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ABSTRACT

Access to computing resources is a critical requirement for re-
searchers in a wide diversity of areas. This has become even more
important with the rise of artificial intelligence techniques through
the training of machine learning and deep learning models. In this
sense, the AT4EOSC project aims to respond to this need by de-
livering an enhanced set of advanced services and tools for the
development of artificial intelligence, machine and deep models,
such as federated learning, in the European Open Science Cloud
(EOSC). Federated learning is a technology in the field of privacy-
preserving machine learning techniques that has revolutionized
the current state of the art, evolving from classical centralized ap-
proaches to allow training models in a decentralized way, without
sharing raw data. In this work, we present the production imple-
mentation of a federated learning system based on the Flower
framework that allows users, without a technological background,
to exploit this technique, performing federated learning training
within the AI4EOSC platform. The objective is to be able to train
this type of architecture in an intuitive way; for this purpose, a user-
friendly dashboard has been implemented, whose development will
be reviewed. The frameworks and technologies used for this imple-
mentation will be exposed together with an example of use from
scratch, in order to demonstrate the use of this functionality of the
platform. Finally, two scenarios concerning client availability are
analyzed.
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1 INTRODUCTION

The European Open Science Cloud (EOSC) [15] is an initiative of
the European Commission aimed at fostering the creation of a
“Web of FAIR Data and Services” for Science in Europe, focused on
promoting open science practices among researchers by offering
a comprehensive environment for the sharing, processing, and
analysis of research data. This initiative overreaches pan-European
research infrastructures and services supported by the different
EU stakeholders (including the research communities) to support
scientific endeavors. A central focus is to strengthen Open Science
as a collaborative, transparent, and accessible research model that
aims to improve access to scientific resources.

Access to compute and storage resources is often limited, not
only in terms of state-of-the-art accelerators (i.e. GPU or TPU),
but also in terms of easy access for non-specialized scientists. In
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many cases, scientists face the problem of easily exploiting existing
resources due to the lack of skills to manage or to deploy complex
tasks over the existing e-Infrastructures. This fact becomes worse
when the data to be analyzed is not centrally available at a single
location and distributed data sources must be exploited. These situ-
ations occur when it is complicated or impossible to centralize a
large volume of data coming from different sources, sectors, entities,
or devices in order to train an artificial intelligence (AI), machine
learning (ML) or deep learning (DL) model. In this context, the use
of distributed learning (DL) [52] or Privacy-Preserving Machine
Learning (PPML) [53] architectures are proving to be valuable solu-
tions. PPML techniques seek to apply machine or deep learning in a
trustworthy and secure environment, for example, by enabling de-
centralized data training to create robust models without the need
to share or centralize sensitive data in a single location. Among
these architectures, federated learning (FL) [3, 8, 29] stands out for
its wide range of acceptance and application.

FL differs from traditional centralized models by redistributing
the training process to a decentralized method, addressing concerns
about privacy, security, and data sovereignty. The basic principle of
this methodology lies in the distributed training of models. There-
fore, the architectural framework consists of a central server and
several clients, each representing different data owners. This config-
uration facilitates collaboration and eliminates the need for direct
data exchange. Clients train their models locally and, therefore,
do not have to disclose their respective datasets. The models or
the parameters that describe them are then securely transferred to
the central server. Then, the server combines these models using
an aggregation operator. After this merging, the updated model
is sent back to the clients. Clients are re-trained iteratively for
a predetermined number of rounds. This cyclical process, which
must be carefully orchestrated, ensures a seamless and secure ex-
change of information and promotes collaborative learning without
compromising the confidentiality of individual datasets.

In this context, the AI4EOSC project [7] provides a compute plat-
form, comprising a set of advanced services specifically tailored to
the development of AI, ML and DL models and applications within
the EOSC. The primary objective is to enable researchers and insti-
tutions within the EOSC to use advanced Al and machine learning
techniques for their scientific work. One of the main activity areas
of the AT4EOSC project is to deliver tools that will enable scientists
to develop privacy-preserving Al models, based on state-of-the-art
federated learning frameworks.

