models.

11 http://www.omg.org/spec/BPMN/2.0/
12 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

http://www.omg.org/spec/BPMN/2.0/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html


A. Harth, T. Käfer, A. Rula, J.-P. Calbimonte, E. Kamburjan, and M. Giese 1:13

Two approaches, WiLD (Workflows in Linked Data) and GSM4LD (Guard-Stage-Milestone
for Linked Data), are designed to describe and execute workflows in Linked Data environments.
WiLD [61] is a hierarchical process model [104], which allows for specifying sequential, parallel and
conditional control flow. WiLD can also model process instances and together with its operational
semantics in ASM4LD [60], workflows in WiLD can be executed. Correspondingly, the approach
needs a notion of the data on which conditions are evaluated. A similar approach is taken in
GSM4LD [63], which brings the Guard-Stage-Milestone (GSM) approach [57] (later standardised
as CMMN – Case Management Model and Notation13) to Linked Data. Control in GSM is entirely
determined data-driven, that is, via conditions evaluated on the environment and process-relevant
milestones. Again, the operational semantics are given in ASM4LD. In contrast to GSM4LD,
an execution of a WiLD workflow can give a light-weight process trace, by assigning finishing
timestamps to finished activities, without additional modelling effort in the operational semantics.
GSM4LD however supports cycles, thus to produce a complete trace would need extra data
structures.

3 Scenarios

In this section, we provide an overview of various application areas that use processes and
review the requirements outlined in these applications to capture various process aspects. These
scenarios collectively cover a wide range of aspects, including control, data, resources, traces and
architecture; the main task over these representations often relates to querying and reasoning
over the representation of processes and related concepts. Additionally, we examine the features
required of a process language, categorised based on workflow patterns [102] and we use WCPn to
indicate patterns related to control and WDPm to indicate patterns related to data.

An aspect that was not explicitly mentioned in other works is that of hierarchies defined
between processes. Concerning sub-process support the language should provide capabilities for
defining a new relationship where the steps of a process include steps from other processes. We use
H to indicate the hierarchical modelling pattern. These process hierarchies can be further divided
into i) include, which indicates that a procedure is included in another procedure by specifying
that the activities within a procedure are inclusive of the activities of another procedure. ii)
extends, which identifies that a procedure presents a list of activities that are a variation of the
activities of another procedure. iii) generalise, which is used in hierarchical process modelling to
represent inheritance or specialisation relationships between processes.

3.1 Manufacturing process documentation
The Manufacturing process documentation use case involves the maintenance and adjustment of
gear head lathe machinery14 as described in a maintenance manual. The process consists of a
sequence of steps that must be completed in a sequential order to address maintenance tasks
and ensure optimal machine performance. It is crucial to record the order in which these steps
are carried out. The initial step in the sequence involves a safety check of the machinery. Upon
completion of the preceding step, the process enables the following steps, including instructions
for adjusting the tension of motor belts, tailstock alignment, and spindle alignment. The spindle
alignment step involves several sub-steps, including loosening the bearing lock nut, tightening the
bearing adjustment nut, testing the spindle by rotating it, and finally re-tightening the bearing

13 https://www.omg.org/spec/CMMN/1.1/
14 This machinery features a gear-driven mechanism, crucial for various metalworking tasks commonly used in

metalworking industries such as turning and threading.
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locking nut, all contributing to the overall spindle alignment step. The process of maintaining and
adjusting gear head lathe machinery involves a series of steps (such as safety checks, adjustments,
and alignments) that transition the machinery between different states (such as operational, under
maintenance, and calibrated).

Assumptions. For the use case we assume a graph-structured representation and basic control
flow patterns.

Core concepts. In terms of control this applies since a sequential process with steps that must
be completed in a specific order is described which may include patterns such as sequence (WCP1).
Data could include information about the state of the machinery, measurements taken during
maintenance, and any data related to the adjustments made thus including patterns such as
case data (WDP5), and environment data (WDP8). In terms of resources, we may represent
information about the individuals performing the maintenance and possibly the tools or equipment
used as resources. In terms of hierarchies between processes, in this use case, we need to represent
the include relationship between processes. Each time someone performs maintenance on the gear
head lathe machinery, a system could generate a trace of the process, documenting how each step
in the maintenance process was carried out, including the spindle alignment sub-steps. In the
online dimension, should the trace be generated automatically, the use case would require some
infrastructure to monitor the unfolding of the process.

Tasks. Queries can serve multiple purposes, including the retrieval of specific processes based
on criteria like process name (i.e., process retrieval), the extraction of specific steps or sub-
steps from processes (i.e., step extraction), and facilitating the comparison and analysis of
multiple processes (i.e., cross-process analysis). Users can query for common steps, shared
sub-steps, or similarities/differences between processes, enabling the identification of reusable
components, standardisation of processes, or the recognition of best practices across different
processes. Reasoning plays a crucial role, contributing to tasks like process validation by employing
logical reasoning rules to detect inconsistencies, contradictions, or missing steps within a process.
Reasoning also supports process execution by determining the appropriate order of steps and
handling dependencies (i.e., process execution).

3.2 Manufacturing data spaces
The Manufacturing data spaces use case involves the cataloguing of data in manufacturing settings,
where the goal is to catalogue the data sets collected during manufacturing, in order for data
scientists to access the appropriate data for downstream data analytics. In this use case, the
position in the manufacturing process must be part of the metadata of the data sets to consider
this context during searches. The manufacturing process follows a stamp-forming flow, involving
steps like heating, pre-forming, stamping, cooling, de-moulding, and reworking, with potential
variations and additional pre- and post-processing steps. The data dimension encompasses the
representation of specific data sets collected during manufacturing. As goods are manufactured,
data is generated, and specific traces and data are recorded.

