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A B S T R A C T   

The energy transition fosters a dynamic landscape marked by renewable energy, electrification, and complex 
interactions among actors and technologies. Employing model experiments and comparisons shows promise for 
exploring these connections and enhancing model clarity and precision. This study adopts a multi-model 
approach, integrating a model comparison to probe how the electrification of demand-side sectors and stra
tegic load shifts of battery electric vehicles and heat pumps might impact Germany’s generation adequacy by 
2030. Specific demand models from the transport and heating sectors and a future load structure projection 
model are interlinked with three electricity system models. The comparative analysis of the three electricity 
system models unveils discrepancies in dispatch decisions for power plants, flexibility options’ load shifts, and 
their effects on generation adequacy, directly tied to model attributes. 

The comparison underscores methodological variations (linear optimization versus agent-based simulation, 
myopic foresight versus perfect foresight) as pivotal, emphasizing the significance of considering load change 
and start-up costs for power plants. The results show that with optimized load shifting by electric vehicles and 
heat pumps, the adequacy of power generation is less strained despite increased electricity demand. Moreover, 
load shifts mitigate curtailment of renewables and consumers, reducing carbon emissions by lowering conven
tional power generation.   
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1. Introduction 

Model-based analyses have long been used to understand how politi
cal, socio-economic, and technological factors impact energy system 
development. Initially focused on a holistic view, the evolving energy 
landscape has sparked the creation of specialized partial models, each 
delving into specific aspects like decentralization, sector coupling, and 
new energy technologies [1]. This shift arose due to the complexity of new 
factors, making it impractical to cover all aspects comprehensively within 
a single model. As a result, model coupling became crucial in energy sys
tem analysis [2]. New sustainable energy system strategies can be devel
oped by interlinking different models to a consistent energy models system 
(EMS). However, differences in data structures and approaches often lead 
to varied and incomparable results in model-based scenario analyses [3]. 

Limited research exists on model experiments including model 
coupling and model comparisons based on harmonized input data, to 
classify and discuss methodological approaches and their results trans
parently and thus interlink result deviations with models’ properties. 
Moreover, model coupling between sectoral models that consider new 
electricity-consuming devices in the context of demand-side sector 
electrification to enable the integration of high shares of volatile 
renewable energy sources (vRES) and the decarbonization of the entire 
energy system is rare in the existing literature. Additionally, the research 
question arises whether these devices, with their additional electricity 
demand, jeopardize generation adequacy or provide sufficient flexibility 
to benefit the energy system. 

To contribute to these methodological and contextual research gaps, 
this paper analyzes how the electrification of demand-side sectors by 
emerging electricity appliances with high energy demand, such as battery 
electric vehicles (BEVs) and heat pumps (HPs), will affect generation 
adequacy in Germany in 2030, especially during critical supply situa
tions. Using a multi-model approach with an integrated model compar
ison, the study compares three electricity system models, identifying key 
model characteristics leading to differences in flexibility provision 
through optimal load shifting of BEVs and HPs from a system perspective. 
Harmonized input parameters and simplified scenario analyses isolate 
model result deviations and link them to specific model properties. 

Seven models are coupled to a consistent EMS to address cross- 
sectoral interdependencies between the demand-side and electricity 
sector.1 Specific demand-side models from the transport (ALADIN), 
building stock and heating (FORECAST) sector as well as an hourly 
electricity demand projection model (eLOAD) are interlinked with three 
electricity system models (IDILES-JMM, PowerACE and ELTRAMOD). 
The demand-side models simulate future energy demand, market 
penetration of BEVs (passenger cars) and HPs, and their uncontrolled 
load profiles. The electricity system models focus on optimal load 
shifting of BEVs and HPs and its implication on generation adequacy in 
Germany in 2030, considering an average (2016) and an extreme (2012) 
weather year (WY). The results of the electricity system models are 
directly compared regarding their dispatch decisions for power plants, 
load shifting of demand flexibility and their ability to smooth the re
sidual load. This transparent comparison of electricity system models 
enhances understanding of methodologies and demonstrates how model 
properties influence results when input parameters are harmonized. 

The remainder of this paper continues with a review of existing model 
comparisons in Section 2. Followed by descriptions of the scenario 
framework, applied models, model coupling, and data exchange in Sec
tion 3. Section 4 presents and compares results regarding optimal BEV 
charging, HP operation, and residual load smoothing by electricity 

system models. Based on this, Section 5 indicates the influence of 
increased demand electrification on future generation adequacy. 
Consequently, Section 6 summarizes the insights and outlines 
conclusions. 

2. State of research 

In scientific literature, methodological model comparisons have been 
comprehensively discussed for decades. Literature can be classified into 
(I) conceptual model comparisons based on comprehensive literature 
reviews and theoretical model characteristics and (II) applied model 
comparisons based on model results and harmonized input parameters. 
Table 1 classifies chosen scientific contributions into these categories, 
also noting considerations like sector coupling, flexibility provision by 
electric vehicles (EVs) and power-to-heat (PtH), and soft-linked model 
coupling in the model comparisons. 

The first theoretical model comparisons (I) have been carried out by 
Sweeney [4], emphasizing the benefits: spotting errors, resolving dis
agreements, and aiding in model selection. In contrast, van Beeck [5] 
established classification schemes for energy system models, identifying 
purposes, model approaches, system boundaries (geographical, sectoral, 
temporal resolution), assumptions, and data needs. Presently, many 
qualitative model comparisons follow these structures. In Ventosa et al. 
[7], an overview of relevant publications examines electricity market 
modeling and compares 36 electricity system models, highlighting dif
ferences in mathematical structures (optimization, equilibrium, or 
simulation models), market representations, computational aspects, and 
model purposes. Furthermore [7], classifies models based on market 
structures (perfect competition, oligopoly, monopoly), time scopes, 
uncertainties, interperiod links, and network transmission consider
ations. Fattahi et al. [2] outline key criteria and challenges by comparing 
19 energy model systems, including the rising need for flexibility via 
electrification, emerging technologies, efficiency enhancements, 
decentralization, and macroeconomic interplays. These challenges drive 
necessary modeling capabilities: high temporal resolution, technological 
learning, flexibility options, actors’ behavior analysis, cross-border 
trade considerations, and integration with macroeconomic models. 
However, studies exploring model comparisons considering EVs [23], 
PtH [27], or sector coupling [68] remain limited. 

Applied model comparisons (II) involve comparing model results 
derived from harmonized input parameters. Numerous model compar
isons occur between integrated assessment models (IAM) evaluating 
carbon mitigation scenarios across diverse global regions. Thereby the 
role of advanced low-carbon technologies and carbon constraints are 
analyzed [56]. Several applied model comparisons focus on electricity 
systems with high shares of vRES [28]. These studies delve into novel 
operation and investment strategies related to flexibility options, 
emphasizing how temporal representation and techno-economic details 
significantly impact modeling outcomes [50]. Further multi-model 
comparisons identify drivers that lead to deviations in model outputs 
by simultaneously using harmonized input assumptions. For instance, 
Mai et al. [52] point out that modeling complementary technologies, 
such as energy storages and transmission network, capacity decom
missioning, ancillary services and costs, and model coupling, signifi
cantly influence results deviations. Inter- and intra-model comparisons2 

with five electricity system models for European decarbonization 
pathways until 2050 are conducted in Siala et al. [69]. The author es
timates the impact of model approaches (optimization vs. simulation), 
planning horizon (intertemporal vs. myopic), temporal and spatial 

1 The research results of this paper have been developed within the MODEX- 
EnSAVes project, which is funded by the German Federal Ministry for Economic 
Affairs and Climate Protection (BMWK). In the project eleven models are 
involved. In this paper the focus is only on seven models, which were respon
sible for the data exchange within the model coupling. 

2 An intra-model comparison can be conducted by performing sensitivities 
across possible combinations of input parameters in the same model to assess 
results deviations. A more robust framework is presented by inter-model 
comparisons, where both varying input assumptions and different model 
structures are compared with each other [52]. 
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Table 1 
Overview of selected literature in the context of energy system model comparisons.  

