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e Integration of governing physics significantly improved
the prediction accuracy of the data-driven and data-free
Artificial Neural Network for the potential flow cases in-

vestigated in this work

e Prediction accuracy of data-driven Artificial Neural Net-
works depends on the distribution of the ground truth in
training and random distribution of training data has best
performance amongst the different distributions studied in

this work

e For an unsteady two-dimensional Taylor-Green vor-
tex, which was trained using the Sequence-to-Sequence
method, data-driven Artificial Neural Networks were able
to interpolate in the temporal range and reconstruct the

vortex structures for untrained time steps
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Abstract

The application of Artificial Neural Networks (NNs) has been extensively investigated for fluid dynamic problems. A specific form
of ANNSs are Physics-Informed Neural Networks (PINNs). They incorporate physical laws in the training and have increasingly
been explored in the last few years. In this work, prediction accuracy of PINNs is compared with that of conventional Deep Neural
Networks (DNN5s). The accuracy of a DNN depends on the amount of data provided for training. The change in prediction accuracy
of PINNs and DNNs is assessed using a varying amount of training data. To ensure the correctness of the training data, they are
obtained from analytical and numerical solutions of classical problems in fluid mechanics. The objective of this work is to quantify
the fraction of training data relative to the maximum number of data points available in the computational domain, such that the
accuracy gained with PINNS justifies the increased computational cost. Furthermore, the effects of the location of sampling points
in the computational domain and noise in training data are analyzed. In the considered problems, it is found that PINNs outperform
DNNs when the sampling points are positioned in the Regions of Interest. The PINNs for the potential flow around the Rankine
oval have shown better robustness against noise in training data compared to DNN. Both models show higher prediction accuracy
when sampling points are randomly positioned in the flow domain as compared to a prescribed distribution of sampling points. The
findings reveal new insights on the strategies to massively improve the prediction capabilities of PINNs with respect to DNNs.

Keywords: Physics-informed Neural Networks, Simplified Navier-Stokes equations, Partial differential equations, Fluid
Dynamics, Unsteady flow

1. Introduction 4 CFD models, the solutions obtained by solving the temporally-
«s and/or spatially-discretized governing equations, lead to vary-

Since the scientific revolution in the 16th and 17th centuries, ., ino errors in the computed flow fields. The desired accuracy
scientists try to express nature in terms of equations. The dy-,; determines the computational costs and hence highly-resolved
namics of fluid flow is described through a set of Partial Dif- ,  ¢imulations are expensive.
ferential Equations (PDEs), known as the Navier-Stokes equa-
tions [1, 2]. Although some simplified problems in fluid me-
chanics have analytical solutions, the solution to the Navier-
Stokes equations can only be approximated using numerical
methods that are solved in a discretized domain. The resolu-
tion required for these discretizations in space and time to suffi-
ciently resolve the flow features increases with the complexity
and parameters of the underlying flow, for instance with high
REYNOLDS numbers.

In the second half of the 20th century, the advent of su-
percomputers provided a boost to the development of numer- o
ical methods and computational models to approximate fluid o
flow behaviour allowing large scale computations for real- o
world problems. Since then, the complexity of the Compu- o
tational Fluid Dynamics (CFD) models and the capacity of o
the High-Performance Computing (HPC) systems has increased o
many times over. Depending on the order of accuracy of these o

49 Artificial Neural Networks (ANNs) have the potential to
so complement, improve and even replace conventional CFD
st methods [3]. These deep learning-based NNs can further be cat-
sz egorised as data-driven or physics-informed. Data-driven Deep
ss Neural Networks (DNNs) can be trained with spatial coordi-
s« nates or temporal data of a domain as input to the network,
ss  where flow quantities such as the velocity or pressure fields,
ss derived from analytical solutions, experimental results or CFD
s7 simulations, are used as ground truth [4]. Once trained, such
ss purely data-driven DNNs can be employed to predict the veloc-
ity or pressure fields of the complete domain, while delivering
results close to the reference data. These DNNs have to learn
an approximation of the underlying physics while training on
ground truth generated from flow solutions. Compared to the
numerical solvers, these NNs can predict solutions faster [5].
For certain problems, they may, however, suffer from physical
inconsistencies or violate the governing equations [6].

6 Different NN architectures can be employed for DNNs used
*Corresponding author 7 in fluid mechanics. Convolutional Neural Networks (CNNs) are
Email address: rishabh.puri@kit.edu (Rishabh Puri ) e commonly used for data-driven solutions of problems in fluid
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mechanics, which are solved mainly on cartesian grids [5, 7].12
Owing to the filters, CNNs are able extract important multi-7
scale features from a large dataset. CNNs with encoder-1es
decoder architechtures are used for evaluating steady state flowizs
fields [5]. Matsuo et al. [8] used a combination of 2D andiso
3D CNNs to reconstruct a 3D flow field of flow around aias
square cylinder while training on sparse 2D data. Sekar etis
al. [9] proposed to train an encoder-decoder CNN to extractiss
the geometric parameters of an airfoil while taking an imageiss
of a two-dimensional airfoil contour as input. The sequentialiss
model shows good prediction results while training on largess
CFD datasets. U-nets are also encoder-decoder based fully con-is7
nected CNNs, where encoder and decoder layers are connectediss
using skip connections [10]. By introducing skip connectionsiss
in the fully connected layers, U-Nets are able to reproduce bothio
high- and low-level features [11]. Generative models have en-14
abled improved predictions of results not previously used foris
DNN training. Jolaade et al. [12] evaluated both a Generativeiss
Adversarial Network (GAN) and an Adversarial Auto-Encoderias
(AAE) for predicting the evolution in time of highly nonlineariss
fluid flow. The authors find that both models were able to pre-is
dict the Gaussian vortices forward in time with AAE showingis
better results than GAN. To predict unsteady flow fields, Re-14s
duced Order Models (ROMs) have been commonly used with ais
Recurring Neural Network (RNN) or a Long Short-Term Mem-1so
ory (LSTM) as the propagator. Two Hybrid Reduced Orders:
Models (ROMs) were presented by Bukka et al. [13] to pre-is
dict unsteady flows. The first model uses the Proper Orthog-1ss
onal Decomposition (POD) to project the high fidelity simula-is:
tion data to a low dimension. The second model, referred to asiss
the convolution recurrent autoencoder network (CRAN), em-1ss
ploys convolutional neural networks with nonlinear activations, sz
to extract the low-dimensional features. However, Fotiadis etiss
al. [14] found that CNN based models have better performancess
than RNNs and LSTMs for predicting results for shallow waterieo
problems. Deep learning models with noisy trainng data can bes:
used as an alternative to repetitive experiments. Sofos et al. [15]+e2
developed a CNN based deep learning model for reconstructingies
turbulent flow images from low-resolution counterparts encom-1es
passing noise. 165

CNNs suffer from a major drawback, that they can only beses
trained on data from uniform cartesian grids. This makes theirier
application to most real world flow problems. inefficient. Fories
solving flow problems for complex geometries with irregularies
boundaries and unstructured grids, Graph Convolutional Neurali
Networks (GCNNSs) can be implemented. Chen et al. [16] testedi7
a GCNN as a surrogate model to predict flow around com-7
plex two-dimensional shapes on triangular unstructured grids.s
In comparison with U-Nets, the GCNN achieved better results, 7
but it required more computation resources. For extrapolatingizs
the time-evolution of the flow in advection and incompressibleizs
fluid dynamics, Lino et al. [17] propossed two GCNN-basedi7
model architechures - multi-scale (MuS)-GNN and rotation-17s
equivariant (RE) MuS-GNN. On' complex flow domains, bothizs
models generalized high-gradient fields from uniform advec-1s
tion fields. The multi-scale approach provided a better approxi-1ss
mation to the Navier-Stokes equations over a range of REYNOLDS+e2

2

numbers and design parameters as compared to the single-scale
GCNN:E.

