
Seminar Paper

Implementation of “Algorithms for on-line order batching in an order picking 
warehouse” using Python

Submitted by:
Philipp Schmidt

Karlsruhe, July 23 

Supervised by:
M.Sc. Maximilian Barlang

Karlsruhe Institute of Technology

Institute for Material Handling and Logistics
Prof. Dr.-Ing. Kai Furmans



Abstract
Philipp Schmidt

Implementation of “Algorithms for on-line order batching in an order picking 
warehouse” using Python

This  seminar  paper  presents  the  implementation  of  Sebastian  Henn's  algorithm  for 
solving On-Line Order Batching Problems (OOBP) in order picking warehouses, using 
Python. The primary objective is to enhance warehouse efficiency by reducing the total  
travel time of pickers through effective real-time order batching. The OOBP, characterized 
as NP−Hard due to its combinatorial nature, necessitates heuristic methods for practical 
solutions. Henn’s Iterated Local Search (ILS) algorithm, known for iteratively refining 
solutions by exploring neighboring solutions and applying perturbations to escape local 
optima, forms the core of this implementation.

The project involves designing a Python-based solution that can be deployed in real-world 
warehouse  environments,  handling  dynamic  order  arrivals,  and  providing  efficient 
batching solutions. The implementation includes a robust core logic and a command-line 
interface  (CLI)  for  user  interaction,  ensuring ease  of  use  and adaptability  for  future 
integration into larger systems. Extensive testing validates the algorithm’s accuracy and 
efficiency, confirming its practical applicability in dynamic settings.

Future  enhancements  are  recommended  to  improve  input  validation,  database 
integration,  API  development,  and  performance  optimization,  aiming  to  make  the 
program more robust and scalable. This paper demonstrates the successful application of 
Henn's algorithm in a dynamic warehouse environment, providing a reliable solution for  
on-line order batching problems.

i



Table of Contents
Abstract i

Table of Figures ii

1 Introduction 1

1.1st Research Objectives...................................................................................................................................1

1.2nd Research Design...........................................................................................................................................2

2 Foundation and Literature Review 3

3 Algorithm Development 4

3.1st Design...............................................................................................................................................................4

3.2nd Assumptions..................................................................................................................................................4

3.3rd Implementation........................................................................................................................................... 5

3.3rd1st Core Logic..............................................................................................................................5

3.3rd2nd Command Line Interface................................................................................................ 6

4 Conclusion 8

4.1st Outlook............................................................................................................................................................ 8

Bibliography 9



Table of Figures
Figure 1 Flowchart Program

ii



1.1st Research Objectives

1 Introduction
In  modern  warehouse  management,  the  efficiency  of  order  picking  is  crucial  for 
operational success. One of the significant challenges in this area is the order batching 
problem, which involves grouping customer orders into batches for efficient picking. 
Effective order batching can significantly reduce the total travel time of pickers, thereby 
increasing productivity and reducing operational costs.

The  complexity  of  the  order  batching  problem  is  further  amplified  in  dynamic 
environments where orders arrive continuously. This scenario, known as the On-Line 
Order Batching Problem (OOBP),  requires  real-time decision-making to  continuously 
optimize the batching process as new orders come in. Given the combinatorial nature of  
this problem, it is classified as  NP−Hard ,  meaning that finding an exact solution in a 
reasonable timeframe is computationally infeasible. Consequently, heuristic methods are 
often employed to find practical, near-optimal solutions.

Sebastian Henn has made significant contributions to addressing the OOBP through the 
development  of  heuristic  algorithms,  particularly  the  Iterated  Local  Search  (ILS) 
algorithm.  Henn's  algorithm  iteratively  refines  solutions  by  exploring  neighboring 
solutions and applying perturbations to escape local optima, thus improving the overall 
solution quality.  The application of  such algorithms in real-world scenarios  requires 
robust and flexible software implementations.

1.1st Research Objectives

The primary objective of this work is to implement the algorithm developed by Sebastian 
Henn1 for solving On-Line Order Batching Problems using Python. This involves:

 Algorithm  Implementation:  Developing  a  robust  Python  implementation  of 
Henn's algorithm, ensuring it accurately follows the methodology outlined in the 
foundational research.

 Real-World Applicability: Designing the program to be deployable in real-world 
warehouse scenarios, including handling dynamic order arrivals and providing 
efficient batching solutions.