Assumptions. We assume a graph-based hierarchical process representation. The hierarchy
allows for introducing variations on the lower levels of the process while keeping the high-level flow
the same. Data analytics may involve the time spent on different event instances traces, hence
time stamps are required.
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Core concepts. In terms of control, various patterns are essential, including linear sequences
(WCP1), case data (WDP5), environment data (WDP8), parallel split (WCP2), synchronisation
(WCP3), and hierarchy/subprocesses (H). The aspect of data is relevant, as input and output
materials and their occurrences are modelled. The aspect of resource is of interest, if the person
who conducted the experiments is modelled. The aspect of trace is paramount in this scenario,
as past experiments are recorded in traces for further querying. In this manufacturing data
spaces scenario, the exclusion of the online dimension is justified by focusing on analysing past
experiments rather than performing the analyses in real-time.

Tasks. The main task is querying traces. Queries focus on various aspects of the data and
metadata generated during process instances, such as those related to products meeting key
performance indicators (KPIs) or those executed by specific individuals or on particular days.
Reasoning is limited in the use case, however a need can be foreseen to find the difference between
two hierarchical process models.

3.3 Healthcare and tele-rehabilitation
The Healthcare and tele-rehabilitation use case involves modelling patient states following physical
rehabilitation treatments, such as post-operative recovery, home-based reeducation or post-stroke
physiotherapy. Traditional rehabilitation requires intensive intervention by healthcare professionals
and may not adequately adapt to individual patient characteristics, context, or motivation. Digital
rehabilitation addresses these challenges by offering personalised therapies – such as rehabilitation
exercises – using sensors to monitor exercise performance and physiological markers. The patient’s
process is modelled as a set of states, with transitions triggered by their own decisions and
influenced by a digital assistant’s suggestions. Data gathered from wearable and environmental
devices guide recommendations, such as resting, adjusting exercise intensity, or modifying the
overall treatment based on the patient’s characteristics, motivation, and emotional status.

Assumptions. The scenario assumes representation of events and processes as graphs, and
temporal order among events related to the patients. For instance, exercises can be represented
as events that follow a temporal order, e.g., StartExercising SEQ ExerciseEasy would represent a
sequence of two events: the patient starting to exercise, followed by an easy exercise.

Core concepts. The different steps in the use case can be represented as events (e.g., EasyExercise),
while states can also be used to represent activity stages of a patient (e.g., resting). Thus,
connections among states and events could be possible. For instance an expression as StopExercise
→ resting can represent temporal order among an event and a state. Moreover, occurrences are
needed in order to characterise particular instances of events, i.e., specific exercises performed by
a specific patient.

Tasks. As part of the use case different tasks need to be performed. Among these, continuous
queries have to be performed over the events captured by the motion and activity sensors. These
queries may request sensor data related to exercise performance or the patient’s physical status
within specific time boundaries. These requests are expressed using SPARQL-based queries, for
instance monitoring the number of exercise movements performed as well as the time spanned
in and between exercises. Analysis of exercise progression and order can also be performed, e.g.,
identifying the sequences of exercises over time. Furthermore, queries can also verify the sequence
of correct and incorrect exercises performed during a session. These queries require the notion
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of now, i.e., the moment used as a reference for computing time windows, and/or evaluating the
occurrence of events over time. Query results can be continuously generated and used to create
higher-level events through a stream reasoner, such as determining if a patient is fatigued based
on movement quality, breathing and heartbeat. Additionally, the patient’s treatment pathway
can be modelled over time as a process, enabling the detection of non-compliance or continuous
under-performance among patients, among other insights.

3.4 Domain-aware simulation
In the Domain-aware simulation use case, simulators must schedule and execute tasks in an
initially unknown order to transform an initial state into a result state. To access this simulation
result, they must also provide a means to query the result state and the sequence of executed
tasks leading to it. A simulation task is modelling a state change according to some process in
the domain of the simulation. Thus, they are inherently domain-specific and must have precisely
described conditions for process initiation. These tasks can be modelled ontologically to allow the
simulator to understand both their ontological description (conditions for process initiation) and
computational description (changes needed to transform the current state).

While the domain modelling is often implicit in the simulation software, it can be made explicit.
The simulator queries its state for possible steps at each simulation step, executes them in parallel
for all parts, and analyses whether their changes trigger further tasks in the same simulation
step. This can be done either by querying for newly enabled processes based on the state or by
modelling dependencies between processes.

The geological simulator of Qu et al. [92], which simulates geological processes such as deposition
of material and subsequent chemical process related to hydrocarbon generation, is an example
where the domain modelling is made explicit: Such a domain-aware simulator relates its (internal)
state to (external) geological descriptions, such as composition of geological layers, and its tasks
to geological processes, such as deposition.

Assumptions. The use case assumes a graph representation of the domain, as well as a notion of
sequence – while a transition is realised in the simulator, it must be described and recorded outside
of it.

Core concepts. Concerning the representation of control, one must, beyond basic patterns like
sequences (WCP1), express that all possible tasks must be checked for applicability in some order
and may be executed concurrently (e.g., Interleaved Parallel Routing WCP17, Interleaved-Routing
WCP40) is necessary. For example, geological processes such as deposition can be concurrently
active in different areas, such as erosion on two different mountains, or concurrently in the same
area, such as heating of organic material and compaction, both due to increased pressure.