In this work, we present the successful integration of the Flower
framework [9] into the AI4EOSC platform and provide a compre-
hensive overview of the challenges encountered during the imple-
mentation process. We also discuss the development of various
extensions that enable authenticated connections between clients
and the server and take into account important aspects of secu-
rity and data protection. Our exploration of the implementation
challenges demonstrates the adaptability of the Flower framework
in the AT4EOSC context and highlights the different modifications
carried out to achieve the integration.

Finally, to illustrate the practical benefits of our extended imple-
mentation, we present a concrete use case in the field of medical
imaging. This example shows how Flower, within the AI4EOSC
platform, can effectively contribute to federated learning scenarios
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in real-world applications, especially in sensitive and data-intensive
fields such as medical research. In additio, two scenarios in which
we deal with intermittent clients are exposed and analyzed.

The reminder of this paper is organized as follows. Section 2
provides an overview of the related work in the areas of feder-
ated learning architectures and frameworks, together with different
state-of-the-art platforms for computing and training machine and
deep learning models. In Section 3 we present the architecture of
the AT4EOSC platform with special attention to the components in-
volved, the dashboard and the Application Programming Interface
(API) implemented. Section 4 is divided into four key subsections:
first, Subsection 4.1 outlines the process of integrating Flower into
the platform, Section 4.2 addresses the challenges associated with
running the federated learning server behind a proxy, Subsection 4.3
presents the implementation of client authentication and the inte-
gration of a secret management system and Section 4.4 provides an
illustrative example of a federated learning use case with the server
deployed within the AI4EOSC platform, particularly in a medical
scenario. Finally, Section 5 draws the conclusions from this work,
accompanied by insights into possible future directions of research
and development.

2 RELATED WORK

The data science ecosystem and its applications in both industry
and research scenarios have grown rapidly in recent years. This is in
part due to the availability of computational resources on demand,
as well as the ease of use of some IDEs such as JupyterLab or Visual
Studio Code (VSCode). JupyterLab is an interactive web-based de-
velopment environment for notebooks, code, and data [28]. In some
contexts, the development of machine learning and data mining
processes is increasingly carried out on Jupyter notebooks, mainly
because of the ease of use and reproducibility and because of the
advantages and convenience in visualization, since it is a dynamic
interface. Google Colaboratory, for example, is a service hosted by
Jupyter Notebook that provides free access to (limited) computing
resources [21]. The disadvantages of coding using Jupyter Note-
books are related to the version control process, but also to the lack
of modularity of the code in some cases. Another widely used IDE
is Visual Studio Code (VSCode), a Microsoft-developed source code
editor [33]. It includes features that are not available in Jupyter,
such as debugging support, integrated version control with Git,
syntax highlighting, and code refactoring, among others. Note that
VSCode includes plugins that allow users to edit and run Jupyter
notebooks.

Open Science Environments (OSEs) seek to promote collabora-
tive and transparent scientific research by providing access to com-
putational resources, diverse tools, and cloud services. For example,
Terra [18] serves as a cloud-based platform specifically designed
for biomedical research and genomics. It provides researchers in
these fields with a seamless environment for analyzing, sharing,
and collaborating on data. Dataone [10] is dedicated to enhancing
access to and sharing of environmental and geoscience data. By
facilitating collaboration and data sharing, Dataone contributes to
a more accessible and interconnected research ecosystem in these
fields. CyVerse [11] offers a suite of computational tools tailored to
life science research. The comprehensive set of resources supports
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data-driven investigations and provides researchers with a platform
for conducting analysis, collaboration, and innovation in the life
sciences. Open Science Grid (OSG) [37] specializes in creating a
distributed computing infrastructure tailored for high-throughput
computing (HTC). Researchers use the OSG to efficiently perform
large-scale computations that enable complex simulations and data-
intensive analysis. The DEEP Hybrid DataCloud framework [32]
contributes to the entire data lifecycle with computational resources
and cloud services. Researchers benefit from a set of tools to man-
age, analyze and extract insights from their data across diverse
domains.

