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Junya Onishi, Mario Rüttgers, Rakesh Sarma, Makoto Tsubokura, Andreas Lintermann
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n of Artificial Neural Networks (NNs) has been extensively investigated for fluid dynamic problems. A spec
Physics-Informed Neural Networks (PINNs). They incorporate physical laws in the training and have inc
in the last few years. In this work, prediction accuracy of PINNs is compared with that of conventional Dee
Ns). The accuracy of a DNN depends on the amount of data provided for training. The change in prediction
DNNs is assessed using a varying amount of training data. To ensure the correctness of the training data
analytical and numerical solutions of classical problems in fluid mechanics. The objective of this work is to
training data relative to the maximum number of data points available in the computational domain, suc
d with PINNs justifies the increased computational cost. Furthermore, the effects of the location of sampli
tional domain and noise in training data are analyzed. In the considered problems, it is found that PINNs ou

he sampling points are positioned in the Regions of Interest. The PINNs for the potential flow around the
n better robustness against noise in training data compared to DNN. Both models show higher prediction

g points are randomly positioned in the flow domain as compared to a prescribed distribution of sampling po
l new insights on the strategies to massively improve the prediction capabilities of PINNs with respect to D

ysics-informed Neural Networks, Simplified Navier-Stokes equations, Partial differential equations, Fluid
steady flow

on

ientific revolution in the 16th and 17th centuries,
o express nature in terms of equations. The dy-
d flow is described through a set of Partial Dif-
tions (PDEs), known as the Navier-Stokes equa-
lthough some simplified problems in fluid me-

analytical solutions, the solution to the Navier-
ns can only be approximated using numerical

are solved in a discretized domain. The resolu-
or these discretizations in space and time to suffi-

the flow features increases with the complexity
s of the underlying flow, for instance with high
bers.
nd half of the 20th century, the advent of su-
provided a boost to the development of numer-
and computational models to approximate fluid
r allowing large scale computations for real-
s. Since then, the complexity of the Compu-
Dynamics (CFD) models and the capacity of
rmance Computing (HPC) systems has increased
er. Depending on the order of accuracy of these
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CFD models, the solutions obtained by solving the tem44

and/or spatially-discretized governing equations, lead45

ing errors in the computed flow fields. The desired46

determines the computational costs and hence highly47

simulations are expensive.48

Artificial Neural Networks (ANNs) have the po49

complement, improve and even replace conventio50

methods [3]. These deep learning-based NNs can furth51

egorised as data-driven or physics-informed. Data-dri52

Neural Networks (DNNs) can be trained with spatia53

nates or temporal data of a domain as input to the54

where flow quantities such as the velocity or pressu55

derived from analytical solutions, experimental result56

simulations, are used as ground truth [4]. Once train57

purely data-driven DNNs can be employed to predict t58

ity or pressure fields of the complete domain, while d59

results close to the reference data. These DNNs have60

an approximation of the underlying physics while tr61

ground truth generated from flow solutions. Compar62

numerical solvers, these NNs can predict solutions fa63

For certain problems, they may, however, suffer from64

inconsistencies or violate the governing equations [6].65

Different NN architectures can be employed for DN66

in fluid mechanics. Convolutional Neural Networks (C67

commonly used for data-driven solutions of problem68

d to Future Generation Computer Systems M
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from a large dataset. CNNs with encoder-
echtures are used for evaluating steady state flow
atsuo et al. [8] used a combination of 2D and
reconstruct a 3D flow field of flow around a

er while training on sparse 2D data. Sekar et
ed to train an encoder-decoder CNN to extract
parameters of an airfoil while taking an image
nsional airfoil contour as input. The sequential
good prediction results while training on large
U-nets are also encoder-decoder based fully con-
where encoder and decoder layers are connected
nections [10]. By introducing skip connections
nected layers, U-Nets are able to reproduce both

-level features [11]. Generative models have en-
d predictions of results not previously used for
. Jolaade et al. [12] evaluated both a Generative
etwork (GAN) and an Adversarial Auto-Encoder
dicting the evolution in time of highly nonlinear
e authors find that both models were able to pre-
ian vortices forward in time with AAE showing
than GAN. To predict unsteady flow fields, Re-
odels (ROMs) have been commonly used with a
ral Network (RNN) or a Long Short-Term Mem-
s the propagator. Two Hybrid Reduced Order
s) were presented by Bukka et al. [13] to pre-
flows. The first model uses the Proper Orthog-
sition (POD) to project the high fidelity simula-
ow dimension. The second model, referred to as
n recurrent autoencoder network (CRAN), em-

tional neural networks with nonlinear activations,
low-dimensional features. However, Fotiadis et
that CNN based models have better performance
d LSTMs for predicting results for shallow water
p learning models with noisy trainng data can be
rnative to repetitive experiments. Sofos et al. [15]
NN based deep learning model for reconstructing
images from low-resolution counterparts encom-

r from a major drawback, that they can only be
a from uniform cartesian grids. This makes their
most real world flow problems inefficient. For
roblems for complex geometries with irregular

d unstructured grids, Graph Convolutional Neural
NNs) can be implemented. Chen et al. [16] tested
surrogate model to predict flow around com-

nsional shapes on triangular unstructured grids.
with U-Nets, the GCNN achieved better results,
more computation resources. For extrapolating

tion of the flow in advection and incompressible
s, Lino et al. [17] propossed two GCNN-based
chures - multi-scale (MuS)-GNN and rotation-
E) MuS-GNN. On complex flow domains, both
lized high-gradient fields from uniform advec-

e multi-scale approach provided a better approxi-
avier-Stokes equations over a range of Reynolds

