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Abstract
In this study, the medium-range predictability of heatwave (HW) onsets in
four midlatitude European regions is investigated statistically with the help of
ensemble reforecasts for the period 2001–2018. The concept of Euro-Atlantic
weather regimes is adopted to characterise HWs (about 50 in each region) and
to study whether forecast skill may depend on the large-scale dynamical setup.
HW onsets over the British Isles and Scandinavia are mainly associated with
Scandinavian and European blocking regimes, whereas the “no regime” case
is observed more frequently for Central Europe. Stratified by weather regime,
the predictability of heatwave onsets is then studied by means of a multiple
metric-based analysis of European Centre for Medium-Range Weather Fore-
casts (ECMWF) and Global Ensemble Forecast System Version 12 (GEFSv12)
ensemble reforecasts. For two of the regions considered, Central Europe and the
British Isles, a conclusive picture is obtained: medium-range predictive skill is
significantly higher for HW onsets associated with Scandinavian or European
blocking compared with cases with no pronounced regime. This skill advantage
mostly concerns the large-scale flow and, to some extent, 850-hPa tempera-
tures, but is generally not reflected in the correct prediction of near-surface
temperatures. Finally, we investigate for two regions how exceptionally good or
poor forecasts are related to the atmospheric state during or shortly after fore-
cast initialisation. At 10 days lead time, poor large-scale flow predictive skill
for Central European HW onsets is linked to anomalously high baroclinicity
further upstream and an intensified North Atlantic jet stream, whereas good
forecasts on average feature an initial state close to climatology. Forecast skill
for near-surface temperatures is not affected by such dynamical precursors, but
rather by pre-existing soil-moisture anomalies. For the British region, excep-
tionally good forecasts of both large-scale flow and near-surface temperatures
are associated with an already established continental blocking. In contrast to
Central Europe, pre-existing soil-moisture anomalies play less of a role there.
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2 LEMBURG and FINK

1 INTRODUCTION

Over the past 30 years, Europe has seen average tem-
peratures rising at more than twice the pace of the
global average’s increase (WMO, 2022). In line with that
trend, unprecedented extreme heatwaves (HWs) have been
observed, which are projected to increase further in fre-
quency and intensity in all parts of the continent (Collins
et al., 2013). Among all weather- and climate-related
risks, HWs pose a major and often underestimated one
(Hughes et al., 2016). The HW of August 2003 with an esti-
mated number of 70,000 excess deaths (Fink et al., 2004;
García-Herrera et al., 2010), the extremely long-lasting
heat (and accompanying drought) in western Russia in
2010 (Dole et al., 2011; Trenberth & Fasullo, 2012), and the
recurring hot and dry extremes affecting multiple Euro-
pean regions in both 2018 and 2019 (Kueh & Lin, 2020;
Rousi et al., 2023; Sousa et al., 2020) are recent examples of
the potentially devastating impact of HWs. Since adequate
short-term countermeasures or adaption techniques exist,
a timely and accurate prediction of HWs may greatly alle-
viate the toll on human life and society (Ebi et al., 2004;
Mücke & Litvinovitch, 2020).

Processes leading to HWs are manifold and depend
strongly on the time-scale considered. Therefore, the
challenges of predicting HWs and the very meaning
of predictability itself vary considerably with forecast
time (Domeisen et al., 2023). At lead times of up to
three days, weather models usually capture the evolu-
tion of the large-scale circulation reasonably well (Haiden
et al., 2021). The accurate prediction of near-surface
temperatures then depends mostly on rather small-scale
details of the flow field and the adequate simulation of
cloudiness and near-surface diabatic heating (Lemburg &
Fink, 2022). Beyond 14 days, probabilistic extended-range
forecasts may—more skilfully than for any other types of
weather—indicate an increased likelihood of HWs occur-
ring by exploiting some predictability that is inherent
to slowly varying boundary conditions, such as local or
remote soil-moisture anomalies (Teng et al., 2019; Wulff
& Domeisen, 2019), as well as tropical modes of intrasea-
sonal variability (Rouges et al., 2023).

This study concentrates on what lies in between
and what is still mostly an initial value problem:
medium-range weather forecasts ranging from 5–12 days.
Prior studies of European HWs at such lead times,
based on probabilistic evaluation of reforecast ensem-
bles, pointed out that the exact prediction of the onset
is most challenging (Lavaysse et al., 2019) and that
region-specific differences in predictability may exist
(Pyrina & Domeisen, 2023). In this article, we therefore
aim to extend the existing literature, focusing on the pre-
dictability of the onset of HWs in different European

regions. In contrast to most prior studies, our assessment
not only considers maximum near-surface temperature
forecasts, but especially takes into account the large-scale
dynamics aspect within a multi-metric-based approach.

Indeed, at our lead times of interest, the successful
prediction of weather extremes relies strongly on the ade-
quate representation of large-scale Rossby-wave dynam-
ics (Fragkoulidis & Wirth, 2020; Grazzini & Vitart, 2015;
Wirth et al., 2018). In the northern midlatitude regions
of Europe, lasting HWs are often associated with a sub-
stantial blocking of the large-scale atmospheric flow
due to amplified and/or breaking Rossby waves (Kautz
et al., 2022; Kueh & Lin, 2020; Pfahl & Wernli, 2012;
Schaller et al., 2018). Although state-of-the-art numerical
weather prediction (NWP) models nowadays generally do
considerably well in predicting the large-scale flow evolu-
tion up to lead times of around six days, severe forecast
busts still occur (Rodwell et al., 2013). Especially, failures
in predicting the formation of a blocking weather regime
can often be traced back to a common pathway of upscale
and downstream error propagation (Baumgart et al., 2019).

The initial source of uncertainty is frequently linked to
errors in upstream diabatic processes stemming from the
usually unresolved convective-scale and/or cloud micro-
physics. For spring and autumn cases of forecast busts,
Grams et al. (2018) pointed to an important role of the
release of latent energy in warm conveyor belts for the
amplification of atmospheric flow waviness and the pos-
sible growth and propagation of forecast errors. With the
help of numerical simulations, Steinfeld et al. (2020) pro-
vided further evidence for the significant contribution of
latent heating to the generation of anticyclonic circulation
anomalies over the Euro-Atlantic sector. For a summer
HW case in 2017, Lojko et al. (2022) present evidence for
the high sensitivity of ridge amplification over Europe to
activity of mesoscale convective systems over the contigu-
ous United States.

While these studies point at probable common causes
of poor forecasts of blocked weather regimes, the com-
plexity of downstream error growth makes for a large
case-to-case variability. We therefore do not study such
error growth mechanisms in detail. Instead we opt for a
more statistical approach by considering a large number
of HW cases (around 50 each) in the period 2001–2018
in four different midlatitude regions of Europe, which are
depicted in Figure 1. Before we address the medium-range
predictability of HW onsets, we investigate in detail the
dynamical regimes under which HWs form in different
European regions. To do so, we make use of the concept
of year-round Euro-Atlantic weather regimes. Based on
empirical orthogonal function (EOF) analysis and subse-
quent k-means clustering, this metric reduces the com-
plexity of the atmospheric flow field by projecting it onto
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LEMBURG and FINK 3

F I G U R E 1 Research domain of this study. The small boxes with colour shadings represent the actual regions of interest for which HWs
were evaluated. Moreover, these boxes denote the area over which all temperature-based metrics such as the nRMSE of 850-hPa temperatures
and the relative error in Tmax-EFI are calculated. The corresponding larger boxes depict the areas over which large-scale synoptic metrics
such as the ACC and nRMSE for 500-hPa geopotential are computed for the respective region. Latitude/longitude coordinates of the depicted
boxes are provided in Table S1 in the Supporting Information. [Colour figure can be viewed at wileyonlinelibrary.com]

the seven main modes of synoptic-scale variability in this
domain (Grams et al., 2017). Year-round climatologies of
Euro-Atlantic weather regimes are available and the fore-
cast skill of NWP and extended-range models has also been
assessed extensively in the context of these regimes previ-
ously (Büeler et al., 2021; Osman et al., 2023), including the
summer season.

In the present study, we therefore take a complemen-
tary approach, in which we will not focus on the pre-
dictability of these weather regimes per se. Instead, we are
more interested in the intricate details of the predicted flow
fields that may be of particular importance for adequately
predicting HW onset. Using reforecast ensembles of the
two state-of-the art NWP models European Centre for
Medium-Range Weather Forecasts (ECMWF) Integrated
Forecasting System (IFS) and Global Ensemble Forecast
System Version 12 (GEFSv12), we will study multiple
aspects of forecast quality in detail in relation to HW onsets
over a range of lead times from 3–12 days for the four
above-mentioned European regions. Multiple commonly
used evaluation metrics, such as 500-hPa geopotential
anomaly correlation coefficients and root-mean-square

errors, are employed to answer the question of whether
HWs associated with a certain weather regime are pre-
dicted better than those forming under a different regime.

In a second part of this article, we further explore the
possible causes of exceptionally good or poor predictabil-
ity of HW onsets, this time with a focus on Central Europe
and the British Isles. Our aim is to robustly identify anoma-
lies in the atmospheric state during or shortly after forecast
initialisation that may render a medium-range forecast of
HW onset more or less successful. Of particular interest
are the characteristics of the flow further upstream (e.g.,
baroclinicity or the state of the North Atlantic jet) and
the antecedent Euro-Atlantic weather regimes, as well as
pre-existing soil-moisture anomalies.

For the most part, in this article the term predictabil-
ity refers to the so-called practical predictability or, more
precisely, the respective predictive skill of the two mod-
els used. However, if both models show substantially
enhanced predictive skill for a certain regime or with
respect to a particular initial state, this may also suggest
higher inherent predictability—but not necessarily so. We
will therefore refrain from using such more specific terms
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4 LEMBURG and FINK

and use the word predictability in a rather broad sense
throughout the article.

This article is structured as follows. In Section 2,
we introduce the forecast data used and the concept of
weather regimes, and describe the objective detection of
HWs further, as well as the applied forecast evaluation
metrics. Section 3 features the multi-metric statistical eval-
uation of HW-related forecast quality in four different
European regions, stratified by weather regime during
HW onset. Section 4 demonstrates, for Central European
and British HW onsets, how the predictability of both the
large-scale flow evolution and regional near-surface tem-
perature during HW onsets might be linked to anomalies
in the initial state of the atmosphere or soils. Section 5
contains a summary and discussion of the findings of this
study and puts them into the context of previous, current,
and suggested further research.

2 DATA AND METHODS

2.1 2001–2018 reforecasts

As NWP models are frequently updated, their forecast skill
will change over time and the use of operational forecasts
is therefore not suited for investigating predictability over
longer time periods. Reforecasts (also known as hindcasts)
circumvent this problem by using a fixed NWP model ver-
sion for the generation of a reforecast ensemble covering
the entire time period investigated, which makes it possi-
ble to systemically compare forecasts for the August 2003
HW with those for the July 2018 HW. To study the pre-
dictability of HW onsets, we therefore use two reforecast
ensembles of two state-of-the art weather forecast mod-
els: primarily the ensemble reforecasts from ECMWF and
ensemble reforecasts generated at National Centers for
Environmental Prediction (NCEP) based on the GEFSv12
model.

2.1.1 ECMWF reforecasts

The reforecasts from ECMWF are published as part of
the Subseasonal to Seasonal Research (S2S) project (Vitart
et al., 2017) and have been evaluated (Vitart et al., 2019)
and used to assess predictability of HWs and many
other phenomena before (Ferranti et al., 2018; Vitart &
Robertson, 2018). Whereas the intended use case is obvi-
ously probabilistic weather prediction beyond the deter-
ministic time-scale, there is no reason not to use ECMWF
reforecasts for investigating medium-range predictability.
Reforecasts at the ECMWF are produced on the fly: twice
a week, a reforecast ensemble for the last 20 years is run,

with the current date as the respective initialisation date
for each year. Each individual reforecast simulation fea-
tures 11 ensemble members and is integrated until forecast
day 46. Up to forecast day 15 (we do not consider longer
lead times in this study), the model is run at a spectral res-
olution of T639 (≈ 16 km) with 91 vertical levels. Output
is available at a spatial resolution of 1.5◦ and a temporal
resolution of 24 h for 0000 UTC for instantaneous vari-
ables and 0000–2400 UTC for accumulated or maximum
variables.

