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ABSTRACT
Modeling dynamical systems is a fundamental task in scientific and
engineering fields, often accomplished by applying theory-based
models withmathematical equations. Yet, in cases where these equa-
tions cannot be established or parameterized properly, theory-based
models are not applicable. Instead, a viable alternative is to learn the
system dynamics directly from data, for example with deep learning
models. However, traditional deep learning models often produce
physically inconsistent results and struggle to generalize to unseen
data, especially when training data is limited. One solution to this
shortcoming is knowledge-guided deep learning, leveraging prior
knowledge about the expected behavior of a dynamical system. In
this work, we identify and formalize permissible system states, a
novel type of prior knowledge that is often available for systems
in the context of temporal dynamics modeling. This prior knowl-
edge describes dynamic states that the system is allowed to take
during its operation. We propose a knowledge-guided multi-state
constraint to encode this type of prior knowledge through a loss
function, making it applicable to any deep learning model. This
approach allows to create an accurate data-driven model with min-
imal effort and data requirements. We validate the effectiveness of
our method by applying it to model the temporal behavior of a gas
turbine in response to an input control signal. Our results indicate
that the proposed method reduces the prediction error by up to
40%. In addition to reducing the dependency on extensive training
data, our method mitigates training randomness and enhances the
consistency of predictions with the expected behavior.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Knowledge
representation and reasoning; • Applied computing → Engineer-
ing; •Hardware→ Energy generation and storage; •Mathematics
of computing → Time series analysis.

This work is licensed under a Creative Commons Attribution International
4.0 License.

E-Energy ’24, June 04–07, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0480-2/24/06
https://doi.org/10.1145/3632775.3661967

KEYWORDS
Dynamical Systems, Dynamics Modeling, Micro Gas Turbine,
Domain Knowledge, Physics-Guided Deep Learning

ACM Reference Format:
Pawel Bielski, Aleksandr Eismont, Jakob Bach, Florian Leiser, Dustin Kot-
tonau, and Klemens Böhm. 2024. Knowledge-Guided Learning of Temporal
Dynamics and its Application to Gas Turbines. In The 15th ACM Interna-
tional Conference on Future and Sustainable Energy Systems (E-Energy ’24),
June 04–07, 2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3632775.3661967

1 INTRODUCTION
A dynamical system is a system whose state changes over time.
Modeling dynamical systems is a fundamental task in science and
engineering [4, 14, 29]. Conventionally, these systems are repre-
sented using application-specific theory-based models that describe
their behavior through mathematical equations. However, when
the exact equations describing the system’s dynamics cannot be de-
termined, or measuring the necessary system components needed
for parameterizing these equations proves impractical or exces-
sively expensive, employing theory-based models becomes infeasi-
ble [28, 30].

Deep learningmethods are a promising data-driven alternative to
theory-based models by learning the dynamical system’s behavior
directly from data [17, 28, 29]. Their flexibility and ability to learn
complex relationships make them highly suitable for modeling
various real-world systems [29]. However, despite recent successes,
these methods have shortcomings. They can produce physically
inconsistent predictions, especially when data availability is limited
[4, 8], Additionally, they often struggle to generalize to scenarios
not adequately represented in the training data [14, 21].

Very often, one knows more about the expected behavior of the
system than just training data [24]. In such cases, knowledge-guided
machine learning (KGML) [14, 27–29] can help overcome the limita-
tions of purely data-driven models by systematically incorporating
prior knowledge. One widely employed method for incorporating
prior knowledge into machine learning is adding knowledge-guided
constraints (regularization terms) into the loss function. Recent
studies have shown that even simple information integrated in
this way can substantially enhance the accuracy, consistency, and
generalizability of machine learning models [2, 9, 13, 19, 24].
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Despite prior knowledge often being available for dynamical
systems, identifying, modeling, and integrating new types of prior
knowledge into data-driven modeling is tedious in practice. Diffi-
culties arise from the interdisciplinary nature of the task, which
requires extensive collaboration with domain experts. Importantly,
there are no guarantees that prior knowledge that is relevant and
compatible with the specific dynamics-learning task exists, and
even if it does, whether it can be formalized. As a result, there are
still many types of prior knowledge relevant for dynamics-learning
tasks that have not been explored in the existing literature yet [28].

In this work, we identify and formalize a novel type of prior
knowledge relevant for data-driven temporal dynamics modeling
of systems encountered in engineering, namely permissible system
states. This type of prior knowledge characterizes the dynamic
states a system is allowed to take during its operation. Deviations
from these states are penalized while training the machine learning
model, preventing it from adopting behavior inconsistent with the
domain. For example, permissible system states can be used to inform
the model about the expected change rates of an output signal.
Such knowledge is particularly useful for modeling the system’s
behavior in response to an input control signal during transition
phases, where the output signal shows a delayed response to a
rapid change of an input control signal. This is a common scenario
when operating energy systems that are vital for the carbon-free
modern energy grid, such as gas turbines, energy storage systems,
or power-to-X systems.

Because existing knowledge-guided methods do not allow to
model permissible system states, we propose a novel multi-state con-
straint to represent and incorporate this type of prior knowledge
into a neural network, using a knowledge-guided loss function. Im-
portantly, this proposed method can be applied on top of any deep
learning model and can be used with both exact and approximate
prior knowledge. Approximate prior knowledge is particularly rel-
evant in practical applications where precisely defining permissible
system states can be challenging due to measurement uncertainties
or the stochastic nature of the dynamical system under consider-
ation. To the best of our knowledge, our work is the first attempt
to leverage this type of prior knowledge, both in the context of
machine learning and temporal dynamics modeling.