In line with the OSEs concept, AI4EOSC provides users with
both computational resources and a range of tools to optimize
the implementation and further development of machine learning
and deep learning techniques. In particular, AI4EOSC supports
advanced functionalities for distributed and federated learning.
Within this framework, distributed learning involves machine or
deep learning on decentralized data, addressing considerations such
as privacy, legal requirements, technical constraints, and more.

The increasing need to comply with various privacy schemes
and the existence of technical restrictions in certain use cases have
driven the development and application of machine and deep learn-
ing models on distributed data. This demand has led to the wide-
spread adoption of federated learning architectures in various do-
mains. In a classic federated learning architecture, a server orches-
trates the collaboration of multiple clients to train a shared model
without the need to exchange raw data. The server collects the
locally trained models of the individual clients and aggregates them
into a global model. This iterative process takes place over a prede-
fined number of rounds, during which the server sends the updated
model to the clients for local re-training, employing a predefined
aggregation strategy.

The applications of federated learning extend to various do-
mains where privacy and technical constraints are critical consid-
erations. In the field of medical imaging, federated learning has
shown promise for future advances [34, 45, 48]. The industry has
also embraced federated learning for collaborative model training
while maintaining data privacy [35, 36]. Furthermore, federated
learning is relevant in environmental sciences, where it addresses
the challenges associated with distributed data [14, 17, 47].

Various software frameworks have emerged in the FL space
that facilitate the development and deployment of FL models in
various domains. Notable examples include TensorFlow Federated
(TFF), based on TensorFlow [50]; PySyft [38], which uses PyTorch;
FATE (Federated AI Technology Enabler) [16] hosted by Linux
Foundation; NVIDIA Flare [46]; and Flower [9]. Regarding the
first, TensorFlow Federated [50] is an architecture-agnostic open-
source framework for ML and other computations on decentralized
data from the TensorFlow family. PySyft [38], from OpenMined’s
open-source stack, allows users to apply DL models with privacy-
preserving functionalities, being in active development. FATE [16]
is an open-source framework that provides support for federated
learning architectures and secure computation in ML ecosystems.
NVIDIA FLARE [46] from NVIDIA, allows moving from a central-
ized ML or DL approach to a federated one, it is open-source and
domain agnostic.
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Following a comprehensive evaluation of various framework
options during the project, Flower emerged as the most compelling
choice for integration into the AI4EOSC platform due to several
key features:

(1) Ease of use: Flower provides a high-level API that facilitates
the implementation of federated learning systems.

(2) Flexibility with various DL frameworks such as PyTorch and
TensorFlow.

(3) Active community and development.

The AI4EOSC platform provides users with a federated learn-
ing server that enables federated training with clients deployed on
external cloud machines, locally, or within the same platform in
different deployments. This federated server, which is integrated as
a tool in the AI4EOSC dashboard, simplifies the server implemen-
tation process. Users can initiate the server effortlessly, facilitating
seamless connection with different clients and enabling the start
of the training processes. To our knowledge, there are currently
no OSEs that integrate the Federated Learning (FL) Server as a
dedicated tool in their framework.

3 AI4EOSC PLATFORM

The AI4EOSC platform is built as a software ecosystem designed to
enhance the development and deployment of artificial intelligence,
machine learning, and deep learning applications within the context
of the European Open Science Cloud (EOSC) [7]. As a Platform-as-a-
Service (PaaS) cloud computing model, both hardware and software
resources are managed to provide an environment in which users
can focus solely on application development. To achieve reliable,
efficient, and secure performance, the platform leverages open-
source software solutions. These comprise the use of Consul [24],
Nomad [25] and Traefik [30], all of which are seamlessly integrated.

Consul offers secure connectivity, service discovery, and health
monitoring to deploy a centralized and automated service network.
Through Consul, several on-premise cloud instances with diverse
configurations (i.e. CPUs, GPUs, volumes sizes) are automatically
registered and connected to support the computing requirements of
the different AI4EOSC users. Once the cloud network is set up, No-
mad integrates with it to manage the scheduling and orchestration
of the application workloads across the available nodes to ensure
efficient resource allocation. By connecting Nomad to Consul, ev-
ery service deployed in Nomad as a job is automatically registered
on Consul through its service discovery feature. This allows the
Traefik instance, which is easily deployed as a dedicated Nomad
job, to provide routing for all the healthy services registered in the
Consul catalog. Specifically, Traefik acts as a reverse proxy that
exposes jobs under the specific AI4EOSC domain.