Representing control also affects data representation, as data may have cause-effect relation-
ships between them, such as in Data-Based Routing (e.g., Task Precondition Data - WDP35,
Task Postcondition Data - WDP37, Data-based Task Trigger - WDP39), which should be able to
interpret the simulated state as a knowledge graph.

The query tasks outlined below require an explicit representation of both the trace, especially
for temporal properties of simulation runs and data, to examine the content of the simulation
state at each point. In case of hyperproperties [24], i.e., specification and comparison of multiple
simulator runs, one also wants to represent, and query, multiple traces. It may, depending on the
application, also be relevant to examine resources, e.g., to examine the scheduling decisions of a
concurrent simulator due to thread synchronisation or load balancing.
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Tasks. The overall task involves executing the simulation and two additional reasoning and
querying subprocesses after completion. First, it requires access to the final state and trace
through queries to retrieve the simulation’s results. Second, as intermediate steps, the simulator
must execute membership queries to determine which tasks can run next. These queries may
target either the current simulation state or the overall sequence of executed tasks, and they
can express specifications over the simulation algorithm or domain-specific constraints on task
sequences. In terms of the aforementioned geological simulator, such a query may retrieve all the
parts of the state, where a certain geological process starts [92].

Beyond querying, one must be able to reason about the simulation runs and results with
respect to the domain. This includes expressing temporal properties over single simulation runs
to express temporal constraints. Potentially, one may need to investigate either all possible runs,
e.g., if certain parameters are not known, or compare multiple runs, to compare the effects of
parameter changes. This is akin to model checking and expressing hyperproperties. Similarly, one
may want to query multiple runs of the simulation.

3.5 Aircraft cockpit design
The Aircraft cockpit design use case focuses on ergonomic analyses of aircraft cockpits in virtual
reality. Aircraft cockpits must be designed for the safe execution of pilot workflows. To support
ergonomic analyses of aircraft cockpits during the early design phase when only CAD models are
available, a workflow-aware analysis tool has been developed [62]. The tool enables the analysis
and visualisation of pilot workflows in aircraft cockpits within a virtual reality environment.
Hierarchical process models are employed to break down the processes pilots perform in aircraft
cockpits. For example, take-off phases (e.g., taxi, climb) are at a higher level, while physical
pilot activities (e.g., moving throttle, engaging autopilot) are at the leaf level. Data includes
information related to aircraft cockpit design specifications, such as data structures in Virtual
Reality derived from CAD models. During ergonomic analyses of aircraft cockpits, occurrences
are generated to gain insights into the progress of pilot workflows and cockpit interactions.

Assumptions. We represent processes with hierarchies as graphs. The hierarchies allow us to
cluster different activities according to domain practices, e.g., to talk about certain phases of
operation (taxi, climb) that involve different activities. Not all parts of the system are synchronised,
but the process runtime aims to be fast to follow what happens in the different other subsystems.
The process runtime does so by sending HTTP GET requests to the other subsystems in order to
observe different states, which those subsystems are in. Thus, the state now can be determined by
sending HTTP GET requests to all resources in all subsystems (or a subset thereof) and taking
the union of the resource state representations in the responses.

Core concepts. In the process model, we tie together activities (i.e., events). Conditions on
system state allow to track the progress of occurrences and inform decisions which branch to
follow in a conditional split. In terms of control, essential patterns include hierarchical modelling
(H), sequential (WCP1), parallel (WCP2, WCP3), conditional (WCP4), any order (WCP40), and
modelling conditions for splits and joins. Activity completion is determined using queries to state
data (e.g., SPARQL ASK queries) (WDP16, WDP35, WDP37, WDP40). Execution also requires
modelling the tasks associated with activities (e.g., unsafe HTTP requests) (WDP15). Similarly,
conditions are evaluated on states. On top, execution requires support for online processing,
i.e., managing multiple process instances alongside models. Resources that drive the progress
are not explicitly modelled, as there is only one agent (i.e., the pilot) under consideration at a
time. The aircraft simulation also in a way can drive the progress by corresponding state changes
represented in the environment, but is also not explicitly modelled. The trace aspect has also
only had a minor role, where timestamps have been attached to finished instances of activities.

TGDK



1:18 Towards Representing Processes and Reasoning with Process Descriptions on the Web

Tasks. Querying is an integral part of the execution semantics, helping find tasks for activities
to be executed or determining the next steps based on the control flow. RDFS Reasoning on the
process model is required to ascertain when complex sub-processes have been completed or to
identify the next task or all upcoming tasks within the hierarchical model’s leaf level.

3.6 Summary of requirements for representation of processes
In addition to representing processes and related concepts to informally specify processes, as done
for example in the various graphical notations, many scenarios require means to carry out tasks
over the process descriptions. Thus, a formal representation of processes and related concepts is
mandatory.

Table 3 gives an overview of the workflow patterns present in each scenario, providing a quick
reference to understand how these patterns are distributed across the scenarios. Starting from
the scenario Manufacturing process documentation, which covers only two workflow patterns,
it is evident that the level of difficulty of each subsequent scenario increases. Therefore, as we
progress to scenario Domain-aware simulation, a more complex use case, we can anticipate that
it will have a broader coverage of workflow patterns. This incremental approach allows for a
systematic exploration of workflow patterns, gradually building up complexity and understanding
as we advance through the scenarios. Both control and data patterns are essential for designing
comprehensive workflow models. They provide a structured way to represent the control logic and
data interactions within a workflow.