The above discussed purely data-driven deep learning mod-
els require significant training data to predict results with good
accuracy. Such large datasets are not always available. An al-
ternative approach to potentially allow accurate training with
sparse measurements is to integrate physical laws in the loss
function of a DNN. In the case of fluid mechanics, these losses
are based on the governing equations and include constraints
given by initial and boundary conditions. This approach has the
potential to drastically improve the predictive capability of the
network [6]. Such learning models are referred to as Physics-
Informed Neural Networks (PINNs).

Together with recent developments in automatic differentia-
tion [18] and the availability of scattered partial spatio-temporal
data for training, PINNs are capable of accurately and effi-
ciently predicting solutions for fluid mechanics problems [4,
19]. Recently, PINNs have demonstrated their potential com-
pared to conventional CFD methods with respect to computa-
tional efficiency and accuracy in solving certain PDEs [20-23].
The application of data-driven PINNSs to the problems in fluid
mechanics can be distinguished based on the implementation of
constraints for initial/boundary conditions and on the collection
of residuals from different spatial/temporal points in the flow
domain. Using Graphics Processing Units (GPUs) and paral-
lelizing the computation, the application of PINNs can be fur-
ther expanded to more computationally demanding problems.
For example, near-wall blood flows using only sparse data [24]
or high-speed flows [25] can be predicted with this approach.
Embedding the Navier-Stokes equations into an ANN allows
the extraction of the pressure or velocity fields from experi-
mental data. Raissi et al. [26] developed a Hidden Fluid Me-
chanics (HFM) model using a Physics-Informed deep learning
approach to extract qualitative data from experimental results.
The method is agnostic to the geometry, and to the initial and
boundary conditions. Based on the complexity of the prob-
lem and the desired accuracy of the solution, hybrid models
combining CFD solvers and PINNs have been developed, e.g.,
in [27]. Here, the flow solver Mantaflow [28] is coupled to a
Convolutional Neural Network (CNN) for buoyant plume sim-
ulations at different RicHARDSON numbers Ri. Ma et al. [29] im-
plemented the Navier-Stokes equations and the boundary con-
ditions in a U-Net architechture to predict steady flow fields. It
was found that different flow regimes for flow around a cylin-
der could be learned and the adhered “twin-vortices” were pre-
dicted correctly. To predict solutions for a steady state natural
convection problem for variable and complex geomtries, Peng
et al. [30] proposed a Physics-Informed Graph Convolution
Network (PIGN). The authors also compared the performance
of the PIGN with a purely data-driven GNN model and found
that PIGN had superior performance. The results demonstrated
that the excellent geometric adaptability and prediction capa-
bility of a PIGN can be achieved with only limited training data
and once fully trained, the model could solve natural convec-
tion problems with a lower computation time. Recently, deep
neural networks with domain decomposition also have shown
potential in solving differential equations efficiently [31, 32].
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Jagtap et al. [33] proposed a conservative PINN (cPINN) basedzss
on the domain decomposition method for solving forward and,,,
inverse problems.

PINNSs can also be trained in a data-free manner, i.e., the
training data does not contain any ground-truth data from an-z«
alytical solutions or CFD simulations, except for the data fromzs
initial or boundary conditions [34]. Grimm et al. [35] imple-24
mented the governing physics in a U-Net using the discretiza-2s
tion approaches of a Finite Difference Method. The authorsass
found that a physics aware data-free model generalised betterzs
than a data-driven model, while predicting steady flow fieldszss
around random geometries for low inlet velocities. However,24
Chuang et al. [36] observed that such data-free PINNs can bezso
difficult to train and lack temporal information, i.e., yieldingess
solely steady state solutions. 252

The previously mentioned studies focus solely on the ca-zss
pability of predicting flow fields with deep learning methods,ess
without considering the sparsity of data for different flow ap-ess
plications. Investigating the training data-dependency of deepass
learning models can be useful for real world problems, wherezs
large training datasets are not available. For example, the de-zss
velopment of a car body in the automobile industry is usu-zse
ally supported by CFD simulations and wind tunnel experi-zeo
ments [37, 38]. However, although these techniques are capablezs:
of correctly predicting force coefficients or regions of flow sep-
aration [39], they are limited in reproducing real conditions like
weather, driving style, or the road surface. 22

In contrast to wind tunnel experiments, collecting on-road,,
data enables to reveal more complex flow structures related to,,
such real conditions, e.g., increased flow unsteadiness in the re-,,
gion of the A-pillar vortex implying noise generation [40] can,
be analyzed for varying on-road conditions. Real-time surface,,
sensors could capture the performance of a driving prototype,,
vehicle [41], and DNNs could be trained with these measure-,,
ments to predict the surrounding flow fields. Such surface sen-,,
sors can only be installed sparsely and hence their number and
strategic placement is of great importance. Furthermore, the in-,,,
tegration of the governing physics with loss constraints could
be essential for improving such predictions. Notably, the cal-"”*
culation of additional physical losses in PINNs may result in”’
higher computational demands. Depending on the complexity274
of the flow problem, the application of PINNs may not be justi—275
fied over employing in general cheaper-to-train DNN5s that may276
provide similarly accurate and physically plausible solutions.

In this regard, the number and placement of the following278
types of data sources are discussed in this investigation: e

241

4

7

280
(i) domain points with a corresponding ground truth (data-
driven) and

(i) domain points without ground truth (data-free).
281

The study assesses the performance of PINNs and conven-,g,
tional DNNs with respect to variations in the number of the,,
these types of data sources. The goal is to demonstrate and,,
quantify the amount and location of training data that justifies,gs
the use of PINNs over conventional DNNSs in terms of predic-,g,
tion accuracy for different flow configurations. For this pur-
pose, the following flow configurations are considered.

e Potential flow,
e a boundary layer flow based on the Blasius equation, and
o a Taylor-Green Vortex.

The ground truth data for the different flow configurations in
this study are obtained using analytical and numerical methods.
The ground truth is also used to validate the ANN-predicted
flow fields. Throughout the manuscript, ANN nomenclature is
used to refer to both PINN and DNN.

Given that the objective of this study is to analyze the effect
of physical constraints, training data concentration in the spatial
domain and noisy training data for individual flow scenarios,
fully-connected feed forward neural network architectures are
used to compare the performance of PINNs with that of DNNs.

The findings are expected to contribute to a more efficient
use of PINNs in fluid dynamics and potentially extend its ap-
plication to real-world flow problems such as in vehicle aero-
dynamics. The manuscript is structured as follows. In Sec-
tion 2, the flow configurations are described and details about
the training and test data are provided. The DNNs and PINNs
are introduced. Subsequently, the network-predicted flow fields
are compared to the analytic solutions in Section 3. Finally, the
findings are summarized, conclusions are drawn, and an out-
look is given in Section 4.

2. Methods

In this section, the theoretical backgrounds of the computa-
tions are described. Section 2.1 provides information about the
flow configurations considered in this work. This includes the
governing equations as well as the boundary and initial con-
ditions used for solving the equations. In Section 2.2, the ar-
chitecture, parameters, and basic loss functions of the DNNs
are described, and the physical loss functions that extend the
DNN s to PINNSs are explained.

2.1. Flow configurations

The governing equations, spatial domains, and boundary
conditions of the two-dimensional flow problems investigated
in this study are described in what follows.