 Scalability:  Making  the  program  scalable  to  handle  large  datasets  and  high-
frequency order arrivals, suitable for various warehouse environments.

 Testing and Validation: Conducting extensive testing to validate the accuracy and 
efficiency of the algorithm in different scenarios, ensuring it meets the required 
performance standards.

 Future Integration:  Laying the groundwork for future integration into larger 
systems,  including  database  connections,  API  development,  and  potential 
incorporation into microservice architectures.

1 Henn, “Algorithms for On-Line Order Batching in an Order Picking Warehouse.”
1



 By  achieving  these  objectives,  this  work  aims  to  demonstrate  the  practical 
application of Henn's algorithm in dynamic warehouse environments, providing a 
reliable and efficient solution for on-line order batching problems.

1.2nd Research Design

This paper outlines the general process of developing and implementing the algorithm for 
solving On-Line Order Batching Problems. The research design involves the following 
steps:

 Algorithm Understanding: Gaining a deep understanding of Henn's algorithm, 
including its theoretical foundation, the Iterated Local Search (ILS) algorithm, and 
the specific heuristics used for batch optimization and release timing.

 Implementation Planning:  Designing  the  implementation  plan,  including  the 
overall architecture of the program, the separation of logic into different threads, 
and the structure for data sharing and communication between threads.

 Python  Implementation:  Writing  the  code  in  Python  to  implement  Henn's 
algorithm. This includes developing the core logic, setting up the Command Line 
Interface (CLI),  and ensuring that all  necessary parameters and processes are 
accurately represented in the code.

 In-Depth  Documentation: Providing  thorough  in-line  comments  and 
documentation within the code to explain each step of the implementation. This 
ensures clarity and ease of understanding for future developers and researchers 
who may work with or build upon this implementation.

 Testing and Validation: Conducting extensive testing to ensure the accuracy and 
efficiency of the implementation. This includes testing with various datasets and 
scenarios to validate the algorithm's performance and robustness.

 Optimization:  Identifying  and  implementing  optimizations  to  improve  the 
performance of the algorithm, such as reducing unnecessary data manipulations 
and optimizing communication mechanisms.

 Real-World Applicability: Ensuring the program is designed to be deployable in 
real-world warehouse scenarios, capable of handling dynamic order arrivals, and 
providing efficient batching solutions.

The actual implementation, along with in-depth, in-line comments explaining the code, 
can be found on the project's GitHub repository2. This repository provides a detailed view 
of the codebase, the specific methods used to achieve the research objectives and a guide 
on how to run the program.

2 Schmidt, “PhilippXXY/on-Line-Order-Batching.”
2

https://github.com/PhilippXXY/on-line-order-batching/


1.2nd Research Design

2 Foundation and Literature Review
In the foundational paper by Henn3, the author explores various approaches to address 
the on-line order batching problem within an order picking system characterized by a 
parallel-aisle warehouse and a single picker. In this context, batching refers to the process 
of assigning incoming orders to distinct batches, ensuring that no single order is split 
across multiple batches.

A key distinction of Henn's work compared to existing methodologies is the dynamic 
nature of order arrivals during runtime. This dynamic arrival of orders implies that each  
new order could potentially lead to the formation of a new optimal batch. However, the 
combinatorial possibilities increase exponentially with the number of orders, rendering 
the  problem  NP−Hard .  Consequently,  heuristic  methods  must  be  employed  to  find 
practical solutions within a reasonable timeframe.

To tackle this challenge,  Henn et  al.4 propose a modified Iterated Local  Search (ILS) 
algorithm  to  generate  satisfactory  batching  solutions.  The  ILS  algorithm  iteratively 
refines an initial solution by exploring neighboring solutions and applying perturbations 
to  escape local  optima,  thus enhancing the overall  solution quality.  Additionally,  the 
authors introduce a custom heuristic to determine the optimal timing for batch release, 
further improving the efficiency of the order picking process.

By leveraging these heuristic approaches, the research aims to provide effective solutions 
to the on-line order batching problem, ensuring timely and efficient order fulfillment in  
dynamic warehouse environments.

3 Henn, “Algorithms for On-Line Order Batching in an Order Picking Warehouse.”
4 Henn et al., “Metaheuristics for the Order Batching Problem in Manual Order Picking 
Systems.”