When a user accesses the AI4EOSC dashboard! to launch an
application workload, it is transparently submitted as a Nomad
job through a platform API [6] request. Successfully scheduling a
job means filtering all available nodes to match the computational
requirements of the job or deployment. Nomad is responsible for
selecting a node from the eligible subset of the cluster based on load-
balancing policies to allocate the job. Once the job is allocated, it
automatically starts to run. Then, the user can access their deployed

The AI4EOSC dashboard is accessible through https://dashboard.cloud.ai4eosc.eu.
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jobs on the URL provided by Traefik. A universal unique identifier
(UUID) is associated with each deployment.

3.1 AI4EOSC API

As can be understood from the previous description, the AI4EOSC
platform API [6] provides a single entry point to access all com-
ponents of the platform. It hides the intrinsic complexity of the
underlying technologies used and provides users with a simple
interface to use the services, making it possible to replace the un-
derlying orchestration technology without modifying the platform
API semantics.

The API is written in Python [51], using FastAPI [44] for the
API logic and the Nomad Python client [27] to deploy jobs in the
cluster. It follows the REST model and automatically generates an
OpenAPI specification as long as a Swagger interface [1] interacts
with its endpoints. It also follows DevOps best practices, passing
integration tests before pushing.

The APIis currently organized around two main routers: /catalog
and /deployments. The catalog router handles all the functional-
ities to get information about AI modules and tools. The deploy-
ments router handles the functionality to manage deployments of
Al modules (and tools) in the Nomad cluster.

In the context of the federated learning server, the API allows to
retrieve the default configuration parameters (described in Section
4.1). Then, it takes the user-provided custom settings to configure
a special Nomad job tailored to the FL server use case that will be
sent to the cluster.

The Nomad job configures the ports available to the FL server,
the domain to access the services via Traefik, it enables the use of
gRPC in the connections and finally sets the appropriate hardware
resources needed.

For each federated server, the API automatically generates a
secure hexadecimal token. This token is then saved in the project’s
Vault instance [2] and will be used to authenticate the federated
clients wishing to join the common training (additional tokens can
be created if needed). All federated server endpoints are protected
with SSL.

Only properly authenticated users (via EGI Check-In) are allowed
to deploy a FL server. Once created, the API allows the user to list
all his/her currently deployed servers and to delete them.

3.2 AI4EOSC Dashboard

The AT4EOSC Dashboard [41] [42] is a single web application, devel-
oped using modern web development frameworks: namely Angular
[19] and Jest [26] for the business logic and the Material Angular
UI component library [20] to create a uniform and user-friendly
interface.

Following software engineering and Angular good practices, the
dashboard is build using individual components that are tested
and can be reused to reduce code duplication and thus improving
the maintainability of the project. On top of this, modern DevOps
techniques and platforms are being used to enable a reliable, repro-
ducible, and fast way to integrate new features into it. Platforms
such as Github with the use of Github actions are relied upon to
perform several jobs, such as building docker images and uploading
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them to a private Harbor registry [23] or to use the release-please
library [22] to create automated releases.

The dashboard enables users to interact with the platform in a
simple and graphic way. Once logged-in, its divided into two main
sections: (1) Marketplace and (2) Deployments.

The first section allows users to launch deployments based on
either a generic base module that is used as a baseline to create
new modules, or one of the wide list of ready-to-train modules. A
tool, in contrast to a ready-to-train module that often comes with
a pre-trained model, is meant to provide an environment with a
software toolset aimed at solving a problem that fits it; therefore,
they are treated differently in the dashboard as they need special
configuration inputs that are tailored for each of them. This first
section is available for registered and unregistered users, although
with limited options. All the modules and tools listed in this sections
have a detailed view that shows additional information such as a
brief description, the categories it belongs to, links to the code
repository, the docker image, and even the dataset (if available). In
Figure 2 an example of the AI4EOSC marketplace with the different
pre-trained modules is shown.