For our use case, a downside of this product is the lim-
itation to two initialisations per week. Therefore, for any
kind of HW onset date, one would have available only a
limited range of lead times. Thus, there is no way to gen-
erate a homogeneous dataset for evaluating predictability
in daily lead-time steps. This problem can be circum-
vented by using multiple annual iterations of the reforecast
data. We are aware that obviously this contradicts our ini-
tial argument for using a reforecast ensemble—which is
homogeneity in terms of the model itself. This choice is
nonetheless made legitimate by the fact that only small
changes occurred in the model development cycle over
the years 2015–2021. The only major update is the change
from ERA-Interim to ERA-5 in the initialisation of the
reforecasts. We therefore trade sample size and having a
daily initialisation date for some model homogeneity and
merge the annual iterations from the years 2016, 2017,
2019, 2020, and 2021. From the 2020 and 2021 iterations,
we both include a twice-a-week reforecast and then con-
sequently fill the gap by using missing initialisation dates
from the previous years. Doing so, we finally obtain a com-
mon dataset containing daily initialisation dates for the
common time period of 2001–2015. To extend the sample
of HWs, this period was then extended further to 2018.
In those last three years, there are therefore obviously
some initialisation dates missing, which has, however, no
substantial impact on the validity and interpretability of
results.

2.1.2 GEFSv12 reforecasts

For a more robust evaluation of HW onset predictability,
we consider, in the form of the NCEP GEFSv12, a second
reforecast dataset with high spatial resolution and rea-
sonable medium-range forecast skill (Guan et al., 2022).
In contrast to the reforecasts within the S2S project, the
GEFSv12 reforecasts are targeted at medium-range or early
extended-range forecasts with a maximum lead time of
16 days. Compared with ECMWF, this reforecast dataset
comes with the advantage of daily initialisation dates but
with the downside of only featuring five ensemble mem-
bers. The model has a spatial resolution of 25 km with
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LEMBURG and FINK 5

64 vertical levels and output is provided on a 0.5◦ grid in
six-hourly time steps.

2.2 Weather regimes

As mentioned in the Introduction, the concept of
Euro-Atlantic weather regimes allows a practical and
meaningful stratification of HW onsets by the preva-
lent large-scale synoptic setup. The seven Euro-Atlantic
weather regimes used in this study were first introduced
in Grams et al. (2017), which also features a more detailed
section about the technical realisation. In order to assign
any instantaneous flow field to a certain weather regime,
first climatological mean weather regime patterns are
identified on the basis of ERA5 1979–2021 data. To do
so, six-hourly 500-hPa geopotential height anomalies are
computed with respect to a 91-day moving window clima-
tology. Thereafter, the anomalies are filtered with a 10-day
low-pass filter and normalised seasonally. EOF analysis
restricted to the domain 80◦W–40◦E, 30◦–90◦N and sub-
sequent k-means clustering then finally yield an anomaly
pattern of an optimal number of seven weather regimes,
which together represent 70% of the spatio-temporal
variability in the 500-hPa geopotential field. Now, each
instantaneous geopotential height anomaly field can be
projected onto each of these seven patterns, which yields
a so-called instantaneous weather regime index (IWR), a
non-dimensional quantity that can be thought of as very
similar to a principal component of an EOF analysis (see
Michel & Rivière, 2011 for more details). If one particular
regime’s IWR is larger than those of any other regime and
if the IWR value is furthermore above 1.0 for at least five
consecutive days, the respective day’s large-scale weather
pattern is then assigned to that particular weather regime.
Thereby, the Z500 field of any given day can be allocated
to either one of the seven Euro-Atlantic weather regimes
or none of the seven regimes at all, which is true for about
30% of all days in summer (“no-regime case”). Through-
out this article, we will usually use abbreviations for the
weather regimes, which are listed in Table 1 along with
abbreviations used for the four European regions of inter-
est. A detailed overview of the average synoptic patterns
associated with Euro-Atlantic weather regimes as well as
the year-round climatology of their relative frequencies
can be found in Büeler et al. (2021).

2.3 Heatwave detection

With the help of an objective algorithm, HWs of a dura-
tion of three or more days are detected for all four Euro-
pean regions for the months May–September over the

T A B L E 1 Abbreviations used in this study for the four
European regions of interest and the seven Euro-Atlantic weather
regimes.

European CE Central Europe

region BI British Isles

Sc Scandinavia

WR Western Russia

Euro-Atlantic AtlTr Atlantic Trough

weather regime zonal zonal regime

ScTr Scandinavian Trough

AtlRi Atlantic Ridge

EuBL European blocking

ScBL Scandinavian blocking

GrBL Greenland blocking

NoReg no regime

period 2001–2018. We use hourly ERA-5 data (Hersbach
et al., 2020) at 1◦ spatial resolution and determine the max-
imum 2-m temperature value for each day. After detrend-
ing the data series at each grid point individually, the
local 90th percentile of the climatological reference period
2000–2019 is calculated for each grid point individually.
For all grid points where the 90th percentile is surpassed,
the standardised anomalies are then summed up over the
domain of interest, for example, the Central European
domain depicted with black shading in Figure 1. In the
case in which this regional sum also exceeds the 90th
percentile for at least three consecutive days, that partic-
ular event is considered as a HW in the framework of
this article. In contrast to some earlier studies, the HW
detection algorithm used here may be a bit less strin-
gent, due to the choice of the 90th percentile as one of
the key criteria. For the scope of this study, we are will-
ing to shift more towards a higher sample size, with the
trade-off of including some less intense HWs. Table 2 pro-
vides an overview of the characteristics of the identified
heatwaves, such as the total number for each region (and
per month), as well as statistics with respect to length and
intensity. Intensity is represented by the maximum tem-
perature Extreme Forecast Index, which will be introduced
later in Section 2.6.

2.4 Selection of non-HW weather
episodes

Throughout this article, the predictability of weather
patterns or temperature fields during HW onsets will
occasionally be compared with the predictability of
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6 LEMBURG and FINK

T A B L E 2 Overview of the HWs detected in the four European regions of interest. 25th and 75th denote the respective 25th and 75th
percentiles of the HW length or the analysed Tmax-EFI value, whereas min/max denote the minimum or maximum values (minimum
omitted for HW length, as it is always the selected minimum threshold of 3 days).

Total number of HWs and per month HW length statistics Tmax-EFI statistics

Region total May Jun Jul Aug Sep 25th med 75th max min 25th med 75th max

CE 49 13 10 8 11 7 4 5 6 13 0.38 0.52 0.58 0.66 0.74

BI 47 13 7 11 5 11 4 4 6 17 0.31 0.41 0.51 0.60 0.73

Sc 48 13 6 14 7 8 4 5 7 15 0.25 0.46 0.55 0.60 0.73

WR 40 10 8 10 8 4 4 5 7 35 0.28 0.48 0.53 0.61 0.70

Note: The Tmax-EFI values presented here are spatial means calculated over the respective regions (see shaded areas in Figure 1) based on gridpoint-wise
calculated values based on the ECMWF 11-member ensemble reforecasts for maximum 2-m temperature at a lead time of 24 h (quasi-analysis). Furthermore,
the values were temporally averaged over the first 3 days of the respective HW.

weather outside HWs. To do so, we compile a list of all
May–September dates in the period 2001–2018 and remove
(region-specific) all HW days and the 7 days before onset
and the 7 days after decay. Moreover, we do not want to
evaluate forecasts for a sequence of consecutive days, since
they may feature very similar weather. For this reason,
and to allow better comparison with HW onset events,
which are rather rare events temporally separated by at
least multiple days, we further demand that all “onset days
of non-HW weather episodes” are at least 5 days apart.
Doing so, the ratio of non-HW to HW weather episodes
also reflects the actual ratio of individual HW to non-HW
days to a good approximation.

2.5 Variables of interest

For the evaluation of predictability, we will mostly refer
to typical variables that are commonly used for forecast
verification, such as the 500-hPa geopotential or the tem-
perature at 850 hPa. The exact way in which these variables
will be used to quantify forecast quality will be outlined
in the next and final part of this section. Beyond these
commonly used quantities, we will further use a vari-
ety of basic or more advanced quantities that are use-
ful in the context of HW predictability, such as Eady
growth rate, soil moisture, or upper-level jet speed. All
these additional variables are listed in Table 3, along with
their acronyms used in this article. This table also serves
as an overview of the datasets and forecast evaluation
metrics used.

On many occasions throughout this article, fields of
these variables are not presented in absolute terms but
instead as anomalies with respect to a running-mean
background climatology. For this, we define as clima-
tology a running 21-day average centred around the
day of interest, computed over all 18 years of available
reforecast data.

2.6 Evaluation of predictive skill

For the scope of this article, we decided not to
evaluate HW onset predictability in the form of
temperature-threshold-based binary skill measures,
which are also often used in their probabilistic form (e.g.,
Brier skill score). Instead, we employ multiple rather clas-
sic evaluation metrics used in forecast verification, such
as the 500-hPa geopotential anomaly correlation coeffi-
cient. This way of evaluation allows us to compare the
quality of forecasts at times of HW onset directly with
those of summertime weather episodes outside HWs, an
advantage which we deem to be of interest. Moreover,
the comparison of forecast performance with regard to
different metrics may allow a better understanding of the
underlying reason for a bad forecast.

The first three forecast skill metrics employed are
deterministic ones, meaning they are calculated indi-
vidually for each ensemble member of the reforecast.
For reasons of physical consistency and to exclude gen-
eral model biases, the forecast evaluation is always done
with respect to the (quasi-)analysis of the given refore-
cast model, not against ERA5. For instance, the respec-
tive forecast errors are computed by simply subtracting
from the predicted absolute fields either the model’s anal-
ysed state for the forecast’s valid day (lead time 0 h;
for most fields) or the predicted values from a short
24-h integration (for Tmax). To evaluate the predictive
skill with respect to the large-scale circulation, we use
the following two metrics, which are computed over the
enlarged regional domain denoted by the contours in
Figure 1, respectively (see Table S1 for coordinates of these
boxes):

1. 500-hPa geopotential anomaly correlation coefficient
(Z500-ACC);

2. 500-hPa geopotential root-mean-square error
normalised by the field mean (Z500-nRMSE).
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LEMBURG and FINK 7

T A B L E 3 Overview of the data used in this study and the variables of interest, as well as the evaluation metrics used.

Primary Forecast
dataset

Secondary Forecast
dataset

Primary evaluation
dataset

Auxiliary
reanalysis data

Data ECMWF reforecasts
multiple iterations
(2016,2017
2019,2020,2021; see
Section 2.1.1)

GEFSv12 reforecasts respective forecast
datasets’ analysis
state of the control
run or short
integration 0–24 h

ERA5 (just for HW
detection & weather
regime assignment)

Time
period

MJJAS 2001–2018 MJJAS 2001–2018 MJJAS 2001–2018 MJJAS 2001–2018

Init. dates daily due to
merging procedure
(with some dates
missing 2016–2018)

daily – –

Model reso-
lution

T639 (≈ 16 km) C384 (≈ 25 km) – 31 km

Data resolu-
tion

1.5◦ 0.5◦ – 1◦

Ensemble
size

11 (10 dist. + ctrl) 5 (4 dist. + ctrl) 1 (control run) –

Acronym Variable Vertical level Time/integration time

Variables of
interest

Tmax maximum
temperature

2 m max(0000–2400 UTC)

T850 temperature 850 hPa 0000 UTC

Z500 geopotential 500 hPa 0000 UTC

SMO20 soil moisture top 20 cm 0000 UTC

u250 zonal wind 250 hPa 0000 UTC

IWP integrated water
vapour

int. over trop. 0000 UTC

Eady-GR Eady growth rate 925 h–500 hPa 0000 UTC

Acronym Description (S = spatial domain, E = ensemble space)

Evaluation
metrics

Z500-ACC 500-hPa geopotential anomaly correlation coefficient (S)

Z500-nRMSE root-mean-square error in Z500 (S)

T850-nRMSE root-mean-square error in T850 (S)

Tmax EFI-RE Tmax extreme forecast index relative error (S,E), see Eq. (1)

Note: In the last part of the table, the descriptions of the forecast evaluation metrics used are supplemented by a letter in parentheses. S means that the
evaluation metric is computed over the spatial domain (mostly the case here), whereas an additional E denotes that the metric also integrates over the ensemble
space of each individual forecast. Tmax-EFI is, strictly speaking, a grid-point-based measure, but we compute a spatial mean afterwards.

