KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Temperature Responsiveness of PNIPAM Through 3D‐Printed Hierarchical Porosity

Liu, Weiyi 1; Wang, Zhenwu ORCID iD icon 1; Serna, Julian A. 1; Debastiani, Rafaela ORCID iD icon 2,3; Gomez, Joaquin E. Urrutia ORCID iD icon 4; Lu, Lutong; Yang, Wenwu 2; Dong, Zheqin 1; Levkin, Pavel A. ORCID iD icon 5
1 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
5 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)

Abstract:

Materials with ultra-fast responsive properties are essential for variousapplications. Among the responsive materials, poly(N-isopropylacrylamide)(PNIPAM) stands out due to its well-studied temperature-responsiveproperties. Improving the kinetics of the responsive properties of PNIPAMis, however, still essential for advancing its practical use. Here, the responsiverate of PNIPAM hydrogels is enhanced by first incorporating sub-micrometerporosity into the material through polymerization-induced phase separation(PIPS), followed by introducing millimeter scale pores via 3D printing, therebyrendering the material with hierarchical porosity. The 3D-printed porousPNIPAM structures show accelerated swelling and deswelling, when comparedto non-porous PNIPAM structures, due to enhanced water permeability asso-ciated with the continuous network of micrometer to millimeter-sized pores.Additionally, thinner polymer structures result in faster temperature responserates. At the same time, the mechanical strength of PNIPAM hydrogels withhigh porosity and thinner polymer walls is not compromised, overcomingthe common trade-off between swelling and mechanical properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000172364
Veröffentlicht am 10.07.2024
Originalveröffentlichung
DOI: 10.1002/adfm.202403794
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Biologische und Chemische Systeme (IBCS)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000172364
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Seiten Artkl.Nr.: 2403794
Vorab online veröffentlicht am 10.07.2024
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page