The above discussed purely data-driven deep learn128

els require significant training data to predict results w129

accuracy. Such large datasets are not always availabl130

ternative approach to potentially allow accurate train131

sparse measurements is to integrate physical laws in132

function of a DNN. In the case of fluid mechanics, the133

are based on the governing equations and include co134

given by initial and boundary conditions. This approac135

potential to drastically improve the predictive capabil136

network [6]. Such learning models are referred to as137

Informed Neural Networks (PINNs).138

Together with recent developments in automatic di139

tion [18] and the availability of scattered partial spatio-140

data for training, PINNs are capable of accurately141

ciently predicting solutions for fluid mechanics prob142

19]. Recently, PINNs have demonstrated their poten143

pared to conventional CFD methods with respect to144

tional efficiency and accuracy in solving certain PDEs145

The application of data-driven PINNs to the problem146

mechanics can be distinguished based on the impleme147

constraints for initial/boundary conditions and on the c148

of residuals from different spatial/temporal points in149

domain. Using Graphics Processing Units (GPUs) a150

lelizing the computation, the application of PINNs ca151

ther expanded to more computationally demanding p152

For example, near-wall blood flows using only sparse153

or high-speed flows [25] can be predicted with this a154

Embedding the Navier-Stokes equations into an AN155

the extraction of the pressure or velocity fields from156

mental data. Raissi et al. [26] developed a Hidden F157

chanics (HFM) model using a Physics-Informed deep158

approach to extract qualitative data from experimenta159

The method is agnostic to the geometry, and to the i160

boundary conditions. Based on the complexity of161

lem and the desired accuracy of the solution, hybri162

combining CFD solvers and PINNs have been develo163

in [27]. Here, the flow solver Mantaflow [28] is cou164

Convolutional Neural Network (CNN) for buoyant pl165

ulations at different Richardson numbers Ri. Ma et al166

plemented the Navier-Stokes equations and the bound167

ditions in a U-Net architechture to predict steady flow168

was found that different flow regimes for flow around169

der could be learned and the adhered “twin-vortices”170

dicted correctly. To predict solutions for a steady sta171

convection problem for variable and complex geomtr172

et al. [30] proposed a Physics-Informed Graph Co173

Network (PIGN). The authors also compared the per174

of the PIGN with a purely data-driven GNN model a175

that PIGN had superior performance. The results dem176

that the excellent geometric adaptability and predict177

bility of a PIGN can be achieved with only limited trai178

and once fully trained, the model could solve natura179

tion problems with a lower computation time. Recen180

neural networks with domain decomposition also hav181

potential in solving differential equations efficiently182
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ms.
also be trained in a data-free manner, i.e., the
oes not contain any ground-truth data from an-
ns or CFD simulations, except for the data from
dary conditions [34]. Grimm et al. [35] imple-
verning physics in a U-Net using the discretiza-
es of a Finite Difference Method. The authors
hysics aware data-free model generalised better
iven model, while predicting steady flow fields

geometries for low inlet velocities. However,
[36] observed that such data-free PINNs can be
in and lack temporal information, i.e., yielding
tate solutions.
sly mentioned studies focus solely on the ca-
dicting flow fields with deep learning methods,
ering the sparsity of data for different flow ap-
estigating the training data-dependency of deep
ls can be useful for real world problems, where
datasets are not available. For example, the de-
a car body in the automobile industry is usu-
by CFD simulations and wind tunnel experi-

. However, although these techniques are capable
edicting force coefficients or regions of flow sep-
ey are limited in reproducing real conditions like
g style, or the road surface.
to wind tunnel experiments, collecting on-road
o reveal more complex flow structures related to
itions, e.g., increased flow unsteadiness in the re-
pillar vortex implying noise generation [40] can
r varying on-road conditions. Real-time surface
capture the performance of a driving prototype
nd DNNs could be trained with these measure-
ct the surrounding flow fields. Such surface sen-
be installed sparsely and hence their number and
ment is of great importance. Furthermore, the in-
e governing physics with loss constraints could
r improving such predictions. Notably, the cal-
ditional physical losses in PINNs may result in
tational demands. Depending on the complexity
blem, the application of PINNs may not be justi-
oying in general cheaper-to-train DNNs that may
rly accurate and physically plausible solutions.
rd, the number and placement of the following
ources are discussed in this investigation:

oints with a corresponding ground truth (data-
nd
oints without ground truth (data-free).

ssesses the performance of PINNs and conven-
with respect to variations in the number of the

data sources. The goal is to demonstrate and
mount and location of training data that justifies
Ns over conventional DNNs in terms of predic-
for different flow configurations. For this pur-
wing flow configurations are considered.

• a Taylor-Green Vortex.241

The ground truth data for the different flow configur242

this study are obtained using analytical and numerical243

The ground truth is also used to validate the ANN-244

flow fields. Throughout the manuscript, ANN nomen245

used to refer to both PINN and DNN.246

Given that the objective of this study is to analyze247

of physical constraints, training data concentration in t248

domain and noisy training data for individual flow s249

fully-connected feed forward neural network architec250

used to compare the performance of PINNs with that o251

The findings are expected to contribute to a more252

use of PINNs in fluid dynamics and potentially exten253

plication to real-world flow problems such as in veh254

dynamics. The manuscript is structured as follows.255

tion 2, the flow configurations are described and deta256

the training and test data are provided. The DNNs an257

are introduced. Subsequently, the network-predicted fl258

are compared to the analytic solutions in Section 3. Fi259

findings are summarized, conclusions are drawn, an260

look is given in Section 4.261

2. Methods262

In this section, the theoretical backgrounds of the263

tions are described. Section 2.1 provides information264

flow configurations considered in this work. This inc265

governing equations as well as the boundary and in266

ditions used for solving the equations. In Section 2.267

chitecture, parameters, and basic loss functions of th268

are described, and the physical loss functions that e269

DNNs to PINNs are explained.270

2.1. Flow configurations271

The governing equations, spatial domains, and272

conditions of the two-dimensional flow problems inv273

in this study are described in what follows.274

275

Potential flow276

A potential flow is defined as a steady, incompressible,277

and irrotational flow around a body. The velocity fi278

(u, v)T is described by the gradient of a scalar functi279

the potential function ϕ, given by280

u⃗ = ∇ϕ.

Here, u represents the velocity component in the x-281

and v in the y-direction. The orientation of the direc282

illustrated in Figure 1. The condition for irrotational283

∇ × u⃗ = 0, is satisfied by ∇ × ∇ϕ = 0. The continuity284

for incompressible flows ∇ · u⃗ = 0 yields the first g285

equation for potential flows, given by286

∇ · ∇ϕ = ∆ϕ = 0.