Errors in the prediction of temperature fields are quan-
tified by the following metric, which is—in contrast to the
Z500-based metrics—computed over the smaller regional
domains depicted by the shaded boxes in Figure 1:

3. 850-hPa temperature root-mean-square error
normalised by the field mean (T850-nRMSE).

The above metrics correspond to the standard typi-
cally used in forecast evaluation. A proper computation
of the anomaly correlation coefficient (ACC) requires
the subtraction of a climatology. For this, we use the
21-day running climatology as mentioned in Section 2.5,
which is also calculated lead-time specific for the refore-
casts. The computations are mostly done with the help
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8 LEMBURG and FINK

F I G U R E 2 Depiction of the evaluation scheme used to assess predictive skill as a function of a given lead time for the metrics
Z500-ACC, Z500-nRMSE, and T850-nRMSE. This evaluation scheme is applied individually to each ensemble member of the reforecast
dataset and for all daily lead time steps between 3 and 12 days. As an example, the evaluation of 10 heatwave onset cases will therefore yield
110 individual Z500-ACC scores per lead time in the case of the ECMWF reforecast ensemble. [Colour figure can be viewed at
wileyonlinelibrary.com]

of the command-line tool Climate Data Operators (CDO:
Schulzweida, 2022), which incorporates proper weighing
of grid cells by their area.

To assess robustly whether the model predicts the tem-
poral evolution of the synoptic-scale flow during HW onset
skilfully—for example, the development of a stationary
ridge over multiple days—the above-mentioned determin-
istic skill scores are not only applied to a single temporal
snapshot during HW onset. Instead we compute an aver-
age score over four days around HW onset as follows. For a
10-day lead time forecast of a HW onset, we not only calcu-
late the spatial metrics Z500-ACC and Z500/T850-nRMSE
for forecast day 10, but also compare forecast day 9 with
the analysis of one day prior to onset. In the same way,
we also compute the metrics for forecast days 11 and 12
(see also Figure 2). The metrics for all four days around
HW onset are then averaged. For the ACC, we perform
a Fisher-z transformation before calculating the average.
We are aware that this evaluation procedure renders the
reference to lead time for any given forecast a bit vague.
Throughout this article, we will still consider any forecast
initialised 10 days before HW onset a 10-day lead-time fore-
cast, although fields up to forecast day 12 are included in
the evaluation.

Finally, we employ a fourth skill metric to assess how
well the extremeness of temperature is represented across
the entire forecast ensemble:

4. relative error in the Extreme Forecast Index for maxi-
mum 2-m temperature (TMAX-EFI-RE).

In general, the exteme forecast index (EFI) is a unit-
less ensemble-integrated measure, which describes how
strongly the predicted cumulative density function of
a variable deviates from a lead-time-dependent model
climatology, the so-called M-climate (Zsótér, 2006). Per
definition, the EFI ranges between −1 and 1 and values
between 0.5 and 0.8 are generally regarded as unusual,
whereas values above 0.8 designate an extreme event.

For this article, Tmax-EFI is calculated very similarly
to the operational product at the ECMWF, with the only
difference being a slightly altered climatological period as
well as the choice of a 21-day running climatology win-
dow. The computation is only done for ECMWF and not
for GEFSv12 because of its very low number of ensem-
ble members. Although somewhat counterintuitive due
to the expected narrow distribution, Tmax-EFI may also
be calculated for a quasi-analysis, that is, for the 0–18 h
maximum-temperature forecasts of the ensemble. Aver-
aged spatially over the respective domain of interest, this
analysed EFI will not only be used to compute forecast
errors. In addition, it will also be used as a practical tool to
assess and compare the intensities of HWs. On average, the
HWs considered in this article feature a domain-averaged
value of around 0.55 (see Table 2).

For our forecast evaluation, we will use the Tmax-EFI
metric in a less stringent way than the more common
metrics discussed above. The intention here is to evaluate
whether the model was at least somewhat successful in
suggesting unusually high temperatures, even though the
duration of the hot spell and/or the timing may have been
off by one or two days. For the first three days of the HW,
we therefore compute the spatial mean Tmax-EFI for each
day individually and then pick the maximum predicted
value. From this we then subtract the analysed Tmax-EFI
averaged over the first three days of the HW. Finally, the
Tmax-EFI error is then also normalised by dividing it by
the observed three-day mean value:

Tmax − EFIpredmax − RE

=
3dmax(EFIpred) − 3davg(EFIana)

3davg(EFIana)
. (1)

For better readability, we will on most occasions refer
to this metric simply as the relative error in Tmax-EFI.
Similar formulations of this EFI-based metric were tested,
which do not include the normalisation by the analysed
value or which also use a three-day average instead of the

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4801 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


LEMBURG and FINK 9

maximum for the predicted EFI values. It was found that
our main results are insensitive to this subjective choice of
an evaluation metric.

3 RESULTS: PREDICTABILITY
OF HWs 2001–2018 IN RELATION TO
WEATHER REGIMES

3.1 Overview: regimes during HW
onset

Before we review the medium-range predictability of
HW onsets by means of multiple evaluation metrics, we
first provide an overview over the Euro-Atlantic weather
regimes that are typically associated with HW onsets.
The weather regime data are based on ERA5 reanaly-
sis and a heatwave onset only gets assigned to a cer-
tain regime when, on two of the three first HW days,
the same weather regime was registered (i.e., the respec-
tive weather regime index surpasses the criteria specified
in Section 2.2). Figure 3 compares, for each European
region considered, the relative fraction of each weather
regime during the HW onset (upper pie chart) against the
mix of weather regimes found in all other summertime
weather episodes outside HWs (bottom pie charts). Addi-
tional information about the number of HW onsets per
weather regime and basic statistics concerning length and
intensity are provided in Table 4.

Not surprisingly, HW onset is mainly associated with
the development of classic continental blocking regimes,
namely Scandinavian (ScBL) and European blocking
(EuBL). This is especially true for the British Isles and
Scandinavia regions, where these blocking regimes occur
during HW onset in 66% and 75% of all cases, respectively.
Interestingly, Central European HWs do often, in about
30% of cases, occur in a dynamical setup that cannot be
robustly attributed to one of the given weather regimes
(NoReg). Western Russian being located at the eastern
boundary of the European domain renders the assign-
ment of Euro-Atlantic weather regimes less meaningful
compared with other regions. The NoReg case dominates
during HW onset, but the relative fractions are generally
close to summer climatology.

For a better understanding, Figure 4 provides—
exemplarily only for Central European HWs—composite
means of anomalous analysed 500-hPa geopotential fields
during HW onset, stratified by the associated weather
regime. Here stippling denotes a significant difference
from the sample of all 49 Central European HWs. As
evident from the figure, the “no regime” composite still
features substantial positive anomalies, that is, a ridg-
ing over Central Europe. This is not unexpected, as

the Euro-Atlantic weather regime classification adopted
represents rather stable large-scale flow anomalies with
a characteristic time-scale that exceeds those of most
synoptic-scale phenomena (e.g., a passing cyclone). A
short-lived ridge enabling a heatwave over Central Europe
may therefore not surpass the threshold needed to be
assigned to one of the canonical blocking regimes. HW
onsets related to ScBL are distinguished from those asso-
ciated with EuBL not only in the more northward extent
of the block but by the existence of a pronounced trough
upstream over the Atlantic.

For the three other European regions, the 500-hPa
geopotential composite-mean anomaly fields during
HW onset are presented in the Supporting Information
(Figures S1–S3). For further comparison, Figure S4 also
provides composites of the three weather regimes of
interest for non-HW cases.

How well are European HW onsets predicted and is
there increased or reduced predictability compared with
regular summer weather? Are there differences among
the different regions, and finally, are forecasts better or
worse depending on which weather regime the HW onset
is associated with? In the upcoming sections, we tackle
these questions, focusing on the reforecasts from ECMWF,
also in terms of the figures presented. Differences between
ECMWF and the secondary reforecast dataset GEFSv12
will be discussed briefly and additional material will be
provided in the Supporting Information. For a first quick
overview with regard to the aforementioned questions
about HW predictability, we again point to Figure 3. The
numbers written into the pie chart denote the average lead
time until the Z500-ACC first drops consistently below
the value of 0.6 (a value usually chosen to characterise
useful forecasts; e.g., Simmons, 1986). For the rest of
this article, we refer to it as a large-scale forecast skill
horizon.

3.2 Predictability of central European
HW onsets

In ECMWF reforecasts, Central European HW onsets asso-
ciated with either Scandinavian or European blocking
exhibit an additional day of adequate large-scale fore-
cast skill compared with those HWs evolving in condi-
tions without a distinct weather regime. Moreover, HW
onsets under such classic blocking regimes also show bet-
ter scores compared with non-HW weather episodes asso-
ciated with the same blocking regimes, which is not the
case in times of “no regime”.

A more detailed presentation of ECMWF reforecast
skill scores including Z500-ACC and other metrics as a
function of lead time is presented in Figure 5. Here, it
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10 LEMBURG and FINK

F I G U R E 3 Comparison of regime fraction and average large-scale forecast skill horizon between HW and non-HW days. The pie
charts depict, for each region of interest, the relative fraction of each of the seven Euro-Atlantic regimes during HW onset (upper pie charts)
and for all non-HW periods in the investigated time period of 2001–2018. The numbers denote the average forecast skill horizon in terms of
the adequate representation of the large-scale synoptic weather patterns (average lead time until 500-hPa geopotential ACC drops below 0.6).
The ACC scores were calculated individually for each member of the ECMWF reforecast ensemble using the method described in Section 2.6.
To highlight the more frequent weather regimes during HW onset, the forecast skill horizon is written directly onto the pie charts when the
relative fraction exceeds 12.5% (also for non-HW days for better comparability). A star behind the number denotes that the 2.5%–97.5%
confidence range w.r.t. the forecast skill horizon spans more than half a day. If fewer than four HWs of a given regime exist, the forecast skill
horizon is not provided, due to too low sample size. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 4 Number and characteristics of HW onsets
associated with one of the three dominant weather regimes for the
four European regions considered.

Region Regime Number Length Tmax-EFI

CE ScBL 15 5 0.57

EuBL 12 4.5 0.55

NoReg 14 5 0.57

BI ScBL 15 4 0.58

EuBL 16 6.5 0.47

NoReg 12 4 0.57

Sc ScBL 21 6 0.54

EuBL 15 4 0.55

NoReg 9 5 0.6

WR ScTr 6 6.5 0.44

GrBL 5 5 0.54

NoReg 13 5 0.53

Note: For each region and dominant regime, the median length as well as the
median analysed Tmax-EFI are presented.

becomes evident that Z500-ACC drops significantly below
non-HW levels already after day 6 for NoReg HW cases
(Figure 5c), whereas, in association with classic block-
ing regimes, predictability of the synoptic-scale patterns
remains higher for most lead times (Figure 5a,b). Up
until forecast day 7, this skill advantage reaches statistical
significance at the 5% level when compared with non-HW
cases of the same regime (line segments printed thicker).
Moreover, around 7 days lead time, HW onsets associated
with ScBL or EuBL are also significantly better predicted
than HW onsets of all regimes (hexagons filled with a
“+” symbol). One has to be careful, though, when inter-
preting Z500-ACC, as this score may benefit from large,
spatially coherent anomalies relative to the climatology
(Andersson et al., 2015). This means that, in times of a
European blocking, Z500-ACC may be an exceptionally
forgiving metric, whereas the no-regime case will nat-
urally produce worse scores due to a higher likelihood
of phase errors. Despite the call for caution, the over-
all assessment of predictive skill does not change sub-
stantially when additional metrics are considered. The
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LEMBURG and FINK 11

F I G U R E 4 Overview of the 500-hPa geopotential, soil moisture, and Tmax anomalies associated with Central European HW onsets,
stratified by three dominant weather regimes during HW onsets. The shadings depict the composite-mean 500-hPa geopotential anomaly
(left panel)/top 20-cm soil-moisture anomaly (right panel), always with respect to the respective HW day’s running three-week summer
climatology, for (a,b) Scandinavian blocking type, (c,d) European blocking type, and (e,f) “no regime” type HWs. Hatching highlights regions
in which the respective anomaly differs significantly from the sample of all 49 Central European HWs. In the left panels, the absolute
composite-mean geopotential fields are shown in contours, whereas, in the right panels, coloured contour lines denote anomalies of
maximum 2-m temperature with respect to the running summer climatology with a contour-line interval of 1.5 K. The labels in the centre
denote the number of HW onsets registered in association with the respective weather regime, as well as the spatially averaged maximum
temperature deviation in the Central Europe domain (only land points considered). [Colour figure can be viewed at wileyonlinelibrary.com]

normalised root-mean-square error (nRMSE) for 500-hPa
geopotential draws a very similar picture (Figure 5d–f).
This metric, which now also accounts for amplitude errors
and domain-averaged biases, supports the hypothesis that
Central European HW onsets associated with one of the
two blocking regimes are predicted better in terms of the
large-scale flow field. This is particularly true for lead
times of 6 days or longer, for which the differences also
reach statistical significance at the 5% level. We want to
note that the elevated skill metrics do not necessarily imply
that the onset of the heatwave-enabling blocking itself
is also predicted well. In some cases, blocking may have

been established already during the time of forecast ini-
tialisation (we will later see this indeed being important,
particularly for well-predicted British heatwaves). Given
such a scenario, forecast skill in terms of Z500 is expected
to be increased due to models generally being more skil-
ful in capturing the persistence rather than the onset of a
blocking (Ferranti et al., 2015; Matsueda & Palmer, 2018;
Pelly & Hoskins, 2003).