To study the effectiveness of our method, we apply it to model
the temporal dynamics of a gas turbine in a scenario where mea-
surements from the internal system components are unavailable,
which prevents applying conventional theory-based models. In this
context, the prior knowledge is specified as the expected change
rate of the gas turbine’s output during transition and stationary
phases. Our findings indicate that our method allows to create
an accurate data-driven model with minimal effort and data re-
quirements. It reduces the prediction error by up to 40%, while
simultaneously reducing the need for extensive data and mitigat-
ing training randomness, compared to the knowledge-uninformed
deep learning baseline. Additionally, the method aids the model
to behave consistent with the domain and enhances its ability to
generalize to data with varying characteristics, especially in scenar-
ios with limited available training data. We have made the code1

1https://github.com/Energy-Theory-Guided-Data-Science/Gas-Turbine

and the experimental data2 available online. Additionally, we have
contributed the data to the UCI Machine Learning Repository under
the name Micro Gas Turbine Electrical Energy Prediction. To sum up,
our contributions are as follows:

(1) We identify and formalize permissible system states, a novel
type of prior knowledge that is relevant for data-driven tem-
poral dynamics modeling of engineering systems.

(2) We introduce a novelmulti-state constraint designed to incor-
porate this prior knowledge into any neural network, using
a knowledge-guided loss function.

(3) We thoroughly evaluate our approach on the task of data-
driven temporal dynamics modeling of a gas turbine. This
includes performance tests with varied dataset sizes, a sen-
sitivity analysis of hyperparameters, assessing robustness
against approximate and incorrect prior knowledge, and a
qualitative prediction analysis.

Paper outline. Section 2 features fundamentals. Section 3 de-
scribes our approach. Section 4 reports on experiments. Section 5
reviews related work and Section 6 concludes.

2 PRELIMINARIES
In this section, we present fundamentals for our work. First, we
introduce the scenarios of temporal dynamics modeling in general
(Section 2.1) and gas turbine modeling in particular (Section 2.2).
Next, we discuss the limitations of classical deep learning in such
scenarios (Section 2.3). Further, we describe the prior knowledge
identified in our scenario (Section 2.4). Finally, we explain how
loss functions are used in knowledge-guided machine learning
(Section 2.5).

2.1 Problem: Temporal Dynamics Modeling
In this study, we focus on discrete-time nonlinear dynamical sys-
tems that evolve over time in response to an input control signal.
Such a system is characterized by an unknown function 𝑓 :

𝑦𝑡 = 𝑓 (𝑥𝑡 , 𝑥𝑡−1, . . . , 𝑥𝑡−𝑁+1) (1)

Here, 𝑥𝑡 ∈ 𝑋 is the input control signal at time 𝑡 , and 𝑦𝑡 ∈ 𝑌 is the
system output signal at time 𝑡 , which depends on the 𝑁 last samples
of the input control signal. We assume to have access to a dataset
comprising tuples of input-output system states ((𝑥𝑡 , 𝑦𝑡 ) | 𝑡 ∈
{1, . . . ,𝑇 }). 𝑇 is the number of discrete time samples in the dataset.
The objective of temporal dynamics modeling with deep learning is
to estimate the unknown function 𝑓 using a parameterized function
𝑓𝜃 , where 𝜃 ∈ R𝑝 are parameters of a neural network, to predict
the output 𝑦𝑡 given the control input 𝑥𝑡 , 𝑥𝑡−1, . . . , 𝑥𝑡−𝑁+1.

2.2 Our Scenario: Gas Turbine Modeling
Gas turbines play an important role in modern power and heat gen-
eration systems, serving various functions such as meeting peak
demand, providing backup for renewable energy sources, and en-
abling decentralized power generation with minimal transportation
and conversion losses [3, 10]. Additionally, gas turbines will play
a crucial role in future cross-sector power-to-gas energy systems,
which enable the conversion of electricity into gas, its storage,

2https://doi.org/10.35097/sLJiahifxvfDKMEc
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Figure 1: Temporal dynamics modeling of an output signal in
response to an input control signal, and the identified prior
knowledge in the form of permissible system states.

transportation, and subsequent conversion back to electricity [11].
Their flexibility to operate on a range of fuels, including biofuel
and hydrogen, enables them to fulfill these tasks while achieving
net-zero carbon emissions [7]. Accurately modeling the temporal
behavior of gas turbines enables precise planning of their produc-
tion capacity, which is a crucial requirement for their effective use
in a modern energy grid [10, 20, 22].

In this study, we focus on modeling the behavior of a commercial
micro gas turbine designed for residential households, generating
approximately 3 kW of electrical power. In our setting, we model
the output power in response to an input control signal within the
timeframe spanning seconds to hours (see Figure 1). Inputs and
outputs are easily obtainable operational data, which eliminates
the need for installing measurement sensors within the internal gas
turbine components or conducting measurements in a laboratory.
Each level of the input control signal corresponds to a stationary,
i.e., constant, level of the output power. Notably, a noticeable delay
occurs in the output signal during transitions in response to changes
in the input control signal.