No. Author Year Sector coupling EV PtH Model coupling No◦ of models Source 

(I) Conceptual model comparisons based on literature reviews or theoretical aspects 
1 Sweeney 1983 – – – – 7 [4] 
2 van Beeck 1999 – – – – 10 [5] 
3 Worrell et al. 2004 – – – – 15 [6] 
4 Ventosa et al. 2005 – – – – 36 [7] 
5 Jebaraj et al. 2006 – – – – 252 publications [8] 
6 Hiremath et al. 2007 – – – – 70 publications [9] 
7 Sensfuβ et al. 2007 – – – – 72 publications [10] 
8 Bhattacharyya et al. 2009 – – – – 10 [11] 
9 Connolly et al. 2010 – – – – 37c (68) [12] 
10 Foley et al. 2010 – – – – 7 [13] 
11 Möst and Keles 2010 – – – – 20 [14] 
12 Mundaca et al. 2010 – – – – 12 [15] 
13 Bazmi and Zahedi 2011 – – – – 277 publications [16] 
14 DeCarolis et al. 2012 – – – – 12 [17] 
15 Herbst et al. 2012 – – – – 71 publications [18] 
16 Keirstead et al. 2012 – – – – 219 publications [19] 
17 Després et al. 2015 – – – – 5 [20] 
18 Pfenninger et al. 2014 – – – – 130 publications [21] 
19 Hall et al. 2016 – – – – 22c (110) [22] 
20 Mahmud et al. 2016 – x – – 67c (125) [23] 
21 Lund et al. 2017 – – – – 81 publications [24] 
22 Gacitua et al. 2018 – – – – 21 [25] 
23 Lopion et al. 2018 – – – – 24 [26] 
24 Lyden et al. 2018 x x x – 13c (51) [27] 
25 Ringkjøb et al. 2018 – – – – 75 [28] 
26 Dagoumas et al. 2019 – – – – 122 publications [29] 
27 Maruf 2019 x – – – 16 [30] 
28 Savvidis et al. 2019 – – – – 40 [31] 
29 Fattahi et al. 2020 x x x x 19 [2] 
30 Prina et al. 2020 x – – – 22 [32] 
31 Ridha et al. 2020 – – – – 145 [33] 
32 Klemm and Vennemann 2021 – – – – 13c (145) [34] 
33 Yoro et al. 2021 – – – – 14 [35] 
34 Berendes et al. 2022 – – – – 5 [36] 
35 Prina et al. 2022 – – – – ~100 publications [37] 
(II) Applied model comparisons based on model results and harmonized input parameters 
36 Weyant et al. 2006 – – – – 19 (IAM) [38] 
37 Lund et al. 2007 xb – – – 2 [39] 
38 Clarke et al. 2009 – – – – 10 (IAM) [40] 
39 Edenhofer et al. 2010 – – – – 5 [41] 
40 Krey and Clarke 2011 – – – – 15 (IAM) [42] 
41 Koelbl et al. 2014 – – – – 12 (IAM) [43] 
42 Kriegler et al. 2014 – – – – 18 (IAM) [44] 
43 Luderer et al. 2014 – – – – 17 (IAM) [45] 
44 Ommen et al. 2014 – – – – 3 [46] 
45 Neves et al. 2015 – – – – 3 [47] 
46 Riahi et al. 2015 – – – – 9 (IAM) [48] 
47 Wilkerson et al. 2015 – – – – 3 (IAM) [49] 
48 Poncelet et al. 2016 – – – x 3 [50] 
49 Cebulla et al. 2017 – – – – 2 [51] 
50 Mai et al.a 2018 – – – – 3 [52] 
51 Gils et al. 2019 x x x – 4 [53] 
52 Pavičević et al. 2019 – – – – 4 [54] 
53 Priesmann et al. 2019 – – – – 160d [55] 
54 Sugiyama et al. 2019 – – – – 6 (IAM) [56] 
55 Siala et al. 2022 – – – – 5 [57] 
56 Gils et al. 2022a x x x – 9 [3] 
57 Misconel et al. 2022 – – – – 4 [58] 
58 Hobbie et al. 2022 – – – – 8 [59] 
59 Gnann et al. 2022 – x – – 3 [60] 
60 Gils et al. 2022b x x x – 8 [61] 
61 Bucksteeg et al. 2022 – – x – 5 [62] 
62 Ruhnau et al. 2022 – – – – 5 [63] 
63 Syranidou et al. 2022 – – – – 8 [64] 
64 van Ouwerkerk et al. 2022 – – – – 6 [65] 
65 Raventós et al. 2022 – – – – 8 [66] 
66 Candas et al. 2022 x – – – 5 [67] 
67 Approach of this paper 2024 x x x x 3c (6)   

a Scenarios with and without harmonized input parameters. 
b Consideration of electrolysis. 
c Models compared in detail (all models). 
d Model configurations; IAM – Integrated Assessment Models. 
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resolution. Results show that the approach fundamentally influences 
capacity expansion, while the planning horizon has a minor impact on 
scenarios with high CO2 allowance prices. Moreover, lower temporal 
and spatial resolution lead to significant vRES integration through 
higher utilization of storage and neglecting transmission boundaries. A 
model comparison with harmonized input parameters of three elec
tricity system models considering sector coupling for a mostly renewable 
German power sector in 2050 is presented in Gils et al. [53]. Result 
differences occur in power generation structure, utilization of storage, 
and other flexibility options, which can be traced back to diverse 
modeling of technological and temporal details. Gils et al. [3] system
atically compare nine electricity system models with sector coupling, 
employing harmonized input parameters. Structural disparities emerge 
notably in the optimization approach and technology modeling, spe
cifically regarding power plant ramping, BEVs, reservoirs, and demand 
response. Misconel et al. [58] conduct a scenario analysis using three 
electricity system models for the German electricity sector until 2030, 
focusing on investment, dispatch, and generation adequacy. Minor 
result discrepancies stem primarily from variances in model approaches, 
myopic foresight perspective, deviations in temporal resolution, and 
technological modeling detail levels. 

As shown in Table 1, there is only limited research on model ex
periments, including soft-linked model coupling with an integrated 
model comparison focusing on sector coupling and the flexibility pro
vision of BEVs and HPs. Therefore, this paper contributes threefold to 
previous research by providing an applied and systematic model com
parison (I) of three electricity system models focusing on sector coupling 
(II) by implementing optimal dispatch strategies for BEVs and HPs from 
a system perspective, which is realized through a soft-linked model 
coupling (III) of a transport (ALADIN), a heat demand (FORECAST), and 
an electricity projection model (eLOAD) with three electricity system 
models (IDILES-JMM, PowerACE, ELTRAMOD). This transparent com
parison deepens understanding of modeling approaches, indicating how 
model properties influence results with harmonized inputs. Addition
ally, this model experiment enhances model credibility, adding trans
parency to policy discourse based on model-based analyses. 

3. Material and methods 

The section begins by describing the three demand-side models 
(ALADIN, FORECAST, eLOAD) and the three electricity system models 
(IDILES-JMM, PowerACE, ELTRAMOD) in subsection 3.1. Subsection 
3.2 outlines the scenario framework. Subsection 3.3 details the model 
coupling and data exchange processes, including specific information 
about the exchanged data for battery electric vehicles, heat pumps, and 
electricity demand. Lastly, subsection 3.4 explains the methodological 
approach for load shifting of BEVs and HPs within the electricity system 
models. 

3.1. Model descriptions 

The models involved span three sectors: transport, heating/building 
stock, and the electricity sector (cf., Table 2). This model experiment 
couples seven models to an EMS to explore development pathways for 
flexibility options, specifically BEVs and HPs with thermal energy stor
age (TES), to analyze their impact on critical supply situations in Ger
many. Subsequently, it compares the optimal dispatch of these flexibility 
options and their impact on generation adequacy among three elec
tricity system models utilizing different approaches. 

ALADIN simulates the development of technology components in the 
German vehicle fleet (road traffic), especially regarding to the share of 
new driving technologies, such as BEVs. The basis of the agent-based 
model is several thousand vehicle driving profiles of at least one week 
observation period [97,98]. These technical potentials result in the in
dividual utility determination for several drivetrains based on their total 
cost of ownership, their charging infrastructure cost, and the willingness 

to pay more for a BEV. ALADIN also models user behavior concerning 
alternative fuel vehicles [99], leading to stock calculations and simu
lations of energy demand, especially for passenger BEVs. 

FORECAST simulates the future energy demand in the building 
sector by considering building stock development and thermal equip
ment. In this study, FORECAST is used to model the diffusion and 
electricity consumption of HPs in the residential sector [77]. Input data 
includes (1) building data (e.g., stock, number of dwellings, floor area, 
U-values, etc.); (2) technology data (e.g., stock, efficiency, investment 
and operation cost, lifetime); (3) energy carriers and prices, (4) policy 
scenario parameters. 

eLOAD simulates the future national electricity system load with an 
hourly resolution. The model uses a process-specific load profile data
base to decompose the system load. Subsequently, relevant processes 
and applications are projected into future years and re-aggregated to 
build the future system load. By applying this partial decomposition 
approach, socio-technical transformations are considered that are 
leading to structural changes in the system load. In this study, the 
analysis focuses on the projection of the system and the process loads of 
BEVs and HPs. 