3



3 Algorithm Development
The implementation of the algorithm proposed by Henn was carried out in Python to 
facilitate its integration into the existing 4D4L project at the Institute of Material Handling 
and Logistics.

3.1st Design

The project is designed to mimic a real-life production scenario by separating the process 
into different threads. One thread, referred to as the LogicThread, contains the actual 
computing logic and is responsible for generating batches based on the provided data. The 
other thread, known as the CLIThread, is primarily for demonstration purposes.

In the absence of well-defined APIs,  the simplest way to exchange information while 
maintaining  a  modular  structure  is  through  file-based  communication.  Both  threads 
access a common file to read and write shared variables. This file is crucial for the current 
implementation, as the LogicThread requires the initial parameters provided by the 
user. The flowchart, as seen in Figure 1 Flowchart Program, illustrates the process.

It  should be noted that this method of data transfer can lead to issues when data is 
accessed too frequently, resulting in information loss due to write and read conflicts. 
Therefore, it is highly recommended to run the program in a realistic manner and to 
implement a more robust communication method when integrating it into other projects.

3.2nd Assumptions

Several assumptions were made to facilitate the project’s development:

1. Only one picker operates in the warehouse.

2. The warehouse is assumed to be a parallel-aisle warehouse with the starting and 
endpoint located at the aisle coordinates  (x , y )=(0 ,−1),  as shown in  Figure 2
Sample Warehouse Layout. 

3. The height and depth of  products on the shelves are not accounted for when 
calculating the tour length.

4. All products are assumed to require the same amount of space when selected, 
meaning that the maximum batch size is  determined solely by the number of 
products in it.

5. No additional time is calculated for picking the product itself. Only the tour length 
through the warehouse is considered.

4



 

5

3.3rd Implementation

The program and its threads are initially managed by main.py, which sets up the shared 
variables through shared_variables.py. This file acts as a medium for data sharing 
between threads.

3.3rd1st Core Logic

The core logic of the implementation is the most critical component and will be discussed 
in detail. Initially, the program receives several essential parameters:

 Warehouse Layout Path: The path to a CSV file where each item ID is assigned to 
coordinates. These coordinates are used to calculate the tour length.

 Maximum Batch Size: The maximum number of items that can be included in a 
single batch.

 Tour  Length  Units  per  Second: Since  the  speed  of  the  picker  through  the 
warehouse is unknown, a conversion rate must be determined.

 Rearrangement Parameter: This parameter is crucial for the perturbation phase 
of the Iterated Local Search (ILS) algorithm, which helps in escaping local optima 
and finding better solutions.

 Release Parameter: Used to determine the delayed release of a batch when only 
one  batch  is  available,  ensuring  that  the  system  waits  for  potentially  better 
combinations.

 Threshold  Parameter:  Necessary  for  the  ILS  algorithm  to  decide  when  to 
terminate if  subsequent iterations do not yield significant improvements,  thus 
saving computational resources.

 Time Limit: A constraint for the calculations due to the NP−Hard nature of the 
problem, ensuring that the algorithm completes in a practical timeframe.

5 “Parallel-Aisle-Warehouse-and-Its-Graph-Representation.Ppm (722×1148).”
5

Figure 2 Sample Warehouse Layout



 Selection  Rule:  Defines  how  the  batches  are  sorted  after  the  last  order  is 
submitted.

Once these parameters are set, the program enters its runtime state, where new orders 
can be continuously added to the system. When a new order arrives, all open orders are 
considered,  and  the  Iterated  Local  Search  Algorithm  is  applied  to  generate  more 
optimized batches.

To compare the tour lengths of different solutions, the program implements the S-Shape 
Routing6 method. In this method, every aisle containing a needed item is indexed. Odd-
indexed aisles are traversed in ascending order, and even-indexed aisles are traversed in 
descending order until the last item is reached. From there the shortest path back to the 
starting point is taken. The necessary information is taken from the given CSV file, which is 
processed using the Pandas7 library to assign locations in the warehouse to each item in 
the batch.

If multiple batches are available and the last order has not been submitted, batches are 
released immediately once the arrival time of the previously released batch has passed,  
indicating that the picker has returned. If only one batch is available, a delayed start time 
is calculated as described by Henn to optimize the inclusion of new orders. After receiving 
the last order, the program creates newly optimized batches, sorts them according to the 
selection rule, and releases them sequentially.