3
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x

umag

U

2a

D

lines of potential flow around a cylinder (top) and Rankine
ored by the normalized velocity magnitude umag/U.

ing equations based on the stream function ψ are

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3)

ns fulfill the continuity equation and the condition
l flows yields the second governing equation for
, i.e.,

∆ψ = 0. (4)

s the two potential flow configurations investi-
study, i.e., the potential flow around a circular
diameter D and around a Rankine oval. Both
haracterized by a uniform inflow with velocity
source, and a sink. The length of the fluid do-

f the circular cylinder is 4D and 2D in the x- and
d the source and sink have the same center. In
nkine oval, they are separated by a distance of

length of the fluid domain is 8a and 5a in the x-
n. The velocity fields in Figure 1 show the veloc-
umag, normalized by U. The potential and stream

ϕ =Ux +
Q
π
· x

x2 + y2 , (5)

ψ =Uy − Q
π
· y

x2 + y2 (6)

r cylinder, and

ϕ =Ux +
m
4π
· log

[
(x + a)2 + y2

(x − a)2 + y2

]
, (7)

ψ =Uy − m
2π
· tan−1

(
2ay

x2 + y2 − a2

)
(8)

e oval. The strength of the source and sink are
π(D/2)2U for the cylinder, and m for the Rankine

circular cylinder and ∆pot,R = a/100 for the Rankine o309

310

Blasius boundary layer flow311

The boundary layer equations for a flat plate of leng312

derived from the Navier-Stokes equations by using313

boundary layer approximation [42]. The important ass314

are a high Reynolds number Re ≫ 1 and attached315

there is no flow separation. The effects of viscosity316

limited to a thin layer of width δ near the surface of317

which is oriented normal to the plate. Considering a z318

sure gradient, the boundary layer equations are given319

∂ρu
∂x
+
∂ρv
∂y
=0,

ρu
∂u
∂x
+ ρv

∂u
∂y
=
∂

∂y

(
µ
∂u
∂y

)

∂p
∂x
= 0,

∂p
∂y
=0,

where ρ is the density of the fluid and µ is the dynamic320

with x and y being oriented parallel and orthogonal to321

respectively.322

In the scope of this study, the velocity field of the323

boundary layer equations is predicted using ANNs. T324

criteria for Blasius’ solution was to transform the ab325

tem of PDEs to a single ODE by using coordinate tra326

tion [43]. To find a self-similar solution, where the327

should not change if an independent and dependent va328

scaled appropriately, the dependent variable f is defi329

quantity f is related to the stream function ψ and a fu330

the independent variable η.331

Based on the boundary layer thickness δx, η is defin332

η ∼ y
δ(x)

=
y

(νx/U0)1/2 .

This is known as the scaled form of the stream functio333

ν = µ/ρ is the kinematic viscosity. The velocity comp334

the x- and y-direction are scaled by U0 by335

ũ =
u

U0
, ṽ =

v
(νU0/x)1/2 .

From the above equations, a scaled stream function is336

by337

f (η) =
ψ

(νxU0)1/2 .

The velocity components can now be expressed in ter338

scaled stream function as339

u =U0
d f
dη
,

v =
1
2

√
νU0

x

(
η

d f
dη
− f

)
.

Inserting these values in the governing Eqs. (9), (10),340

and after some simplifications, the following ODE is o341

d3 f
dη3 +

1
2

f
d2 f
dη2 = 0,

4
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which is the final form of the Blasius boundary layer equation342

for flows over a flat plate. At the wall, no-slip boundary condi-343

tions are presc344

y ≥ δ the velo345

In this equatio346

347

Taylor-Green348

The Taylor–G349

vortex, for w350

Navier-Stokes351

dissipation of352

made by Tayl353

quent motion354

tial solution in355

where w is the356

tions describe357

The governing358

vortex are give359

where Eq. (25360

the Cauchy m361

the viscous str362

where p stand363

According to T364

the analytical365

where F(t) =366

an example of367

lutions from E368

data.369
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Table 1.
Cartesian
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ribed by setting u(y = 0) = v(y = 0) = 0, and at
city becomes the free stream velocity,

f (η = 0) = 0, (18)
f ′(η = 0) = 0, (19)

f ′(η→ ∞) = 1. (20)

n, f ′ = d f /dη.

Vortex
reen vortex is an unsteady flow of a decaying

hich a complete solution of the incompressible
equations will suffice to illustrate the process of
large eddies into smaller ones. An attempt was
or et al. [44] to obtain a solution for the subse-
of the viscous incompressible fluid, when the ini-
Cartesian coordinates is given by

u =A(cos ax)(sin by)(sin cz), (21)
v =B(sin ax)(cos by)(sin cz), (22)
w =C(sin ax)(sin by)(cos cz), (23)

velocity component in the z-direction. The equa-
d above are consistent if

Aa + Bb +Cc = 0. (24)

equations for a two-dimensional Taylor-Green
n by

∇ · u⃗ =0, (25)

∂u⃗
∂t
+ u⃗ · ∇u⃗ =

1
ρ
∇ · ¯̄σ, (26)

) is the continuity equation and Eq. (26) defines
omentum equation. Here, the quantity ¯̄σ is the
ess tensor for incompressible flow given by

¯̄σ = −p ¯̄I + µ(∇u⃗ + (∇u⃗)T ), (27)

s for the pressure and ¯̄I for the identity tensor.
aylor’s analysis and for the condition:

A = a = b = 1, (28)

solution for a two-dimensional vortex is given by

u = cos x sin yF(t), (29)
v = − sin x cos yF(t), (30)

p = −ρ
4

(cos 2x + sin 2y)F2(t), (31)

e−2νt and t represents the time. Figure 2 gives
the analytical initial solution. The analytical so-
qs. (29) to (31) are used for generating training

Umag p
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y
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Figure 2: 2D Taylor-Green Vortex at t = 0.

2.2. Architecture of the ANNs370

A fully-connected feed forward network architectu371

for every problem in this work and the hyperbolic tang372

activation function [45] is used for the hidden and ou373

ers. The random search method is used forhyperparam374

ing. Figure 3 provides a general example of network375

tures and loss functions for DNNs and PINNs. The n376

the input layer and the output neurons are colored in377

blue. The DNN has only one loss function LI , whi

... ... ...

...

...

...

...

...

...

...
LI

LII

LPINN

DNN

PINN

Figure 3: Architecture of a generic DNN and PINN.

378

Mean-Squared Error (MSE) between the DNN predic379

the ground truth. In the PINN case, further losses L380

governing equations are also included. For LII , the381

tials with respect to the input variables, as shown by th382

circles in Figure 3, are calculated using the automatic383

tiation functionalities of PyTorch 1. That is, autogr384

ods like grad and jacobian are used in the loss fun385

residuals of the governing equations.386

The flow-specific inputs and outputs are shown in387

For the two potential flow cases, the inputs are the388

coordinates (x, y). The outputs are the 2D velocity fi389

1Torch version 2.0.1+cu117
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For the potential flow problems, the residual loss from the420

governing equations is embedded into the total loss for all421

the fluid
he poten-

(33)

ainst the

(34)

the exact

l loss of

(35)

, with Nd

ents η at
training
is given

(36)

tion from

vortex,
ed. The
which is
odel im-
Es. The

ed by the
r all time

sequen-
ted when
ed by ei-

ining loss
p t = T is
ed by the
t = TN−1.