850-hPa temperature fields are generally harder to pre-
dict in times of HW onsets. Particularly for longer lead
times, the large deviation from the normal temperature
range usually leads to considerable biases, resulting in
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12 LEMBURG and FINK

Scandinavian blocking European blocking ”No regime”(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

F I G U R E 5 Comparison of ECMWF reforecast’s predictive skill for Central European HW onsets versus non-HW weather episodes,
stratified by ERA5-based analysed weather regimes during HW onset. Each plot depicts a skill metric (from top to bottom: Z500-ACC,
Z500-nRMSE, T850-nRMSE, Tmax-EFI-RE) as a function of lead time. The median of the HW onset subsample is depicted with solid lines,
whereas the median for non-HW episodes is shown with dashed lines (omitted for Tmax-EFI). From left to right, the columns depict skill
metrics for ScBL-type HW/non-HW onsets (dark green), EuBL-type HW/non-HW onsets (light green), and NoReg-type HW/non-HW onsets
(grey). For better comparison, each column also features in black the skill metric for the HW/non-HW sample containing all weather
regimes. Line segments are printed thicker for lead times at which HW onsets of a specific regime show either significantly lower or higher
predictive skill compared with the non-HW sample for the same regime. To denote significantly higher (lower) predictive skill for HW onsets
of a given regime compared with all HW onsets, hexagons filled with a “+” (“−”) symbol are used. Significance is tested at the 5% level via
bootstrapping (30,000 iterations). The printed numbers are the respective sample sizes (number of individual ensemble member forecasts).
[Colour figure can be viewed at wileyonlinelibrary.com]
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LEMBURG and FINK 13

nRMSE scores that are expected to be worse. Nonethe-
less, EuBL and ScBL-type HWs exhibit predictability com-
parable with regular summer weather episodes up until
forecast 7 and only slightly worse performance thereafter
(Figure 5g,h). In contrast, NoReg-type HWs suffer from
considerably worse scores from forecast day 8 onwards
(Figure 5i). Since the domain-wide 850-hPa tempera-
ture biases are largely similar across HWs of all regimes
(Figure S5), the poorer nRMSE score is therefore mostly
related to phase errors.

Finally, we evaluate how the well the ensemble fore-
casts predict the extremeness of near-surface tempera-
tures by means of the Tmax-EFI-RE score (Figure 5j–l).
In contrast to a root-mean-square error, this metric does
not punish phase errors as long as the anomalous heat
occurs somewhere in the domain, and further allows
for some temporal mismatch in the exact occurrence of
extreme temperatures. Interestingly, the previously men-
tioned differences in forecast quality between regimes are
not reflected at all in this metric. For instance, the under-
estimation of temperature extremeness is slightly more
pronounced for the EuBL-type HW onsets at forecast day 7,
although the nRMSE for 850-hPa temperatures is the low-
est of all regimes at that lead time. Similarly, at forecast
day 9, both ScBL and EuBL-type HWs exhibit the worst
Tmax-EFI scores; the differences from NoReg are not stat-
ically significant, however. We suppose that the disagree-
ment with results from metrics discussed earlier may be
an indicator of the intricacies of near-surface temperature
prediction in situations with little synoptic forcing. Under
a blocking high, the correct prediction of Tmax might be
influenced more and more by more local boundary-layer
processes (Gómez et al., 2019; Imran et al., 2018; Lemburg
& Fink, 2022).

Are the presented findings about HW onset predictabil-
ity in Central Europe robust or rather model-dependent?
Using the same metrics, we find no major disagreement
between the two models. In GEFSv12, Z500-ACC is again
the metric for which HW onset predictions exhibit elevated
skill up to lead times of 9 days compared with non-HW
weather episodes of the same regime (Figure S9). When
comparing HW onsets of different weather regime types,
the most robust finding is again the overall lower Z500
predictive skill for “no regime” cases. However, compared
with the ECMWF reforecasts, the Z500 skill advantage
for EuBL and ScBL does not come out as clearly in the
GEFSv12 reforecasts, likely also due to the lower sam-
ple size. Moreover, in contrast to ECMWF, there are no
longer substantial differences in predictive skill between
HW onsets and non-HW weather episodes given the pres-
ence of the same regime. For instance, no-regime HW
onsets have shown a substantially lower Z500-ACC score
beyond 7 days lead time in ECMWF reforecasts, whereas

the same metric in GEFSv12 generally attests low skill to
“no regime” cases regardless of whether the target day
considered belongs to a HW onset or not. With regard
to the quality of temperature forecasts, the T850-nRMSE
scores show significantly better predictability for EuBL
and ScBL-type HWs up to forecast day 7. In contrast to
ECMWF, NoReg HW onsets already show significantly
lower T850 predictability on forecast day 6. For longer
lead times beyond 8 days, however, the quality of T850
forecasts is no longer correlated with the weather regime
during HW onset. As Tmax-EFI scores were not calcu-
lated for GEFSv12 because of the low ensemble size, the
median maximum temperature bias is used instead. For
this metric, the overall picture is close to ECMWF, with
EuBL HWs featuring a comparably high Tmax bias for
most lead times despite the rather good large-scale pre-
dictability.

3.3 Predictability of British Isles HW
onsets

Overall, HW onsets over the British Isles show somewhat
comparable predictability characteristics compared with
Central European HWs in ECMWF reforecasts. In terms
of the adequate prediction of large-scale Rossby-wave
patterns, the differences are even more pronounced.
ScBL-type HWs show a particularly long large-scale pre-
dictability horizon of nearly 8 days on average, which is
followed by HWs forming under the EuBL regime (7.2
days). NoReg-type HW onsets clearly come in last, with
an average Z500-ACC forecast skill horizon of about 6
days. For a more detailed view, we discuss again the
multiple-metric view of predictive skill as a function of
lead time. HW onsets of the ScBL type consistently exhibit
elevated Z500-ACC scores up until forecast day 9, with pre-
dictive skill often being significantly higher compared with
both non-HW weather episodes under the same regime
and HW onsets of all regimes. EuBL-type HWs display
normal predictive skill in Z500-ACC for lead times of up
to 8 days, but then catch up and overtake ScBl-type HWs
at forecast day 9 (Figure 6a,b). Very similar to Central
Europe, HW onsets associated with the “no regime” case
show significantly worse Z500-ACC for nearly all lead
times (Figure 6c). Interestingly, the comparably good pre-
dictive skill in terms of Z500-ACC is barely reflected by
the Z500-nRMSE metric. At short lead times of 4 and
5 days, the EuBL-type HWs exhibit significantly better
scores (Figure 6e). However, from forecast day 7 onwards,
Z500-nRMSE suggests equal or worse predictability com-
pared with non-HW episodes, irrespective of the regime.
Only at forecast 6 do the ScBL- and EuBL-type HWs
clearly outperform NoReg HWs, which already see a sharp
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14 LEMBURG and FINK

Scandinavian blocking European blocking ”No regime”(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

F I G U R E 6 Same as Figure 5, but for the British Isles region. [Colour figure can be viewed at wileyonlinelibrary.com]

decline in Z500-nRMSE at this rather short lead time
(Figure 6d–f).

The predictive skill for the 850-hPa temperature
fields reflects quite well the regime-specific differences
in large-scale predictability as evaluated by Z500-ACC.
Up until forecast day 5, T850-nRMSE scores do not dif-
fer much between HW onsets and non-HW episodes,
with EuBL-type HW onsets featuring slightly but statisti-
cally significantly better T850-nRMSE scores (Figure 6g-i).

At lead times of about one week, the nRMSE gener-
ally becomes larger during HW onsets compared with
non-HW weather episodes, which is, as in the Central
European case, likely explained by a growing cold bias
(see Figure S6). A notable exception is ScBL-type HW
onsets, which—from forecast day 6 onwards—feature con-
sistently better predictive skill in T850 compared with
HW onsets under different regimes. This finding is partly
attributable to an overall lower bias in T850 and may
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LEMBURG and FINK 15

also agree well with the advantage in predictive skill in
Z500-ACC. Significantly poorer forecast quality in T850
is again found for NoReg HW onsets, very similar to the
Central European case.

As was the case for Central European HWs, the
Tmax-EFI-based metric does not reveal any significant
differences between HWs of the three regime types
(Figure 6j–l). This suggests again that, for the prediction
of extreme near-surface temperatures, an adequate repre-
sentation of the large-scale circulation might be necessary,
but not sufficient.

In our secondary forecast dataset, the GEFSv12 refore-
casts, predictability of HW onsets over the British Isles
displays overall similar characteristics (Figure S10). For
ScBL-associated HW onsets, the ACC score is both bet-
ter than in the non-HW case and better than for HW
onsets under other regimes up until forecast 9, albeit
not always significantly. NoReg-related HW onsets also
show significantly worse large-scale predictive skill for
most lead times. In terms of the predictability of 850-hPa
temperature fields, GEFSv12 mostly agrees well with
ECMWF, with EuBL-type HWs exhibiting significantly
better T850-nRMSE scores up to forecast day 5 and a
slight advantage for ScBL-type HWs for longer lead times.
Minor differences between both models considered are
found with regard to the underestimation of near-surface
maximum temperatures. Whereas ECMWF does not show
consistent differences in the median Tmax bias between
regimes (Figure S6), GEFSv12 features a significantly
lower bias up to forecast 8 for ScBL-type HWs.

3.4 Predictability of Scandinavian HW
onsets

Moving on to Scandinavian HW onsets and their pre-
dictability in the ECMWF, we find an unexpected devia-
tion from the aforementioned pattern. A clearly extended
large-scale forecast skill horizon is no longer found for
the classic blocking regimes. Instead, the NoReg-type HW
onsets consistently display Z500-ACCs of more than 0.6 up
to lead times of 7 days on average, which is either on par
with or even better than for EuBL- and ScBL-type HWs.
In the more detailed breakdown provided in Figure 7,
NoReg actually exhibits the best Z500-ACC scores for
many of the lead times considered, particularly beyond
forecast day 8. EuBL-type HW onsets feature the worst
Z500-ACC scores over the entire lead-time range, whereas
ScBL-type HWs display significantly elevated predictive
skill at least up to forecast day 7 (Figure 7a–c). How-
ever, when we consider the nRMSE of Z500 instead of the
ACC, NoReg HWs no longer feature a comparably good
score. Instead, Z500-nRMSE shows significantly poorer

forecast performance for nearly all lead times in compar-
ison with HWs associated with classic blocking regimes
(Figure 7d–f). This hints at large-amplitude errors or sys-
tematic biases, but may also be a somewhat coincidental
occurrence due to the rather low number of NoReg HW
cases. Nevertheless, it complicates the interpretability of
Scandinavian HW predictability.