3.7 Summary of requirements for querying and reasoning tasks
All scenarios assume that information about processes and related concepts are represented as
graphs. The requirements of the previous scenarios regarding querying and reasoning can be
grouped according to the five dimensions. Please note that the representation influences the kind
of operations that can be applied on the representation (and vice versa). In the following, we thus
outline and summarise typical operations that can be carried out over the state component, i.e.,
mainly the data and resource dimensions in our classification, and typical operations that can be
done on the temporal component, i.e., mainly the control, trace and online dimensions.

If we only operate on the graph structure of the process descriptions, we can use standard graph-
based data models (such as RDF) as basis for querying using SPARQL, possibly in conjunction
with ontologies (RDFS or OWL). The requirements from the various scenarios regarding querying
and reasoning are summarised and generalised in Table 4. In Table 4, we aim to simplify the
presentation by concentrating on the requirements that directly align with the primary objectives
addressed by the use case scenarios. Requirements can be further combined, particularly concerning
the combination of process, data and online.

Next to performing reasoning on just the graph representation (e.g., using RDF or RDFS
semantics, using rules, using OWL DL (direct) semantics), some scenarios also require a way
to perform reasoning on and with the temporal structure. Many graph query languages have
means to deal with sequences, so basic retrieval and query tasks should be possible, including
reachability. When applying reasoning, additional queries can be supported, for example for
declaring a property transitive (e.g., the next property) or declare two properties the inverse of
each other (e.g., next and previous).

More elaborate operations on temporal structure are better supported with dedicated languages
of temporal logics. However, only the Healthcare and tele-rehabilitation and the Domain-aware
simulation scenarios require query and reasoning tasks beyond the standard tasks on graph-
structure representations. The scenario Healthcare and tele-rehabilitation is special concerning the



A. Harth, T. Käfer, A. Rula, J.-P. Calbimonte, E. Kamburjan, and M. Giese 1:19

Table 3 Dimensions of processes and scenarios that require them. We give specific features for the
dimensions. If there exists a corresponding Workflow Pattern for the feature in [102], we give the name
and its shorthand (WxPn). Features without a workflow pattern are given a single-letter shorthand.

ID Name Scenario

C
on

tr
ol

WCP1 Sequence: steps are executed in a linear order, one after another. Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)
Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)
Aircraft cockpit design (Sec. 3.5)

WCP2/3 Parallel Split: the divergence of a branch into two or more parallel
branches each of which executes concurrently.

Manufacturing data spaces (Sec. 3.2)

Synchronisation: activities are executed in parallel, allowing mul-
tiple paths of execution to occur simultaneously.

Aircraft cockpit design (Sec. 3.5)

WCP4 Exclusive Choice: the divergence of a branch into two or more
branches such that when the incoming branch is enabled, the
thread of control is immediately passed to precisely one of the
outgoing branches based on a selection mechanism.

Aircraft cockpit design (Sec. 3.5)

WCP17 Interleaved Parallel Routing: a set of tasks has a partial ordering
that defines the requirements for their execution order.

Domain-aware simulation (Sec. 3.4)

WCP23 Transient Trigger: ability for a task instance to be triggered by a
signal from another part of the process or the environment.

Healthcare and tele-rehabilitation (Sec. 3.3)

WCP40 Interleaved Routing: each member of a set of tasks must be
executed once. They can be executed in any order but no two
tasks can be executed at the same time.

Domain-aware simulation (Sec. 3.4), Aircraft cock-
pit design (Sec. 3.5)

H Hierarchical Modelling Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)
Aircraft cockpit design (Sec. 3.5)

O
nl

in
e O Online processing Manufacturing process documentation (Sec. 3.1)

Aircraft cockpit design (Sec. 3.5)
Domain-aware simulation (Sec. 3.4)

Tr
ac

e T Trace Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2 )
Domain-aware simulation (Sec. 3.4)

D
at

a

WDP1/3 Task data: data elements can be defined by tasks accessible only
within the context of individual execution instances of that task.
Scope data: data elements can be defined which are accessible by
a subset of the tasks in a case.

Healthcare and tele-rehabilitation (Sec. 3.3)

WDP5 Case Data: where data elements which are specific to a process
instance or case are supported.

Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)

WDP8 Environment Data: allows data elements from the external op-
erating environment to be accessed by components of processes
during execution.

Manufacturing process documentation (Sec. 3.1)
Healthcare and tele-rehabilitation (Sec. 3.3), Man-
ufacturing data spaces (Sec. 3.2)

WDP15/16 Task to Environment Pull: the ability of a task to request data
elements from resources or services in the operational environment.
Task to Environment Push: the ability of a task to initiate the
passing of data elements to a resource or service in the operating
environment.

Aircraft cockpit design (Sec. 3.5)

WDP35/37 Task precondition Data Value: can be specified for tasks based
on the value of specific parameters at the time of execution. Task
postcondition data value: can be specified for tasks based on the
value of specific parameters at the time of execution.

Domain-aware simulation (Sec. 3.4), Aircraft cock-
pit design (Sec. 3.5)

WDP39 Data-based Task Trigger: provide the ability to trigger a specific
task when an expression based on data elements in the process
instance evaluates to true.