The electricity system models – IDILES-JMM, PowerACE, and 
ELTRAMOD – determine the development of electricity generation 
dispatch, and load shifting by optimizing BEV charging and HP opera
tion from an energy system perspective to achieve cost efficiency in the 
electricity market. Each model offers a different model approach and 
diverse set of skills, enriching the comprehension and decision-making 
process within the energy sector. 

IDILES-JMM is a combined model. IDILES is a model framework 
based on the dispatch model JMM for co-optimizing long-term (dis)in
vestment decisions. Using a Bender’s decomposition approach, power 
system components are iteratively adjusted to satisfy equilibrium con
ditions, considering market prices and system costs. The higher-order 
problem is to minimize long-run costs, considering investments, oper
ating, and fixed costs. In the complementary lower-level problem, 
operating costs are minimized using JMM, which is a dispatch model 
with hourly resolution that focuses on the detailed representation of the 
power and heat market. JMM uses rolling scheduling to reduce the size 
of the linear optimization problem. The model is running in a rolling 12- 
h scheduling structure for this purpose, alternating 36- and 24-h opti
mization periods representing day-ahead and intraday markets. 

PowerACE is an agent-based simulation model analyzing electricity 
spot markets with an hourly resolution, including annual investment 
planning for dispatchable power plants. Agents represent utilities and 
segments such as power plants, vRES, demand or demand-side man
agement (DSM). Bids for dispatchable power plants consider variable 
costs, depending on fuel and CO2 prices, and start-up costs. Each bid 
includes a price and a volume. The market clearing process is a linear 
optimization to maximize welfare, accounting for limited trading ca
pacity to neighboring market areas. 

ELTRAMOD is a deterministic linear optimization model that ana
lyzes electricity markets, focusing on investment and dispatch decisions 
under the assumption of full competition and perfect foresight. It min
imizes total system costs while ensuring energy balance for each time 
step. The energy balance ensures that electricity generation is equal to 
the residual load, including e.g., hourly electricity exchange flows across 
market areas, additional electricity demand for charging storage units, 
and sector coupling technologies, such as BEVs and HPs. Further tech
nical restrictions limit the generation of power plants to the installed 
capacity and the technology-specific availability. 

3.2. Scenario framework 

To ensure consistent model coupling and comparison, fundamental 
scenario framework parameters were predefined. The analysis horizon is 
set at 2030. Weather and weekly load structure data reference 2016 for 
average weather conditions and 2012 for extreme weather conditions to 
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assess their impact on generation adequacy. Load data resolution is 
hourly throughout the year. The modeling is limited to Germany at a 
national level. 

Data harmonization significantly affects the quality of results in 
model comparisons since database deviations can distort results and 
cause misinterpretations. To obtain an overview of the required input 
data and resulting outputs of the model comparison, data were sys
tematically recorded in an input-output table in a shared database ac
cording to eight main categories [100]. 

− Macroeconomic and statistical data (e.g., GDP, population, em
ployees, buildings, policy goals)  

− Environmental data (e.g., weather, fuel types, emission factors)  
− Demand data (e.g., energy demands, hourly profiles for electricity, 

heat)  
− Techno-economic data (e.g., efficiencies, specific investments, 

lifetimes, availabilities) 
− Installed infrastructure data (e.g., power plants, storage, elec

tricity grids, vehicle fleets, EV charging points)  
− Deployment/utilization data for infrastructures (e.g., profiles of 

power/heat generation, electricity grid utilization)  
− Prices and costs (e.g., fuel, electricity, heat, CO2 allowances)  
− Stakeholder behavior and acceptance (e.g., self-consumption 

maximization, driving profiles) 

Certain datasets serve as input parameters for models and simulta
neously appear as output generated by other models (e.g., energy de
mand used as input for supply-side models and produced as output from 
sector-specific demand simulation models). Vital framework data, 
essential as model drivers, encompass.  

− Installed power generation capacity  
− Fuel and CO2 allowance prices  
− Fuel-specific CO2 emission factors  
− Electricity load profiles  
− Annual electricity and heating demand  
− Cross-border flows with neighboring countries  
− Vehicle stock types and consumption factors  
− Residential building stock size and energy demands  
− Techno-economic power plant data 

This harmonized data, stored in the ESA2 Data Warehouse (DWH), 
serves as a centralized resource for all models. Comprehensive metadata 
on applied datasets and their sources are accessible at [101]. 

3.3. Model coupling and data exchange 

To model BEV and HP load-shifting potential in electricity system 
models, extensive input parameters provided by the demand-side 
models via the DWH are required. Fig. 1 illustrates the coupling be
tween demand-side and generation-side models within a unified EMS, 
showcasing limited essential data exchange among model groups. 

ALADIN passes BEV data – total numbers, charging availability 
profiles, load capacity, and storage volume per BEV – to eLOAD and the 
electricity system models. FORECAST contributes residential HP data 
–installed capacity, performance coefficients, and thermal energy stor
age volumes. eLOAD calculates hourly system and process loads of BEVs 
and HPs, feeding this information to the electricity system models. This 
model coupling addresses flexible DSM utilization (i.e., BEVs and HPs) 
and evaluates power sector generation adequacy. Results from the EMS 
runs concerning BEV and HP market ramp-up are integrated into elec
tricity system models. The electricity system models then recalibrate 
power plant dispatch alongside optimal BEV and HP load shifting, 
excluding power plant investments to isolate technology-specific load 
shift differences. The comparative evaluation relies on power plant 
dispatch, DSM technologies, and generation adequacy indicators. 
ELTRAMOD and IDILES-JMM base dispatch decisions on minimizing 
system costs, while PowerACE follows an agent-based approach to 
maximize total welfare. After an EMS loop, wholesale electricity prices 
from ELTRAMOD feed back into transport and heating models, allowing 
recalculation into retail electricity prices for households, tertiary, and 
industry sectors, factoring in taxes and levies. 

3.3.1. Battery electric vehicles 
ALADIN provides process-relevant BEV data, which are required to 

model electro-mobility demand shifts. The number of BEVs3 (private/ 
commercial passenger cars), average charging, and storage capacities 
per BEV (cf., Table 3) are transferred annually. Furthermore, hourly 
driving and charging availability profiles (parked with/without grid 
connection) are passed to the electricity system models (cf., Fig. 2 a-b). 
No bidirectional charging is considered in the electricity system models. 
Moreover, commercial fleet and private BEVs are differentiated in 
driving and parking profiles. 

Table 2 
Overview of applied models and approaches of the EMS.  

Sector Specific area Model approach Model name Selected 
references 

Model output 

Transport 
sector 

Development pathways 
for vehicle technologies 

Agent-based 
simulation 

ALADIN [70–73] Development pathways for transport demand regarding the share of 
different (new) transport modes and vehicle technologies 

Heating 
sector 

Development pathways 
for thermal equipment 

Bottom-up cohort 
simulation 

FORECAST [74–77] Development pathways for thermal equipment and energy requirements 
for buildings 

Electricity 
sector 

Hourly electricity 
demand 

Simulation, partial 
optimization 

eLOAD [78–81] Hourly system load and load profiles for individual power applications 

Power plant investments Optimization (LP) 
Bender’s 
Decomposition 

IDILES [82,83] Development pathways of fuel-specific power generation dispatch and 
advantageous load shifts on the demand side (optimized charging of BEVs 
and optimized operation of HPs with TES) from an energy system 
perspective Dynamic dispatch 

planning 
Optimization (LP) JMM [84–87] 

Power plant investments 
and dispatch 

Agent-based 
simulation 

PowerACE [88–91] 

Power plant investments 
and dispatch 

Optimization (LP) ELTRAMOD [83,92–96]  

3 The total number of BEVs is expected to reach 7.5 million by 2030, with 
commercial fleet and private vehicles contributing almost equally to the total. 
Due to the beginning of the MODEX project in 2019, the current German 
government’s target of approximately 15 million BEVs (30 % of the total pas
senger vehicle fleet) by 2030 could not be taken into account. However, a 
greater emphasis is placed on the methodology and comparison of the models, 
rather than on a perfect forecast. 
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Uncontrolled BEV process loads and charging availability profiles 
exhibit daily and weekly structures (cf., Fig. 2 a-b), notably differing 
between weekdays and weekends. BEV charging sees a peak between 8 
and 10 a.m. as users charge vehicles at work. After a slight valley around 
noon, charging increases when BEV users reach home. Evening peaks 
occur daily, notably larger on weekdays. A load reduction occurs from 
Friday onwards, with lower uncontrolled BEV process loads mainly on 
weekends. 