Potential flow
A potential flow is defined as a steady, incompressible, inviscid,
and irrotational flow around a body. The velocity field # =
(u,v)T is described by the gradient of a scalar function called
the potential function ¢, given by
i=Vg. )
Here, u represents the velocity component in the x-direction,
and v in the y-direction. The orientation of the directions are
illustrated in Figure 1. The condition for irrotational flow, i.e.,
V x i = 0, is satisfied by V x V¢ = 0. The continuity equation
for incompressible flows V - i@ = 0 yields the first governing
equation for potential flows, given by

V.V =Ap=0. 2)
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Figure 1: Streamlines of potential flow around a cylinder (top) and Rankine
oval (bottom), colored by the normalized velocity magnitude uuqg/U.

320

Further governing equations based on the stream function i are™'

322
al// 6¢’ 323
"= 6}7 ’ v ox’ (3)324
These equations fulfill the continuity equation and the condition™
for irrotational flows yields the second governing equation for™
potential flows, i.e., i
Ay = 0. @™
329
Figure 1 shows the two potential flow configurations investi-g,
gated in this study, i.e., the potential flow around a circular,
cylinder with diameter D and around a Rankine oval. Bothgg,
domains are characterized by a uniform inflow with velocity
i = (U,0)7, a source, and a sink. The length of the fluid do-
main in case of the circular cylinder is 4D and 2D in the x- and
y-direction, and the source and sink have the same center. In
case of the Rankine oval, they are separated by a distance of**
2a. Here, the length of the fluid domain is 8a and 5a in the x-°%°
and y-direction. The velocity fields in Figure 1 show the veloc-
ity magnitude u,,,¢, normalized by U. The potential and stream
functions read

333

336

Q X 337
=Ux+=-———, 5
$=Ux o x*+y? ©)
0 y
Y =Uy- 7 Ayt (633
339
for the circular cylinder, and
m (x +a)*> +y?
=Ux+ — -log| ————|, 7
¢ =Ux in 8 (x —a)? +y? ™
m 3 2ay
=Uy- — -tan”' | ———— 8
l!’ Y 2n o (x2+y2 _a2) ( )340

for the Rankine oval. The strength of the source and sink are®'
given by Q = n(D/2)U for the cylinder, and m for the Rankine
oval.

To calculate the flow field, the fluid domain is discretized
using a structured grid with cell spacing A, = D/80 for the
circular cylinder and A, g = a/100 for the Rankine oval.

Blasius boundary layer flow

The boundary layer equations for a flat plate of length L, are
derived from the Navier-Stokes equations by using Prandtl’s
boundary layer approximation [42]. The important assumptions
are a high ReyNoLps number Re > 1 and attached flow, i.e.,
there is no flow separation. The effects of viscosity are only
limited to a thin layer of width ¢ near the surface of the body,
which is oriented normal to the plate. Considering a zero pres-
sure gradient, the boundary layer equations are given by

Opu  Opv

o Ty ®

ou ou 0 ( ou

= ipv— =— |u=— 10
Plox +pv6y dy (ﬂﬁy) 1o

op op

L _0 2, 11

0x ay an

where p is the density of the fluid and y is the dynamic viscosity,
with x and y being oriented parallel and orthogonal to the plate
respectively.

In the scope of this study, the velocity field of the flat plate
boundary layer equations is predicted using ANNs. The basic
criteria for Blasius’ solution was to transform the above sys-
tem of PDEs to a single ODE by using coordinate transforma-
tion [43]. To find a self-similar solution, where the solution
should not change if an independent and dependent variable are
scaled appropriately, the dependent variable f is defined. The
quantity f is related to the stream function ¢ and a function of
the independent variable 7.

Based on the boundary layer thickness dx, 1 is defined as:

ORI S

§(x)  (vx/Up)1?
This is known as the scaled form of the stream function, where
v = u/p is the kinematic viscosity. The velocity components in
the x- and y-direction are scaled by Uy by

] (12)

u 5 v
—, p= ——
Uy (vUo/x)'?

From the above equations, a scaled stream function is obtained
by

13)

=

__ ¥
f(’]) - (VXU0)1/2 .

The velocity components can now be expressed in terms of the
scaled stream function as

(14)

d
u=Uod—j;, (15)
L Yo (,df _
>\~ (ndn f)- (16)

Inserting these values in the governing Egs. (9), (10), and (11),
and after some simplifications, the following ODE is obtained

3 2
TN

dp® 27 dn? 17
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which is the final form of the Blasius boundary layer equation
for flows over a flat plate. At the wall, no-slip boundary condi-
tions are prescribed by setting u(y = 0) = v(y = 0) = 0, and at
y = 6 the velocity becomes the free stream velocity,

fr=0)=0, (18)
f=0)=0, (19)
fin— ) = 1. 20)

In this equation, " = df/dn.

Taylor-Green Vortex

The Taylor—Green vortex is an unsteady flow of a decaying
vortex, for which a complete solution of the incompressible
Navier-Stokes equations will suffice to illustrate the process of
dissipation of large eddies into smaller ones. An attempt was
made by Taylor et al. [44] to obtain a solution for the subse-
quent motion of the viscous incompressible fluid, when the ini-

tial solution in Cartesian coordinates is given by s

1t =A(cos ax)(sin by)(sin cz), @),
v =B(sin ax)(cos by)(sin cz), (22)a7s
w =C(sin ax)(sin by)(cos ¢z), (23)3m

375
where w is the velocity component in the z-direction. The equa-ss
tions described above are consistent if a77

Aa+ Bb+ Cc =0. 24)

The governing equations for a two-dimensional Taylor-Green
vortex are given by

V- i =0, (25)
o 1_ -

—+i-Vi==-V-0 2
5 Vi 5 o, (26)

where Eq. (25) is the continuity equation and Eq. (26) defines
the Cauchy momentum equation. Here, the quantity & is the
the viscous stress tensor for incompressible flow given by

G = —pl +p(Vii + (Vi)"), @7
where p stands for the pressure and I for the identity tensor.

According to Taylor’s analysis and for the condition: 378
379

(28)3e0
381
the analytical solution for a two-dimensional vortex is given byss

383

A=a=b=1,

u = cos xsin yF (1), (29) 554
v = —sinxcos yF(t), (30)sss

_ p 2 . 2 2 1 386
p= _Z(COS X + sin 2y)F“(¢), 3 )387

388
where F(f) = e " and ¢ represents the time. Figure 2 gives,,,

an example of the analytical initial solution. The analytical so-
lutions from Egs. (29) to (31) are used for generating training
data.

0.60
0.45

038
0.30
06 0.15
0.00
04 ~0.15
~0.30

02
~0.45
0.0 ~0.60

mag p

Figure 2: 2D Taylor-Green Vortex at t = 0.

2.2. Architecture of the ANNs

A fully-connected feed forward network architecture is used
for every problem in this work and the hyperbolic tangent (tanh)
activation function [45] is used for the hidden and output lay-
ers. The random search method is used forhyperparameter tun-
ing. Figure 3 provides a general example of network architec-
tures and loss functions for DNNs and PINNs. The neurons of
the input layer and the output neurons are colored in red and
blue. The DNN has only one loss function L;, which is the

Figure 3: Architecture of a generic DNN and PINN.

Mean-Squared Error (MSE) between the DNN predictions and
the ground truth. In the PINN case, further losses L;; for the
governing equations are also included. For L;;, the differen-
tials with respect to the input variables, as shown by the yellow
circles in Figure 3, are calculated using the automatic differen-
tiation functionalities of PyTorch !. That is, autograd meth-
ods like grad and jacobian are used in the loss functions for
residuals of the governing equations.