The second section of the dashboard displays the current deploy-
ments of the logged-in user, differentiating between modules and
tools so that they can monitor their status in the cluster and per-
form other actions such as accessing a deployment’s main endpoint
or deleting the deployment altogether.

To further facilitate user access to the platform, the dashboard is
integrated with the EGI check-in Authentication and Authorization
Infrastructure (AAI) [13] (see the C4 architecture with respect to
the landscape of the system and the EOSC AAI in Figure 1). This
means that users can reuse their current credentials used for other
EOSC projects and only have to request approval to be part of
the AI4EOSC virtual organization before they can start using the
dashboard.

[Software System]

Provides Authentication,

Authorization and Identity
management for EOSC users.
Browse EOSC [Software System]
V'eSOthVCe[S, create - provides access to EOSC resources
—orderfornew and services for users.
EOSC User services
Person)
EOSC user willing to use an Al
platform to develop an Al
application. EOSC

Figure 1: AI4EOSC system landscape and relation with the
EOSC, C4 model. Extracted from [40].
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% DEEP OC Massive Online Data
Streams

known breeds)

Trainable

@ Plants species classifier

Classify plant images among 10K species

Deep learning for proactive network
monitoring and security protection.

Inference Pre-trained Trainable Inference

@ Conus species classifier

Classify conus images among 70 species.

from the iNaturalist dataset.

Trainable

Inference Pre-trained Trainable Inference Pre-trained

Figure 2: AI4EOSC dashboard: modules.

4 FEDERATED LEARNING IN AI4EOSC

In this section, we present the implementation of a federated server
that allows users to perform federated training of machine and
deep learning models using the Flower library and the AI4EOSC
platform. We describe different issues addressed in relation to the
connection of the clients when they are connected through a proxy
or load balancer. We also present the implementation of different
extensions to allow an authenticated connection of the clients with
the server, based on the use of bearer tokens with an efficient secret
manager that supports the storage, management and revocation of
these tokens. Finally, we present an extensive example of use in a
medical imaging scenario.

4.1 Implementation using Flower

As already outlined in Section 2, there are different state-of-the-art
frameworks that provide federated learning functionalities for ML
and DL frameworks. Some of the most widely used in the field
are TensorFlow Federated, PySyft, FATE, NVIDIA FLARE or Flower,
among several others. As explained in Section 2, the final choice of
the framework used was mainly based on a search for a balance be-
tween functionality, efficiency, and user-friendliness. In this sense,
the Flower library [9], which claims to be a Unified Approach to
Federated Learning was chosen. The Flower library is framework-
agnostic and its implementation allows for easy extensibility, being
under active development by an open community. It allows moving
from a centralized to a federated approach in a simple and intuitive
way and just in a few lines of code, without extensive modifications
on the original, centralized, code base.

The AI4EOSC platform has therefore adopted Flower to provide
users with a federated learning server to allow distributed training
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with clients deployed in external cloud machines, locally in their
own workstations, or on the AI4EOSC platform itself. The so-called
federated server has been implemented and incorporated as a tool
within the AI4EOSC dashboard, and provides the implementation
of the server so that users only have to run it to start connecting
the different clients and performing the training. To do this, when
the tool is started, different configuration parameters must be set
from the dashboard (or API) in a very straightforward way. There
are three steps to configure the federated server:

o General configuration: configuration regarding the deployment
options, the service to run, and the docker options. The different
fields to be completed are:

— Deployment options: deployment title (less than 45 characters),
deployment description, custom domain for the endpoint (if
needed) and service to run (fedserver, JupyterLab or Visual
Studio Code, that can be spawned for debugging purposes on
the same node). Moreover, the federated server is configured
with a Bearer token for authentication, allowing the user to
setup additional tokens if needed (for example, to share with
different users). In order to do so, the server takes advantage of
the authentication modules provided by the ai4-flwr library
[5], developed within AI4EOSC and which will be explained in
4.3. Each secret will be associated with a unique identifier in
case it needs to be revoked. These secrets will be stored using
Vault as will be explained in Section 4.3.