Charging availability displays an almost sinusoidal pattern (cf., Fig. 2 
b). BEVs remain connected to the grid predominantly at night, but with a 
decreasing availability towards the weekend. Fleet vehicles show higher 
charging availability peaks but lower availability around midday on 
weekdays. Private vehicles display less connectivity during weekends, 
hinting at more leisure trips, maintaining an average availability above 
40 %. This highlights theoretical storage potential, considering bi- 
directional charging or vehicle-to-grid concepts. Aggregated BEV loads 
remain stable seasonally. 

3.3.2. Heat pumps with thermal energy storage 
FORECAST models HP diffusion, passing annual installed HP ca

pacity to eLOAD and the electricity system models. eLOAD uses the 
FORECAST output to determine the hourly process load, exchanging 
parameters like maximum shift duration of heat demand and the yearly- 
averaged coefficient of performance (COP).4 HP capacity is ~8 GW, 
requiring ~14 TW h annual electricity demand. Each HP is combined 
with a TES to provide flexibility to the system. When coupling a TES 

with an HP, the TES acts as a buffer to store excess heat generated by the 
HP during off-peak hours. TES can be discharged directly to provide 
space heating and water heating when needed, helping to improve en
ergy efficiency and reduce overall energy costs. The TES is typically 
charged during off-peak hours when electricity rates are lower or when 
excess renewable energy is available. It is discharged during peak hours 
when electricity demand is high, helping to reduce strain on the grid and 
save costs. The total assumed storage volume is about ~8 GWhth. 

Unlike BEVs, HPs show no weekly variation but have seasonal dif
ferences aligned with temperature. The HP process load, constant 
throughout the day with minor morning/evening increases, follows a 
seasonal pattern shown in Fig. 3 due to weather-dependent space 
heating demand. In summer there exists almost no demand for space 
heating, regardless of the weather year. WY 2012 stands out with a peak 
demand of nearly 90 % of installed HP capacity at the year’s start. 

3.3.3. Hourly electricity demand 
eLOAD computes hourly electricity demand and process loads for 

BEVs and HPs. TYNDP’s annual electricity demand guides eLOAD’s 
system load projection [102]. ALADIN and FORECAST provide BEV and 
HP load profiles. For calculating an aggregated HP profile with hourly 
resolution, a temperature-dependent load profile [103] and hourly 

Fig. 1. Model coupling and data exchange of the EMS to investigate the impact of the flexible utilization through BEVs and HPs on future generation adequacy.  

Table 3 
Total BEV number, average charging, and storage capacities per BEV for Ger
many in 2030.   

BEVs (passenger cars) Average 
charging 
capacity 

Average 
storage 
capacity Commercial Private Total 

BEVs 

[Mio.] [Mio.] [Mio.] [kWel/BEV] [kWhel/BEV] 

2030 3.97 3.60 7.57 6.13 19.37  

4 The consideration of a yearly-averaged COP was chosen to reduce 
complexity, as several iterations with a soft-linked data exchange had to be 
calculated as part of the model coupling. To take into account the degradation 
of the efficiency and capacity of HPs, e.g. in cold weather, it would be more 
accurate to implement an hourly temperature-dependent COP. 
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temperature data [104] are used.5 Fig. 4 illustrates the average hourly 
electricity demand and process loads for BEVs and HPs in Germany 
during winter and summer weeks in 2030 for WYs 2016/2012. Load 
peaks, occurring in winter evenings, result from BEV charging coin
ciding with high HP loads.6 

In electricity system models, exogenous input parameters like hourly 
system load and vRES feed-in influence optimal BEV and HP dispatch as 
the models aim to smooth the residual load. Fig. 5 presents monthly 
residual loads and annual load duration curves for WYs 2016/2012. As 
shown in Fig. 5 (b), the steeper curve in WY 2012 indicates a higher 
capacity deficit (86 GWmax) and more hours of low or negative residual 
load (− 42 GWmin), suggesting greater vRES surpluses than WY 2016. 
February in WY 2012 shows significant capacity deficits, potentially 
leading to critical supply situations (cf., Fig. 5 a). 

3.4. Methodical approach for load shifting in electricity system models 

This section outlines the methodology for load shifting in BEVs 
through controlled charging and the optimized dispatch of HPs (with 
TES) within the electricity system models, IDILES-JMM, PowerACE, and 
ELTRAMOD. 

Load shifting of BEVs and HPs in electricity system models involves 
the optimization of when these devices charge and consume electricity 
to reduce peak demand on the grid and maximize the utilization of RES. 
For BEVs, load shifting involves charging the vehicles during off-peak 
hours when electricity is cheaper and demand on the grid is lower. 
This helps to reduce the overall electricity costs for both consumers and 
grid operators, as well as reducing the strain on the grid during peak 
demand periods. Additionally, by integrating smart charging capabil
ities, BEVs can be scheduled to charge at times when there is an abun
dance of RES available, further reducing the environmental impact of 

transportation. Heat pumps work similarly, with load-shifting strategies 
designed to optimize their operation to coincide with periods of low 
electricity demand and high RES production. This can include pre- 
heating or pre-cooling buildings during off-peak hours and storing 
thermal energy for later use. By shifting the load of heat pumps to times 
when electricity is cheaper and cleaner, overall energy costs can be 
reduced and the RES integration into the grid can be maximized. 

In PowerACE, an agent calculates daily load shifting for BEVs and 
HPs, aiming to smooth the residual load over 24 h. Hourly deployment is 
constrained by the installed capacity of HPs or BEVs connected to the 
grid. The hourly electricity demand for the following day, derived from 
heat demand, BEV driving profiles, and charging states, must be met 
within the observation horizon. This electricity demand can be shifted 
within the maximum shift duration. The agent demands the resulting 
daily use of these technologies on the spot market by creating and 
submitting bids to the market operator. 

The optimization models IDILES-JMM and ELTRAMOD use storage 
modeling for demand shifting of BEVs and HPs to minimize total system 
cost while smoothing the residual load. HPs have specified heat demand, 
met by direct heat generation or withdrawal from the coupled TES. The 
storage fill level, along with technology capacities, influences possible 
load shifting. 

For BEVs, JMM models the electricity demand related to charging 
considering arrival and departure rates, along with fixed battery levels 
upon arrival and departure from the parking location with grid access, 
impacting load shifting. These two battery levels remain constant in 
JMM, resulting in a time-varying electricity demand trajectory, differing 
from PowerACE and ELTRAMOD. Like HPs, the BEVs’ storage level, 

Fig. 2. Average weekly process load per BEV (based on total BEVs number) (a) and charging availability for parked BEVs with grid access (b) for Germany in 2030 
(WY2016/2012). 

Fig. 3. Average capacity factors of residential HPs for space and water heating 
in Germany for an average (WY 2016) and an extreme weather year (WY 2012). 

5 The FORECAST model incorporates various input data to model the diffu
sion and electricity consumption of HPs in the residential sector. This includes 
building stock data (e.g., age classes, number of dwellings, floor area, U-values), 
technology data (e.g., stock, efficiency, investment and operation costs, life
time), energy carriers and prices, and policy scenario parameters.  

6 According to FORECAST, HPs will have a market share of 19 % in single- 
family homes and 18 % in multi-family homes in Germany by 2030. A large 
proportion of heat will continue to come from natural gas, district heating, and 
biomass. FORECAST results show that 2.7 million HPs will be installed in 
Germany by 2030, with increasing use in single-family homes and efficient new 
buildings. However, rising electricity prices are influencing investment de
cisions in HPs. The FORECAST model favors investments in district heating and 
biomass due to lower costs for end energy consumers (cf. Table A1 in the 
appendix). 
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along with capacities, constrains load shifting. 
In ELTRAMOD, private and commercial fleet BEVs’ driving profiles 

(process load) must be met hourly. In this context, BEVs are modeled 
similarly to storage facilities. The total available storage level is the sum 
of all vehicles’ storage capacity plus the charging amount, minus driving 
BEVs’ electricity consumption. The upper storage level is constrained by 
the total capacity of all vehicles. In the first and last hour of the year, the 
storage facilities are filled to 50 %. Another constraint limits BEVs’ 
maximum charging capacity, determined by all vehicles’ charging ca
pacity and the availability profile. The maximum charging quantity is 
the total storage capacity minus the previous hour’s storage level. 
Hourly charging amounts (i.e., BEVs’ electricity consumption) 
contribute to the optimization problem’s energy balance. BEVs and HPs 
are modeled with assumed activation costs of 0 EUR/MWh, implying a 
regulatory obligation to activate DSM measures supporting system 
stability. 