The flow-specific inputs and outputs are shown in Table 1.
For the two potential flow cases, the inputs are the Cartesian
coordinates (x,y). The outputs are the 2D velocity field in the

Torch version 2.0.1+cul17
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Flow case Input Output 420
Potential flow X,y u,v 421
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Blasius equation n I f
42:
Taylor-Green Vortex Xyt T xxs Oxys Ty, 3
424
u, v, p

Table 1: Input and output of the ANNSs for each flow configuration.

in x- and y-directions. The input for the Blasius boundary layer*”®
flow is the independent variable r given by Eq. (12), instead of**®
the 2D Cartesian coordinates that are used in the other cases.
The reason for this is the fact that the scaled stream function
f depends only on 7, cf. Section 2.1. The output of the net-
work is the scaled stream function and its first derivative. To
obtain a predicted velocity field, the output values are derived*”’
from the equations in Eq. (13). For the unsteady flow case of**®
the two-dimensional Taylor-Green vortex, time ¢ along with the*
Cartesian coordinates are the inputs to the ANN. The outputs
are defined by the velocity and pressure fields as well as by the
components of the viscous stress tensor &

Each data point defines an input-output pair and solutions are
generated for Ny, data points. The losses L; and L;; depend43
on the types of data points of each flow configuration. All data432
points are a subset of N, defined for each problem. Figure 4433
provides a general example of the different types of data points434
for a two-dimensional flow around an arbitrary shape. Points
extracted from domain boundaries N, are expressed by black
dots. If there is flow around an object, e.g., the blue obstacle
in Figure 4, the losses include wall points N,,, which are repre-
sented by the blue dots at the shape’s contour. The yellow data,__
points in the flow domain away from the boundaries are de-
noted as N;. The domain points N, together with N, and N,, (if438
there is an object) are used to calculate the residual loss. They,
are kept fixed for each training run. A subset of Ny, i.e., Ny sat0
represented by the red dots in Figure 4, and its corresponding
ground truth data from analytical solutions is varied for each,
training run. These variations are defined by the fraction &
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Figure 4: Distribution of data points for a general example of a two-dimensional
flow around an arbitrary shape. The boundary and wall points N, and N,, are
shown with black and blue dots, and the domain points N; with yellow dots.
All these points are kept fixed for each training run. The variable data points
with existing ground truth data, N;; € Ny are denoted by the red dots.

For the potential flow problems, the residual loss from the
governing equations is embedded into the total loss for all
boundary subdomains and for a set of random points in the fluid
domain. The physical loss function used in training the poten-
tial flow PINNSs is defined by

pot Npor

N,
1
2 2
Litpor = ~— | D1V ity P+ D01V x 0, P,
Npm n=1

n=i

(33)

where N,,; = N, + N,, + N;. The prediction loss against the
exact solution is given as

1 Npa!.l )
— e
Ll,pot = Z |”n - ”nl B
Npol,l

n=1

(34)

where N1 = Nj, + Ny, + Nz ;. For each point n, i@}, is the exact
velocity vector and i, is the predicted velocity vector.

For the Blasius boundary layer flow, the physical loss of
Eq. (17) is defined by

Npt

1
Lip = —
11.bl No Z

n=i

2
) (35)

111 1 1/
fn + zfnfn

where the total number of data points Ny = Np + Ny, with Ny
including n away from the boundaries, and N, represents 1 at
the boundaries. The quantity N, is kept fixed for each training
run. The prediction loss for the Blasius flow problem is given
by

Nii,1

1
L=~ |fi—fi 1%
! Nbl,l; Ju=d,

where f,; is the exact value of the scaled stream function from
the numerical solution and Ny, ; = Np + Ny 1.

In case of the two-dimensional Taylor-Green vortex,
Sequence-to-Sequence (S2S) training is implemented. The
schematic for the S2S training is shown in Figure 5, which is
based on the backward-compatible sequence training model im-
plemented by Mattey et al. [46] for time-dependent PDEs. The
training data is calculated for specific time-steps defined by the
time step size Atr. The size of the spatial domain for all time
steps is the same. Starting from ¢ = 0, the ANN is sequen-
tially trained for each time step, and training is restarted when
a stopping criteria is met. The stopping criteria is defined by ei-
ther the maximum number of epochs or a specified training loss
value. This process is continued until the final time step t = T is
reached, where the physical loss in training is augmented by the
prediction loss from all time steps between t = 0 and t = Ty_;.
The physical loss for a certain time step, t = t; is

(36)

1 n=Nig,
2
L”, y = — V. l:in + (37)
g L
n=Nig, N 2
0it,, 1 _
—— +i, - Vi, — =V -0, +
— | o1 p
n=1
n=Ngy

|50+ pal - v+ (Vﬂ’,,)T)'z}, (38)
n=1
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Figure 5: Sequence to Sequence (S2S) training for unsteady flow problems. ,
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493

where Ny, = N, + Ny defines the spatial data points. The pre-

diction loss for the data-driven training is given by 494
495
L[,tgv = Ltgv,u + Ltgv,p + Lfgv,u’ + Ltgv,p’ (39)496
with
1 n:Nrgv.l
- - Nk (2
Liga =5— D, V=)' P, (40)
tgv,1 =1
1 1=Nigr, 497
— %12
Ltgv,p —N_ | Pn— Py | > (41)493
tgv,1 =1
499
n=Nigi.2 500
_ -f Stk 12
Ltgv,ﬁ" —N_ | u, — (”n) | 5 (42)501
1gv,2 =1
502
1 n=Nigy2
— 1 7y\x |12
Ly =5 D, 1 Ph= )" P, 3),
tgv,2 =1

504
where Nig,.1 = Nj + Ny defines the data points in space at .,

Similarly, N, are the training points from previously trained,,
time steps. For each training point in the prediction loss, the
superscript () defines the exact solution and the superscript (¢)
defines the solution from the previous time steps. 500

Weights and biases of the models are updated by an Adap-,,,
tive Moment Estimation (ADAM) [47] or Stochastic Gradient,,,
Decent (SGD) optimizer [48]. For all investigated flow cases,,,,
both, the input to the ANN and the ground truth, are used with-,
out any normalization.

7

508

514
515

3. Results 516

517
In this section, the computation cost is analysed using the_,

training time of PINNs and DNNs. Additionaly, the perfor-
mance of PINNs and DNNss is analyzed in terms of their pre-
diction accuracy for variations of #. The qualitative results

for each case are shown for certain selected values of 7. The
basis for this selection is the difference in the performance of
PINNs and DNNs for each problem at the training data points
defined by #. While training the PINNs, 50% of the domain
points are used for the physical loss, which is kept constant
along with the boundary points. The location for these points
remains unchanged during training the multiple cases. For all
cases, a 80 : 20% data split is used to distribute between train-
ing and testing datasets. Hyperparameter tuning is performed
for the PINN models and the selected hyperparameters are also
used for the respective DNN models.

The models are trained on the GPU partition of the JURECA-
DC cluster [49] installed at the Jiilich Supercomputing Centre
(JSC), Forschungszentrum Jiilich. Each node is equipped with
four NVIDIA A100 GPUs and two AMD EPYC 7742 CPUs
with 64 cores clocked at 2.25 GHz. The results presented in the
following are for deterministic training with the same parame-
ters for both the PINN and DNN. Additionally, these results are
verified by randomly initializing the PINN and DNN individu-
ally and checking their performance.