Conventional theory-based models are not applicable in our
scenario, as they require access to the measurements of the in-
ternal gas turbine components for parametrization. On the other
hand, rule-based and transfer-function methods are susceptible to
measurement inaccuracies, or encounter difficulties in accurately
representing the system’s behavior during transition phases, as dis-
cussed in Section 5. Meanwhile, classical data-driven deep learning
methods also encounter difficulties, as discussed next.

2.3 Issues with Classical Deep Learning
In real-world situations with limited training data, accurately mod-
eling the temporal behavior of a gas turbine using deep learning
methods proves challenging. As depicted in Figure 2, a recurrent
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Figure 2: Data-driven methods can struggle to model the
transitions when training data is limited.

neural network with LSTM cells, when trained on a small dataset
(here: two time series), struggles to accurately replicate the system’s
behavior during both stationary and transition phases. During sta-
tionary phases, the model’s predictions deviate from the actual data.
The model’s predictions during transition phases are inconsistent
with prior knowledge, failing to represent transitions as smooth,
gradual changes with a constant gradient. This inconsistency with
the expected behavior of the gas turbine showcases the shortcom-
ings of knowledge-uninformed deep learning models. In this paper,
we illustrate how to improve both the prediction accuracy and
consistency on the transitions for deep learning trained on a small
dataset, by applying principles from knowledge-guided machine
learning.

2.4 Prior Knowledge: Permissible System States
The dynamical state of a system is a characteristic that changes over
time. Some dynamical systems have a finite number of dynamical
states that the system is allowed to take. We refer to this type of
prior knowledge as a finite set of permissible system states. Domain
expertise about the system can provide insights into whether such
permissible system states exist, and how to represent and measure
them. Depending on factors like measurement uncertainties or the
stochastic nature of the system, prior knowledge in that form can be
defined either exactly or approximately. The multi-state constraint
that we introduce in Section 3 informs the machine learning model
about these permissible system states by penalizing deviations from
them, preventing the model from adopting a behavior inconsistent
with the domain.

In temporal dynamics modeling, certain systems can be charac-
terized by a finite set of permissible values for their output change
rates. For example, in our gas turbine study, the finite set of permis-
sible system states consists of three distinct output change rates, as
depicted in the lower part of Figure 1. We expect both the rising
and falling transition phases to have a constant non-zero change
rate, and stationary phases to have a change rate of zero. The val-
ues of the change rate for the transition phases can be obtained
from ground-truth data by estimating the derivative of the output
signal over time. This type of prior knowledge is not unique to gas
turbines; similar knowledge is often available for other dynamical
systems in mechanical, thermal, or electrical engineering, such as
thermal engines, energy storage systems, or power-to-X systems.
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2.5 Using Loss Functions in Knowledge-Guided
Machine Learning

One of the most widely used paradigms to incorporate prior knowl-
edge into neural networks is via regularization, where the loss
function is augmented with additional terms based on prior knowl-
edge [16, 28]:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑀𝐿 + 𝜆𝐾 · 𝐿𝑜𝑠𝑠𝐾 (2)
𝐿𝑜𝑠𝑠𝑀𝐿 represents a conventional loss function, such as the mean
squared error (MSE):

𝐿𝑜𝑠𝑠𝑀𝐿 =
1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑦𝑡 )2 (3)

Such a loss function is commonly employed in regression tasks,
i.e., prediction tasks with continuous target variables. It does not
consider prior knowledge.

𝐿𝑜𝑠𝑠𝐾 has to be designed to guide the neural network towards
solutions aligning with domain knowledge or general properties
of the target function. The hyperparameter 𝜆𝐾 ∈ R determines
its relative importance compared to 𝐿𝑜𝑠𝑠𝑀𝐿 . Typically, 𝜆𝐾 is de-
termined through hyperparameter tuning. The loss term 𝐿𝑜𝑠𝑠𝐾 is
often considered a ‘soft’ constraint, meaning that it does not have
to be strictly met but instead imposes a penalty that increases as
the constraint is violated more. We now present two examples of
knowledge-guided loss constraints from the literature that encode
general properties of the target function.

2.5.1 Example: Approximation constraint. The approximation con-
straint, as introduced by [2], specifies an expected prediction range
between values 𝑎 ∈ R and 𝑏 ∈ R. The loss term penalizes predic-
tions outside this range based on their deviation from the range’s
limits:

𝐿𝑜𝑠𝑠𝑎𝑝𝑝𝑟𝑜𝑥 =
1
𝑇

𝑇∑︁
𝑡=1


0 , 𝑦𝑡 ∈ [𝑎, 𝑏]
(𝑦𝑡 − 𝑎)2 , 𝑦𝑡 < 𝑎

(𝑦𝑡 − 𝑏)2 , 𝑦𝑡 > 𝑏

(4)

2.5.2 Example: Monotonicity constraint. The monotonicity con-
straint, as introduced by [2], defines a monotonic relationship be-
tween input and output variables. The loss term penalizes predic-
tions that violate monotonicity, i.e., outputs 𝑦 and 𝑦′ with 𝑦 > 𝑦′

for model inputs 𝑥 and 𝑥 ′ with 𝑥 < 𝑥 ′. In our scenario, we are in-
terested in the output signal over time, i.e., we would set 𝑥 := 𝑡 − 1
and 𝑥 ′ := 𝑡 in the context of the monotonicity constraint. Thus, the
loss term would be defined as:

𝐿𝑜𝑠𝑠𝑚𝑜𝑛𝑜 =
1

𝑇 -1

𝑇∑︁
𝑡=2

{
0 , 𝑦𝑡−1 ≤ 𝑦𝑡

(𝑦𝑡 − 𝑦𝑡−1)2 , 𝑦𝑡−1 > 𝑦𝑡
(5)

2.5.3 Inapplicability of the existing constraint types to our scenario.
Both discussed constraint types have limitations that make them
inapplicable to our scenario in their current form. The approxi-
mation constraint does not allow to encode multiple states, as in
our case, but only a single range of values. However, its capability
to penalize values outside a defined range becomes useful when
considering approximate state definitions of the permissible system
states. On the other hand, the monotonicity constraint is not suit-
able for non-monotonous functions, as in our case. However, it can

penalize inconsistencies between different points of the function,
which becomes useful when we define the multi-state constraint
on consecutive values.

3 PROPOSED METHOD
In this section, we present our approach. First, we propose general
formulations of exact and approximate multi-state constraints (Sec-
tion 3.1). Second, we show how to adapt these constraints to our
scenario, i.e., gas turbine modeling (Section 3.2).

3.1 General Formulation
We define a model state 𝑠 as a value or vector describing any char-
acteristic of a machine learning model, such as its output. In the
context of neural networks, the model state may be the value of a
particular neuron, the network’s output at a specific layer, or more
generally, any combination of these values. We assume we can
compute a real-valued distance 𝑑 (·) between these model states,
using a metric like the Euclidean distance. We denote the finite
set of permissible model states as 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}. These states
represent the prior knowledge we would like the model to adhere to.
To inform the neural network about 𝑆 , we introduce a multi-state
constraint as a term in the loss function. We propose two variants:
an exact (Section 3.1.1) and an approximate (Section 3.1.2) version.

3.1.1 Exact multi-state constraint. In the exact variant of the con-
straint (see Equation 6), each permissible state corresponds to a
single value. The loss term penalizes model states 𝑠𝑡 that do not
belong to the set of permissible model states 𝑆 , imposing a penalty
proportional to the deviation from the closest permissible state.
If 𝑠𝑡 matches a permissible state exactly, then the penalty is zero.
The ratio between the hyperparameters 𝛽𝑖 of different permissible
states allows to influence which of the permissible states is used
for penalizing model states in the loss function. We provide more
explanations of these hyperparameters in Section 4.6.

𝐿𝑜𝑠𝑠𝑀𝑆 =
1
𝑇

𝑇∑︁
𝑡=1

min
𝑖∈{1,...,𝑛}

𝛽𝑖 · 𝑑 (𝑠𝑡 , 𝑠𝑖 ) (6)

3.1.2 Approximate multi-state constraint. For scenarios where the
model states 𝑆 can only be defined approximately, we introduce
an approximate multi-state constraint (see Equation 7). Drawing
inspiration from the approximation constraint in literature (see
Equation 4), we define an approximate state as a range of values,
i.e., 𝑠𝑖 = [𝑠𝑖

𝑚𝑖𝑛
, 𝑠𝑖𝑚𝑎𝑥 ]. If a model state 𝑠𝑡 lies within the range of

any permissible model state, then the penalty is zero. Otherwise,
we apply a penalty proportional to the deviation from the nearest
state range:

𝐿𝑜𝑠𝑠𝑎𝑝𝑝−𝑀𝑆 =
1
𝑇

𝑇∑︁
𝑡=1

min
𝑖∈{1,...,𝑛}

𝛽𝑖 · 𝑑𝑟𝑎𝑛𝑔𝑒 (𝑠𝑡 , 𝑠𝑖 )

where 𝑑𝑟𝑎𝑛𝑔𝑒 (𝑠𝑡 , 𝑠𝑖 ) =


0 , 𝑠𝑖

𝑚𝑖𝑛
≤ 𝑠𝑡 ≤ 𝑠𝑖𝑚𝑎𝑥

𝑑 (𝑠𝑡 , 𝑠𝑖𝑚𝑖𝑛) , 𝑠𝑡 < 𝑠𝑖
𝑚𝑖𝑛

𝑑 (𝑠𝑡 , 𝑠𝑖𝑚𝑎𝑥 ) , 𝑠𝑡 > 𝑠𝑖𝑚𝑎𝑥

(7)

Exact states are a special case of approximate states where the range
is zero, i.e., the lower bound also is the upper bound.
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3.2 Application to Gas Turbines
In general, it makes sense to define the model state 𝑠 in a form
compatible with the form of the available prior knowledge. In our
scenario, prior knowledge takes the form of a finite set of permissi-
ble values for the output change rates, as described in Section 2.4
and depicted in the lower part of Figure 1. To make the model state
compatible with the notion of change rates, we define the model
state 𝑠 as the difference between two consecutive predictions:

𝑠𝑡 = Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (8)

Consequently, the set of permissible model states defines a set of
permissible differences 𝑆 = {Δ1,Δ2, . . . ,Δ𝑛} that represent the set
of change rates for two consecutive predictions of the model.