Moreover, the Z500-ACC scores are not reflected in the
temperature-field-based metrics (Figure 7g–i). The most
prominent contrast is found for the NoReg case at a lead
time of around one week: while the Z500-ACC scores
suggest comparably good large-scale predictability, the
T850-nRMSE indicates significantly poorer forecast qual-
ity compared with other regimes, which is attributable to
a comparably much larger bias in T850 (Figure S7). Sim-
ilar to HW onsets over Central Europe and the British
Isles, it is again the ScBL regime that robustly exhibits
the highest predictive skill in T850. The consideration of
the Tmax-EFI score gives more merit to the hypothesis
that NoReg HWs are not better predicted despite show-
ing significantly higher Z500-ACC scores. At lead times
of 6–8 days, the Tmax-EFI underestimation is highest for
NoReg HWs (Figure 7j–l). The differences among regimes
are again not statistically significant, however.

In the GEFSv12 reforecasts, the predictability of Scan-
dinavian HW onsets is found to be rather similar. As
in the ECMWF reforecasts, the Z500-ACC scores exhibit
the strongest boost compared with non-HW cases for the
NoReg onset type (Figure S11). This increased large-scale
forecast quality is again not found to be present in the
temperature-based metrics, however. Already on forecast
day 5 and 6 the NoReg HW onsets show significantly worse
T850-nRMSE and Tmax bias scores compared with both
non-HW episodes and other HW onsets under a different
weather regime. Very similarly to ECMWF, GEFSv12 also
attests that ScBL-type HW onsets have the best predictive
skill in T850.

3.5 Predictability of Western Russia
HW onsets

In the Western Russia region, ECMWF reforecasts pre-
dict 500-hPa geopotential fields better for HW onsets than
for non-HW weather periods up until a lead time of
about 9 days (Figure 8a,b). Unsurprisingly, this is again
not entirely reflected in the 850-hPa temperature fields.
However, up until forecast day 6, T850-nRMSE exhibits
significantly better values (Figure 8c), a feature that sets
apart Western Russia HWs from British HWs, for instance.
A likely explanation is the distance from the ocean, such
that minor errors in the predicted direction of flow will cer-
tainly have less impact on the temperature forecast than

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4801 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 LEMBURG and FINK

Scandinavian blocking European blocking ”No regime”(a)) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

F I G U R E 7 Same as Figure 5, but for Scandinavia. [Colour figure can be viewed at wileyonlinelibrary.com]

over the British Isles. As previously mentioned, a separa-
tion of forecast skill by weather regimes during HW onset
is less useful for Western Russia than for the other Euro-
pean regions. Therefore, we only compare the “no regime”
case against all HW cases, since it offers a sufficient sam-
ple size. Very similar to the Central European and British
HWs, we find reduced skill in multiple metrics when the
actual HW onset is associated with “no regime”. The clear-
est decrease in skill is present in Z500-ACC for nearly all

lead times, whereas the nRMSE of Z500 shows a somewhat
less pronounced, but mostly also significant, distinction
compared with all HWs.

Up until forecast day 8, the predictive skill for
850-hPa temperature fields is the same for NoReg HWs
compared with all HWs, although a substantial decrease
in Z500-ACC skill is already present at those lead times.
A significant reduction in T850-nRMSE is only present for
lead times of 9 and 10 days, which is likely associated with
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”No regime”
(a)

(b)

(c)

(d)

F I G U R E 8 Same as Figure 5, but for the Western Russia
region, and only for “no regime” cases.

a sudden increase in the negative T850 bias (Figure S8).
However, the Tmax-EFI score shows no considerable
differences between the NoReg case and all HW cases
(Figure 8d).

GEFSv12 reforecasts draw a similar picture in terms
of both the predictability of large-scale weather patterns
and regional temperature fields (Figure S12). Compared
with ECMWF, the decrease in predictive skill during “no
regime” cases is less pronounced and mostly not statis-
tically significant, but there are no major disagreements.

Regarding 850-hPa and near-surface temperature fore-
casts, both models mostly agree well up to forecast day
8, with only small disagreement for longer lead times.
GEFSv12 suggests no significant disadvantage for NoReg
cases, whereas ECMWF displayed significantly worse
T850-nRMSE scores for lead times of 9 days.

4 RESULTS: THE ROLE OF THE
INITIAL STATE

We will now investigate whether and to what extent the
medium-range predictability of HW onsets may depend
on the initial state during and shortly after forecast ini-
tialisation. Here, “initial state” is a broad term used for
preceding weather regimes, upstream (thermo)dynamical
precursors, or large-scale anomalies in soil moisture. In
other words, we aim to understand possible causes for both
forecast busts and windows of opportunity for enhanced
HW onset predictability. The investigation is focused on
HWs over Central Europe and the British Isles and lead
times between 9 and 11 days. In contrast to the article’s
first part, we will no longer a priori stratify HW onsets
by the associated Euro-Atlantic weather regime. Instead,
we rather intuitively divide the sample of HW onset cases
into those with the overall (ensemble-integrated) best pre-
dictive skill and those with the worst metrics. It is in our
view crucial to consider more than one target metric. Heat-
wave onset cases may be well predicted in terms of the
evolution of the synoptic-scale flow into some blocking,
but the extremeness of temperatures may be underesti-
mated considerably—or the other way around. We there-
fore consider two selection metrics: ensemble-median
Z500-ACC and the relative error in Tmax-EFI, aggre-
gated for each HW respectively over forecasts with 9,
10, and 11 days lead time (or 6, 7, and 8 days for the
6–8 day lead-time case). For both of these metrics, we then
select the respective HWs with forecast performance above
the upper quartile (best-predicted; 12 cases for Central
Europe, 11 for British Isles) or below the lower quartile
(worst-predicted).

4.1 What affects the predictability
of Central European HW onsets?

Table 5 provides an overview of the best- and
worst-predicted Central European HW onsets in ECMWF
reforecasts at 9–11 days lead time, with respect to both
the aforementioned selection metrics. Overall, well and
poorly predicted HWs share similar characteristics in
terms of median length and median intensity. Notably,
the intersection of both selection metric groups turns out
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18 LEMBURG and FINK

T A B L E 5 Overview of the 12 best- and worst-predicted Central European HWs in ECMWF reforecasts at 9–11 days lead time
according to the two different selection metrics Z500-ACC and relative error in Tmax-EFI. The length and the analysed Tmax-EFI (averaged
over first three HW days) as a measure of extremeness are provided as basic information for each HW presented. Ensemble-median
Z500-ACC and the maximum predicted Tmax-EFI are presented as an indicator of how well the individual HW onsets were predicted by
ECMWF. Finally, the analysed regime during the first three days is given. The font colours denote intersections within the groups, with green
colours indicating that a HW is found among the best predicted in both the Z500-ACC and the Tmax-EFI group. Red denotes intersection in
these two selection metric groups for the worst-predicted HWs. Purple denotes cross-group intersection, where the best-predicted HW with
respect to one selection metric is found in the group of worst-predicted HWs with respect to the other selection metric, or vice versa. HW
onsets of the respective group which are also found in the same group for lead times of 6–8 days are marked with an asterisk.

12 best-predicted HWs w.r.t Z500-ACC 12 best-predicted HWs w.r.t Tmax-EFI

Onset Len EFIana ACC EFIpredmax Regime Onset Len EFIana ACC EFIpredmax Regime

* 2018-07-24 5 0.61 0.69 0.35 EuBL * 2015-08-28 5 0.41 0.29 0.59 NoReg

* 2004-08-05 6 0.43 0.68 0.10 ScBL 2006-07-17 12 0.56 0.64 0.53 EuBL

2006-07-04 3 0.59 0.65 0.31 EuBL 2018-07-30 6 0.66 0.61 0.61 ScBL

2006-07-17 12 0.56 0.64 0.53 EuBL * 2016-09-10 6 0.73 0.63 0.65 ScBL

2016-09-10 6 0.73 0.63 0.65 ScBL * 2013-08-02 7 0.51 0.33 0.42 ScBL

2018-07-30 6 0.66 0.61 0.61 ScBL 2003-06-10 5 0.58 0.56 0.46 AtlTr

* 2007-06-07 5 0.57 0.61 0.38 ScBL * 2010-07-08 5 0.68 0.23 0.53 NoReg

* 2003-05-04 5 0.58 0.60 0.27 Zonal 2005-09-05 6 0.56 0.44 0.44 NoReg

* 2015-08-06 9 0.61 0.58 0.34 ScBL 2002-07-29 3 0.46 0.57 0.35 EuBL

* 2008-05-08 7 0.48 0.57 0.35 NoReg 2003-09-17 6 0.63 0.07 0.48 NoReg

* 2002-07-29 3 0.46 0.57 0.31 EuBL 2003-08-02 13 0.53 0.29 0.40 EuBL

* 2003-06-10 5 0.58 0.56 0.46 AtlTr 2015-07-01 5 0.71 0.44 0.53 ScBL

median 5 0.58 0.61 0.35 median 6 0.57 0.44 0.505

12 worst-predicted HWs w.r.t Z500-ACC 12 worst-predicted HWs w.r.t Tmax-EFI

Onset Len EFIana ACC EFIpredmax Regime Onset Len EFIana ACC EFIpredmax Regime

2018-05-26 7 0.64 −0.18 0.10 EuBL * 2013-06-17 4 0.64 −0.05 −0.11 Zonal

2016-05-07 5 0.55 −0.16 0.08 ScBL * 2005-05-26 5 0.73 0.19 −0.08 NoReg

* 2011-08-21 6 0.50 −0.13 0.18 ScBL 2017-05-27 4 0.68 0.23 −0.05 NoReg

* 2003-05-30 7 0.47 −0.06 0.04 NoReg * 2002-08-16 5 0.38 0.46 −0.02 ScBL

2013-06-17 4 0.64 −0.05 −0.11 Zonal * 2014-06-07 5 0.72 0.41 0.06 ScBL

* 2018-08-06 4 0.70 0.00 0.32 NoReg 2003-05-30 7 0.47 −0.06 0.04 NoReg

* 2003-09-17 6 0.63 0.07 0.48 NoReg * 2012-05-21 3 0.54 0.20 0.07 EuBL

2004-06-08 3 0.47 0.09 0.15 NoReg 2016-05-07 5 0.55 −0.16 0.08 ScBL

* 2016-08-24 5 0.68 0.11 0.14 ScBL * 2016-06-23 3 0.52 0.25 0.07 EuBL

* 2005-06-20 5 0.53 0.12 0.22 NoReg 2018-05-26 7 0.64 −0.18 0.10 EuBL

2006-06-11 4 0.50 0.13 0.13 EuBL * 2016-08-24 5 0.68 0.11 0.14 ScBL

2018-09-17 5 0.72 0.16 0.26 Zonal 2004-08-05 6 0.43 0.68 0.10 ScBL

median 5 0.59 0.035 0.145 median 5 0.595 0.195 0.065

to be rather small, with less than 50% of the best pre-
dicted HWs in terms of Z500-ACC also being present in
the group of those with the smallest Tmax-EFI error. A
similar intersection fraction is also found in the group
of the worst-predicted HWs. Most remarkable is the

existence of cross-group intersections: for instance, one
of the cases, a minor HW in early August 2004, was pre-
dicted well in terms of Z500-ACC (ensemble median
0.68), but the ensemble forecast failed to suggest anoma-
lously high near-surface temperatures. Nearly 50% of the
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LEMBURG and FINK 19

worst-predicted HWs according to Z500-ACC are assigned
to “no regime”, whereas 75% of the best-predicted ones are
categorised as either Scandinavian or European blocking.
A similar distinction is not found for the Tmax-EFI-based
selection metric. All in all, these findings regarding the
outer predictability quartiles of HWs are consistent with
the regime-dependent statistical evaluation in the first
part of this article.

4.1.1 The dominant role of the upstream
dynamical setup

First we explore what may possibly impact the
medium-range predictability of the large-scale flow pat-
terns enabling HW onset over Central Europe. To do
so, we use the ECMWF ensemble-median Z500-ACC
at lead times of 9–11 days as our evaluation metric, in
order to identify the HWs with either the best or the
poorest large-scale predictability in the medium-range.
The role of the initial atmospheric state shortly after
forecast initialisation is visualised in Figure 9. In
this figure we compare, for a number of atmospheric
key quantities, the respective analysed anomalies of
the atmospheric state one week before HW onset, so
about 3 days into the forecast. Anomalies are pre-
sented in the form of composite-averaged deviations
from the running 21-day climatology. Doing so, we
exclude seasonal effects and instead highlight anomalies
of the atmospheric state on synoptic to subseasonal
time-scales.