Domain-aware simulation (Sec. 3.4)

WDP40 Data-based Routing: provides the ability to alter the control flow
within a case based on the evaluation of data-based expressions.

Aircraft cockpit design (Sec. 3.5)

R
es

ou
rc

e R Resource Manufacturing process documentation (Sec. 3.1)
Manufacturing data spaces (Sec. 3.2)

TGDK



1:20 Towards Representing Processes and Reasoning with Process Descriptions on the Web

Table 4 List of requirements for querying and reasoning, grouped according to the five dimensions
(Control, Trace, Data, Resource and Online), and pointing to the scenario where they appear.

Dimension Requirement Scenario

Control Procedure Retrieval All
Steps Retrieval All
Sub-procedure Retrieval Manufacturing documentation (Sec. 3.1)

Manufacturing data spaces (Sec. 3.2)
Aircraft cockpit design (Sec. 3.5)

Trace Sequence Analysis All
Cross-procedure Analysis All

Data Retrieval of Domain Data All
Resource Retrieval of Personnel or Equipment All

Resource Allocation Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)

Online Occurrence Retrieval Healthcare and tele-rehabilitation (Sec. 3.3)
Domain-aware simulation (Sec. 3.4)
Aircraft cockpit design (Sec. 3.5)

representation of time. While the other scenarios only require a linear ordering, the querying and
reasoning tasks in the Healthcare and tele-rehabilitation scenario require temporal queries with
an operator defined over moving windows (i.e., different time periods). The need for temporal
logic specifications is the most clear in the scenario Domain-aware simulation. The query and
reasoning tasks for one trace alone must be able to reason about safety and liveness properties,
while comparing two traces is a natural setting for temporal logics.

4 Process description concepts

We start with a set of assumptions to scope our work on a possible core process ontology. The
process ontology core should support a graph representation and temporal order and should
operate in a web environment. For each assumption, we first give an overview of the concepts
underlying a representation of processes and related concepts and then introduce a set of tasks
that operate on the representations.

Graph Representation: We assume a graph representation to describe the concepts of a possible
core process ontology. In particular, for the description of processes and related concepts, we
assume graphs according to the RDF recommendation of the W3C. Graphs provide flexibility
in the descriptions of processes and related concepts, especially allowing for partial descriptions
that just cover certain aspects and for incrementally adding descriptions. Depending on what
is described in the graph, we can bring different methods to bear on the representations.
Time and Temporal Properties: Next, we assume that we need to describe temporal properties
of processes and related concepts. To support temporal reasoning, we need means to qualify
the descriptions in terms of time. As a starting point, we assume discrete metric time, that
is, we assign to each temporal entity a timestamp as integer. We could also assume a weaker
notion of time, linear time, with just a partially ordered relation “happened-before” between
temporal entities. Thus, with metric time, we can arrange temporal entities along a single
global time line, leading to a sequence of temporal entities. With linear time, we do not
necessarily have a single global time line, but may arrive at multiple time lines, leading to
multiple sequences (connected via a “directly-follows” relation).
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The Web: The final assumption relates to infrastructure. The technologies around the web
are widely deployed and can provide the infrastructure for exchanging representations and
executing processes. Thus, we assume that the processes and related concepts we consider
operate in a web environment. Combining graph representations with web architecture, we
arrive at graph representations that are accessible via HTTP (Linked Data). In addition, on
the web, multiple processes may run concurrently and communicate with each other. Thus,
processes must be able to send and receive requests during execution. If we want to support
runtime with some form of online processes, we need a dedicated ’now’ point in the time line,
representing the current point in time.

We now develop some of the core concepts for the representation of processes. Representing
processes can be approached from different perspectives, considering the application domain.
Given that the various fields have different central concerns and methods, the terminologies differ
from field to field. Thus, in the following we attempt to identify concepts shared among different
fields, used as a common foundation to represent processes.

We introduce these main concepts by means of an example, in the style of linguistics [43]. Let
us consider a simple version of a purchasing process in an e-commerce setting.

John bought a pair of socks online last week. He first placed the order, then he paid and
finally he received the socks from the retailer.

The example consists of three steps: John placing an order, John adding payment and John
receiving the shipment. The different steps occur in a certain temporal order. Rather than using
dates and wall clock time, or more abstractly integers to refer to different points in time, we
can also build on a weaker notion of time. We have one relation “happened-before” [70] that we
use also later in the temporal specifications (for example, in linear-time temporal logic). Linear
(total) ordering of temporal entities is sufficient for most of the approaches we consider15. Figure 3
illustrates the temporal ordering of the various steps, i.e., the sequence in which the steps are
occurring.

John places
his order

John adds
payment

John receives
the socks

time

Figure 1 The different steps of the purchasing process happen in sequential order.

We assume temporal entities, i.e., entities which have some attachment to time. Temporal
entities could be distinguished into describing “what is being the case” (states) or “what is
happening” (non-states). For now we assume that anything that can be put into a temporal order
is a temporal entity.

Next to the different steps, in a state-centric perspective the purchasing process – or rather
the data associated to the purchase – is going through various states. First, John’s order is in
the Placed state; next, John’s order is in the Paid state; and finally, John’s order is in the Received
state.

The order object might also contain information about the product being purchased, in the
example one pair of socks. Figure 2 illustrates the different states in a visual representation.

15 Although stream reasoning requires a more expressive way to represent time.
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John’s order
placed

John’s order
paid

John’s order
received

time

Figure 2 The object associated with the purchasing process goes through various states as the process
unfolds.