For our dataset, we define the set of permissible differences by
estimating the derivative of the output signal over time Δ𝑦/Δ𝑡 for
the transitions and assuming a difference of zero for the stationary
phases. As a result, we have a set with three permissible differences:
Δ+ = 6.388Ws−1 for rising transitions, Δ− = −6.388Ws−1 for
falling transitions, and Δ0 = 0W s−1 for stationary phases (see the
lower part of Figure 1). We encode these three permissible system
states into the loss function with the multi-state constraint (see
Equation 6), employing a squared distance to penalize deviations
of the model’s output from these states:

𝐿𝑜𝑠𝑠𝑀𝑆 =
1
𝑇

𝑇∑︁
𝑡=2

min
(
𝛽+ (Δ𝑦𝑡−Δ+)2, 𝛽− (Δ𝑦𝑡−Δ−)2, 𝛽0 (Δ𝑦𝑡−Δ0)2

)
(9)

This equation can be simplified for our data with Δ+ = −(Δ−) =
6.388, Δ0 = 0, 𝛽+ = 𝛽− = 𝛽𝑡𝑟𝑎𝑛𝑠 , and 𝛽0 = 𝛽𝑠𝑡𝑎𝑡 :

𝐿𝑜𝑠𝑠𝑀𝑆 =
1
𝑇

𝑇∑︁
𝑡=2

min
(
𝛽𝑡𝑟𝑎𝑛𝑠 ( |Δ𝑦𝑡 | − 6.388)2, 𝛽𝑠𝑡𝑎𝑡 (Δ𝑦𝑡 )2

)
(10)

The previous two equations assume exact state definitions; in our
experiments, we also evaluate the approximate variant of the con-
straint type, defining intervals around the exact values.

4 EXPERIMENTS
In this section, we assess the effectiveness of our method in mod-
eling the temporal dynamics of a gas turbine. First, we describe
our experimental design (Section 4.1). Subsequently, we demon-
strate that incorporating the multi-state constraint (both its exact
and approximate formulations) consistently diminishes the predic-
tion error across varying training-set sizes (Section 4.2). Then, we
evaluate the relationship between approximate prior knowledge
and prediction error (Section 4.3). Next, we evaluate the method’s
resilience to incorrect prior knowledge (Section 4.4). We also show-
case that our method effectively models transitions in line with
prior knowledge, aiding the model in learning patterns that gen-
eralize well to test data with different characteristics (Section 4.5).
Finally, we conduct a sensitivity analysis of the hyperparameters
of our method (Section 4.6).

4.1 Experimental Design
4.1.1 Data. We collected our dataset from a small commercial gas
turbine, described in detail in [18]. The dataset comprises time-
series data for both the input control signal and the corresponding
output (electrical power). Collecting data from gas turbines is a
challenging and time-consuming process, requiring the installation
of measurement devices and direct supervision by a domain ex-
pert for extended periods during experiments. Moreover, real-life
operational restrictions on the gas turbine limit the execution of
certain test profiles. Our dataset comprises eight time series that
depict the gas turbine’s behavior under diverse conditions (see Fig-
ure 10). The time series vary in duration from 6,495 to 11,820 data
points with a resolution of approximately 1 second, correspond-
ing to approximately 1.8 h to 3.3 h. Four rectangular time series
represent scenarios in which the input control signal changes in-
stantaneously but the output power follows with a visible delay.
Accurate modeling of both transitions and stationary phases is cru-
cial for precise gas turbine modeling in these scenarios. The four
remaining continuous time series represent scenarios in which the
input control signal changes gradually and there are no visible de-
lays in the output power. For these time series, learning transitions
is less important for modeling the overall behavior.

4.1.2 Prediction model. As our baseline method without prior
knowledge, we employ a recurrent neural network (𝑅𝑁𝑁 ) with
three hidden layers, each containing 32 LSTM units. The input size
is 𝑁 = 451, corresponding to the longest transition length in the
dataset. In preliminary experiments, we determined that this ar-
chitecture has sufficient capacity to learn transitions when trained
with six time series, which represents the maximum training-set
size in our experiments. Architectures with fewer layers were inca-
pable of modeling transitions, while architectures with more layers
did not improve performance but required more training time.

Based on our sensitivity analysis (see Section 4.6), we set the
hyperparameter 𝜆𝐾 to 1000 and the weighting of states between
transitions and stationary phases to a ratio of 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 = 0.6 in
the other experiments. We trained the models with a learning rate
of 0.001 for 300 epochs, using early stopping with a patience of 90.
To evaluate prediction error in our experiments, we use the root
mean squared error (RMSE).

We implemented the proposed method using TensorFlow [1]. On
our server with an NVIDIA GeForce GTX 1080 Ti (11 GB Memory),
the training took between 11min (training size of 1) and 90min
(training size of 6), and the inference on one time series took 4 s.