Looking at the anomalous 500-hPa geopotential one
week prior to HW onset, only a few significant devia-
tions from summer climatology are detected for both the
best-predicted and the most poorly predicted HW onsets
(Figure 9a,b). However, considering more dynamic quanti-
ties, there is robust statistical evidence that the large-scale
predictability of Central European HW onsets may be
affected by certain characteristics of the atmospheric flow
further upstream over the Western Atlantic. More pre-
cisely, we find that forecast busts in terms of the Z500-ACC
score are on average associated with significant anomalies
in both baroclinicity and, consistent with that, the inten-
sity of the jet stream over the West Atlantic. The former,
the increased baroclinicity, is represented by the anoma-
lous Eady growth rate (Figure 9e,f). An extended zone of
significantly increased Eady growth rates is found span-
ning from Newfoundland to the central Atlantic. We do not
detect an accompanying significant signal in sea-surface
temperatures off the coast of Eastern North America. This
suggests that the increased baroclinicity is not related to
an existing anomaly in the sea-surface temperature gra-
dient in the region. Instead, we find that the increased

meridional temperature gradient is caused by anoma-
lously cold air masses over the Sea of Labrador (blue
contours in Figure 9d). Since we exclude seasonal effects,
we assume that the reason for this is southward advec-
tion of polar air masses in association with a synoptic-scale
disturbance. In line with this, the composite mean of
the worst-predicted HWs also exhibits anomalously low
geopotential near the southern tip of Greenland (blue con-
tours in Figure 9b).

Along with the differences in baroclinic instability,
we may also expect differences in the state of the North
Atlantic jet stream (NA jet). Indeed, for the group of the 12
worst-predicted HWs we find a robust sharpening of the jet
stream. Zonal wind speed at 250 hPa is found to be signifi-
cantly intensified around its climatological mean position,
alongside a substantial weakening towards the north and
to the south (Figure 9d).

In contrast to the forecast bust cases, well-predicted
Central European HWs are not characterised by any sig-
nificant atmospheric anomalies a week before HW onset
(Figure 9a,c,e). There is therefore little evidence for a win-
dow of opportunity for enhanced predictability in terms
of Z500-ACC. For both, well and poorly predicted Central
European HWs, we further find no statistically robust indi-
cation that the large-scale predictability of HWs is asso-
ciated with the preceding Euro-Atlantic weather regimes
some 7–10 days before HW onset.

It has further been shown that moist diabatic processes
may substantially impact the jet stream structure and
thereby also downstream error growth (Grams et al., 2018;
Lojko et al., 2022). In our understanding, a rather simple
composite-mean approach like the one presented here is
not sufficient to unravel the intricate details of the interac-
tion of convection and large-scale dynamics. This is further
exacerbated by the very low sample size we are naturally
dealing with. Nonetheless, we have also looked into com-
posite mean fields of quantities related to moist processes.
For the best-predicted HWs, we again find a picture that
is close to the running climatology (Figure S13). For the
worst-predicted HWs, we detect anomalously humid air
masses along the Atlantic coast of the United States, with
a significant increase in integrated water vapour by about
6 kg/m2. Such a substantial increase may not necessarily
imply an important role of moist processes in impact-
ing forecast quality. For precipitation, we indeed found a
much less clear signal without any coherent significant
anomalies. Hence, a substantial role of moist processes in
downstream HW predictability over Central Europe can
neither be confirmed nor ruled out in the scope of this
study.

So far, we have only focused on lead times of 9–11
days and distinguished good and poor predictability via
the median Z500-ACC. To extend this investigation, we
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20 LEMBURG and FINK

sWHdetciderp-tsroWsWHdetciderp-tseB (b)(a)

(d)(c)

(f)(e)

F I G U R E 9 Comparison of analysed anomalies of the atmospheric state a week before HW onset between best- and worst-predicted
Central European HWs at 9–11 days lead time according to the ECMWF reforecasts. Predictive skill for each HW onset is here evaluated by
means of the median Z500-ACC. The pre-HW analysed atmospheric anomalies, depicted via shadings, are always calculated w. r. t. the
running summer climatology and are then averaged over day 8, 7, and 6 before the respective HW onset. The left panels depict the pre-HW
anomalies for the group of the 12 best-predicted HWs, whereas the right panels display anomalies for the 12 most poorly predicted HWs. The
first row displays pre-HW 500-hPa geopotential anomalies (green lines always denote mean of all HW cases). In the second row, the pre-HW
state of the North Atlantic jet stream is displayed by means of 250-hPa zonal wind anomalies. The last row visualises anomalies in baroclinicity
in the form of the anomalous Eady growth rate. For additional information, the coloured contours denote anomalies in 700-hPa temperature
(contour interval 1 K). Dots denote statistical difference of the best/worst sample-mean with respect to the mean of all 49 Central European
HWs at the 5% level, as tested via a bootstrapping routine with 10,000 repetitions. [Colour figure can be viewed at wileyonlinelibrary.com]
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LEMBURG and FINK 21

make use of the fact that the upstream anomalies are most
pronounced in the form of the state of the NA jet. We there-
fore measure the state of the NA jet by calculating the
pattern correlation between the respective 250-hPa zonal
wind-speed anomalies and the two dominant EOF modes
of the same quantity, with the first pattern representing
a northward-shifted jet and the second one featuring an
intensified jet.

For forecasts with lead times of 9–11 days, we see
results that are in line with the previously shown com-
posite mean: around 8 days before HW onset, so two days
after forecast initialisation, the worst-predicted HWs dis-
play significantly higher than normal spatial correlations
with the intensified jet EOF pattern (Figure 10c). For lead
time of 6–8 days, we again detect the strongest signals
around 8 to 6 days before HW onset (Figure 10a). This time,
this would mean there is already an existing anomaly dur-
ing forecast initialisation. However, the differences in the
state of the jet stream are less pronounced and not statis-
tically significant. This is attributable to the fact that only
50% of the heatwaves with the worst Z500-ACC predic-
tive skill at 9–11 days lead time are also found among the
worst-predicted ones at 6–8 days lead time (see heatwaves
marked with an asterisk in Table 5 or Table S2 in the Sup-
porting Information for the list of best and worst-predicted
Central European HWs at 6–8 days lead time).

When the quality of a forecast is decided by the rela-
tive error in Tmax-EFI rather than Z500-ACC, it is prob-
ably not surprising that we do not find any significant
role of the North Atlantic jet (Figure 10b,d). Anoma-
lies in the upstream dynamical state may seem to affect
large-scale predictability, but do not necessarily lead to
a better temperature forecast at the medium-range lead
times considered.

Are the findings about the possible impact of upstream
atmospheric conditions on HW onset predictability in
Central Europe robust or specific to the ECMWF refore-
casts? In the context of this investigation, this question
is equivalent to asking whether the GEFSv12 generally
agrees with ECMWF on which HWs are better or less
predictable. Regarding the best-predicted HWs according
to the Z500-ACC metric, the intersection is quite high.
For our focus lead time of 9–11 days, we find that 83% of
HWs are found to be the best-predicted in both datasets.
Much greater disagreement exists for the worst-predicted
HWs, with an intersection of only 42%. Therefore, when
we repeat the same comparison of the initial atmospheric
state, this time using the predictive skill of the GEFSv12
forecast dataset, we find a signal that is less robust.
Worst-predicted HWs again show some intensification of
the jet in its climatological mean latitude, but the inten-
sification is narrower in terms of longitudinal extent and
shifted much further to the east.

However, if we consider the fact that GEFSv12 fea-
tures a slightly lower model-intrinsic predictability (not
shown explicitly here), we may repeat this analysis, using
8–10 days lead time for evaluation instead of 9–11 days.
Then the results become much closer compared with
ECMWF (Figure S14). The intensified and narrowed NA
jet structure is still found a bit further east over the
Atlantic. Moreover, we also detect again a zone of sig-
nificantly increased Eady growth rate in parts of the
western Atlantic. We therefore conclude that the pres-
ence of upstream anomalies—an anomalously high merid-
ional temperature gradient as well as an intensified NA
jet—may indeed be a somewhat robust precursor for
poor large-scale predictability of HW onsets over Central
Europe.

4.1.2 The role of pre-existing soil-moisture
anomalies

Finally, we briefly explore whether pre-existing
soil-moisture anomalies are associated with anomalous
predictability of HW onsets over Central Europe. Figure 11
presents in the form of box plots, in a very similar man-
ner to Figure 10, how the best- and worst-predicted
HWs in ECMWF reforecasts differ in terms of anal-
ysed soil-moisture anomalies some days ahead of HW
onset. We distinguish between regional soil-moisture
anomalies (boxes without fill pattern) and supraregional
soil-moisture anomalies, for which we spatially aver-
age over a much larger European area (boxes with star
fill pattern). Pre-existing regional soil-moisture anoma-
lies are not associated with better or worse predictive
skill with regard to the large-scale circulation patterns
as measured by Z500-ACC. However, some correlation
with supraregional soil-moisture anomalies may exist.
For forecasts with 6–8 days lead time, we find that the
worst forecasts with respect to Z500-ACC are those for
which the large-scale European soil moisture is signif-
icantly elevated above climatological levels some 7–10
days before HW onset (Figure 11a). For lead times of 9–11
days, we again find differences between well and poorly
predicted HWs in a similar fashion. This time, it is the
well-predicted HWs that feature significantly drier than
normal soils 9 and 10 days before HW onset (Figure 11c).
One could speculate that this finding would suggest that
large-scale moisture deficits may not only impact local
near-surface temperatures, but also exert some control
over the large-scale circulation and its predictability.
For instance, a blocking anticyclone could preferably be
initiated and maintained over a region with anomalous
sensible heating due to desiccated soils (Miller et al., 2021).
Similarly, Martius et al. (2021) also found an effect of
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22 LEMBURG and FINK

F I G U R E 10 Relationship between ECMWF reforecast’s predictive skill for Central European HW onsets and the state of the North
Atlantic jet stream some days ahead of HW onset. The box plots show the pattern correlations between analysed anomalous zonal wind speed
at 250 hPa and the two dominant EOF modes of the North Atlantic Jet for both the best-predicted (green boxes) and worst-predicted HW
onsets (red boxes). The pattern correlation is evaluated over the same geographical region to which the EOF analysis was applied
(75◦W–5◦W, 30◦N–70◦N). The boxes with the hash fill pattern denote the pattern correlation with respect to EOF mode 1 (northward-shifted
NA jet) while the boxes without fill pattern show the correlations with mode 2 (intensified NA jet). The upper row presents results for the
case of 6–8 day lead-time forecasts, while the bottom row displays results for forecasts with lead times 9–11 days. In the left panels, Z500-ACC
is used as a selection metric, the right panels feature the relative error in Tmax-EFI as selection metric. Further details about the meaning of
the box and whiskers, as well as the way statistical significance is displayed, are provided in the legend at the bottom. [Colour figure can be
viewed at wileyonlinelibrary.com]

soil-moisture anomalies over Australia on the upper-level
flow both locally and in remote regions. On the other
hand, the significant soil moisture differences presented
here could instead be a mere effect of anomalously wet
or dry weather conditions preceding the heatwaves of the
respective sample. A more detailed analysis of a possible
causal relationship between soil-moisture anomalies and
large-scale flow predictability may be the subject of future
studies.

Finally, we assess the role of existing soil-moisture
anomalies in the quality of forecasts, with regard to how

well the extremeness of near-surface temperatures is cap-
tured (as measured by the relative error in Tmax-EFI).
ECMWF ensemble reforecasts with a lead time of 6–8 days
seem to underestimate near-surface temperatures during
Central European HW onsets the most when soils are sig-
nificantly wetter than normal during the time of forecast
initialisation (Figure 11b). This is true for both regional
soil-moisture anomalies and anomalies averaged over a
larger European scale. An even clearer picture emerges
for lead times of 9–11 days (Figure 11d). Again, the
worst-predicted HWs in terms of Tmax-EFI are associated
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LEMBURG and FINK 23

F I G U R E 11 Similar to Figure 10, but for analysed anomalous soil moisture instead of jet stream anomalies. The box plots depict
analysed 0–20 cm soil-moisture anomalies (from ECMWF reforecast analysis) with respect to summer climatology area-averaged over different
spatial scales. The boxes without fill pattern represent anomalies on the regional Central Europe scale (4◦E–16◦E, 47.5◦N–55◦N), while boxes
with the star fill pattern denote anomalies on a larger supraregional scale (5◦W–35◦E, 45◦N–60◦N). Statistically significant differences
compared with all HW cases are again denoted by using darker bold colours. [Colour figure can be viewed at wileyonlinelibrary.com]

with anomalously wet soils a week before HW onset. Now,
a significant result is also found for well-predicted HWs,
suggesting that significantly desiccated soils are linked to
particularly good predictability of near-surface tempera-
tures.