— Docker options: docker image and docker tag to use for deploy-
ment, only for advanced users.

e Hardware configuration: specifically in this type of deployments
no special hardware requirements are necessary, as the model
training is done on the clients’ side, and they will have the highest
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computational requirements, for example in terms of RAM, CPU

and GPUs.

e Federated configuration: is the most important part, as it includes
the specifications that the federated training must satisfy. Specif-
ically, the parameters to be filled in by the user are the following.
— Federated rounds: number of rounds that the training process

will be repeated.

— Minimum number of clients: number of clients that must be
connected to the server and ready to train the models to start
the process.

— Federated metric: is the metric used for monitoring and validat-
ing. More than one metric can be included.

— Federated aggregation strategy: is the function or strategy that
the server will apply to aggregate the models received from the
clients. It must be selected among different predefined options:
Federated Average, FedProx strategy, Adaptive Federated Op-
timization using Adam, Adaptive Federated Optimization, and
federated optim strategy Yogi.

This opinionated set of parameters to be setup by the user hide
the underlying configuration of the server, providing users with
just the functionality that is needed to start a federated server.

Once the server is started (either automatically or via Visual
Studio Code or JupyterLab) it is waiting for the clients to connect
in order to start the training, as it can be seen in Code 1, also with
the token interceptor deployed using the secrets stored in Vault (in
this case only with one token).

vault.py:76 | Configured Vault Bearer token
authentication with:
"https://vault.services.fedcloud.eu:8200/"
vault.py:77 | Reading tokens stored in:

'users/.../deployments/.../federated'

Getting tokens from Vault ->

users/.../deployments/.../federated
vault.py:79 | Configured Vault Bearer tokens:
'['a7fa98...']"
| Renewing Vault token...
| Vault token is valid for 43199 seconds
| Token interceptor created

vault.py:120
vault.py:126
server.py:80

app.py:167 | Starting Flower server, config:
ServerConfig(num_rounds=10,
round_timeout=None)

app.py:181 | Flower ECE: gRPC server running

(10 rounds), SSL is disabled
server.py:89 | Initializing global parameters
server.py:276 | Requesting initial parameters

from one random client

Code 1: Starting the federated server (monitoring).

The federated server implementation is located in [43]. Specifi-
cally, the server code starts a Flower server with the specifications
given by the user when creating the deployment. It should be noted
that [39] present some modifications to the original implementation
of the Flower library in order to be able to run behind a proxy and
to authenticate the clients using a token, as will be explained in the
following sections.
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The AI4EOSC architecture is based on the C4 model [40]. In
Figure 3 the architecture of the federated learning scenario is shown.

4.2 Running the server behind a proxy

As already mentioned, in order to effectively manage the distribu-
tion of resources according to the requests of the platform users, on
the AT4EOSC platform we use Traefik as a proxy or load balancer.

It is important to note that the connection of the different clients
to the FL server using Flower is performed by means of gRPC (gRPC
Remote Procedure Call), which facilitates efficient communication
between distributed applications. Specifically, a gRPC server is de-
ployed to carry out this connection. The gRPC server is responsible
for listening to the client requests and responding to them accord-
ing to the specified service definitions. If the gRPC server is running
behind a load balancer (as in our case, Traefik), clients may not be
able to connect to the server. In version 1.6.0, Flower is using the
peer() method from grpc.ServicerContext in order to identify unique
Flower clients and avoid duplicate clients. However, in some situa-
tions (like when running the gRPC server behind a load balancer or
a proxy), different clients can have the same peer identifier (in this
case corresponding to the same IP port), as HTTP/2 connections
are multiplexed (gRPC uses HTTP/2 as transport protocol).

The solution that we proposed for this issue has already been
included in version 1.7.0 of the Flower library.

4.3 Client authentication

When working with FL architectures where multiple parties are in-
volved (one server and multiple clients), it is important to maintain
the integrity and security of the process. In this case, we assume
that the server is honest, i.e., it is supposed to be trustworthy and
to faithfully follow the protocol. In other cases, we may deal with
honest-but-curious server (which might extract privacy from the
model updates sent by each client [31]) or even malicious servers.