(37)

 , (38)
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ur
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l P

re
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otential flow x, y u, v

lasius equation η f , f ′

aylor-Green Vortex x, y, t σxx, σxy, σyy,

u, v, p

ut and output of the ANNs for each flow configuration.

ections. The input for the Blasius boundary layer
ependent variable η given by Eq. (12), instead of
ian coordinates that are used in the other cases.
r this is the fact that the scaled stream function
ly on η, cf. Section 2.1. The output of the net-
aled stream function and its first derivative. To
cted velocity field, the output values are derived
tions in Eq. (13). For the unsteady flow case of
sional Taylor-Green vortex, time t along with the
rdinates are the inputs to the ANN. The outputs
the velocity and pressure fields as well as by the

f the viscous stress tensor ¯̄σ.
oint defines an input-output pair and solutions are
Ntotal data points. The losses LI and LII depend
f data points of each flow configuration. All data
bset of Ntotal defined for each problem. Figure 4
eral example of the different types of data points
ensional flow around an arbitrary shape. Points

domain boundaries Nb are expressed by black
is flow around an object, e.g., the blue obstacle
e losses include wall points Nw, which are repre-
blue dots at the shape’s contour. The yellow data
flow domain away from the boundaries are de-
he domain points Nd together with Nb and Nw (if
ect) are used to calculate the residual loss. They
for each training run. A subset of Nd, i.e., Nd,1,
the red dots in Figure 4, and its corresponding

ata from analytical solutions is varied for each
hese variations are defined by the fraction F

F = Nd,1

Nd
. (32)

O
ut
flo
w

tion of data points for a general example of a two-dimensional
bitrary shape. The boundary and wall points Nb and Nw are
and blue dots, and the domain points Nd with yellow dots.

re kept fixed for each training run. The variable data points
nd truth data, Nd,1 ⊆ Nd are denoted by the red dots.

boundary subdomains and for a set of random points in422

domain. The physical loss function used in training t423

tial flow PINNs is defined by424

LII,pot =
1

Npot


Npot∑

n=1

| ∇ · u⃗n |2 +
Npot∑

n=i

| ∇ × u⃗n |2
 ,

where Npot = Nb + Nw + Nd. The prediction loss ag425

exact solution is given as426

LI,pot =
1

Npot,1

Npot,1∑

n=1

∣∣∣⃗un − u⃗∗n
∣∣∣2 ,

where Npot,1 = Nb + Nw + Nd,1. For each point n, u⃗∗n is427

velocity vector and u⃗n is the predicted velocity vector.428

For the Blasius boundary layer flow, the physica429

Eq. (17) is defined by430

LII,bl =
1

Nbl

Nbl∑

n=i

∣∣∣∣∣ f
′′′
n +

1
2

fn f ′′n

∣∣∣∣∣
2

,

where the total number of data points Nbl = Nb + Nd431

including η away from the boundaries, and Nb repres432

the boundaries. The quantity Nbl is kept fixed for each433

run. The prediction loss for the Blasius flow problem434

by435

LI,bl =
1

Nbl,1

Nbl,1∑

n=i

| fn − f ∗n |2,

where f ∗n is the exact value of the scaled stream func436

the numerical solution and Nbl,1 = Nb + Nd,1.437

In case of the two-dimensional Taylor-Green438

Sequence-to-Sequence (S2S) training is implement439

schematic for the S2S training is shown in Figure 5,440

based on the backward-compatible sequence training m441

plemented by Mattey et al. [46] for time-dependent PD442

training data is calculated for specific time-steps defin443

time step size ∆t. The size of the spatial domain fo444

steps is the same. Starting from t = 0, the ANN is445

tially trained for each time step, and training is restar446

a stopping criteria is met. The stopping criteria is defin447

ther the maximum number of epochs or a specified tra448

value. This process is continued until the final time ste449

reached, where the physical loss in training is augment450

prediction loss from all time steps between t = 0 and451

The physical loss for a certain time step, t = ti is452

LII,tgv =
1

Ntgv


n=Ntgv∑

n=1

∣∣∣∇ · u⃗n

∣∣∣2 +

n=Ntgv∑

n=1

∣∣∣∣∣∣
∂u⃗n

∂t
+ u⃗n · ∇u⃗n − 1

ρ
∇ · ¯̄σn

∣∣∣∣∣∣
2

+

n=Ntgv∑

n=1

∣∣∣∣ ¯̄σn + pn
¯̄I − µ(∇u⃗n + (∇u⃗n)T )

∣∣∣∣
2
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t = 0

t = 0

Training data divided in temporal direction
from t = 0 to t = T for the time step size ∆t

Figure 5: Seque

where Ntgv =453

diction loss fo454

L

with455

where Ntgv,1 =456

Similarly, Ntgv457

time steps. Fo458

superscript (∗)459

defines the sol460

Weights an461

tive Moment E462

Decent (SGD)463

both, the input464

out any norma465

3. Results466

In this sect467

training time468

mance of PIN469

diction accura470

for each case are shown for certain selected values of F . The471

basis for this selection is the difference in the performance of472

ta points
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ruth data
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t = T

Tn−1 Tn T

Prediction from

previous

time-steps

Temporal

direction

∆t

nce to Sequence (S2S) training for unsteady flow problems.

Nb + Nd defines the spatial data points. The pre-
r the data-driven training is given by

I,tgv = Ltgv,u + Ltgv,p + Ltgv,u′ + Ltgv,p′ (39)

Ltgv,u⃗ =
1

Ntgv,1

n=Ntgv,1∑

n=1

| u⃗n − (u⃗n)∗ |2, (40)

Ltgv,p =
1

Ntgv,1

n=Ntgv,1∑

n=1

| pn − p∗n |2, (41)

Ltgv,u⃗t =
1

Ntgv,2

n=Ntgv,2∑

n=1

| u⃗t
n − (u⃗t

n)∗ |2, (42)

Ltgv,pt =
1

Ntgv,2

n=Ntgv,2∑

n=1

| pt
n − (pt

n)∗ |2, (43)

Nb + Nd,1 defines the data points in space at ti.
,2 are the training points from previously trained
r each training point in the prediction loss, the
defines the exact solution and the superscript (t)

ution from the previous time steps.
d biases of the models are updated by an Adap-

stimation (ADAM) [47] or Stochastic Gradient
optimizer [48]. For all investigated flow cases,
to the ANN and the ground truth, are used with-

lization.

ion, the computation cost is analysed using the
of PINNs and DNNs. Additionaly, the perfor-
Ns and DNNs is analyzed in terms of their pre-
cy for variations of F . The qualitative results