4.2 Impact of Training-Set Size
4.2.1 Experimental design. In this section, we assess prediction
error in terms of RMSE across varying training-set sizes. We se-
lect two time series (#4, which is rectangular, and #22, which is
continuous; see Figure 10) as the test set. From the remaining six
time series, we randomly choose one to six time series for train-
ing and repeat each training five times to account for randomness
in model initialization. We compare the baseline 𝑅𝑁𝑁 with three
knowledge-guided variants: (1) 𝑅𝑁𝑁𝑀𝑆 uses an exact multi-state
constraint, representing a scenario with accurate prior knowledge.
(2) 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,1% uses an approximate multi-state constraint and
an error tolerance of 1%, representing a situation with sufficiently
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Figure 3: Prediction error (mean RMSE ± standard deviation)
over training-set size.

accurate but not perfect prior knowledge. (3) 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,10% uses
an approximate multi-state constraint and an error tolerance of
10%, representing a scenario with higher uncertainty, which also
is realistic in practical applications. The value ranges for the ap-
proximate constraint are symmetric around the expected value and
are defined relative to the difference between the states, which
in our scenario is equal to Δ+ − Δ0 = Δ0 − Δ− = 6.388 For in-
stance, in transition phases of 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,10%, with an expected
value of 6.388W s−1 and a 10% tolerance, the approximate state is
6.388 ± 0.6388 = [5.7492, 7.0268]. For stationary phases, with an
expected value of 0 and a 10% tolerance, the approximate state is
0 ± 0.6388 = [−0.6388, 0.6388]. The tolerance for 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,1%

is calculated similarly.

4.2.2 Results. As depicted in Figure 3, the test prediction error
consistently improves with increasing training-set sizes for all
three variants of multi-state constraints. In particular, 𝑅𝑁𝑁𝑀𝑆

and 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,1% reduce the test prediction error by 30-40%,
while 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,10% reduces it by 15-20%, compared with 𝑅𝑁𝑁 ,
the baseline without prior knowledge. Further, the multi-state con-
straint methods cause the model to reach a plateau in error with
only three to four training samples, whereas the baseline does not
plateau even until six samples. Additionally, the multi-state con-
straint methods 𝑅𝑁𝑁𝑀𝑆 and 𝑅𝑁𝑁𝑎𝑝𝑝−𝑀𝑆,1% achieve better test
prediction error when trained on two samples than the baseline
trained on six samples. This result suggests that integrating prior
knowledge effectively reduces the model’s dependence on extensive
training data and enables reaching the optimum error with less data.
Additionally, all multi-state constraint methods show lower vari-
ance between different evaluation runs than the baseline, indicating
that prior knowledge may help mitigate training randomness. As
the amount of training data increases, the performance gap between
the baseline and the knowledge-guided approach diminishes, em-
phasizing the particular benefits of knowledge-guided approaches
when data is limited. Furthermore, while both approximate multi-
state constraints perform worse than the exact constraint, they
still outperform the baseline. These findings confirm that even an
approximate definition of prior knowledge can be useful.
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Figure 4: Prediction error (mean RMSE ± standard deviation)
over approximation tolerance of prior knowledge.

4.3 Impact of the Approximation Range
4.3.1 Experimental design. In this section, we assess the impact of
the tolerance range of the approximate multi-state constraint on the
prediction error. In particular, we vary the width of the range. As in
Section 4.2, we use ranges that are symmetric around the expected
value and define the tolerance relative to the distance between
the states, i.e., 6.388W s−1. We use the same two time series as in
Section 4.2 as test set and perform five training repetitions, each
time using a random selection of four out of the remaining six time
series for each value of the prior knowledge. We evaluate tolerance
values from 0% to 50% with 5% increments to explore the method’s
limits. The tolerance of 0% represents the exact state definition.

4.3.2 Results. As illustrated in Figure 4, the approximate multi-
state constraint outperforms the baseline without prior knowledge
(depicted as a striped line) in terms of test prediction error even
with an approximation range as large as 25%. However, for a tol-
erance of 50%, where the lower range of one state overlaps with
the upper range state of another state, the method performs sig-
nificantly worse than the baseline. Additionally, we observe that
models trained with prior knowledge with smaller tolerance have
lower variance in prediction error between different evaluation
runs than when using prior knowledge with larger tolerance.

4.4 Impact of Incorrect Prior Knowledge
4.4.1 Experimental design. In this section, we assess the robustness
of the exact multi-state constraint when faced with incorrect prior
knowledge about the permissible states. This scenario simulates a
situation where the provided prior knowledge is exact but does not
match the reality. We use the exact multi-state constraint and vary
the values for the prior knowledge, i.e., the change rates of the gas
turbine’s output signal at the transitions. Again, we use the same
two time series as in Section 4.2 as test set and perform five training
repetitions, each time using a random selection of four out of the
remaining six time series for each value of the prior knowledge. We
test the correct value of Δ+ = 6.388W s−1, as well as exponentially
scaled values up to 128 times smaller or larger.

4.4.2 Results. As depicted in Figure 5, the exact multi-state con-
straint outperforms the baseline without prior knowledge (depicted
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Figure 5: Prediction error (mean RMSE ± standard deviation)
over incorrect prior knowledge (correct prior knowledge in
center).

as a striped line) regarding test prediction error even if the assumed
change rate is eight times smaller or larger than in reality. How-
ever, when the deviation from the correct value becomes larger, the
method performs worse than the baseline. These results suggest
that even incorrect prior knowledge can be beneficial within a cer-
tain range. Additionally, we observe that the model trained with
the correct prior knowledge has lower variance between different
evaluation runs than with incorrect prior knowledge. Finally, the
U-shaped relationship suggests that it could be technically feasi-
ble to identify the optimal value of prior knowledge by sampling
different values and observing the prediction error. This could, in
turn, reduce the method’s reliance on providing the exact value of
prior knowledge beforehand.