In the original implementation of the Flower library, clients only
need to enter the endpoint of the deployment where the server
is being deployed to connect to it. In a typical case, it would be
enough to type in the IP address and the port where the server is
deployed. However, this can lead to certain security problems if
external attackers attempt to enter federated training for malicious
purposes. For example, what are known as poisoning attacks consist
of affecting the learning model during the training process. This
could be done by a client that enters deliberately wrong labels
for its data in order to damage the overall accuracy of the model,
by introducing other kind of data for training, or just by sending
random weights or parameters for the model.

For this reason, we have implemented an authentication system
for clients prior to their incorporation into the federated training
through the use of tokens.

The tokens themselves are considered as secrets and must be
managed in a secure and systematic manner. In the event of a se-
curity breach where the secret or token is exposed, it would be
revoked, and there would be no direct way to modify the server to
accept another secret. Therefore, the implementation of a secret
management service, specifically HashiCorp’s Vault [2], has been
adopted for storing the tokens. The federated learning server re-
trieves a list of authorized tokens for client authentication from
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Figure 3: AI4EOSC federated training architecture, C4 model. Extracted from [40].

the secret management service and verifies if the client’s provided
token is included. Users can manage tokens (add, rotate, or revoke)
through the service’s native command-line client or graphical user
interface. A sidecar process monitors the secret management ser-
vice and notifies the federated learning server to update its token
list whenever changes occur.

Currently, we have implemented some extensions to the Flower
library to work alongside the Vault service that stores the secrets (it
can be found in [5]). In addition, we have developed some modifica-
tions to the Flower library to manage the credentials that allow to
enable or disable the connection to the clients based on the token
entered (see [4]).

In Code 2 we show how the token interceptor is created using
the secrets stored in Vault and how the server is started including
the interceptor. Note that the strategy and the other federated
settings (e.g. number of rounds) are generated using the information
provided when creating the deployment.

UUID: str = os.environ[ 'NOMAD_JOB_NAME'][8:]
USER: str= os.environ[ 'NOMAD_META_owner']
VAULT_TOKEN: str = os.environ['VAULT_TOKEN']
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...
from ai4flwr.auth.vault import VaultBearerTokenInterceptor
# Include token interceptor
path_deployment = f"users/{USER}/deployments/{UUID}"
token_interceptor = VaultBearerTokenInterceptor(
vault_addr="https://vault.services.fedcloud.eu:8200/",
vault_token=VAULT_TOKEN,
vault_mountpoint="/secrets/",
secret_path=f"{path_deployment}/federated"
)
# Start the server
fl.server.start_server(
server_address="0.0.0.0:5000",
config=fl.server.ServerConfig(
num_rounds=FEDERATED_ROUNDS
)7
strategy=strategy,
interceptors=[token_interceptor],

Code 2: Flower server with token interceptor.
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It is important to highlight that authentication will be useful
to prevent unauthorized clients from participating in training for
malicious purposes. However, it will not prevent poisoning attacks
in case an authenticated and trusted client misbehaves and sends
misleading weights. However, if this happens and the server has a
module capable of detecting anomalous behavior in a client, it will
be able to revoke the token that such client used to authenticate.

4.4 Example from scratch: medical imaging

We will now proceed to exemplify how to carry out a FL training
using the AI4EOSC platform. Specifically, we will use the data and
the model presented in [49], where a case study of medical imaging
is proposed. More specifically, we are dealing with a classification
problem where, given an chest X-ray image, the goal is to classify
based on whether the patient has pneumonia or not. The data used
come from a classical open dataset, available in [12]. To apply the
federated learning architecture, the idea is to distribute the data
available in the training set to three different clients, so that we
simulate that we have three different hospitals seeking to collabo-
rate in order to build a global and robust DL model for this purpose.
The model applied to the three clients is an ANN composed of the
layers exposed in [49].