Using GEFSv12 instead of ECMWF reforecasts,
pre-existing regional and supraregional soil-moisture
anomalies are again found to be associated with dif-
ferences in predictive skill, but only for near-surface
temperatures. A direct comparison between both mod-
els is complicated both by a slightly different treatment
of soil moisture and the fact that TMAX-EFI was not
computed because of the low ensemble size in GEFSv12.
We have therefore assessed predictive skill alternatively
by means of the area-averaged maximum temperature
error, and then created a best/worst-predicted HW sam-
ple from ERA5 soil-moisture anomalies (first two levels).
On longer lead times (9–11 days for ECMWF and again
8–10 days for GEFS), we find good agreement between
both models, with better near-surface temperature pre-
diction skill being related to significant pre-existing dry

anomalies and vice versa (not shown). On shorter lead
times (6–8 and 5–7 days, respectively), we no longer
find a clear link between predictive skill for temper-
ature and antecedent soil-moisture anomalies, which
is likely due to the choice of a different evaluation
metric.

4.2 What affects the predictability
of British Isles HW onsets?

Table 6 lists and compares the characteristics of the best-
and worst-predicted HW onsets over the British Isles at
9–11 days lead time, again with respect to the selec-
tion metrics Z500-ACC and relative error in Tmax-EFI
applied to ECMWF reforecasts. In comparison with the
Central European HWs, the selected British HWs are in
most cases a bit shorter (median of 4 days) and gener-
ally less intense. The most poorly predicted HWs are a
notable exception, according to the Tmax-EFI underesti-
mation with a median length of 6 days. Similar to the
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24 LEMBURG and FINK

T A B L E 6 As Table 5, but for the best- and worst-predicted HW onsets over the British Isles.

12 best-predicted HWs w.r.t Z500-ACC 12 best-predicted HWs w.r.t Tmax-EFI

Onset Len EFIana ACC EFIpredmax Regime Onset Len EFIana ACC EFIpredmax Regime

* 2009-06-29 4 0.62 0.79 0.51 ScBL 2018-08-03 5 0.38 0.22 0.50 NoReg

* 2018-07-25 3 0.67 0.69 0.48 ScBL * 2006-07-15 8 0.46 0.57 0.48 EuBL

* 2016-06-04 5 0.37 0.63 0.25 AtlRi 2007-06-08 4 0.49 0.59 0.48 ScBL

* 2006-07-01 5 0.49 0.62 0.18 EuBL * 2007-05-01 4 0.44 0.37 0.42 NoReg

* 2007-06-08 4 0.49 0.59 0.48 ScBL * 2001-07-02 4 0.47 0.02 0.40 EuBL

2006-07-15 8 0.46 0.57 0.48 EuBL 2009-06-29 4 0.62 0.79 0.51 ScBL

2004-08-07 4 0.68 0.54 0.40 ScBL * 2013-07-07 17 0.38 0.38 0.30 EuBL

2016-09-12 4 0.59 0.53 0.29 ScBL 2018-05-23 11 0.31 0.44 0.25 EuBL

* 2002-09-11 4 0.45 0.51 0.20 ScBL 2006-05-08 5 0.33 0.47 0.25 ScBL

2003-08-04 10 0.73 0.50 0.49 EuBL 2016-08-23 3 0.31 0.23 0.23 ScBL

* 2014-09-16 4 0.51 0.47 0.24 EuBL * 2018-07-25 3 0.67 0.69 0.48 ScBL

median 4 0.51 0.57 0.40 median 4 0.44 0.44 0.42

12 worst-predicted HWs w.r.t Z500-ACC 12 worst-predicted HWs w.r.t Tmax-EFI

Onset Len EFIana ACC EFIpredmax Regime Onset Len EFIana ACC EFIpredmax Regime

* 2005-06-17 4 0.57 −0.33 −0.00 ScBL 2016-05-07 6 0.55 0.05 −0.17 ScBL

2018-06-25 15 0.45 −0.18 −0.01 EuBL * 2006-06-06 7 0.36 0.41 −0.11 EuBL

2005-07-10 4 0.44 −0.13 0.02 EuBL * 2003-07-13 5 0.60 −0.07 −0.02 ScBL

* 2016-07-18 3 0.63 −0.07 0.22 NoReg 2013-09-22 3 0.35 0.10 −0.01 GrBL

* 2003-07-13 5 0.60 −0.07 −0.02 ScBL 2018-06-25 15 0.45 −0.18 −0.01 EuBL

* 2001-05-10 4 0.54 −0.06 0.05 NoReg * 2005-06-17 4 0.57 −0.33 −0.00 ScBL

2001-07-02 4 0.47 0.02 0.40 EuBL * 2005-07-10 4 0.44 −0.13 0.02 EuBL

* 2016-09-05 3 0.65 0.04 0.23 Zonal * 2012-05-22 7 0.40 0.37 0.01 EuBL

2016-05-07 6 0.55 0.05 −0.17 ScBL * 2004-09-03 8 0.51 0.14 0.03 EuBL

* 2003-05-29 4 0.52 0.05 0.04 NoReg 2010-05-20 6 0.47 0.47 0.02 EuBL

2008-05-04 11 0.58 0.08 0.07 ScBL 2003-05-29 4 0.52 0.05 0.04 NoReg

median 4 0.55 −0.06 0.04 median 6 0.47 0.05 0.0

Central European case, not even half of the HWs with
the best large-scale predictability scores are also found
among the best-predicted with respect to near-surface
temperatures (intersection fraction of the two selection
metric groups is smaller than 50%). However, a higher
overlap of slightly more than 50% is found for the
worst-predictable HWs. One cross-group intersection case
exists, in which Tmax-EFI was predicted well despite a
Z500-ACC of around zero. As was the case for Central
European HWs, a clear majority of well-predicted HWs in
terms of Z500-ACC fall into the category of either Scan-
dinavian or European blocking. Since “no regime” HWs
are generally less common for the British Isles, their share
among the poorly predicted is also lower than for the

Central European case, but still higher compared with the
well-predicted ones, which do not feature a single case of
“no regime”.

4.2.1 The dominant role of preceding
Euro-Atlantic weather regimes

As in the earlier section about the predictability of
Central European HWs, we compare again the extent
to which well and poorly predicted HW onsets are
characterised by pre-existing anomalies in the atmo-
spheric state. For this purpose, Figure 12 provides
the same composite-mean comparison of the best- and
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F I G U R E 12 As Figure 9, but for the best- and worst-predicted HW onsets over the British Isles. [Colour figure can be viewed at
wileyonlinelibrary.com]

worst-predicted HWs according to Z500-ACC at lead times
of 9–11 days, now for the British Isles HW cases.

In stark contrast to the Central European HW case, we
no longer find robust evidence for HW onset predictive
skill being impacted by upstream anomalies. For both the
best- and the worst-predicted HWs, we do not detect major
significant anomalies a week prior to HW onset, either
for the baroclinicity over the Western Atlantic or for the
state of the NA jet (Figure 12c–f). Instead, the large-scale

predictability of British HWs seems to be much more
associated with the pre-existing weather regimes over the
European continent. In contrast to the Central European
case, it is now the best-predicted HWs that already exhibit
a substantial anomaly a week before HW onset. During
that time, the composite mean depicts a large area of sig-
nificantly elevated 500-hPa geopotential over large parts
of northeastern Europe (Figure 12a). This continental
anticyclone then slowly moves/extends westwards, finally
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26 LEMBURG and FINK

F I G U R E 13 Relationship between ECMWF reforecast’s predictive skill for British Isles HW onsets and the amplitude of two selected
weather regimes some days ahead of HW onset. The box plots show the analysed instantaneous weather regime index for the Atlantic Trough
regime (boxes without fill pattern) and the European Blocking regime (boxes with star fill pattern) for the period of 10–5 days before HW
onset. The upper row presents results for the case of 6–8 day lead-time forecasts, while the bottom row displays results for forecasts with lead
times of 9–11 days. In the left panels, Z500-ACC is used as a selection metric, the right panels feature Tmax-EFI as selection metric.
Statistically significant differences compared with all HW cases are again denoted by using darker bold colours. [Colour figure can be viewed
at wileyonlinelibrary.com]

enabling the development of a HW over the British Isles
region. The composite-mean synoptic pattern presented
here bears some resemblance to the case of sequential HWs
of 2018 described in detail by Spensberger et al. (2020).
In contrast to the Central European case, it is now the
poorly predicted HW onsets that feature an atmospheric
state with no significant anomalies to summer climatology
during or shortly after forecast initialisation (Figure 12b).

As was the case for the Central European HWs, we
extend our statistical investigation to shorter lead times
(6–8 days), as well as to the Tmax-EFI-based selection
metric. Making use of the analysed Euro-Atlantic weather
regime indices, we identified the temporal evolution of
the amplitude of the European blocking and the Atlantic
Trough weather regimes as being strongly linked to the
predictive skill for British HW onsets. For 9–11 days lead
time, well-predicted HWs according to Z500-ACC first
exhibit a significantly elevated EuBL weather regime index
already 10 days before HW onset (Figure 13c), consis-
tent with the composite-mean plots shown earlier. At the

same time, low-pressure systems are slightly, albeit not
yet significantly, less likely to be close to the European
continent as represented by the lowered amplitude of the
Atlantic Trough regime index. Interestingly, for lower lead
times of 6–8 days, the Z500-ACC-based HW onset pre-
dictive skill is less sensitive to prior anomalies in those
weather regimes (Figure 13a). Although seven of the 11
HWs with the highest Z500-ACC at 9–11 days lead time
are also found among the best-predicted HWs at 6–8 days
lead time (see HWs marked with asterisks in Tables 6
or S3 in the Supporting Information), the overall small
sample size may lead rather quickly to considerable dif-
ferences when four HWs within the sample are replaced
by others.

In stark contrast to the Central European case, the
clear association between antecedent weather regimes and
Z500-ACC predictability is now also clearly reflected in
the forecast quality with respect to Tmax-EFI. For lead
times of 6–8 days, a good forecast in near-surface temper-
ature extremeness is already associated with the presence
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LEMBURG and FINK 27

F I G U R E 14 As Figure 11, but for the best- and worst-predicted HW onsets over the British Isles. [Colour figure can be viewed at
wileyonlinelibrary.com]

of European blocking before the time of forecast initiali-
sation. At the same time, the index of the Atlantic Trough
weather regime is significantly lower than in the sample
of all HWs (Figure 13b). In other words, when a continen-
tal blocking is already established and low-pressure system
activity is reduced over the Eastern Atlantic, a good tem-
perature forecast becomes more likely for the British Isles
region. A similar picture is found if lead times of 9–11
days are considered. A significantly elevated expression of
the EuBL index during the time of forecast initialisation is
favourable for a good temperature prediction (Figure 13d).
Poor forecasts, in turn, suffer from a significantly reduced
amplitude of the EuBL weather regime. In contrast to
lower lead times, the amplitude of the Atlantic Trough
weather regime has less impact on forecast quality.

Finally, we again test the robustness of our results by
performing the same analyses with our secondary fore-
cast dataset (Figure S15). We find that GEFSv12 agrees
quite well with ECMWF on which British HWs are the
best-predictable according to the median Z500-ACC. For
9–11 days lead time, the intersection fraction amounts to
73% and for 6–8 days lead time there is still an overlap
of 64%. Consistent with the high agreement between both
models leading to the selection of a rather similar sub-
set, we find a very similar and even more robust signal for

the best-predicted HWs over the British Isles: significantly
increased geopotential is first detected some 8 days before
HW onset, and then slowly moves retrogradely towards
the British Isles. As Tmax-EFI has not been calculated for
GEFSv12 due to the low ensemble number, we instead sep-
arate HW onsets by the domain-averaged prediction error
in maximum temperature. Again, our secondary reforecast
dataset agrees strongly with ECMWF. Hence, the poten-
tial for increased predictability of British HWs in times of
an already well-established continental blocking appears
to be a robust finding.