4.5 Qualitative Evaluation of Predictions
4.5.1 Experimental design. In this section, we showcase the effec-
tiveness of our proposed method qualitatively. We demonstrate
that our approach not only reduces the prediction error but also ad-
dresses the challenges of accurately representing stationary phases
and providing consistent predictions for transition phases, as dis-
cussed in Section 2.3 and depicted in Figure 2. In particular, we vi-
sualize the test predictions of the exact multi-state RNN (𝑅𝑁𝑁𝑀𝑆 )
and the baseline (𝑅𝑁𝑁 ) with the lowest prediction error out of
the five training repetitions from the experiments in Section 4.2.
To show how the impact of our method depends on the training-
set size, we visualize predictions for training sizes of two and six.
Figure 10 plots the corresponding input signals.

4.5.2 Results. The first row of Figure 6a shows that the baseline
model𝑅𝑁𝑁 , trained on data from two time series, fails to accurately
model the rising transition, representing it as a discrete step rather
than a gradual change. We also observe that 𝑅𝑁𝑁 does not capture
the stationary levels accurately. The second row of Figure 6a shows
results from training with a multi-state constraint, resulting in a
significant RMSE reduction for both rectangular and continuous
time series. Further, the representation of transitions is smoother,
and the overall behavior of the gas turbine is captured better. In
the first row of Figure 6b, we see that while the baseline trained
on data from six time series is able to capture transitions of the

rectangular test-set time series as a gradual change, it does not
capture the stationary levels accurately, which results in a worse
RMSE than 𝑅𝑁𝑁𝑀𝑆 has. For the continuous test-set time series,
𝑅𝑁𝑁𝑀𝑆 also is slightly better at following the ground truth data.

To sum up, our method proves advantageous since it improves
the modeling of transitions as well as stationary phases, especially
when the training-set size is small. In practical applications, we
recommend training themodel multiple times and choosing the best
one to mitigate the effects of randomness in network initialization.

4.6 Sensitivity Analysis
4.6.1 Experimental design. In this section, we investigate the two
hyperparameters of our method: 𝜆𝐾 and the ratio 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 . For
both hyperparameters, we evaluate an exponentially scaled range
of values, i.e., {0.001, 0.01, . . . , 10000}. As discussed in Section 2.5,
𝜆𝐾 determines the relative importance of the knowledge-guided
loss 𝐿𝑜𝑠𝑠𝐾 in relation to 𝐿𝑜𝑠𝑠𝑀𝐿 . The ratio 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 between
the hyperparameter 𝛽𝑖 of different permissible states allows to
determine which of the permissible states is used to compute the
penalty in the loss function, by influencing the decision border
between different states (see Section 3.1.1). A ratio of 1 positions
the decision boundary precisely halfway between the values for
transitions (Δ+ = −Δ− = 6.388W s−1) and stationary phases (Δ0 =
0W s−1). Ratios less than one shift the border toward the transition
value and ratios greater than one shift it toward the stationary
value. The relationship between this ratio, the decision border,
and the method’s performance can be complex, underscoring the
importance of hyperparameter tuning to find optimal values. In
our analysis, we use the same two time series as in Section 4.2 as
test set and perform five training repetitions, each time using a
random selection of four out of the remaining six time series for
each hyperparameter value under examination.

4.6.2 Results: 𝜆𝐾 . As shown in Figure 7, the model’s prediction
error with the multi-state constraint approaches the baseline’s error
for small values of the parameter 𝜆𝐾 . This behavior is expected, as
for small 𝜆𝐾 values, the knowledge-guided loss 𝐿𝑜𝑠𝑠𝐾 has a small
impact on model training. As 𝜆𝐾 approaches 1000, the prediction
error decreases, reaching a minimum. However, for 𝜆𝐾 = 10000, the
error increases significantly. This behavior aligns with expectations,
as excessively high values of 𝜆𝐾 cause the knowledge-guided loss
𝐿𝑜𝑠𝑠𝐾 to dominate over the machine learning loss 𝐿𝑜𝑠𝑠𝑀𝐿 , leading
the model to disregard learning the correct stationary phases (see
Figure 9c).

4.6.3 Results: 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 . In Figure 8, we observe that when the
ratio 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 is below or equal to 1, the prediction error re-
mains consistently low, with the exact value of 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠 having
minimal impact. However, for values greater than 1, the prediction
error increases significantly. The results suggest that in our scenario,
optimal results are achieved when the decision border is positioned
closer to the value for transitions (Δ+ = −Δ− = 6.388W s−1) than
the stationary phase (Δ0 = 0Ws−1). Placing the decision border
too close to the state for the stationary phase may force predictions
with output change rates that are slightly above zero to converge
to the output change rate for transitions, which negatively affects
the predictions for the continuous time series in particular (see
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Figure 6: The predictions of the best of five models.
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Figure 7: Prediction error over hyperparameter 𝜆𝐾 for
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Figure 8: Prediction error over hyperparameter 𝛽𝑠𝑡𝑎𝑡/𝛽𝑡𝑟𝑎𝑛𝑠
for 𝜆𝐾 = 1000.
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Figure 9d). In our scenario, the typical inconsistency in model pre-
diction arises from predicted transitions being too steep (see Figure
2). As a result, placing the decision border too close to the state for
the transition phase does not have such a negative impact because
predictions converge to the closest permissible state, which is the
transition state, regardless of the positioning of the decision border.