The model performance is evaluated using the prediction ac-
curacy for the complete flow field. Errors are quantified by jux-
taposing the results of the ANNs to the exact solutions, which
are obtained analytically or numerically. The parameter chosen
for evaluating the prediction accuracy is calculated as a relative
Euclidean norm (L;) error given by

VZ o 10057, = el v, P

(44)
VZan | @exym) P

€

Here, ¢ = u,v, p, 0xy, Oxy, Oy, f, f7, and ¢, is the exact value of
the corresponding output variable. Both ¢ and ¢, are calculated
for Ny grid points for every flow case.The performance of
the NNs during the training is evaluted with the L, error for
the testing dataset and the prediction error of a trained model is
calculated as the L, error for the complete flow domain.

3.1. Potential flow: Cylinder

A two-dimensional uniform grid is generated using the
meshgrid function in the NumPy? module of Python. The cell
size is set to 0.0125D. The grid has N,y = 46,600 data points
of which N, = 964 are located at the domain boundary and
N,, = 235 are located on the cylinder wall. The rest of the
data points are uniformly distributed within the flow domain.
The domain points that have corresponding ground-truth data
are varied from ¥ = 0.05 to ¥ = 0.8. Both PINNs and DNNs
are trained with 6 hidden layers and each hidden layer has 60
neurons. The ADAM optimizer is used with a learning rate of
LR = 0.0005. The models are trained on a single GPU for
20,000 epochs.

As shown in Figure 6, a computational cost analysis between
the PINNs and DNNs for different values of 7 is performed
using the L, error curve from the testing data against training

2NumPy version 1.25.2
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time required to train 20,000 epochs. The training time required
for PINN is six times more than that of the DNN. The progres-
sion of the training error shows similar trends for the two tested
values of ¥ for PINN as well as for DNN. At 20,000 epochs,
both DNNs have a similar L, testing error in comparison to the
respective PINNs, but the following qualitative analysis high-
lights the higher accuracy of the PINN. The change in the pre-

1073
6.00 \“ —— PINN, ¥ = 0.05
o0 | DNN, ¥ = 0.05
£ 4004 ! —— - PINN, ¥ =02
8
& 2.00 -
0.00

Training time (s)

Figure 6: L, testing error versus training time for potential flow around a cylin-
der.

diction error with variation in ¥ is shown in Figure 7. For all
¥, the PINN performs better than the DNN.
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Figure 7: Ly prediction error for a varying # for the potential flow around a_,,
cylinder.
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The absolute error density in prediction of the velocity ﬁeld::

for both models is shown for ¥ = 0.05 in Figure 8(a), and forﬁ59

# = 0.2 in Figure 8(b). Comparing the results of Figure 8(a), it,

can be deduced that for an equal number of training epochs and__
the same hyperparameters, the DNN fails to accurately predict
both x- and y-components of the velocity field in the vicinity
of the cylinder wall. In contrast, the PINN-based predictions
show improved predictions for the overall flow fields.When the
number of training data with ground truth is increased from
F = 0.05 to F = 0.2, both ANNs predict the flow around
the cylinder better, as it is visible in Figure 8(b). However, this
improvement is reflected differently for the PINN and DNN.
The DNN, missing associated physics in the loss function, can-
not accurately predict the velocity field near the cylinder wall,
whereas the PINN outputs show higher accuracy. These re-
sults underline the clear superiority of data-driven PINN mod-
els for predicting the potential flow around a cylinder. However,
this gain in the prediction accuracy with the PINN is achieved
with a comparatively higher training time. For instance, with
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Figure 8: Error density of the predicted velocity field for a potential flow around
a cylinder with (a) ¥ = 0.05 and (b) ¥ = 0.2.

F = 0.05, the prediction error of PINN is almost half to that of
DNN, but PINN has six times longer training time.

3.2. Potential flow: Rankine oval

To resolve the Rankine oval flow, a total number of N,y =
332,616 uniformly distributed spatial data points are used, of
which N, = 2,600 are on the boundaries of the domain and
N,, = 1,592 are on the Rankine oval boundary. Similar to the
previous case, the training data points on the boundary are kept
fixed. The included ground truth for the data-driven training is
varied with F as a percentage of the domain data points used for
the physical loss. Eqs. (33) and (34) define the loss functions for
the training models with and without integrated physics. Both
models have 5 hidden layers and each hidden layer has 60 neu-
rons. The ADAM optimizer with a learning rate LR = 0.0005
is used for all training runs. All models are trained on a single
GPU for 20,000 epochs.
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Figure 9: L, testing error versus training time for potential flow around a Rank-
ine oval.
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It can be observed from the L, testing error plot in Figure 9s7
that the DNN is able to achieve a similar performance as thesso
PINN. An increase in the training data from ¥ = 0.05 to F =ser
0.2 results in an increase of 5 s and 1 s in training time of these:
PINN and DNN respectively. For both ¥ values, the trainingsss
time of the PINN is almost nine times larger than the trainingsss

time of the DNN. 585
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Figure 10: L, prediction error for a varying ¥ for the potential flow around ases
Rankine oval. 597
598
The change in the prediction error under variation of F isses
shown in Figure 10. Predictions from PINNs provide highereo
accuracy up to F = 0.38 compared to DNNs, while the lattereor
performs slightly better for higher values of 7. However, the L,s02
error for both Rankine models first increases with # and thensos
drops until ¥ = 0.4 is reached. The largest gap between theeos
two types of ANNs is observed for ¥ = 0.1. Given the highersos
number of N, data points, both models already have more
training data available than the cylinder case for each ¥ value.
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Figure 11: Error density of the predicted velocity field for a potential flowsts

around a Rankine oval using (a) ¥ = 0.05 and (b) ¥ = 0.2 for the training.
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The density plots for the absolute prediction error are shown
for ¥ = 0.05 and ¥ = 0.2 in Figure 11(a) and Figure 11(b).
For ¥ = 0.05, both models are able to predict the veloc-
ity fields with reasonable accuracy, although the PINN shows
qualitatively better results than the DNN. In comparison to
the cylinder case, the L, error of the DNN is much lower for
F = 0.05, which can be attributed to a larger number of train-
ing data points for the Rankine oval compared to the cylinder.
For ¥ = 0.2, the DNN struggles to predict the x-velocity com-
ponents near the stagnation point and downstream of the oval.
Once again, PINNs show a higher prediction accuracy for po-
tential flow with lower # values and can be used to predict the
flow around a Rankine oval when minimal ground truth data is
available.

3.3. Blasius boundary layer flow

For the Blasius boundary layer flow case, hyperparameter
tuning yields best results when using the SGD optimizer with
a learning rate of LR = 0.002, 6 hidden layers and 60 neurons
per hidden layer. The loss to be minimized is calculated using
Egs. (35) and (36). As ground truth, Ny, = 10,000 data points
are extracted from the numerical solution and are randomly dis-
tributed for data-driven training, keeping the boundary points
fixed for each training run. Both models are trained on a single
GPU for 20,000 epochs and the epochs are kept constant for
each training run.