4. Impact of flexibility options on residual load 

In the following section, the results for the different WYs are pre
sented concerning the load shifting of BEVs and HPs in the three elec
tricity system models – IDILES-JMM, PowerACE, and ELTRAMOD. 
Furthermore, the residual load after dispatch of the considered flexi
bility options and the resulting impacts on generation adequacy are 
described. All results were derived with a fixed power plant fleet, which 
is identical in all models (cf., Table A2). 

4.1. Load-shifting potential of battery electric vehicles 

Fig. 6 shows the mean hourly process load of BEVs (uncontrolled 
charging) and compares the optimized charging profile of BEVs for work 
and weekend days of the winter and summer season in an average 

(2016) and an extreme (2012) WY for the electricity system models 
IDILES-JMM, PowerACE, and ELTRAMOD. 

The models shift the BEVs’ electricity demand for charging within 
predefined parameters (i.e., maximum charging power, storage capac
ity, charging availability profile). Notably, all models exhibit a demand 
shift from evening to early afternoon and morning, aligning with lower 
general electricity demand periods. On weekends, a noticeable shift 
occurs, resulting in higher peak demand than weekdays, especially with 
increased BEV charging during times of lower total electricity demand 
and higher PV generation, evident in summer with up to 12 GW 
(maximum BEVs’ electricity demand) in ELTRAMOD and IDILES-JMM. 
The average weekly pattern of optimized BEV charging is similar be
tween the optimization models IDILES-JMM and ELTRAMOD, with 
minor time differences attributed to their slightly different mathemat
ical approaches. IDILES-JMM integrates BEVs’ load shift within a rolling 
24-36-h planning, whereas ELTRAMOD simulates BEVs’ load shift with 
perfect foresight over a year. Gils et al. [3] demonstrate similar findings, 
showing less discrepancy between power system models for the dispatch 
of peak load power plants, controlled charging of BEVs, and optimized 
HP operation. The authors highlight more significant result differences 
for long-term storage operation, vehicle-to-grid, and demand response. 
While IDILES-JMM and ELTRAMOD minimize total costs, PowerACE, an 
agent-based model, prioritizes smoothing residual load from the agents’ 
perspective. The results in the agent-based model PowerACE differ from 
the optimization models, as it only allows day-ahead load shifting within 
24 h, leading to abrupt transitions between weekday and weekend load 
patterns (high load in night hours vs. low load in early morning hours). 
Moreover, PowerACE shifts load peaks from noon to night hours, which 
is observed consistently across all WYs and seasons. In total 
cost-optimizing models like IDILES-JMM and ELTRAMOD, a portion of 
weekday load is shifted to midday hours on weekends, particularly 
noticeable in summer due to high PV feed-in and lower overall 

Fig. 4. Average hourly load profiles for total system load and uncontrolled process loads of BEVs and HPs in Germany for a stylized winter (a) and summer (b) week 
in 2030 (WY 2016). 

Fig. 5. Monthly residual load (a) and duration residual load curve (b) for an average (WY2016) and extreme (WY2012) weather year for Germany in 2030.  
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electricity demand. 
Result deviations and methodological disparities indicate that total 

cost-optimizing models achieve more significant electricity demand 
shifts than the agent-based model PowerACE, suggesting untapped po
tential in the latter. However, uncertainties remain about agents 
accessing all information to optimally utilize shifting potentials in the 
electricity market.7 Additionally, Gils et al. [61] state that different 
technology modeling approaches for BEVs lead to significant variations 
in the flexibility provided. Specifically, imposing costs for deviating 
from a predefined charging profile greatly reduces the use of BEV flex
ibility. Conversely, neglecting a minimum battery level results in 
increased utilization of this flexibility. 

4.2. Load-shifting potential of heat pumps 

Fig. 7 compares the average process load profile of HPs (without 
TES) with the optimized utilization profile of HPs, incorporating TES for 
space and water heating in residential buildings. Integrated TES en
hances HPs’ flexibility, allowing them to respond more dynamically to 
residual load smoothing across all models. Load peaks mainly occur in 
the early morning (04:00–06:00), midday (12:00–13:00), and evening 
(20:00–24:00), aligning with increased RES feed-in during these periods 
(e.g., PV at noon, wind at night). This indicates a high HP utilization, 
and a decreasing variation of the residual load during periods of high 
RES feed-in (i.e., times with low electricity prices – also shown in 
Ref. [62]). Load valleys emerge between these times, with minimal 
variation in the optimized HPs’ dispatch between week and weekend 
days. In summer, residential heat demand decreases significantly due to 
the absence of space heating needs, focusing on hot water preparation. 
IDILES-JMM and ELTRAMOD exhibit similar responses in HP load 
shifting, while PowerACE differs slightly by operating within a 24-h 
rhythm without shifting loads to the next day. Evaluating TES over a 
shorter time horizon of 24–36 h in IDILES-JMM produces similar results 
to ELTRAMOD with perfect foresight. This is because the objective 

function of IDILES-JMM includes remuneration for the storage filling 
level at the end of each optimization period (same applies to BEVs – also 
shown in Ref. [3]). 

Interaction with BEV load smoothing is also noted; for instance, 
ELTRAMOD shows higher BEV charging on weekends at midday (13:00) 
compared to increased HP utilization in IDILES-JMM. Moreover, CHP 
ramping (as considered in IDILES-JMM) has a substantial impact on the 
interaction of CHP, HPs, and TES. Strong fluctuations in the residual 
load are preferably compensated by adjusting the HP operation in case 
of additional CHP ramping restrictions, which favors a more intense 
usage of TES (also shown in Refs. [3,62]). All three electricity system 
models consider a constant yearly-averaged COP. However, the authors 
in Gils et al. [53,61] discovered that higher utilization of TES in building 
heat pumps is observed when considering a time-variable COP. This 
approach favors partially adjusting the heat pump operation based on 
the heat source temperature. 

4.3. Smoothed residual load through optimal dispatch of flexibility 
options 

Fig. 8 (a–d) illustrates the impact of load shifting from BEV charging 
and HP dispatch on residual load smoothing across the three electricity 
system models for winter (top) and summer (bottom) weekdays and 
weekends for an average (2016 – left) and an extreme (2012 – right) 
weather year. In general, the residual load on winter days (top) is higher 
and has fewer valleys compared to summer days (bottom) due to lower 
PV feed-in. When comparing different weather years, the extreme 
weather year (2012 – right) exhibited more extreme residual load val
leys on weekdays in both summer and winter, indicating a greater po
tential for smoothing the residual load. Since BEVs and HPs are 
electricity-consuming technologies (power-to-X), their dispatch results 
in load increases. The primary goal of the electricity system models is to 
smooth residual load valleys (i.e., low to negative residual load), espe
cially during midday on weekdays and weekends with high PV feed-in, 
particularly in the summer season (Fig. 8 b, d). The models avoid 
appliance use during residual load peaks, especially in summer, to 
prevent exacerbating extreme situations with capacity deficits. In gen
eral, the residual load smoothing effect is more pronounced in the 

Fig. 6. Comparison of mean hourly BEV process load (uncontrolled charging) and optimized controlled BEV charging profiles for an average weekday (0–24 h) and 
weekend day (24–48 h) for the winter (top) and summer (bottom) season in an average (2016 – left) and extreme (2012 – right) WY for Germany in 2030 between the 
electricity system models IDILES-JMM, PowerACE, and ELTRAMOD. 

7 For all models, the annual sum of the shifted load of controlled BEVs 
charging is identical with the sum of the process load for uncontrolled charging. 

S. Misconel et al.                                                                                                                                                                                                                                



Energy 305 (2024) 132266

10

optimization models than in the agent-based model PowerACE, as 
explained before. Additionally, the similarity in the smoothing effect 
between the optimization models IDILES-JMM and ELTRAMOD is 
notable. Hence, the difference between the myopic perspective (12-h 
rolling planning) and the perfect foresight perspective has a minor 
impact on the load-shifting effect of BEVs and HPs. 