When the arrival time of the last batch is determined, the LogicThread stops, ensuring 
no unnecessary computations are performed beyond the required operations.

For more detailed explanations, it is advisable to look at the underlying paper by Henn.

33rd1st1st Delayed Release Time
When only one batch remains and there is a possibility of a new incoming order, the 
release of the batch will be delayed to allow for potential optimizations. The formula, as 
described by Henn, is adjusted to convert the delay into predefined tour length units per  
second.

3.3rd2nd Command Line Interface

As mentioned in Section 3.1st, the CLIThread is a provisional solution until the program 
is fully integrated. The CLIThread serves as an interface for the user to interact with the 
program, providing a means to input parameters, monitor progress, and view results.

In this implementation, the CLIThread handles the following functionalities:

 User Input: It allows users to input necessary parameters such as the warehouse 
layout path, maximum batch size, rearrangement parameter, release parameter, 

6 Hong and Kim, “A Route-Selecting Order Batching Model with the S-Shape Routes in a 
Parallel-Aisle Order Picking System.”
7 “Pandas.”

6



3.3rd Implementation

threshold parameter, time limit, and selection rule. This is facilitated through a 
command-line interface that prompts the user for each input sequentially.

 Data  Sharing:  The  CLIThread writes  these  inputs  to  a  shared  file 
(shared_variables.py),  which  the  LogicThread reads  to  perform 
computations.  This  file-based  communication  ensures  that  both  threads  have 
synchronized  access  to  the  necessary  parameters  without  requiring  a  more 
complex inter-process communication mechanism.

 Order Management: The CLIThread imports a given JSON file containing the 
orders into a Python data structure. Each time the user inputs a command to 
release an order, it is popped from the Python data structure and added to the 
shared variables. This enables the core logic in the LogicThread to interact with 
and process the order.

 Progress Monitoring: The CLIThread continuously monitors the status of the 
LogicThread, providing real-time updates to the user. This includes displaying 
the currently releases batch, ready to be picked.

 User-Friendly Experience: To enhance the user experience, several libraries891011

 have been used for creating aesthetically pleasing and informative command-line 
outputs. These libraries help in formatting the output, making it easier for users to 
read and interpret the information.

The provisional nature of the CLIThread means it is designed to be replaced by a more 
sophisticated interface in the future, likely integrated within the 4D4L12 project's existing 
systems. However, the current implementation ensures that the core functionalities are 
accessible  and  operable,  providing  a  solid  foundation  for  further  development  and 
integration.

8 “Click.”
9 “Inquirerpy.”
10 “Keyboard.”
11 “Tabulate.”
12 Wang (inaktiv), “KIT - IFL Forschung - Aktuelle Forschungsprojekte - 4D4L – Daten- 
und zielgetriebene sequentielle Entscheidungsfindung fü r zeitdynamische 
Logistiksysteme.”

7



4 Conclusion
The goals of the seminar, which were to provide a working program to solve On-Line 
Order Batching Problems using the algorithm developed by Henn, were not only fulfilled 
but even exceeded. The successful implementation of a Command Line Interface (CLI) 
means  that  the  program  could  theoretically  be  deployed  in  a  simplified  warehouse 
scenario today.

The development process involved extensive testing, which ensured the robustness and 
reliability  of  the  program.  However,  this  extensive  testing  also  resulted  in  a  higher 
investment of time and effort than initially anticipated.  Despite these challenges,  the 
project has successfully demonstrated the practical applicability of Henn's algorithm in a 
dynamic warehouse environment.

By splitting the code into the actual core logic and a command line interface and sharing 
data  via  a  shared  file,  the  program  is  easily  adaptable  for  implementation  in  other 
projects.

4.1st Outlook

For future integration and improvements, several enhancements are recommended to 
make the program more robust and flexible:

 Enhanced Input Validation: Currently, the program performs only basic checks 
for  faulty  inputs.  Implementing  more  advanced validation mechanisms would 
improve the program's reliability and prevent errors due to incorrect data entry.

 Database Integration: Connecting the program to a database would significantly 
enhance  its  capabilities.  A  database  connection  would  allow  for  better  data 
management,  storage,  and  retrieval,  making  the  system  more  scalable  and 
efficient.