The L, testing error progressions against compute time re-
quired by both PINNs and DNNs are shown in Figure 12. For
both ¥ = 0.2 and ¥ = 0.4, the training times of PINNs are
almost ten times higher than DNNs.  Figure 13 shows, that

10-2
1.50 ,]O
b ——PINN, ¥ =02
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g 1.00 - -~ PINN, ¥ =04
3 DNN, ¥ = 0.4
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&
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Figure 12: L, testing error vs training time for the Blasius boundary layer flow.

except for ¥ = 0.4, the PINN-based predictions have a lower
L, error compared to the DNN-based predictions. At ¥ = 0.4,
both types of ANN have a similar accuracy with an L, error of
7.0x 1074,

Figures 14(a) and 14(c) show the predicted velocity profiles
obtained from the models with ¥ = 0.2, and Figures 14(b)
and 14(d) for ¥ = 0.4. When trained with ¥ = 0.2, both
models predict the velocity profile of the streamwise compo-
nent (#/Uyp) well with minimal deviation from the ground truth
between = 5.0 and n = 8.0. Predictions of both models for
the normal velocity component (v vx/(vUy)) are in good agree-
ment with the ground truth away from the wall. However, near
the wall, the PINN has a better prediction than the DNN, which
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Figure 14: Comparison of predictions of velocity profiles in the Blasius bound-"'
ary layer by a PINN and a DNN against the exact solution with ¥ = 0.2 (a, ¢)

and F = 0.4 (b, d).

can be observed in the zoomed inset in Figure 14(c). In the
region between = 5.0 and n = 10.0, which correspond to
the free stream conditions, predictions from both models show
deviation from the ground truth. While considering the predic-
tions with 7 = 0.4, both models predict the velocity profiles
in good agreement with the ground truth both in the boundary
layer and free stream regions. In this case, the PINN provides
again a better prediction of the normal velocity component near
the wall, as can be seen in Figure 14(d). It can be concluded that
including a sufficient amount of ground truth data in the train-

10

ing can help in accurately predicting the velocity profiles for the
boundary layer flow problem simplified by Blasisus. However,
it has to be noted that this is achieved with a higher computa-
tion cost for PINN, and hence this gain in accuracy has to be
justified for higher computational efforts.

3.4. 2D Taylor-Green Vortex

The spatial grid for the two-dimensional Taylor-Green vortex
is generated using the meshgrid function in NumPy. The grid
spacing is uniform with a cell size of 0.02, and (x,y) € [-x, 7].
Data for training is extracted from the complete spatio-temporal
grid for six time snapshots with a temporal step size of 5 sec,
where each time snapshot has the same spatial grid. This time
step size is selected such that the velocity and pressure fields
have varied enough to train the ANNs on the temporal range.
For each time step, a total of Ny = 99,860 spatial points
are generated of which 1,264 points are located at the domain
boundary. Again, the number and location of the boundary
points are kept constant for the training of all models.

The percentage of the domain data points with an exact so-
lution is varied during the training of PINNs and DNNs. When
using the S2S method, the number of training data points in the
spatial domain for each time step is kept constant and the do-
main data points are randomly chosen. The PINN and DNN
models are trained for a time range of [0,...,30] s. The SGD
optimizer with a learning rate of LR = 0.003 is used for train-
ing the PINNs and DNNs, and each hidden layer has 300 neu-
rons. The stopping criteria for training of each time step is set to
30,000 epochs. Models on a coarse grid with a cell size of 0.05
and Ny = 16,000 points are also trained for each time step.
The training for each time step is run for 20,000 epochs. The
objective is to investigate the model performance under differ-
ent grid sizes. These are referred as reduced models in this text.
All models are trained on 10 nodes, using in total 40 GPUs.

To compare the training time of PINNs and DNNs, the L,
testing error progressions are plotted in Figure 15 for ¥ = 0.05.
Each peak signifies the start of sequence training for the next
time step. As observed, the DNN achieves a relatively lower
training error at the end of the second sequence, but the er-
ror does not decrease further in following training sequences.
Although the PINN has a higher training error for the second
sequence, the error decreases consistently in the following se-
quences.

10-3
1.50 ‘ 10
—— PINN, ¥ = 0.05
8
G 0.50 J\\J\\/\
S e Y NS
0.00 T T T \ T \
0 50 100 150 200 250 300 350

Training time (min)

Figure 15: L, testing error vs. training time for the 2D Taylor-Green vortex
with a grid cell size of 0.02.
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The advantage of S2S training for PINNs is reflected in the
prediction accuracy of temporal interpolation. The L, error for
different F values are plotted for # = 175 in Figure 16 for both
fine and coarse grids. Note that flow fields from ¢ = 175 did
not belong to the training data. There is no intersection point
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Figure 16: L, prediction error for a varying ¥ for the 2D-Taylor-Green vortex
att=17.

found for the training setups. The PINN models consistently
show better performance than the DNN models for all varia-
tions in ¥ . For the reduced models, the lowest prediction error
of 6.9 x 1072 is achieved by the PINN using ¥ = 0.8. In case
of the finer mesh, the PINN achieves the lowest L, error of
9.8 x 1073 at ¥ = 0.8. For increasing ¥ values, PINNs have a707
consistently improving performance, whereas DNN-based pre-7os
dictions are characterized by a fluctuating L, error, similar tozs
the potential flow cases. That is, the inclusion of governingzo
physics and increased ground truth data in training can improver
ANN predictions for a two-dimensional Taylor-Green vortexz:

trained using the S2S method. 713
714
Variable  PINN  DNN  PINN,eguced  DNNyeduced s
u 0.0175  0.0084 0.054 0.0539
v 0.0078  0.0104 0.057 0.0576 716
p 0.0267  0.1239 0.0944 0.1264 717

Table 2: L, error in the output variables of the two-dimensional Taylor-Green718
Vortex for t = 175 using F = 0.05. Reduced models are trained on a dataset”'®
with N;orqr = 16,000 spatial grid points. 720
721

The L, errors for the different models are summarized forrz
F = 0.05 and r = 17s in Table 2. It can be observed thatrs
models trained on a coarse grid have higher L, errors. 724
A qualitative comparison of predicted variables with the ex-7zs
act solution at ¢ = 17 sec is shown in Figure 17 for the models7zs
trained on a finer grid. The large blank regions in the pressurerr
field of the DNN predictions highlight the model’s inability tozzs
predict fields with different min-max ranges when no physicalrz
loss is used in the training. The velocity fields are predictedss
well by both models. A similar comparison is shown for thezs:
reduced models in Figure 18 and a similar trend for the pre-7s
dictions of the pressure field is observed. Given the unsteady7ss
nature of this problem, all models are trained in time with S2S7s4
learning, see Section 2. The results shown in Figures 17 and 1873
highlight the interpolation capability of the S2S-trained mod-7ss
els. Despite having no data from ¢t = 17s in the training, thez
models are still able to predict the flow variables at this point inzss
time. 739
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Figure 17: Comparison of the prediction performance of PINN and DNN mod-
els for the two-dimensional Taylor-Green vortex at t = 17s and ¥ = 0.05. The
blank regions are predictions outside the range of the ground truth.

3.5. Effect of spatial distribution on prediction

In the investigations above, the data points for each # value
are randomly distributed in the flow domain and the training
data at the boundaries and walls are kept fixed. In this section,
the variation in performance of data driven ANNs with a change
in spatial distribution of the data points for a given ¥ value is
analyzed. That is, a Region of Interest (ROI) is specified and
the data points are distributed in this ROI. This space-specific
distribution of data in the ROI is termed as prescribed distribu-
tion in this work. An example is illustrated in Figure 19, where
the ROI is the near-wall region of an arbitrarily shaped body.
Additionally, data-free training is investigated, where only data
points at boundaries are used as ground truth data. In such a
case, the red dots in Figure 19 disappear. The ANN models for
each case are trained with the same hyperparameters as defined
in the above discussed results.

For potential flow problems, the ROI is the near-wall region
and the data points for the L; loss at ¥ = 0.05 are distributed
near the wall of the cylinder and the boundary of the Rankine
oval. The L;; loss for the PINN is calculated using randomly
distributed points as described in Section 2.2.