PINNs and DNNs for each problem at the training da473

defined by F . While training the PINNs, 50% of th474

points are used for the physical loss, which is kept475

along with the boundary points. The location for the476

remains unchanged during training the multiple case477

cases, a 80 : 20% data split is used to distribute betw478

ing and testing datasets. Hyperparameter tuning is p479

for the PINN models and the selected hyperparameter480

used for the respective DNN models.481

The models are trained on the GPU partition of the J482

DC cluster [49] installed at the Jülich Supercomputin483

(JSC), Forschungszentrum Jülich. Each node is equip484

four NVIDIA A100 GPUs and two AMD EPYC 77485

with 64 cores clocked at 2.25 GHz. The results presen486

following are for deterministic training with the same487

ters for both the PINN and DNN. Additionally, these r488

verified by randomly initializing the PINN and DNN489

ally and checking their performance.490

The model performance is evaluated using the pred491

curacy for the complete flow field. Errors are quantifie492

taposing the results of the ANNs to the exact solution493

are obtained analytically or numerically. The paramet494

for evaluating the prediction accuracy is calculated as495

Euclidean norm (L2) error given by496

ϵϕ =

√∑
x,y,η | ϕ(x, y, η) − ϕe(x, y, η) |2
√∑

x,y,η | ϕe(x, y, η) |2
.

Here, ϕ = u, v, p, σxx, σxy, σyy, f , f ′, and ϕe is the exac497

the corresponding output variable. Both ϕ and ϕe are c498

for Ntotal grid points for every flow case.The perfor499

the NNs during the training is evaluted with the L2500

the testing dataset and the prediction error of a trained501

calculated as the L2 error for the complete flow domai502

3.1. Potential flow: Cylinder503

A two-dimensional uniform grid is generated u504

meshgrid function in the NumPy2 module of Python.505

size is set to 0.0125D. The grid has Ntotal = 46,600 da506

of which Nb = 964 are located at the domain boun507

Nw = 235 are located on the cylinder wall. The re508

data points are uniformly distributed within the flow509

The domain points that have corresponding ground-t510

are varied from F = 0.05 to F = 0.8. Both PINNs a511

are trained with 6 hidden layers and each hidden lay512

neurons. The ADAM optimizer is used with a learnin513

LR = 0.0005. The models are trained on a single514

20,000 epochs.515

As shown in Figure 6, a computational cost analysis516

the PINNs and DNNs for different values of F is p517

using the L2 error curve from the testing data agains518

2NumPy version 1.25.2
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time required to train 20,000 epochs. The training time required519

for PINN is six times more than that of the DNN. The progres-520
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ning error shows similar trends for the two tested
r PINN as well as for DNN. At 20,000 epochs,
ve a similar L2 testing error in comparison to the
Ns, but the following qualitative analysis high-
er accuracy of the PINN. The change in the pre-
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g error versus training time for potential flow around a cylin-

ith variation in F is shown in Figure 7. For all
erforms better than the DNN.
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iction error for a varying F for the potential flow around a
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ls is shown for F = 0.05 in Figure 8(a), and for
ure 8(b). Comparing the results of Figure 8(a), it
d that for an equal number of training epochs and
rparameters, the DNN fails to accurately predict
-components of the velocity field in the vicinity
r wall. In contrast, the PINN-based predictions
d predictions for the overall flow fields.When the
ining data with ground truth is increased from
F = 0.2, both ANNs predict the flow around
tter, as it is visible in Figure 8(b). However, this

is reflected differently for the PINN and DNN.
sing associated physics in the loss function, can-
predict the velocity field near the cylinder wall,
INN outputs show higher accuracy. These re-
the clear superiority of data-driven PINN mod-

ng the potential flow around a cylinder. However,
e prediction accuracy with the PINN is achieved
ratively higher training time. For instance, with

u v

D
N

N
PI

N
N

u v
D

N
N

PI
N

N
Figure 8: Error density of the predicted velocity field for a potential
a cylinder with (a) F = 0.05 and (b) F = 0.2.

F = 0.05, the prediction error of PINN is almost half547

DNN, but PINN has six times longer training time.548

3.2. Potential flow: Rankine oval549

To resolve the Rankine oval flow, a total number o550

332,616 uniformly distributed spatial data points are551

which Nb = 2,600 are on the boundaries of the do552

Nw = 1,592 are on the Rankine oval boundary. Simi553

previous case, the training data points on the boundary554

fixed. The included ground truth for the data-driven t555

varied withF as a percentage of the domain data point556

the physical loss. Eqs. (33) and (34) define the loss fun557

the training models with and without integrated phys558

models have 5 hidden layers and each hidden layer ha559

rons. The ADAM optimizer with a learning rate LR560

is used for all training runs. All models are trained on561

GPU for 20,000 epochs.
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Figure 9: L2 testing error versus training time for potential flow arou
ine oval.
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It can be observed from the L2 testing error plot in Figure 9562
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is able to achieve a similar performance as the
rease in the training data from F = 0.05 to F =
an increase of 5 s and 1 s in training time of the
N respectively. For both F values, the training
NN is almost nine times larger than the training
N.
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DNN

diction error for a varying F for the potential flow around a

in the prediction error under variation of F is
re 10. Predictions from PINNs provide higher
F = 0.38 compared to DNNs, while the latter

tly better for higher values of F . However, the L2
Rankine models first increases with F and then
= 0.4 is reached. The largest gap between the
NNs is observed for F = 0.1. Given the higher

otal data points, both models already have more
vailable than the cylinder case for each F value.
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0.095
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0.050

0.095

density of the predicted velocity field for a potential flow
oval using (a) F = 0.05 and (b) F = 0.2 for the training.

For F = 0.05, both models are able to predict th580

ity fields with reasonable accuracy, although the PIN581

qualitatively better results than the DNN. In comp582

the cylinder case, the L2 error of the DNN is much583

F = 0.05, which can be attributed to a larger number584

ing data points for the Rankine oval compared to the585

For F = 0.2, the DNN struggles to predict the x-velo586

ponents near the stagnation point and downstream of587

Once again, PINNs show a higher prediction accurac588

tential flow with lower F values and can be used to p589

flow around a Rankine oval when minimal ground tru590

available.591

3.3. Blasius boundary layer flow592

For the Blasius boundary layer flow case, hyperp593

tuning yields best results when using the SGD optim594

a learning rate of LR = 0.002, 6 hidden layers and 60595

per hidden layer. The loss to be minimized is calcula596

Eqs. (35) and (36). As ground truth, Ntotal = 10,000 da597

are extracted from the numerical solution and are rand598

tributed for data-driven training, keeping the bounda599

fixed for each training run. Both models are trained o600

GPU for 20,000 epochs and the epochs are kept con601

each training run.602

The L2 testing error progressions against compute603

quired by both PINNs and DNNs are shown in Figur604

both F = 0.2 and F = 0.4, the training times of P605

almost ten times higher than DNNs. Figure 13 sh
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ϵ
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Figure 12: L2 testing error vs training time for the Blasius boundary