5 RELATEDWORK
In this section, we discuss related work from two areas: using prior
knowledge in loss functions (Section 5.1) and gas turbine modeling
(Section 5.2).

5.1 Integrating Prior Knowledge in the Loss
Function for Modeling Dynamical Systems

There is a rapid growth of papers on incorporating prior knowl-
edge through physics-guided constraints in the loss function and
using them in various scenarios [14, 27–29]. Early work in this
area focused on defining generic types of prior knowledge indepen-
dently from the application domain. For instance, [24] introduced a
knowledge-guided loss function to inform a neural network about
the derivatives at specific points of a generic target function. Soon
after, [2] proposed constraints on the loss function to encode in-
variances, monotonic relationships, and permissible value ranges.
These generic, domain-independent types of prior knowledge en-
abled modeling application-specific prior knowledge in various
data-driven scenarios of modeling particular dynamical systems.
For example, [19] employed a combination of monotonicity and
approximation constraints for predicting oxygen solubility in water,
while [12] applied a monotonicity constraint on the density-depth
relationship when predicting temperature in lakes.

Much less research has been done on identifying and formalizing
prior knowledge that is applicable across various dynamical sys-
tems. For example, [15] proposed a constraint to encode the energy
conservation law. In general, proposing and evaluating new types of
prior knowledge and formalizing them with the knowledge-guided
constraints in the loss function remains an active field of research
[28]. Such research is particularly impactful if the proposed prior
knowledge is applicable to a broader class of problems, allowing
for the reuse of the knowledge-guided methods. To the best of our
knowledge, our work is the first to identify and propose the use of
prior knowledge in the form of permissible system states. None of
the previously proposed knowledge-guided constraints are suitable
for representing this specific type of prior knowledge. While we
evaluate our method with modeling a gas turbine, the concept of
permissible systems states is applicable for data-driven temporal
dynamics modeling of various dynamical systems.

There also is related work that focuses on integrating multiple
sources of prior knowledge. For example, [2] balanced multiple
knowledge-guided constraints by alternating between them during
training, while [19] incorporated multiple constraints as a weighted
sum. Additionally, [9] introduced a method for optimizing weights
among competing knowledge-guided constraints. However, these
approaches do not consider incorporating information about alter-
native characteristics that a target function can possess, like the
permissible system states featured in our approach.

5.2 Gas Turbine Modeling
Theory-based models are the conventional way to model the behav-
ior of gas turbines, e.g., Rowen’s Model [22], the IEEE Model [6], or
the CIGRE Model [5]. These application-specific, equation-based
models accurately capture the temporal behavior of gas turbines by
modeling the interaction among various system components and
operational conditions. This process depends on obtaining mea-
surements from internal system components using physical sensors
and involves significant parametrization efforts [23, 26].

As an alternative of theory-based models, some researchers have
turned to widely applicable, data-driven deep learning models to
directly predict the output power of gas turbines from operational
data. While this approach has shown promise in reducing parame-
trization and calibration efforts compared to theory-based models,
previous studies evaluating these methods focused on scenarios
where measurements of the internal system components were ac-
cessible [20, 25]. However, this access may not always be guaran-
teed due to the associated high effort and costs, for example in the
concept phases of planning decentralized energy systems [10].

Much less research has been done formodeling scenarios without
access to internal system component measurements. [18] explored
the use of empirical rule-based and transfer-function models for
gas turbine modeling using only easily obtainable input-control
and output power data. However, the proposed rule-based ramp
model is highly susceptible to measurement uncertainties, and
the transfer-function model struggles to optimize for both small
and large output changes simultaneously, resulting in imprecise
predictions on transitions. For this scenario, we propose an alter-
native data-driven knowledge-guided deep learning approach that,
unlike the transfer-function model, models transitions accurately,
and offers broader applicability and robustness against measure-
ment uncertainties than rule-based methods. Further, our method
integrates prior knowledge to address the limitations of knowledge-
uninformed deep learning. This approach allows us to leverage the
minimal manual effort associated with data-driven modeling while
creating an accurate model with minimal data requirements.

6 CONCLUSIONS
Permissible system states characterize the states a dynamical system
is allowed to take during its operation. Existing knowledge-guided
machine learningmethods do not allow this type of prior knowledge
to be modeled. We formalize permissible system states and propose
a novel multi-state constraint that incorporates permissible states
into neural networks via a knowledge-guided loss function. This
approach allows for the creation of a data-driven model that is
accurate with minimal effort and data requirements. We evaluate
our method by applying it to model the temporal dynamics of a gas
turbine in response to an input control signal. Our results indicate
that the proposed method reduces the prediction error by up to 40%
compared to the knowledge-uninformed deep learning baseline. It
also reduces the dependency on extensive training data, mitigates
training randomness, and enhances model consistency with prior
knowledge. Further, we show that our method can also tolerate
approximate or incorrect prior knowledge to a certain extent. As
future work, we aim to explore the applicability of our approach
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across various energy systems with similar characteristics, such as
thermal engines, energy storage systems, and power-to-X systems.
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Figure 9: The predictions of the best of five models trained on four time series.
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(b) Time-series data used for training.

Figure 10: All available time series in our dataset.
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