We now discuss the classification of temporal entities as particulars or universals [93]. When
representing state, an established way to data modelling is the distinction between classes and
instances. Together with various logical modelling constructs, we can refer to ontology languages
such as RDF Schema or OWL.

When it comes to non-states (“what is happening”) we also want to make the distinction
between particulars (the specific temporal entity where John ordered a pair of socks) and universals
(the general temporal entity that describes all of the times when somebody is placing an order).
Thus, we introduce the notion of events, which concern the level of universals, and occurrences
(of events), that concern the level of particulars. We denote as events the different steps (non-
states, “what is happening”) on a terminology or schema level. Figure 3 shows the three steps on
the level of universals. In the example, an occurrence of the Place Order event would be John
placing an order for a pair of socks. An occurrence of the Add Payment event would be John
paying via bank transfer; and for the Receive Goods event, an occurrence would be John receiving
the socks via mail.

Place Order Add Payment Receive Goods

time

Figure 3 The different steps of the purchasing process happen in sequential order.

Similarly, we can consider the different states on the level of universals. First, an order object
is in the Placed state; next, the object is in the Paid state; and finally, the object is in the Received
state.

Placed Paid Received

time

Figure 4 The object associated with the purchasing process goes through various states as the process
unfolds.

To sum up, in event-centric approaches, the constituent elements are occurrences of events,
while in state-centric approaches, the constituent elements are instances of objects. A trace needs
to include information to connect the elements, e.g., via a case identifier.

Each process is an event (and each occurrence of a process is an occurrence of an event). The
distinction between a process and an event comes from whether the behaviour of the event is
further described and separated into different (or events). Until now, we have only considered
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sequences within processes, but more elaborate control constructs are possible. For example,
non-deterministic choice and parallelism (to cater for different agents that drive steps) are other
control flow patterns that we can include into our process modelling approach.

So far, we have only assumed a temporal order in the events (or states) that make up a process.
We now introduce the notion of a control flow that ties together the events. In the simplest case
of sequences, we can tie together the events via a “next” relation (immediately-follows), indicating
(in our example) that the next event after Place Order is Add Payment, and the next event after
Add Payment is Receive Goods. Figure 5 illustrates in a graphical notation in the style of Petri
nets. Circles represent states (related to places in Petri nets) and rectangular shapes represent
activities (related to transitions in Petri nets). Other ways to string together events constituting a
process are possible and are discussed later.

Place Order Placed Add Payment Paid Receive Goods Received

time

Figure 5 The temporal entities of the purchasing process in temporal order with connections indicating
the control flow. Boxes denote events and circles denote states (in the style of Petri nets).

Business processes and workflows use the notion of an event log, i.e., time-stamped occurrences
of events together with an associated “case identifier”. Instead of a process “instance”, which is
commonly used in the class/instance distinction, we introduce the concept of an occurrence of a
process. To be able to capture the history of processes, we introduce the notion of traces. Traces
record the specific occurrences of an event (and possibly of states) together with the temporal
order in which they occurred.

Figure 6 shows a trace involving both the occurrences of events and the respective states.

John places
his order

John’s order
placed

John adds
payment

John’s order
paid

John receives
the socks

John’s order
received

time

Figure 6 The temporal entities (occurrences of events and states) of the purchasing process occurrence
represented as trace. Dashed boxes denote event occurrences and dashed circles denote state occurrences
(in the style of Petri nets). Lines with arrows denote a temporal dependency.

Events might happen without an agent responsible for the event. In the business process
community the non-state (“what is happening”) entities are known as activities on a terminology
or schema level; but the notion of activity implies some sort of agent that carries the activity
out. Although in the example we can identify the different people (or roles) that carry out a step,
in our conceptualisation we aim to be as general as possible and do not assume agents that are
causing a step to happen.

Nevertheless, many scenarios require the identification of the agents (or tools) involved in a
process. Thus, we introduce the notion of resources, that is, the agents being responsible for
carrying out an event (or being patient/participant in an event). We can identify resources both
at the level of particulars or universals (e.g., John vs. customer role).

Next to sequences of “directly-follows” temporal entities, we can also introduce the notion of
choice. Extending our example, we could say that the next event after Place Order is Add Payment
via Bank Transfer or Add Payment via Credit Card.
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For now, we do not further specify the conditions attached to the choice and assume random
(i.e., non-deterministic) choice. In addition, for a more complete description of a process, we could
assume multiple processes that interact with each other. In the purchasing process example, we
would have John’s view on the process and the retailer’s view. After John pays, he awaits delivery
of the socks. After the retailer receives John’s payment, the retailer ships John’s socks. Thus, we
need a way to represent multiple (possibly concurrent) processes.

A final construct that is commonly found in process representations is that of hierarchical
decomposition, which implies a hierarchical relationship between a main process and other processes.
In our example, we could decompose the Add Payment event into a choice between Add Payment via
Bank Account and Add Payment via Credit Card. Furthermore, there can be different relationships
in hierarchical modelling. The relationship may indicate either i) a dependency between a main
process and other processes, i.e., when the main process is executed, simultaneous execution
of other processes is required in the meantime, or ii) a generalisation between a main process
and other processes, i.e., when there are variations in terms of the activities and the number of
activities between the main process and the other processes. Thus, hierarchical modelling may
facilitate the organisation of complex processes.

5 Challenges for a core process vocabulary

Based on the scenarios outlined above, we can identify a number of challenges for representing
processes and related concepts and perform certain reasoning tasks over the representation. We
structure our discussion into challenges related to representing processes as graphs, representing
queries and formulas and reasoning with process descriptions and formulas.