606

except for F = 0.4, the PINN-based predictions hav607

L2 error compared to the DNN-based predictions. At608

both types of ANN have a similar accuracy with an L609

7.0 × 10−4.610

Figures 14(a) and 14(c) show the predicted velocit611

obtained from the models with F = 0.2, and Figu612

and 14(d) for F = 0.4. When trained with F =613

models predict the velocity profile of the streamwise614

nent (u/U0) well with minimal deviation from the gro615

between η = 5.0 and η = 8.0. Predictions of both m616

the normal velocity component (v
√

x/(νU0)) are in go617

ment with the ground truth away from the wall. Howe618

the wall, the PINN has a better prediction than the DN619
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rison of predictions of velocity profiles in the Blasius bound-
N and a DNN against the exact solution with F = 0.2 (a, c)

).

ed in the zoomed inset in Figure 14(c). In the
n η = 5.0 and η = 10.0, which correspond to

conditions, predictions from both models show
the ground truth. While considering the predic-
= 0.4, both models predict the velocity profiles
ment with the ground truth both in the boundary
stream regions. In this case, the PINN provides

prediction of the normal velocity component near
be seen in Figure 14(d). It can be concluded that
fficient amount of ground truth data in the train-

it has to be noted that this is achieved with a higher632

tion cost for PINN, and hence this gain in accuracy633

justified for higher computational efforts.634

3.4. 2D Taylor-Green Vortex635

The spatial grid for the two-dimensional Taylor-Gre636

is generated using the meshgrid function in NumPy.637

spacing is uniform with a cell size of 0.02, and (x, y) ∈638

Data for training is extracted from the complete spatio-639

grid for six time snapshots with a temporal step size640

where each time snapshot has the same spatial grid.641

step size is selected such that the velocity and press642

have varied enough to train the ANNs on the tempor643

For each time step, a total of Ntotal = 99,860 spati644

are generated of which 1,264 points are located at th645

boundary. Again, the number and location of the646

points are kept constant for the training of all models.647

The percentage of the domain data points with an648

lution is varied during the training of PINNs and DNN649

using the S2S method, the number of training data poi650

spatial domain for each time step is kept constant an651

main data points are randomly chosen. The PINN a652

models are trained for a time range of [0, . . . , 30] s. T653

optimizer with a learning rate of LR = 0.003 is used654

ing the PINNs and DNNs, and each hidden layer has655

rons. The stopping criteria for training of each time ste656

30,000 epochs. Models on a coarse grid with a cell siz657

and Ntotal = 16,000 points are also trained for each t658

The training for each time step is run for 20,000 epo659

objective is to investigate the model performance und660

ent grid sizes. These are referred as reduced models in661

All models are trained on 10 nodes, using in total 40 G662

To compare the training time of PINNs and DNN663

testing error progressions are plotted in Figure 15 for F664

Each peak signifies the start of sequence training for665

time step. As observed, the DNN achieves a relativ666

training error at the end of the second sequence, bu667

ror does not decrease further in following training se668

Although the PINN has a higher training error for th669

sequence, the error decreases consistently in the follo670

quences.671
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g
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Figure 15: L2 testing error vs. training time for the 2D Taylor-G
with a grid cell size of 0.02.
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compara-
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ry condi-
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lues are plotted for t = 17s in Figure 16 for both
e grids. Note that flow fields from t = 17s did
the training data. There is no intersection point

0.2 0.4 0.6 0.8
F

PINN DNN
PINN-coarse DNN-coarse

diction error for a varying F for the 2D-Taylor-Green vortex

training setups. The PINN models consistently
erformance than the DNN models for all varia-
r the reduced models, the lowest prediction error
is achieved by the PINN using F = 0.8. In case
esh, the PINN achieves the lowest L2 error of
= 0.8. For increasing F values, PINNs have a

proving performance, whereas DNN-based pre-
aracterized by a fluctuating L2 error, similar to
ow cases. That is, the inclusion of governing

creased ground truth data in training can improve
ons for a two-dimensional Taylor-Green vortex
he S2S method.

le PINN DNN PINNreduced DNNreduced

0.0175 0.0084 0.054 0.0539
0.0078 0.0104 0.057 0.0576
0.0267 0.1239 0.0944 0.1264

in the output variables of the two-dimensional Taylor-Green
s using F = 0.05. Reduced models are trained on a dataset
00 spatial grid points.

rs for the different models are summarized for
d t = 17s in Table 2. It can be observed that

on a coarse grid have higher L2 errors.
e comparison of predicted variables with the ex-
t = 17 sec is shown in Figure 17 for the models

ner grid. The large blank regions in the pressure
N predictions highlight the model’s inability to

with different min-max ranges when no physical
the training. The velocity fields are predicted

models. A similar comparison is shown for the
ls in Figure 18 and a similar trend for the pre-
pressure field is observed. Given the unsteady

problem, all models are trained in time with S2S
ection 2. The results shown in Figures 17 and 18

interpolation capability of the S2S-trained mod-
aving no data from t = 17s in the training, the

ll able to predict the flow variables at this point in

pexact ppred,PINN ppred,DNN

vexact vpred,PINN vpred,DNN

uexact upred,PINN upred,DNN

Figure 17: Comparison of the prediction performance of PINN and
els for the two-dimensional Taylor-Green vortex at t = 17s and F =
blank regions are predictions outside the range of the ground truth.

3.5. Effect of spatial distribution on prediction707

In the investigations above, the data points for each708

are randomly distributed in the flow domain and the709

data at the boundaries and walls are kept fixed. In thi710

the variation in performance of data driven ANNs with711

in spatial distribution of the data points for a given F712

analyzed. That is, a Region of Interest (ROI) is spec713

the data points are distributed in this ROI. This spac714

distribution of data in the ROI is termed as prescribed715

tion in this work. An example is illustrated in Figure 1716

the ROI is the near-wall region of an arbitrarily shap717

Additionally, data-free training is investigated, where718

points at boundaries are used as ground truth data.719

case, the red dots in Figure 19 disappear. The ANN m720

each case are trained with the same hyperparameters a721

in the above discussed results.722

For potential flow problems, the ROI is the near-w723

and the data points for the LI loss at F = 0.05 are d724

near the wall of the cylinder and the boundary of the725

oval. The LII loss for the PINN is calculated using726

distributed points as described in Section 2.2.727

As shown in Figure 20(a), for the cylinder case, th728

tion accuracy of the PINN is with an L2 error of 2.64×729

better than the DNN with an L2 error of 6.1× 10−2. Ho730

can also be seen for the DNN that the flow field near th731

the cylinder and domain boundaries is predicted with732

tively lower error than the rest of the flow field. This733

the dependence of data-driven ANNs on the spatial di734

of the training data. A similar performance is show735

ure 20(b) for the data-free PINNs with only bounda736

tions as constraints. For the data-free models, the L2 e737

the PINN is 7.7 × 10−4, whereas the DNN prediction738

error of 6.45 × 10−2.739
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arison of the prediction performance of the reduced PINN
for the two-dimensional Taylor-Green vortex at t = 17s and
lank regions are predictions outside the range of the ground