As shown in Figure 20(a), for the cylinder case, the predic-
tion accuracy of the PINN is with an L, error of 2.64 x 1073 far
better than the DNN with an L, error of 6.1 x 102, However, it
can also be seen for the DNN that the flow field near the wall of
the cylinder and domain boundaries is predicted with compara-
tively lower error than the rest of the flow field. This explains
the dependence of data-driven ANNSs on the spatial distribution
of the training data. A similar performance is shown in Fig-
ure 20(b) for the data-free PINNs with only boundary condi-
tions as constraints. For the data-free models, the L, error with
the PINN is 7.7 x 10~*, whereas the DNN prediction has an L,
error of 6.45 x 1072,
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Figure 18: Comparison of the prediction performance of the reduced PINN
and DNN models for the two-dimensional Taylor-Green vortex at t = 175 and
¥ = 0.05. The blank regions are predictions outside the range of the ground
truth.
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Figure 19: Distribution of data points for a general example of a two-76
dimensional flow around an arbitrary shape with a region of interest (ROI) near7es
the wall. The boundary points Nj, and N,, are shown with black and blue dots,,.
and the domain points N, are shown with yellow dots. All these points are kept
fixed for each training run. The variable data points with existing ground truth
data, Ny C N4 are denoted by the red dots.
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Similar results are obtained for the potential flow around theo
Rankine oval. Both ANN models have a reduced predictions
accuracy when trained on ground truth data concentrated nearzz
the boundary of the Rankine oval. As shown in Figure 21(a),s
even the PINN struggles to predict the flow field near the do-77
main boundaries when training data from ground truth is con-7s
centrated near the boundaries. However, the flow field near thes
wall, which has higher velocity gradients and is critical to thez
flow development, is still well reconstructed. The L, error fors
the PINN is 4.26 x 107 in comparison to 5.6 x 107! for thers
DNN. In case of the DNN, in areas in the vicinity of the wallzo
(10 cell lengths), the prediction seems to be marginally better.zss
While considering the data-free case in Figure 21(b), both thess.
PINN and DNN show improvements in prediction accuracy. Inzs;
this case, the PINN has an L, error of 2.4 x 1073, while the errorses
in case of the DNN is 4.98 x 1072 785

For the Blasius flow case, the input to the ANN is defined by~ss
the variable r7. The ROIs are not randomly selected, but they arezsr
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Figure 20: Error density for the potential flow around a cylinder when trained
with a concentrated spatial distribution of data points. (a) ¥ = 0.05 with a
near-wall ROI and, (b) data-free prediction.

defined based on the boundary conditions given by Egs. (18)-
(20). It can be observed from the prediction results shown in
Figure 22 that the model accuracy is highly dependent on the
distribution of data. Both the PINN and DNN have a decreased
prediction accuracy when trained on data at = 0 and 5 >
n < 10 having the same amount of ground truth data as at ¥ =
0.2. The PINN has an L, error of 2.1 x 1072 and the DNN
has an L, error of 4.1 x 10~!, which are one order of magnitude
higher than the L, error from training with randomly distributed
ground truth data.

A similar analysis is conducted for the two-dimensional
Taylor-Green vortex, such that the training data from the ground
truth is concentrated near the domain boundaries and corre-
sponds to ¥ = 0.05. As observed in Figure 23, both the
PINN and DNN fail to predict the velocity and pressure fields.
Although both models have reduced accuracy as compared to
models trained on randomly distributed data, velocity predic-
tions from the PINN are able to capture vortex structures, while
the DNN completely fails to reconstruct the velocity field. The
L, error for both velocity components predicted by the PINN is
7.1 x 1071 and for predictions by the DNN 1.52. Both models
achieve a comparable accuracy in the prediction of the pres-
sure field with L, errors of 1.54 and 1.22 for PINN and DNN
respectively.

The effect of the distribution of training data can be observed
in Figure 23, where the models are able to reconstruct the fields
near domain boundaries with more accuracy as compared to rest
of the domain. When the distribution of ground truth data is
concentrated around the regions of high pressure gradients with
F = 0.05, the prediction accuracy of both PINNs and DNNs
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Figure 22: Comparison of the predicted velocity profiles in the Blasius bound-
ary layer by PINN, DNN, and the exact solution. The ground truth is defined
by only the boundary conditions and the number of data points corresponding
toF =0.2.

improves as shown in Figure 24. The vortical structures are

captured and also the DNN is able to reconstruct the pressure

field with an L, error of 3.5 x 10~!. The prediction of the x-

component of the velocity field improves the most with an L;7es
error of 1.1 x 107! and 1.3 x 107! from the PINN and DNN re-zo
spectively. The above results highlight the importance of inte-sot
grating the governing physics in the loss function of ANNs andsoz
the effect of distribution of training data from the ground truthsos
on the predictive performance of the two-dimensional Taylor-so
Green vortex. The PINNs show better performance than DNNssos
for all data distributions. Both models perform best when train-sos
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Figure 23: Comparison of the prediction performance of PINN and DNN mod-
els for the two-dimensional Taylor-Green vortex at + = 17s and ¥ = 0.05.
Training data from ground truth is prescribed near the boundaries and the blank
regions are predictions outside the range of the ground truth.
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Figure 24: Comparison of the prediction performance of PINN and DNN mod-
els for the two-dimensional Taylor-Green vortex at + = 17s and ¥ = 0.05.
Training data from ground truth is prescribed near the high pressure regions
and the blank regions are predictions outside the range of the ground truth.

ing data is randomly distributed.

A summary of the prediction results for the above discussed
flow problems is shown in Table 3. For each flow problem in-
vestigated in this work, the PINNs outperform the DNNs. The
largest difference in performance of both models is observed
for potential flow, while both models have comparable perfor-
mance for the two-dimensional Taylor-Green vortex. For the
potential flow and Blasius case, it is also observed that the
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Flow case F Ground Truth PINN L, Error DNN L, Error DNN-to-PINN
distribution L, error ratio
0.05 Random 82x107% 1.4x1073 1.7
Potential flow: cylinder 0.05 Prescribed 2.64x 1073 6.1x1072 23.10
0.0  Boundary conditions 7.7%x107* 6.45 x 1072 83.70
0.05 Random 3.0x107% 1.2x1073 4.00
Potential flow: Rankine oval ~ 0.05 Prescribed 426 %1073 5.6x 107! 131.40
0.0  Boundary conditions 24x1073 4,98 x 1072 20.75
Blasius boundary layer flow 0.2 Random 1.7x1073 24x1073 1.41
0.2 Boundary conditions 2.1%x1072 4.1x 107! 19.50
0.05 Random 1.7x 1072 49x1072 2.88
2D Taylor-Green vortex 0.05 Random-reduced 9.9 %1072 1.34 x 107! 1.35
0.05 Prescribed-BC 7.193 x 107! 1.52 2.11
0.05 Prescribed-PC 1.48 x 107! 2.1x 107! 1.41

Table 3: Prediction accuracy of flow problems for different ANN configurations, amount of ground truth data used in training, and distribution of training data on

the grid. BC: Boundary condition, PC: Centers of high pressure.