5.1 Representing processes as graphs

A core process vocabulary should be broadly applicable to describe processes and represent a
consensus from different fields on the abstractions and concepts as well as the terminology. All our
use cases take a discrete-time perspective, which we can take as a fundamental assumption going
forward. We have already illustrated why we need support for both state-centric and activity-
centric perspectives. Similarly, all of our scenarios benefit from a representation based on graphs.
We have started to work out required concepts from first principles and distil commonalities
between different fields based on the five dimensions, which we will discuss further in the remainder
of the section. Still, to arrive at a fixed set of vocabulary terms requires a deeper alignment of
concepts and more study of the representations of processes in related fields.

In a process core vocabulary, we have to decide which terms to include and which terms to
possibly relegate to extensions. That is, a process core vocabulary should be layered, where
additional tasks can be supported if the underlying representation is gradually extended. In the
control dimension, the question is what patterns to support next to the sequence pattern (WCP1)
expressing temporal order. More patterns might be useful for a core vocabulary. Especially
the any order pattern (WCP40) could be rather directly supported, as well as the exclusive
choice pattern (WCP4), given that both patterns relate to choice and do not require parallelism.
Parallelism (WCP2 and WCP3) might be a worthwhile pattern to support, especially when the
core vocabulary should include support for multiple roles (see the resources dimension). A process
core could support hierarchical modelling (the “H” pattern in Table 3) to be able to modularise
the process representations and thus help to keep an overview in large and complex processes and
provide a mechanism for iterative modelling. How to provide useful primitives for specialisation
or generalisation is an open question.
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Representing occurrences and traces of processes is also a rather fundamental pattern, so
fundamental in fact that the business process community just silently assumes such a primitive
without explicitly identifying the pattern. We think that the particular/universal distinction in the
context of processes is important, mirroring the type/instance distinction in ontology languages.
Thus, a core vocabulary should make the particular/universal distinction for events and processes
as well. What effects the particular/universal distinction on the side of events and processes
should have on the modelling of data items (and vice versa) is another open question.

Regarding the data dimension, the representation with graphs as syntax allows for more
flexibility compared to a dedicated language with a grammar of its own. In particular, a graph
representation allows for freely extending the graphs with additional data, such as annotations
on the level of the process descriptions, and enables the possibility of querying and deductive
reasoning. Thus, a core vocabulary should include support for data, in particular environment
data (WDP8), and integration with graph-structured data to be able to support data integration.
For example, mappings to other vocabularies (e.g., PROV-O) could be provided.

The representation of agents or roles involved in the process is required. Whether it is enough
to have the flexibility of graphs to allow for such descriptions, or whether we need dedicated terms
as part of a process vocabulary remains to be seen.

5.2 Representing queries and formulas
Representing processes as graphs using a shared vocabulary provides already some benefits, such
as performing query evaluation and certain reasoning tasks on the graph representation. The
scenarios identified various possible querying and reasoning tasks. Overall, the challenge is that the
different querying and reasoning tasks should be possible to perform on a unified representation.
In particular, a major challenge is to combine the purely graph-structured process representations
with specifications of temporal properties for querying and reasoning. To support querying and
reasoning tasks that go beyond checking satisfiability on the graph representation, we require
means to encode queries and logical formulas pertaining to temporal properties.

If we assume a framework of time based on temporal ordering (“happened-before”), we could
use temporal logics that operate over the linear order for specification of temporal properties
to encode restrictions on temporal order. In particular, Linear-time Temporal Logic (LTL) or
Computational Tree Logic (CTL) are temporal logics that can operate over linear time (LTL)
or branching time (CTL). A challenge is that formulas written in temporal logics directly can
be difficult to understand. Thus, a core process vocabulary could use higher-level abstractions
for temporal specification patterns, such as precedence and cause and effect [39]. Using such
high-level specifications presents an opportunity to increase the flexibility when modelling processes
or temporal properties of traces. For example, instead of directly representing processes (e.g.,
first A, then directly followed by B), users could use (weaker) temporal properties to give a
higher-level representation of temporal structure (e.g., A precedes B). More research is required
to investigate the trade-offs regarding modelling flexibility and computational complexity. An
additional challenge using the formalisms of temporal logics is how to bring together the state
perspective and event perspective, as temporal logic formalisms often prefer to specify properties
on sequences of states (and not events) [23].

Another question for a core process vocabulary is whether we should go beyond the simple
“happened-before” relation and assume a richer framework for time. For example, Allen’s interval
algebra [3] supports time points but also intervals and defines relations between time points and
intervals. Similarly, stream reasoning assumes time stamps that can be used within window
operators akin to intervals. An underlying temporal logic to capture such constructs could
be Metric Temporal Logic (MTL). Again, the challenge is to decide on whether the increased
expressive power is required and worth the computational cost.
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In general, representation and reasoning will involve trade-offs depending on the underlying
logics used: while some constructs could be written down using a process core vocabulary,
performing operations (with a desired semantics) over such constructs might be computationally
expensive or even infeasible. Ideally, we would like to find a representation that can in principle
support a broad variety of tasks, with fragments or profiles for specific tasks, such as temporal
querying, planning and synthesis, formal verification or process mining.

5.3 Reasoning with process descriptions and formulas
The range of operations for reasoning with process descriptions and formulas span from relatively
basic queries on the graph structure to more intricate queries concerning the temporal structure of
process representations. These advanced queries essentially encompass operations akin to model
checking and formal verification.