O
ut
flo
w

ribution of data points for a general example of a two-
around an arbitrary shape with a region of interest (ROI) near
ndary points Nb and Nw are shown with black and blue dots,
ints Nd are shown with yellow dots. All these points are kept
ning run. The variable data points with existing ground truth
re denoted by the red dots.

lts are obtained for the potential flow around the
Both ANN models have a reduced prediction
trained on ground truth data concentrated near

of the Rankine oval. As shown in Figure 21(a),
struggles to predict the flow field near the do-

ies when training data from ground truth is con-
the boundaries. However, the flow field near the

as higher velocity gradients and is critical to the
ent, is still well reconstructed. The L2 error for
.26 × 10−3 in comparison to 5.6 × 10−1 for the
of the DNN, in areas in the vicinity of the wall
s), the prediction seems to be marginally better.
ring the data-free case in Figure 21(b), both the
N show improvements in prediction accuracy. In
INN has an L2 error of 2.4×10−3, while the error

DNN is 4.98 × 10−2.
ius flow case, the input to the ANN is defined by
The ROIs are not randomly selected, but they are

u v

D
N

N
PI

N
N

u v
D

N
N

PI
N

N
Figure 20: Error density for the potential flow around a cylinder w
with a concentrated spatial distribution of data points. (a) F =
near-wall ROI and, (b) data-free prediction.

defined based on the boundary conditions given by E758

(20). It can be observed from the prediction results759

Figure 22 that the model accuracy is highly depende760

distribution of data. Both the PINN and DNN have a d761

prediction accuracy when trained on data at η = 0762

η ≤ 10 having the same amount of ground truth data a763

0.2. The PINN has an L2 error of 2.1 × 10−2 and764

has an L2 error of 4.1× 10−1, which are one order of m765

higher than the L2 error from training with randomly d766

ground truth data.767

A similar analysis is conducted for the two-dim768

Taylor-Green vortex, such that the training data from th769

truth is concentrated near the domain boundaries a770

sponds to F = 0.05. As observed in Figure 23,771

PINN and DNN fail to predict the velocity and pressu772

Although both models have reduced accuracy as com773

models trained on randomly distributed data, velocit774

tions from the PINN are able to capture vortex structur775

the DNN completely fails to reconstruct the velocity fi776

L2 error for both velocity components predicted by the777

7.1 × 10−10 and for predictions by the DNN 1.52. Bot778

achieve a comparable accuracy in the prediction of779

sure field with L2 errors of 1.54 and 1.22 for PINN a780

respectively.781

The effect of the distribution of training data can be782

in Figure 23, where the models are able to reconstruct783

near domain boundaries with more accuracy as compar784

of the domain. When the distribution of ground tru785

concentrated around the regions of high pressure gradi786

F = 0.05, the prediction accuracy of both PINNs an787
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arison of the predicted velocity profiles in the Blasius bound-
, DNN, and the exact solution. The ground truth is defined
ary conditions and the number of data points corresponding

hown in Figure 24. The vortical structures are
also the DNN is able to reconstruct the pressure
L2 error of 3.5 × 10−1. The prediction of the x-
the velocity field improves the most with an L2

10−1 and 1.3 × 10−1 from the PINN and DNN re-
e above results highlight the importance of inte-
erning physics in the loss function of ANNs and

istribution of training data from the ground truth
ive performance of the two-dimensional Taylor-
The PINNs show better performance than DNNs
tributions. Both models perform best when train-

pexact ppred,PINN ppred,DNN

vexact vpred,PINN vpred,DNN

uexact upred,PINN upred,DNN

Figure 23: Comparison of the prediction performance of PINN and
els for the two-dimensional Taylor-Green vortex at t = 17s and
Training data from ground truth is prescribed near the boundaries an
regions are predictions outside the range of the ground truth.

pexact ppred,PINN ppred,DNN

vexact vpred,PINN vpred,DNN

uexact upred,PINN upred,DNN

Figure 24: Comparison of the prediction performance of PINN and
els for the two-dimensional Taylor-Green vortex at t = 17s and
Training data from ground truth is prescribed near the high press
and the blank regions are predictions outside the range of the groun

ing data is randomly distributed.799

A summary of the prediction results for the above800

flow problems is shown in Table 3. For each flow pro801

vestigated in this work, the PINNs outperform the DN802

largest difference in performance of both models is803

for potential flow, while both models have comparab804

mance for the two-dimensional Taylor-Green vortex805

potential flow and Blasius case, it is also observed806
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Flow case F Ground Truth PINN L2 Error DNN L2 Error DNN-to-PINN
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Potential flow: cylinder
0.05 Random 8.2 × 10 1.4 × 10 1.7
0.05 Prescribed 2.64 × 10−3 6.1 × 10−2 23.10
0.0 Boundary conditions 7.7 × 10−4 6.45 × 10−2 83.70

Potential flow: Rankine oval
0.05 Random 3.0 × 10−4 1.2 × 10−3 4.00
0.05 Prescribed 4.26 × 10−3 5.6 × 10−1 131.40
0.0 Boundary conditions 2.4 × 10−3 4.98 × 10−2 20.75

Blasius boundary layer flow 0.2 Random 1.7 × 10−3 2.4 × 10−3 1.41
0.2 Boundary conditions 2.1 × 10−2 4.1 × 10−1 19.50

2D Taylor-Green vortex

0.05 Random 1.7 × 10−2 4.9 × 10−2 2.88
0.05 Random-reduced 9.9 × 10−2 1.34 × 10−1 1.35
0.05 Prescribed-BC 7.193 × 10−1 1.52 2.11
0.05 Prescribed-PC 1.48 × 10−1 2.1 × 10−1 1.41

n accuracy of flow problems for different ANN configurations, amount of ground truth data used in training, and distribution of train
ndary condition, PC: Centers of high pressure.