 API Development: To use the program in a larger environment, it is necessary to 
develop a well-defined API. This API would facilitate interaction with other parts of 
a  warehouse  management  system,  potentially  as  part  of  a  microservice 
architecture. This would ensure that the program can be seamlessly integrated 
into existing systems and can communicate effectively with other services.

 Scalability and Performance Optimization: As the program is intended for real-
world use, further work on optimizing its performance for large datasets and high-
frequency  order  arrivals  would  be  beneficial.  This  includes  improving  the 
efficiency of the Iterated Local Search algorithm by removing unnecessary data 
manipulation  operations,  such  as  deep  copies,  and  optimizing  the  file-based 
communication mechanism.

By addressing these areas, the program can be made more robust, flexible, and ready for 
deployment in a variety of warehouse environments. The successful integration of these 
enhancements would ensure that the program not only meets current needs but is also 
scalable for future demands.

8



Bibliography
“Click: Composable Command Line Interface Toolkit.” OS Independent, Python. Accessed 

July 5, 2024. https://palletsprojects.com/p/click/.
Henn, Sebastian. “Algorithms for On-Line Order Batching in an Order Picking Warehouse.” 

Computers & Operations Research 39, no. 11 (November 1, 2012): 2549–63. 
https://doi.org/10.1016/j.cor.2011.12.019.

Henn, Sebastian, Sö ren Koch, Karl F. Doerner, Christine Strauss, and Gerhard Wäscher. 
“Metaheuristics for the Order Batching Problem in Manual Order Picking Systems.” 
Business Research 3, no. 1 (May 1, 2010): 82–105. 
https://doi.org/10.1007/BF03342717.

Hong, Soondo, and Youngjoo Kim. “A Route-Selecting Order Batching Model with the S-
Shape Routes in a Parallel-Aisle Order Picking System.” European Journal of 
Operational Research 257, no. 1 (February 16, 2017): 185–96. 
https://doi.org/10.1016/j.ejor.2016.07.017.

“Inquirerpy: Python Port of Inquirer.Js (A Collection of Common Interactive Command-Line 
User Interfaces).” Microsoft, Unix, Python. Accessed July 5, 2024. 
https://github.com/kazhala/InquirerPy.

“Keyboard: Hook and Simulate Keyboard Events on Windows and Linux.” MacOS :: MacOS 
X, Microsoft :: Windows, Unix, Python. Accessed July 5, 2024. 
https://github.com/boppreh/keyboard.

“Pandas: Powerful Data Structures for Data Analysis, Time Series, and Statistics.” OS 
Independent, Cython, Python. Accessed July 5, 2024. https://pandas.pydata.org.

“Parallel-Aisle-Warehouse-and-Its-Graph-Representation.Ppm (722×1148).” Accessed July 
5, 2024. 
https://www.researchgate.net/publication/325554802/figure/fig1/AS:776776968
060928@1562209469949/Parallel-aisle-warehouse-and-its-graph-
representation.ppm.

Schmidt, Philipp. “PhilippXXY/on-Line-Order-Batching,” June 19, 2024. 
https://github.com/PhilippXXY/on-line-order-batching.

“Tabulate: Pretty-Print Tabular Data.” OS Independent, Python. Accessed July 5, 2024. 
https://github.com/astanin/python-tabulate.

Wang (inaktiv), Peiqi. “KIT - IFL Forschung - Aktuelle Forschungsprojekte - 4D4L – Daten- 
und zielgetriebene sequentielle Entscheidungsfindung fü r zeitdynamische 
Logistiksysteme.” Text. Peiqi Wang (inaktiv), October 5, 2023. KIT. 
https://www.ifl.kit.edu/forschungsprojekte_5762.php.

9


	Abstract
	Implementation of “Algorithms for on-line order batching in an order picking warehouse” using Python
	Table of Contents
	Table of Figures
	1 Introduction
	1.1st Research Objectives
	1.2nd Research Design

	2 Foundation and Literature Review
	3 Algorithm Development
	3.1st Design
	3.2nd Assumptions
	3.3rd Implementation
	3.3rd1st Core Logic
	33rd1st1st Delayed Release Time

	3.3rd2nd Command Line Interface


	4 Conclusion
	4.1st Outlook

	Bibliography