DNN-to-PINN L, error ratio is significantly higher when thess:
ground truth data is prescribed in the ROI defined by bound-ess
aries or high gradients or the data-free case, compared to thess
randomly distributed case. 837

838

3.6. Effect of noise in training data 839

After evaluating the performance of DNNs and PINNs
against variations in training data distribution, the effect of,,,
noise in training data is investigated. This noise scaling rep-
resents the Signal to Noise Ratio (SNR) metric commonly used,,,
for measuring devices used for experiments. As discussed in,,,
Section 1, deep learning based PINNs can be used to extrapo-,,.
late flow information from sensors on vehicles under on-road,,
conditions. To replicate noisy sensor data, training data is em-,,_
bedded with Gaussian noise. The noise is scaled to be between,,,
10% and 20% of the standard deviation inherent in the velocity, .
data across the domain. The impact of noise on flow structures
of potential flow around a Rankine oval is shown in Figure 25.
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Figure 25: Noise in training data for potential flow around a Rankine oval. g2
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Both PINN and DNN are trained on training data with vary-sss
ing SNR and # = 0.2. The training hyperparameters are keptses
similar to the models used in Section 3.2 and both models aresss
trained for 20,000 epochs. The errors in predicted flow fieldsesr
for flow around a Rankine oval are shown in Figure 26. Asses
observed, the inclusion of physical constraints helps the recon-sss
struction in the presence of noise in the training data. The pre-e7
diction error from PINN is 1.704x 1073 and 3.08x 10~ for 10%sr
and 20% noise. In comparison, the prediction error for ¥ = 0.2e7
from a PINN trained without noise in data is 1.57 x 103 Thus,srs

14

the prediction error of PINN increases by 8% and 96% for train-
ing data with 10% and 20% noise respectively. On the other
hand, the performance of DNN degrades heavily with noisy
training data. When compared with the DNN trained on data
without noise, the prediction error increases by 100% and 600%
for 10% and 20% noise.

4. Conclusion and Outlook

In this work, the performance of data-driven ANNSs is investi-
gated for four classical flow problems. The ANNSs are based on
two network configurations: a classical DNN architecture and a
PINN, the latter enforcing physical constraints in the loss func-
tion. The amount and location of ground truth data employed in
training are varied for both architectures, and the effect on the
prediction accuracy is compared.

For the potential flow configurations of a cylinder and Rank-
ine oval, the results show lower errors using PINNs when less
ground truth data is available for training. For the cylinder
case, PINNs performed better for all # values. Different re-
sults for ANNSs are obtained for potential flow around a Rank-
ine oval, where DNNs perform better for ¥ > 0.38. Addition-
ally, an analysis on the location of the ground truth data used
in the training was performed. In contrast to the data-driven
training using randomly distributed ground truth data, training
with prescribed sampling of data points for potential flow cases
have comparatively higher L, errors. Thus, the distribution of
ground truth data for data-driven cases is an important factor for
improving prediction accuracy. The data-free training has bet-
ter prediction accuracy than the data-driven training with pre-
scribed sampling of data points. The results are, however, still
worse than the case with the random distribution of training
data. However it was observed that the PINNs significantly out-
performed DNNs, when the training data was prescribed. This
is especially important for real-world applications, for instance
when limited sensor measurements are available based on lo-
cation constraints. In this case, the PINN would be an obvious
choice over DNN.

Summarizing the observations from the Blasius boundary
layer flow, PINNs have a better prediction accuracy for all 7
values except at = 0.4, where both the PINN and DNN have
similar accuracy. Data-driven models with ground truth data
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Figure 26: Error density plots for flow around a Rankine oval when trained on noisy data with 7 = 0.2.

concentrated near the boundaries have a higher L, error in ve-sis
locity profiles compared to the case, when ground truth datasiz
is randomly distributed. Even for the prescribed data distribu-sis
tion, the PINN achieves an L, error one order lower than thatos
of the DNN. Given the availability of ground truth data corre-sxo
sponding to ¥ > 0.4 and a random distribution of ground truthsz:
data, velocity fields can be predicted with higher accuracy usingsee
PINNS.
The unsteady flow problem of the two-dimensional Taylor-s2
Green vortex is solved using the S2S method, where eachses
time-step is individually trained and solutions from previousees
time-steps are used as additional constraints. Both PINN andszr
DNN data-driven models when trained on randomly distributedszs
ground truth, are able to capture flow structures and reconstructsee
velocity and pressure fields. For all values of # investigated inss
this work, PINNs have better prediction accuracy than DNNs.es1
Additionally, model performance is compared for different cellss2
size in grid and also for prescribed distribution of ground truthss
in training. It is observed that the PINN is able to outperformess
the DNN even when trained for larger cell sizes. However, per-sss
formance of both models improved when the grid cell size issss
reduced from 0.05 to 0.02.
When trained with ground truth data distributed only nearsss
the domain boundaries, PINNs have a better prediction of thess
velocity field compared to DNNs. Both models have a com-
parable prediction accuracy for the pressure field. When com-t
pared with the results from the randomly distributed data-drivens+
training, both models have poor predictions and fail to recon-¢
struct the velocity and pressure fields. The prediction accuracy®
of both PINNs and DNNs improved when ground truth data s
distributed around the regions of high pressure gradients, buts
is still lower than the randomly distributed data-driven training.s+
Based on the above results, it can be concluded that S2S data-%s
driven models implemented for the unsteady flow problem in
this work have a strong dependence on spatial distribution of
ground truth in training and the prediction accuracy can be im-
proved by using a smaller cell size. Further improvement of thes,
predictive capabilty of PINNs for unsteady flow problems mays;
be possible with normalization of training data to a commongs,
range and application of weighing functions for L;; loss terms. ¢s;
Furthermore, an analysis to compare the training costs foress
both the PINN and DNN was performed. As expected, it iSess
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found that PINNs have higher training cost compared to DNNSs,
even by a factor of ten in some cases. But it is observed that
PINNS consistently perform better than DNNs, especially when
the data is sparse and they are located in critical locations such
as near the wall. Furthermore, under noisy training data, PINNs
perform significantly better than DNNs, which had a loss in ac-
curacy of 100% compared to 8% for PINN under 10% noise in
training data. And in many practical problems of interest, data
is generally sparse and also noisy. Hence, the compromise with
the higher training costs provides an ANN with higher accuracy,
which is robust to noise and data sparsity. This is observed to
be a significant advantage offered by PINNSs, albeit the higher
computational costs.

To the knowledge of the authors, the investigation in this
manuscript is one of the first attempts to quantify the amount
and location of training data when comparing the performance
of PINNs and DNNSs, along with inclusion of the effect of noise.
In this case, the investigations are limited to classical flow prob-
lems, where it is observed that this choice significantly affects
the prediction accuracy. This finding could potentially be ex-
ploited to utilize the superior performance of PINNs in cases,
where limited and concentrated sensor measurements are avail-
able for real-world applications. For a fixed geometry of a
car body, a version of the PINN with constraints based on the
Navier-Stokes equations can be trained on the sparse and noisy
surface sensor data, to predict flow fields for different on-road
conditions. S2S learning can be used to constantly feed new
data to the model at successive time intervals, while preserving
the information learned from the previous time intervals. The
findings in this work serve as a benchmark for such physics-
based machine learning methods to be extended to realistic flow
cases in the future, to complement traditional solvers and re-
duce computation costs.
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Highlights

e Integration of governing physics significantly improved the
prediction accuracy of the data-driven and data-free Artificial
Neural Network for the potential flow cases investigated in this
work

e Prediction accuracy of data-driven Artificial Neural Networks
depends on the distribution of the ground truth in training and
random distribution of training data has best performance
amongst the different distributions studied in this work

¢ For an unsteady two-dimensional Taylor-Green vortex, which
was trained using the Sequence-to-Sequence method, data-
driven Artificial Neural Networks were able to interpolate in the
temporal range and reconstruct the vortex structures for
untrained time steps
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