In the appendix, Figure A1 presents the mean hourly residual load 
smoothing effect of all considered flexibility options, including BEVs and 
HPs with TES, pumped storage plants (PSP), renewable curtailment, and 
load shedding. The peak load shaving due to PSP in the early morning 
(06:00–09:00) and evening (18:00–20:00) is striking. Residual load 
valleys are additionally smoothed by charging of PSP, especially on 

weekends. Due to the different utilization of PSP, explained more in 
detail in Ref. [58], the power system models differ slightly in the overall 
smoothing effect. The highest residual load smoothing is observed in 
ELTRAMOD, the perfect planner (perfect foresight for one year), closely 
followed by IDILES-JMM with the rolling planning algorithm in a 
24-36-h rhythm, which only slightly affects the PSP dispatch. The 
agent-based model PowerACE shows the least smoothing effect due to 
the load shift within 24 h. 

Comparisons between WYs show minor differences in residual load 
smoothing among electricity system models. For a detailed analysis of 
dispatch decisions of the individual generation technologies and flexi
bility options in the three electricity system models, the hourly energy 

Fig. 7. Comparison of mean hourly HP process load (w/o TES) and optimized HP dispatch with TES for an average weekday (0–24 h) and weekend day (24–48 h) for 
the winter (top) and summer (bottom) season in an average (2016 – left) and extreme (2012 – right) WY for Germany in 2030 between the electricity system models 
IDILES-JMM, PowerACE, and ELTRAMOD. 

Fig. 8. Comparison of mean hourly (non-optimized) residual load and smoothed (optimized) residual load through load shifting of BEVs and HPs for week (0–24 h) 
and weekend day (24–48 h) for the winter (top) and summer (bottom) season in an average (2016 – left) and extreme (2012 – right) WY for Germany in 2030 
between the electricity system models IDILES-JMM, PowerACE, and ELTRAMOD. 
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balance during the week with the highest residual load (WY 2016/2012) 
is examined in Fig. 9. The WY 2012 is characterized by a more fluctu
ating residual load, simultaneously resulting in a more volatile utiliza
tion of load-shifting technologies that are supposed to contribute to the 
residual load smoothing. In general, annual PSP dispatch, vRES 
curtailment, and load shedding are higher in the WY 2012 compared to 
the WY 2016 in all models (cf., Table 5). Higher vRES curtailment occurs 
if flexible sector coupling and storage are not operated optimally due to 
a lack of temporal foresight (PowerACE – also shown in Ref. [61]). 
Additionally, inflexibilities such as technical restrictions on conven
tional generation units (e.g., minimum operation times, minimum 
downtimes, ramping constraints, or CHP must-run requirements) can 
amplify vRES curtailment (see also [62]). Load shedding varies among 
models (cf., Fig. 9 d-f), with IDILES-JMM experiencing more due to the 
provision of reserve power, limiting flexibility in peak capacity and 
storage (i.e., oil-fired plants and PSP). PowerACE and ELTRAMOD uti
lize residual load valleys to charge PSP, especially during RES surpluses. 
IDILES-JMM has virtually no PSP charging in the week with the highest 
residual load, which is likely due to the need to provide reserve power, 
which limits the amount of electricity that can be generated. While in 
IDILES-JMM and PowerACE also the conventional power plant fleet 
reacts more flexibly to the fluctuating demand, in ELTRAMOD the de
mand is smoothed more by the load shifting of BEVs, HPs and PSP (cf., 
Fig. 9 e-f). The reason for this is the considered load-changing costs for 
ramping up and down conventional generators in ELTRAMOD, which 
makes a very short-term shutdown of power plants uneconomical 
compared to cost-neutral load shifting. In contrast, in IDILES-JMM and 
PowerACE only start-up costs for conventional power plants are 
considered (cf., Table A4 [58]). Gils et al. [3] demonstrate that addi
tional ramping constraints and costs can reduce electricity supply by up 
to 5 %, leading to increased curtailment, load shedding, and system 
costs. Moreover, while IDILES-JMM and PowerACE react to the positive 
residual load extremum (capacity deficit) in WY 2012 with load shed
ding,8 ELTRAMOD activates PSP for load smoothing. Using a perfect 
foresight approach over one year (ELTRAMOD), the lower availability of 
flexible conventional power plants or sector coupling options can be 
partially offset by the more intensive use of PSP (see also [61]). Addi
tionally, reduced storage possibilities due to limited time foresight result 
in higher utilization of thermal power plants (IDILES-JMM, PowerACE – 
also shown in Ref. [61]). 

5. Impact of flexibility options on generation adequacy 

Since renewable electricity generation is heavily dependent on 
weather conditions, and electricity demand increases through the elec
trification of the demand-side sectors (e.g., due to BEVs and HPs), the 
question arises what impact load shifting may have on generation ade
quacy in the power system, especially during critical supply situations (i. 
e., periods of high electricity demand and very low RES feed-in). To 
assess generation adequacy, IDILES-JMM, PowerACE, and ELTRAMOD 
model results are compared using specific indicators, focusing on the 
year 2030 (WY 2016/2012). The continuously reliable capacity (CRC) is 
utilized to evaluate generation adequacy. In this paper, CRC is defined as 
non-weather-dependent electricity generation capacity excluding PSP 
and considering existing reserve power plant capacities not participating 
in the market, along with technology-specific availability (based on [58, 
105]). To better compare the load-shifting effects of BEVs and HPs be
tween the electricity system models, all models apply the same CRC 
(58.7 GW), since the power plant fleet and its reserve capacity are fixed, 
i.e., no model-endogenous capacity expansion (cf., Table A5). To assess 
the generation adequacy, an analysis of the coverage of the hourly re
sidual load by the CRC, without considering the hourly net electricity 

exchange flows between Germany and its neighbors, is performed. The 
following four generation adequacy indicators are determined and 
compared between the models.  

• Loss of Load Expectation (LOLE) refers to the number of hours in a 
year when the CRC fails to cover the residual load. 

• Power Import Dependency (PID) is defined as the difference be
tween residual load and CRC. The PID is zero if the CRC is greater 
than or equal to the hourly residual load. Positive PID indicates 
insufficient CRC, requiring electricity imports or other flexibility 
options.  

• Maximum Power Import Dependency (PIDmax) can be calculated 
for specific stress situations9 or for an entire year, denoting time 
intervals where PID remains positive for several hours. 

• Expected Energy Not Served (EENS) represents the amount of en
ergy not delivered over a period, based on consecutive hours with 
positive PID. 

Figs. 10 and 11 depict generation adequacy indicators before and 
after activation of BEV and HP load shifting. The x-axis represents the 
duration of individual stress situations, while the y-axis shows EENS 
values. Color gradients indicate the maximum PID during a stress situ
ation. Fig. 10 (a) reveals stress situations occurring in the average WY 
(2016) without additional BEV and HP electricity demand. With the 
added process load from BEVs and HPs (cf., Fig. 10 b), stress situations 
increase in frequency, along with the number of consecutive hours, 
EENS, and PIDmax. The situation is more critical in an extreme WY 
(2012), with more frequent and prolonged stress situations featuring 
higher EENS and PIDmax. Activating load shifting in the electricity 
system models, involving controlled BEV charging and optimized HP 
utilization with TES, minimizes stress situations threatening generation 
adequacy in both WYs (cf., Fig. 11). PowerACE, as agent-based model, 
exhibits a slightly higher frequency of critical security of supply situa
tions for the average WY (2016) compared to IDILES-JMM and 
ELTRAMOD optimization models. This discrepancy arises because the 
integrated agent slightly underestimates the load-shifting potential due 
to its limitation to shifting within a 24-h timeframe. IDILES-JMM ex
hibits the highest indicators for critical situations during the extreme 
WY (2012). The modeling of reserve power and heat provision by CHP in 
IDILES-JMM contributes to more stress situations, as the available ca
pacity is constrained by reserves for balancing power or is prioritized for 
heat provision in CHP. Consequently, this leads to lower electricity 
provision by lignite power plants in IDILES-JMM compared to other 
models (cf., Table A3). ELTRAMOD simplifies by excluding reserve 
power and CHP must-run conditions in this model experiment, showing 
fewer stress situations, and making it a “perfect planner” (perfect fore
sight for one year).10 ELTRAMOD exhibits the highest residual load 
smoothing, followed by IDILES-JMM using the rolling planning algo
rithm in a 24–36 h rhythm, minimally impacting PSP dispatch. Due to 
the load shift within 24 h, PowerACE shows the least residual load 
smoothing effect by BEVs and HPs, which also affects critical supply 
situations. Table 6 summarizes the annual security of supply indicators 
of all models for the WY 2016 and 2012. 