Regarding operations on the graph structure, there are two overarching objectives: query
answering, that is, acquiring solutions to queries, and reasoning, involving the inference of new
formulas when given a set of formulas or a graph. RDF, RDFS, and various OWL profiles in
conjunction with SPARQL support querying and lightweight reasoning on the graph representation
of objects and their associated properties, in particular those in the data and resource dimension.
These operations rely on standard semantics all underpinned by the formal notion of satisfiability.
A possible avenue for further research is to identify whether and to which extent reasoning on the
graph structure might yield simple inferences on the temporal structure, although the specifics of
this interaction remain a topic of exploration.

Of particular interest is the provision of support for operations on the temporal structure. A
fundamental operation relates to checking the satisfiability of temporal specifications, which can
be performed on process descriptions or traces. In addition, other operations are conceivable, such
as finding processes that satisfy temporal specifications, akin to planning or synthesis. Conversely,
another operation would be process mining, i.e., identifying a process that can generate a given
set of occurrences.

As part of a specification of the semantics of a core process vocabulary, generic logic formulas
could be introduced that operate on the temporal structure independently of the domain-specific
elements. These formulas can capture intricate concepts like “happened-before” or the temporal
ordering of events and occurrences. Furthermore, domain-specific formulas can encode restrictions
specific to a given domain, such as the requirement that an order can only be shipped once the
payment has been completed.

Another open challenge involves the interplay between the semantics of objects and data
items and the semantics of the temporal structure. Related is the connection between particulars,
representing instances and occurrences, and universals, embodying classes and events. Combining
state and event perspectives, both on the levels of particulars and universals, presents a challenge
for the development of a semantics, which requires the integration of state descriptions, represented
as objects and their properties in graph form, with event descriptions that influence these states.
Given an occurrence of a process in a specific state and a sequence of events, one should be able to
derive the states of the related objects and data items. Conversely, it should be possible to work
backward: starting with a sequence of states for the data items, one should be able to deduce
the sequence of events that led the data items to those states. Moreover, the possible triggering
of events needs to be evaluated over the state, with the introduction of a condition language to
express “guards”.

A graph-structured representation is advantageous for its flexibility in describing process-related
knowledge. However, different use cases may require different semantic approaches. For instance,
a data integration scenario could benefit from an open-world semantics, allowing partial process
descriptions from multiple sources to be seamlessly combined. In contrast, a process execution use
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case may require a closed-world semantics, particularly because it necessitates making assumptions
about the initiation and completion of processes and the comprehensiveness of each step within a
process. Decisions surrounding whether to open or close the world depend on the specific tasks at
hand.

A final open question relates to specialisation of processes involving hierarchy. In such cases,
a closed-world assumption could become useful. A closed-world assumption would be equally
applicable when working with prototypes [25], as opposed to the classic class-instance distinction
based on sets. Prototypes could also support partial process descriptions that can later be
amalgamated or refined. Issues may arise when one considers formalisms with open world and
closed world side by side and interacting, both on the graph representation and with the temporal
component.

A process core vocabulary which supports all conceivable tasks is likely to be too expressive
and thus prohibitively expensive in terms of computational complexity. Thus, we probably want to
end up with a semantics for the entire vocabulary and define profiles of the vocabulary of different
expressive power suitable for the intended task. One challenge then relates to the identification
and investigation of profiles, i.e., subsets of the vocabulary, that support relevant reasoning tasks,
while avoiding that parts of the vocabulary that have different meaning depending on the context.

6 Conclusion

We have introduced core concepts related to representing processes from different perspectives
(state-centric and event-centric) that can be integrated into a combined perspective. Our aspiration
is that a process core vocabulary should be more broadly applicable than to only business processes,
especially given that such a vocabulary would use a graph representation that can be flexibly
extended. We believe that the development of a process core vocabulary (the syntax for processes
and related concepts as well as temporal properties) in a graph structure and the development of
an associated formal semantics have to go hand in hand and influence each other.

We plan to start with a (minimal) core vocabulary for representing processes, which later can
be extended to cater for more elaborate use cases. While currently only a subset of the scenarios
we have described require querying and reasoning on the temporal structure, the core vocabulary
should support the specification of temporal properties, to later enable querying and reasoning
using such temporal property specifications. A formal semantics for the temporal structure would
enable temporal querying and reasoning functionality on the graph-structured representations.

To connect with the established temporal logics formalisation, we require a combination
of temporal specification patterns with the graph representation of processes, for example via
extraction of temporal logic models from graphs. Such an approach would provide a separation of
concerns and would reuse temporal logics languages and reasoning through a clear interface to the
knowledge representation languages and reasoning systems. However, many questions regarding
the specifics of such an integration remain open.

While the finite-state machine and traces formalisation as well as various temporal logics are
well established, for the (non-technical) terms related to the level of knowledge representation (e.g.,
for the resource dimension) there is currently no consensus across communities. Our paper is to
be seen as a first suggestion of which concepts would go into a broadly applicable vocabulary for
processes and related concepts as well as temporal properties. We plan to continue experimentation
with process descriptions in a variety of use cases, both for representing processes and reasoning
with process descriptions in first implementations based on existing systems (i.e., model checkers,
automated planners or process mining algorithms) to validate the representation in the vocabulary.
We also encourage the community to experiment with process descriptions and report on their
experiences.
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