L2 error ratio is significantly higher when the
ata is prescribed in the ROI defined by bound-

gradients or the data-free case, compared to the
ributed case.

noise in training data

ating the performance of DNNs and PINNs
ions in training data distribution, the effect of
ng data is investigated. This noise scaling rep-
nal to Noise Ratio (SNR) metric commonly used
devices used for experiments. As discussed in

p learning based PINNs can be used to extrapo-
mation from sensors on vehicles under on-road
replicate noisy sensor data, training data is em-
aussian noise. The noise is scaled to be between
of the standard deviation inherent in the velocity
domain. The impact of noise on flow structures

w around a Rankine oval is shown in Figure 25.

e 10% Noise 20%

e in training data for potential flow around a Rankine oval.

and DNN are trained on training data with vary-
F = 0.2. The training hyperparameters are kept
models used in Section 3.2 and both models are
,000 epochs. The errors in predicted flow fields
d a Rankine oval are shown in Figure 26. As

inclusion of physical constraints helps the recon-
e presence of noise in the training data. The pre-
om PINN is 1.704×10−3 and 3.08×10−3 for 10%
. In comparison, the prediction error for F = 0.2
rained without noise in data is 1.57× 10−3. Thus,

the prediction error of PINN increases by 8% and 96%834

ing data with 10% and 20% noise respectively. On835

hand, the performance of DNN degrades heavily w836

training data. When compared with the DNN traine837

without noise, the prediction error increases by 100% a838

for 10% and 20% noise.839

4. Conclusion and Outlook840

In this work, the performance of data-driven ANNs841

gated for four classical flow problems. The ANNs are842

two network configurations: a classical DNN architect843

PINN, the latter enforcing physical constraints in the l844

tion. The amount and location of ground truth data em845

training are varied for both architectures, and the effe846

prediction accuracy is compared.847

For the potential flow configurations of a cylinder a848

ine oval, the results show lower errors using PINNs w849

ground truth data is available for training. For the850

case, PINNs performed better for all F values. Diff851

sults for ANNs are obtained for potential flow around852

ine oval, where DNNs perform better for F > 0.38. A853

ally, an analysis on the location of the ground truth854

in the training was performed. In contrast to the da855

training using randomly distributed ground truth data856

with prescribed sampling of data points for potential fl857

have comparatively higher L2 errors. Thus, the distri858

ground truth data for data-driven cases is an important859

improving prediction accuracy. The data-free training860

ter prediction accuracy than the data-driven training861

scribed sampling of data points. The results are, how862

worse than the case with the random distribution o863

data. However it was observed that the PINNs signific864

performed DNNs, when the training data was prescrib865

is especially important for real-world applications, for866

when limited sensor measurements are available bas867

cation constraints. In this case, the PINN would be an868

choice over DNN.869

Summarizing the observations from the Blasius870

layer flow, PINNs have a better prediction accuracy871

values except at F = 0.4, where both the PINN and D872

similar accuracy. Data-driven models with ground t873
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Figure 26: Error density plots for flow around a Rankine oval when trained on noisy data with F = 0.2.

ear the boundaries have a higher L2 error in ve-
compared to the case, when ground truth data

istributed. Even for the prescribed data distribu-
achieves an L2 error one order lower than that
iven the availability of ground truth data corre-
≥ 0.4 and a random distribution of ground truth

fields can be predicted with higher accuracy using

y flow problem of the two-dimensional Taylor-
is solved using the S2S method, where each
dividually trained and solutions from previous
used as additional constraints. Both PINN and
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re able to capture flow structures and reconstruct
ressure fields. For all values of F investigated in
Ns have better prediction accuracy than DNNs.
odel performance is compared for different cell

d also for prescribed distribution of ground truth
is observed that the PINN is able to outperform
when trained for larger cell sizes. However, per-
oth models improved when the grid cell size is
0.05 to 0.02.
ed with ground truth data distributed only near
undaries, PINNs have a better prediction of the
compared to DNNs. Both models have a com-
tion accuracy for the pressure field. When com-
results from the randomly distributed data-driven
models have poor predictions and fail to recon-
city and pressure fields. The prediction accuracy

and DNNs improved when ground truth data is
und the regions of high pressure gradients, but
an the randomly distributed data-driven training.

above results, it can be concluded that S2S data-
implemented for the unsteady flow problem in

e a strong dependence on spatial distribution of
training and the prediction accuracy can be im-

g a smaller cell size. Further improvement of the
abilty of PINNs for unsteady flow problems may
ith normalization of training data to a common
lication of weighing functions for LII loss terms.
e, an analysis to compare the training costs for

and DNN was performed. As expected, it is

found that PINNs have higher training cost compared916

even by a factor of ten in some cases. But it is obse917

PINNs consistently perform better than DNNs, especia918

the data is sparse and they are located in critical locat919

as near the wall. Furthermore, under noisy training dat920

perform significantly better than DNNs, which had a l921

curacy of 100% compared to 8% for PINN under 10%922

training data. And in many practical problems of inte923

is generally sparse and also noisy. Hence, the comprom924

the higher training costs provides an ANN with higher925

which is robust to noise and data sparsity. This is ob926

be a significant advantage offered by PINNs, albeit t927

computational costs.928

To the knowledge of the authors, the investigatio929

manuscript is one of the first attempts to quantify th930

and location of training data when comparing the per931

of PINNs and DNNs, along with inclusion of the effect932

In this case, the investigations are limited to classical fl933

lems, where it is observed that this choice significant934

the prediction accuracy. This finding could potential935

ploited to utilize the superior performance of PINNs936

where limited and concentrated sensor measurements937

able for real-world applications. For a fixed geom938

car body, a version of the PINN with constraints bas939

Navier-Stokes equations can be trained on the sparse a940

surface sensor data, to predict flow fields for differen941

conditions. S2S learning can be used to constantly942

data to the model at successive time intervals, while p943

the information learned from the previous time interv944

findings in this work serve as a benchmark for such945

based machine learning methods to be extended to real946

cases in the future, to complement traditional solver947

duce computation costs.948
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rincipes généraux du mouvement des fluides, Mémoires de
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Integration of governing physics significantly improved the 
prediction accuracy of the data-driven and data-free Artificial 
Neural Network for the potential flow cases investigated in this 
work
Prediction accuracy of data-driven Artificial Neural Networks 
depends on the distribution of the ground truth in training and 
random distribution of training data has best performance 
amongst the different distributions studied in this work
For an unsteady two-dimensional Taylor-Green vortex, which 
was trained using the Sequence-to-Sequence method, data-
driven Artificial Neural Networks were able to interpolate in the 
temporal range and reconstruct the vortex structures for 
untrained time steps
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