In the extreme WY (2012), characterized by heightened residual load 
fluctuations11 and low winter temperatures, the additional electricity 

8 Load shedding is penalized with the value of lost load (VOLL), which is 
assumed to be 800 EUR/MWhel in all models [58]. 

9 Most commonly, stress situations occur when high electricity demands meet 
low feed-in from weather-dependent renewable energy sources.  
10 The visual representation may suggest increased stress situations in 

ELTRAMOD after load shifting, but Table 6, detailing annual generation ade
quacy indicators, contradicts this. ELTRAMOD, functioning as the “perfect 
planner,” experiences the least stress situations, with variations primarily in 
their durations, leading to fewer overlaps in graphical points.  
11 Namely, electricity demand becomes more volatile, marked by fluctuating 

feed-in and load peaks from wind and PV sources. 
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demand from BEVs and HPs (without load shifting) leads to more 
frequent stress situations compared to the average WY 2016. (cf., 
Fig. 10). Despite activated load shifting in power system models, com
plete avoidance of critical supply situations is not achieved. On average, 
the frequency of stress situations can be reduced by 95 % in an average 

(2016) and by 68 % in an extreme (2012) WY through load shifting of 
BEVs and HPs. 

In an average WY (2016), the average PIDmax is approximately 16.6 
GW, implying a maximum power import capacity of around 9 GW 
(subtracting the full available PSP capacity of 7.6 GW, in the absence of 
other flexibility options) (cf., Table 6). In an extreme WY (2012), the 
average PIDmax is about 46.6 GW, necessitating around 39 GW of 
required import capacities or additional flexibility from batteries, 
power-to-gas-to-power, or demand-side management processes, after 
considering PSP. 

All models show that as stress situation duration increases, both 
EENS and maximum PID values also rise. Future reliance on electricity 
imports from neighboring countries, especially during winter with 
potentially prolonged stress conditions, is expected for Germany to 
maintain high generation adequacy. Investments in grid expansion and 
flexible options in Germany and neighboring countries are crucial to 

Fig. 9. Comparison of the hourly energy balance for the week with the highest residual load for an average (2016 – left) [t8137-t8304] and extreme (2012 – right) 
[t529-t696] WY for Germany in 2030 between the electricity system models IDILES-JMM, PowerACE, and ELTRAMOD. 

Table 4 
Weather year independent annual electricity consumption for general electricity 
demand, BEVs charging and HP utilization in Germany in 2030.   

2030 

[TWhel] [%] 

System load 507.3 92.8 
BEV process load 25.4 4.6 
HP process load 14.1 2.6 
Total 546.8 100  

Table 5 
Comparison of yearly vRES curtailment, load shedding, conventional electricity generation and PSP operation for an average (2016) and extreme (2012) WY between 
the electricity system models after load shifting of BEVs and HPs for Germany in 2030.   

WY 2016 WY 2012 

[TWh/yr] IDILES-JMM PowerACE ELTRAMOD IDILES-JMM PowerACE ELTRAMOD 

vRES curtailment 0.1 0.8 0 4.4 7.5 3.1 
Load shedding 0.05 0.04 0 5.0 4.3 1.2 
Conv. generation 174.0 172.7 170.3 176.0 174.4 172.9 
PSP charging 4.5 13.5 7.0 5.8 14.8 13.9 
PSP discharging 4.4 10.1 5.3 5.5 11.2 10.3  
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mitigate residual load peaks and avert critical supply situations. 

6. Conclusion 

Research on model experiments, especially those involving soft- 
linked model coupling and integrated model comparison focusing on 
sector coupling and the flexibility provision of BEVs and HPs, is limited. 
This paper makes a threefold contribution to existing research by: (I) 
systematically comparing three electricity system models; (II) focusing 
on sector coupling by implementing optimal dispatch strategies for BEVs 
and HPs from a system perspective; and (III) utilizing a soft-linked model 
coupling. 

The novelty of this paper lies in the multi-model approach, which 
integrates a comparison of electricity system models to analyze the 
impact of electrification and optimal load shifting of BEVs and HPs. 
Additionally, the paper examines how electrification and optimal load 
shifting of BEVs and HPs affect generation adequacy in Germany in 
2030, especially during critical supply situations, considering both 
average (2016) and extreme (2012) weather years. Therefore, specific 
demand-side models from the transport sector (ALADIN), heating sector 
(FORECAST), and an electricity projection model (eLOAD) are coupled 
with three electricity system models (IDILES-JMM, PowerACE, 
ELTRAMOD). 

The comparison between IDILES-JMM, PowerACE, and ELTRAMOD 
highlights key model characteristics that lead to differences in flexibility 
provision through optimal load shifting of BEVs and HPs. Harmonized 
input parameters and simplified scenario analyses isolate deviations in 
model results and attribute them to specific model properties. 

Results reveal that variations stem primarily from different model 
approaches and optimization logic. IDILES-JMM employs a 12-h rolling 
planning algorithm, alternating between 24- and 36-h loops for optimal 
dispatch decisions. ELTRAMOD utilizes a closed-loop linear optimiza
tion on an hourly basis throughout the year to determine optimal 
dispatch and load-shifting decisions. In PowerACE, agents submit hourly 
bids that are auctioned to maximize welfare for all market participants. 
Comparing load-shifting effects of BEVs and HPs, PowerACE’s agent- 
based approach,12 transforming load-shifting potential into day-ahead 

Fig. 10. Critical supply situations (a–b) without additional electricity demand from BEVs and HPs and (c–d) with additional electricity demand from BEVs and HPs 
before load shifting for Germany in 2030, taking into account an average (2016 – left) and extreme (2012 – right) WY. 

12 Agent-based models allow for more realistic simulations of complex sys
tems, incorporating the behaviors and interactions of individual agents. Ac
counting for the diverse behavior of agents involves several key steps e.g., 
incorporating agent heterogeneity, behavioral rules, learning and adaptation 
mechanisms, and interaction networks among agents, etc. Agent-based models 
can be highly complex and require a significant amount of computational re
sources. They need a large amount of data to accurately represent the behavior 
of agents, which can be time-consuming and costly. 
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bids, creates an information deficit. Its demand response optimization 
limits load shifting to one calendar day (24 h). In contrast, total cost 
optimizers like IDILES-JMM (with rolling planning horizon) and 
ELTRAMOD (with perfect foresight13), excel in determining residual 
load smoothing and minimizing system costs as they have complete 
information, akin to a central planner. Deviations in load-shifting ac
tivities depend also on varying considerations of load change and start- 
up costs for power plants.14 Since load shifting can directly affect critical 
supply situations, PowerACE exhibits higher generation adequacy in
dicators in the average WY (2016) due to minimal residual load 
smoothing through BEVs and HPs compared to IDILES-JMM and 

ELTRAMOD. In contrast, reserve power and CHP heat provision 
modeling can have an impact on generation adequacy, notably shown in 
IDILES-JMM for the extreme WY (2012), where available capacity is 
reduced by reserves for balancing power and increased use for heat 
provision. Result deviations in load shifting of BEVs and HPs between 
agent-based and optimization models underscore the need to focus on 
actor perspectives when modeling flexibility options, anticipating less 
centralized and more decentralized organization of flexibility by small- 
scale actors in the future. Despite increased electricity demand, acti
vating load shifting in BEVs and HPs reduces stress situations, enhancing 
generation adequacy. Across all electricity system models, load shifting 
indicates a reduction in curtailment of renewables and consumers, 
conventional power generation, and thus reduced CO2 emissions. Gen
eration adequacy indicators reveal conventional generation’s inability 
to meet the hourly residual load consistently. In 2030, weather- 
dependent findings suggest an average15 maximum requirement for 
additional flexibility of 9 GW in an average WY and 39 GW in an extreme 
WY for the German electricity market (assuming full availability of PSP). 
Load shifting from BEVs and HPs can significantly mitigate critical 
supply situations in an average WY compared to the scenario without 

Fig. 11. Comparison of critical supply situations between the power system models (a–b) IDILES-JMM, (c–d) PowerACE, (e–f) ELTRAMOD after optimal load shifting 
(residual load minimizing) of BEVs (controlled charging) and HPs (with TES) for Germany in 2030 under consideration of an average (2016 – top) and extreme (2012 
– bottom) WY. 

13 Linear optimization models often incorporate perfect foresight over a year 
because it allows for a comprehensive evaluation of long-term planning and 
decision-making within the energy sector. By assuming perfect foresight, these 
models can optimize resource allocation, investment decisions, and operational 
strategies with a high level of detail and accuracy. Perfect foresight assumptions 
may not capture all uncertainties and risks inherent in the energy system, so 
sensitivity analyses or scenario planning is necessary to account for these 
factors.  
14 Considering load change costs for power plants can result in higher load- 

shifting activities since load shifting is assumed to be cost-neutral in this 
study, and thus more cost-effective in the short-term than ramping up and down 
conventional generation (e.g., for ELTRAMOD). 