4.2.2 The role of pre-existing soil-moisture
anomalies

Antecedent anomalies in soil moisture, either locally over
the British Isles or over a larger regional area includ-
ing mainland Europe, are not associated with better or
worse large-scale predictability (Z500-ACC) in British
HWs according to ECMWF reforecasts (Figure 14a,c).
Compared with Central European HWs, pre-existing
soil-moisture anomalies over the British Isles are also not
as strongly linked to the predictive skill in terms of sur-
face temperature extremeness. This is particularly true
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28 LEMBURG and FINK

for longer lead times of 9–11 days (Figure 14d). Only at
lead times of 6–8 days do we find that Tmax-EFI scores
are better when the soils over the British Isles are signif-
icantly drier than normal (Figure 14b). A likely explana-
tion of the overall less pronounced role of soil moisture
is the maritime location and probably also the overall
lower likelihood of substantial desiccation of the soils.
For anomalously high temperatures to develop, the British
Isles probably rely more strongly on the correct prediction
of a rather narrow range of synoptic conditions (strong
subsidence, no onshore winds), whereas it is easier for
anomalous heat to develop over the continental region
via land surface–atmosphere interaction (Zschenderlein
et al., 2019).

Again we perform a similar kind of analysis, now
also including the GEFSv12 reforecasts. As men-
tioned earlier in the section about Central European
HWs, for better comparability between ECMWF and
GEFSv12, we have to change the evaluation metric to
area-averaged maximum temperature error and then con-
struct the best-/worst-predicted HW samples using ERA5
soil-moisture anomalies with respect to climatology.
Doing so, we find for both models a somewhat stronger
connection between pre-existing soil-moisture anomalies
and temperature prediction skill, now also for longer lead
times of 9–11 (ECMWF) and 8–10 days (GEFSv12). Again,
better temperature forecasts are being associated with
drier soils some seven days before HW onset, whereas
poorer prediction skill is related to cases of anomalously
wet soils. However, these findings are not as clear as for the
Central European case and therefore are not in disagree-
ment with our hypothesis that soil-moisture anomalies
may have less impact over the British Isles compared with
the European mainland.

5 SUMMARY AND CONCLUDING
DISCUSSION

In this study, we investigated the medium-range pre-
dictability of European heatwaves (HWs) that occurred
in the months May–September in the period 2001–2018
by using ensemble reforecasts from two state-of-the-art
weather models: primarily ECMWF reforecasts, with
GEFSv12 reforecasts as support. For four different mid-
latitude European regions (Central Europe, British Isles,
Scandinavia, Western Russia), we objectively identified
around 50 HWs each, which are characterised by a local
and regional-scale exceedance of the 90th percentile of
maximum temperature for a duration of at least three
days. We applied the concept of year-round Euro-Atlantic
weather regimes (Grams et al., 2017) to first characterise
the large-scale synoptic setup under which HWs form. The

findings for the four European regions investigated can be
summarised as follows.

• Over the British Isles and Scandinavia, HW onsets are
associated with a classic blocking regime, that is, either
Scandinavian (ScBL) or European blocking (EuBL), in
66% and 75% of cases, respectively.

• Over Central Europe, ScBL or EuBL cases are less often
observed (55% in total) and HW onsets occur more
often, in about 30% of cases, in the absence of a pro-
nounced weather regime (NoReg case).

• Over Western Russia, HWs occur most often in conjunc-
tion with a Scandinavian trough or in the absence of a
regime.

Stratified by observed weather regime during HW
onset, forecast quality was then evaluated for a range of
lead times from 3–12 days using classic verification metrics
such as the 500-hPa geopotential anomaly correlation coef-
ficient (Z500-ACC) and root-mean-square errors (nRMSE)
of 850-hPa temperature fields. In addition, we further
computed relative errors in the maximum temperature
extreme forecast index (Tmax-EFI-RE) as a more forgiv-
ing metric to review the forecast ensemble’s capacity to
adequately predict the likelihood of extreme near-surface
temperatures. The following main results have been found
to be robust in both the ECMWF and the GEFSv12 refore-
casts.

• For Central Europe and the British Isles, HW onsets
associated with pronounced blocking regimes (ScBL
or EuBL) are linked to overall better and sometimes
also significantly elevated skill in the prediction of
large-scale synoptic-scale patterns (Z500-ACC), mostly
up to lead times of about 10 days.

• For Central Europe and particularly the British Isles
and Scandinavia, 850-hPa temperature fields tend to
be predicted significantly better at lead times beyond
one week for HW onsets associated with Scandina-
vian blocking (cf. against HW onsets of all regimes, not
against non-HW periods).

• In all four regions studied, HW onsets linked to “no
regime” mostly display worse Z500-ACC, Z500-nRMSE,
and T850-nRMSE scores at medium-range (exception:
Z500-ACC for Scandinavian HW onsets).

• The significant differences between weather regimes
are not reflected in the Tmax-EFI-RE score, which
points to difficulties in the prediction of near-surface
temperatures even when large-scale predictability is
high.

Using a multi-metric approach, the first part of our
study highlights the intricate details of medium-range
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forecast behaviour regarding HW onsets in the midlatitude
regions of Europe. We have demonstrated that HWs form-
ing under an already well-established continental blocking
regime (ScBL and/or EuBL) may offer higher predictability
with regard to the correct positioning of ridges and troughs
and the introduction of anomalously warm air masses. In
contrast, HWs forming in the absence of a pronounced
blocking regime (NoReg) may be more prone to prediction
errors, which are mostly related to phase errors. There-
fore, a somewhat skilful forecast of a regime transition
may then also imply either increased confidence (EuBL,
ScBL) or higher uncertainty (NoReg) for the regionally
accurate prediction of HW onsets. However, “getting the
overall large-scale Rossby-wave pattern right” is of course
not always sufficient in order to predict a HW onset cor-
rectly. This was demonstrated for the case of Scandinavian
HWs, where “no regime” type HW onsets featured bet-
ter Z500-ACC scores, but clearly worse predictive skill in
terms of more regional temperature-based metrics. Pre-
dicting the likelihood of extreme near-surface tempera-
tures proves to be more difficult. The increased predictive
skill for Z500-ACC and T850n-RMSE—as clearly seen for
Central European and and British HWs—is not reflected at
all in our used Tmax-EFI error metric. This disagreement
may mostly point to the inherent difficulty in predicting
local near-surface temperatures correctly. As Lemburg and
Fink (2022) demonstrated, even at short lead times of 3
days, maximum temperatures might generally be under-
estimated during HWs, and errors may often stem from
under- or overestimation of more local diabatic processes
restricted to the boundary layer or errors in the details of
the near-surface flow in coastal regions.

In the second part of our investigations, we aimed
to understand the role of the initial state of the atmo-
sphere and soil moisture in affecting the predictability
of HW onsets over Central Europe and the British Isles.
First we use the Z500-ACC metric to select the best- and
worst-predicted HWs with respect to the prediction of
the large-scale Rossby-wave patterns. Secondly, we assess
how well the extremeness of temperatures in our region
of interest is captured by considering the relative error
in the predicted maximum temperature extreme forecast
index (Tmax-EFI-RE). Despite the very limited sample
size, we could identify for both European regions statisti-
cally robust links between HW predictability and signifi-
cant anomalies in the initial atmospheric state during or
shortly after forecast initialisation. The results for Central
Europe can be summarised as follows.

• For Central European HWs, poor Z500-ACC predic-
tive skill at lead times of 9–11 days is associated with
significant upstream anomalies occurring about one
week before HW onset: a stronger than normal North

Atlantic jet stream and increased baroclinicity over the
western Atlantic, both likely related to synoptic-scale
disturbances.

• Well-predicted Central European HWs, however, fea-
ture nearly no significant pre-existing anomalies com-
pared with summer climatology.

• Predictive skill for near-surface temperature extremes
over Central Europe is significantly connected with
pre-existing regional and supraregional soil-moisture
anomalies on lead times between 6 and 11 days; worse
skill when soils are anomalously wet during forecast
initialisation, and vice versa.

These key findings regarding poorly predictable Cen-
tral European HWs are to some extent supported by the
GEFSv12 reforecasts, but only if lead times from 8–10 days
are considered and with overall lower statistical confi-
dence. In our opinion, the impact of upstream anomalies
on the large-scale predictability of weather further down-
stream is generally consistent with earlier theoretical or
idealised studies stressing that increased meridional tem-
perature gradients will generally reduce the intrinsic pre-
dictability of midlatitude weather (Sheshadri et al., 2021;
Vallis, 1983). On the other hand, an intensified jet stream
acting as a wave guide might also increase downstream
predictability (Wirth et al., 2018). However, this applies in
our view only to the predictability of Rossby-wave packets,
and does not necessarily imply improved predictability of
the correct phase, which is vital for a regionally accurate
HW forecast.

Interestingly, British heatwaves show entirely different
predictability characteristics, which are found robustly in
both forecast datasets.

• In contrast to Central Europe, the predictive skill for
British HW onsets in terms of both Z500-ACC and
Tmax-EFI is not linked to upstream flow anomalies.

• Instead, better predictions at lead times of 6–11 days
w. r. t. both Z500-ACC and Tmax-EFI are strongly
linked to significantly more pronounced continental
blocking existing already a week before HW onset.

• Compared with Central European heatwaves,
pre-existing soil-moisture anomalies are less relevant
for predictive skill; only on lead times of 6–8 days are
regionally drier than normal soils associated with better
predictive skill for surface temperature extremeness.

The second part of our article may provide some
understanding of causes of HW-related forecast busts—at
least for Central Europe—and may point further to situ-
ations with higher inherent predictability, such as for the
British HW case. Moreover, the investigation underlines
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the complex nature of atmospheric predictability again.
Although Central Europe and the British Isles are geo-
graphically close to each other, the same inferences about
HW onset predictability for one region cannot be trans-
ferred to the other. Such regional differences in HW pre-
dictability have also been pointed out before (Pyrina &
Domeisen, 2023; Wulff & Domeisen, 2019), highlighting
the need for region-specific studies. In this context, we
want to emphasise again the use of different forecast
skill metrics. As we have seen, a useful forecast of the
large-scale flow might not be closely linked to a skilful pre-
diction of near-surface maximum temperatures and this
relationship might differ between regions as well.

One of the limitations of this study and probably any
other statistical study about HWs is undoubtedly the nat-
urally low sample size. We aimed to mitigate this problem
by including a rather large number of HWs, some of them
being rather short-lived and not extreme by any means.
One the one hand, the consideration of about 50 HW cases
in combination with the bootstrapping tests conducted
allowed us to assess the statistical robustness of our results.
On the other hand, the inferences drawn in this study
might not apply to the most extreme HWs, for which some
increased predictability was shown earlier by Wulff and
Domeisen (2019). Finally, we want to stress again the intri-
cacies of selecting the most appropriate metrics in order to
evaluate HW predictability objectively. Prior studies have
often used probabilistic scores, such as the Brier score,
which are based on binary classification with respect to
some near-surface temperature threshold. We propose that
it may be beneficial also to factor in more classic scores
such as Z500-ACC, which also account for how well the
evolution of the large-scale flow is predicted. This comes,
however, with its own drawbacks. As geopotential fields
tend to exhibit large and spatially homogeneous deviations
from climatology in times of HW onsets, Z500-ACC might
tend to produce too favourable scores.

As outlined in the Introduction, we aimed to reveal
the intricate details of large-scale and regional-scale pre-
dictability in relation to the weather regime during HW
onsets. For this, we deliberately focused on using weather
regimes for stratification of HWs into dynamically distinct
subsets, but have not looked more deeply into the pre-
dictability of the weather regimes themselves. Although
literature on European weather regime predictability
for summer already exists (Büeler et al., 2021; Osman
et al., 2023), further studies may aim to investigate more
specifically how HW-allowing weather regimes develop
and whether windows for enhanced predictability may
exist. Moreover, the possible role of preceding anomalies
in the atmospheric flow further upstream, as demon-
strated here for poorly predicted Central European HWs,
may also motivate further study. Ultimately, synoptic-scale

deviations from summer climatology such as increased
baroclinicity and an intensified jet stream may be favoured
under a certain dynamical regime. Year-round North
American weather regimes, as recently introduced by Lee
et al. (2023), may therefore offer an opportunity to under-
stand better the possible connection between anomalous
weather over North America and a downstream impact
on HW predictability over Central Europe.
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