15 The average PIDmax is determined across all considered electricity system 
models (IDILES-JMM, PowerACE, ELTRAMOD). 
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load shifting. 
The study does not account for time-variable COP, leading to po

tential underestimation of required generation capacity during cold 
winter hours. Time-variant COP values are lower in winter due to colder 
temperatures, coinciding with high heating demand. Additionally, HP 
operation tends to concentrate during hours with a higher COP, 
increasing TES usage. Moreover, the study does not include vehicle-to- 
grid, which could offer additional flexibility by allowing BEV to 
discharge energy back to the grid during peak demand periods, aiding in 
grid balance and avoiding critical supply situations. 

In an extreme WY, supply bottlenecks persist, necessitating a diverse 
flexibility portfolio. This includes electricity imports, battery storage, 
additional generation capacities (e.g., flexible low-carbon power plants, 
storage discharge), and demand-side flexibility (e.g., vehicle-to-grid, 
electrolyzers). Anticipating future trends, low-carbon backup capac
ities, like green H2-fired power plants, are deemed crucial. Escalating 
fuel (mainly gas) and CO2 prices drive this development, boosting 
contribution margins for low or zero-emission power plants (e.g., green 
H2-fired plants, reservoirs, PSP). Furthermore, extreme WYs may wit
ness increased load shedding and renewable energy curtailment, 
emphasizing the importance of additional flexibility options. 

Activating BEVs’ and HPs’ flexibility mandates regulatory adapta
tions for demand response and prosumer involvement in the wholesale 
electricity market. This entails encouraging private consumers to 
employ HPs flexibly with battery and thermal storage, alongside 
controlled bi-directional BEV charging in their households. Compensa
tion for consumer flexibility is crucial, achieved through dynamic pric
ing structures, real-time wholesale electricity prices, and additional 
revenues for DSM or flexible network fees. Automation via smart meters 
and appliances is necessary for demand response, allowing communi
cation between distributed vRES and smart appliances like BEVs and 
HPs. Utilities and aggregators must devise innovative, appealing busi
ness models to motivate end users to offer flexibility and accept load 
balancing, even if not always aligned with their preferences. 
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Appendix  

Table A.1 
Development of final energy demand, market shares, and prices for heating energy carriers 
according to the FORECAST model results.   

2020 2025 2030 

End energy demand [PJ] 
Biomass 110.5 135.5 150.1 
Coal 6.6 6.4 5.6 
District heat 239.9 269.0 295.6 
Electricity 56.6 54.7 47.9 

(continued on next page) 

Table 6 
Comparison of generation adequacy indicators after load shifting of BEVs and HPs between electricity system models for an average (2016) and an extreme (2012) WY 
for the future power system in Germany in 2030.  

2030 Frequency of stress situations Loss of load expectation (LOLE) Expected energy not served (EENS) Max. Power import dependency (PIDmax) 

[− ] [h] [GWh] [GW]  

WY16 WY12 WY16 WY12 WY16 WY12 WY16 WY12 

IDILES-JMM 5 57 28 338 160 4150 17 71 
PowerACE 8 54 37 370 261 4146 19 33 
ELTRAMOD 6 44 29 325 160 3460 14 36  
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Table A.1 (continued )  

2020 2025 2030 

Electricity heat pumps 25.6 41.9 52.2 
Environmental heat 56.2 92.1 114.9 
Fuel oil 403.6 389.0 342.2 
Natural gas 698.6 588.9 541.3 
Solar 3.1 4.4 4.5 
Market share in single-family homes [%] 
Biomass 0.10 0.10 0.12 
District heat 0.21 0.20 0.26 
Heat pump 0.16 0.16 0.19 
Fuel oil 0.27 0.23 0.00 
Natural gas 0.26 0.31 0.43 
Market share in multi-family homes [%] 
Biomass 0.94 0.93 0.11 
District heat 0.22 0.21 0.28 
Heat pump 0.15 0.15 0.18 
Fuel oil 0.27 0.24 0.00 
Natural gas 0.27 0.31 0.43 
Price for end energy consumers [ct/kWh] 
Pellets 5.27 5.42 5.62 
District heat 9.38 10.03 10.77 
Heat pump 22.65 23.6 25.79 
Fuel oil 7.06 9.52 10.82 
Natural gas 7.97 8.86 9.46   

Table A.2 
Installed capacity of the conventional power plant 
fleet and renewable energy sources in Germany for 
2030. Data based on [102,104,106].  

[GW] Installed capacity 

Oil 4.3 
Gas 35.5 
Coal 9.8 
Lignite 8.4 
Mine Gas 0.2 
Sewage Gas 0.1 
Waste 2.1 
Reservoir 0.3 
Pumped storage 7.6 
Wind onshore 58.5 
Wind offshore 15.0 
PV 66.3 
Run-of-river 4.3 
Biomass 7.6 
Other RES 0.2 
Total 220.2   

Table A.3 
Power generation of the conventional power plant fleet and renewable energy sources in an average (2016) and in an extreme (2012) WY in Germany for 2030.   

WY 2016 WY 2012 

[TWh] IDILES-JMM PowerACE ELTRAMOD IDILES-JMM PowerACE ELTRAMOD 

Oil 0.5 0.4 0.0 1.8 2.6 1.2 
Gas 136.5 125.8 135.4 131.7 122.5 131.7 
Coal 14.4 18.8 9.8 17.7 20.6 13.8 
Lignite 9.5 14.1 11.3 12.2 16.0 13.1 
Mine Gas 1.1 1.3 1.4 1.0 1.2 1.3 
Sewage Gas 0.1 0.5 0.4 0.1 0.5 0.4 
Waste 10.9 11.0 11.3 10.5 10.3 10.7 
Reservoir 1.0 0.8 0.7 0.0 0.0 0.0 
Wind onshore 98.6 98.6 98.6 96.1 96.1 96.1 
Wind offshore 56.5 56.5 56.5 44.6 44.6 44.6 
PV 57.8 57.8 57.8 73.3 73.3 73.3 
Run-of-river 19.1 19.2 19.2 19.2 19.2 19.2 
Biomass 40.7 43.4 43.4 39.1 43.4 43.4 
Other RES 0.0 1.5 1.5 0.0 1.5 1.5 
Total 446.7 449.7 447.3 447.3 451.8 450.3   
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Table A.4 
Different consideration and range of start-up and load change costs between the electricity system models. Data based on 
[58].   

Start-up costs Load change costs   
Ramp-up costs Ramp-down costs   
(fuel-related) (depreciation-related)  

*[EUR/MWel] 
**[EUR/MWhel] 

[MWhth/MWel] [EUR/MWel] 

IDILES-JMM 0/3.0–16.7 * – – 
PowerACE 0/4.0–180.0 ** -1 – 
ELTRAMOD – 0/3.5–16.7 0/1.7–10.0 

1 In PowerACE, start-up costs consider additional fuel consumption. 

Fig. A.1. Comparison of mean hourly (non-optimized) residual load and smoothed (optimized) residual load through load shifting of BEVs, HPs, pumped storage and 
vRES curtailment for a week (0–24 h) and weekend day (24–48 h) for the winter (top) and summer (bottom) season in the average (2016 – right) and the extreme 
(2012 – left) WY for Germany in 2030 between the electricity system models IDILES-JMM, ELTRAMOD and PowerACE.  

Table A.5 
Continuously available capacity (CAC), mean availability factors and continuously reliable capacity (CRC) for Germany in 2030. Data according to Refs. [106, 
107].   

Continuously available capacity (CAC) Mean availability Continuously reliable capacity (CRC) 

[MW] [− ] [MW] 

CCGT 24,133.5 0.86 20,754.8 
CCOT 1017.9 0.84 855.0 
Coal 9767.8 0.82 8009.6 
GasSteam 6539.2 0.86 5623.7 
Lignite 8351.8 0.85 7099.0 
OCGT 4842.0 0.86 4164.2 
OCOT 1588.7 0.84 1334.5 
OilSteam 1731.1 0.84 1454.1 
Reservoir 287.3 1.00 287.3 
Mine Gas 221.7 0.70 155.2 
Sewage Gas 136.8 0.70 95.8 
Waste 1889.0 0.70 1322.3 
Reserve control – – 7581.0 
Total 60,506.8  58,736.5  
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