The first client analyzed contains 1050 images for training and
350 for testing, the second one 1800 for training and 600 for testing,
and the last one 1062 for train and 354 for test. Figure 4 shows one
random image selected from each client train set from a patient
with pneumonia and another corresponding to a patient which do
not present pneumonia.

Client 2. Pneumonia Client 3. Pneumonia

Client 1. Pneumonia

Figure 4: Example of training images for each client.

The following federated learning configuration will be applied:
number of rounds: 10, federated metric: accuracy, minimum number
of clients: 3, federated strategy: federated average.

In order to perform the federated training, we have deployed
three instances at IFCA’s cloud using openstack in order to allocate
and run the data and the code of the three different clients. All
these three machines are provided with Ubuntu 22.04, 4 CPUs cores,
10.74GB of RAM and 20GB of disk memory. The server was deployed
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within the AI4EOSC platform with the federated specifications
given above.

In each of them we have used a virtual environment with Python
3.10 and we have deployed the FL clients. In the code given in
Code 3 we can see the example for the first client, in which we first
define the class Client1, which inherits from the NumPyClient class
of flower.client, and then we start the connection from the client
to the server using the endpoint of the last one (see Code 4). Note
that in this example the uuid of the deployment where the server
is hosted is 5d46d419-d6de-11ee-bbe3-a0cec839f955.

class Client1(fl.client.NumPyClient):
def get_parameters(self, config):
return model.get_weights()

def fit(self, parameters, config):
model.set_weights(parameters)
model.fit(x_train, y_train, epochs=5,
batch_size=16)
return model.get_weights(), len(x_train), {}

def evaluate(self, parameters, config):
model.set_weights(parameters)
loss, accuracy = model.evaluate(x_test, y_test)
return loss, len(x_test), {"accuracy": accuracy}

Code 3: Class Client1.

# Import BearerTokenAuthPlugin from ai4flwr:

from ai4flowr.auth.bearer import BearerTokenAuthPlugin

token = "a7fa98..."

auth_plugin = BearerTokenAuthPlugin(token)

# UUID of the deployment of the FL server (AI4EQSC):

uuid = "5d46d419-d6de-11ee-bbe3-a0@cec839f955"

fl_uuid = f"fedserver-{uuid}"

end_point = f"{fl_uuid}.deployments.cloud.ai4eosc.eu"

fl.client.start_client(
server_address=f"{end_point}:443",
root_certificates=Path(certifi.where()).read_bytes(),
client=Client1().to_client(),
call_credentials=auth_plugin.call_credentials()

Code 4: Connecting the client with the server deployed in
AI4EOSC.

First, we initialize the server as described in Code 1. Then, when
we run the first client connecting it to the server, the monitoring
status on the server side is updated as follows (see Code 5):

app.py:167 | Starting Flower server, config:
ServerConfig(num_rounds=10,
round_timeout=None)

app.py:181 | Flower ECE: gRPC server running
(10 rounds), SSL is disabled

server.py:89 | Initializing global parameters

server.py:276 | Requesting initial parameters

from one random client
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server.py:280 | Received initial parameters

from one random client
server.py:91 | Evaluating initial parameters
server.py:104 | FL starting

Code 5: Starting the FL server and connecting the first client.

The status has now changed to FL starting, however, the process
will not begin until the minimum required number of clients have
been connected. From the client side, we can see how the gRPC
connection has been established and is ready to start training once
the rest of the clients (the minimum number) have connected and
therefore the server allows it:

bearer.py:125 | Created AuthMetadataPlugin

with token: a7fa%98...
grpc.py:65 | Opened secure gRPC connection using
certificates

connection.py:58 | ChannelConnectivity.IDLE
connection.py:58 | ChannelConnectivity.CONNECTING
connection.py:58 | ChannelConnectivity.READY

Code 6: Connecting the first client with the server.

Once the minimum number of clients have been connected (in
this case three), the training of the model locally on each client will
start, and will be repeated for the pre-fixed number of rounds. Thus,
the evolution of the process from the server side is shown bellow
(skipping the intermediate rounds just for better visualization) with
the corresponding results as a function of the aggregated metric
(in this case the accuracy):

server.py:104 | FL starting
server.py:222 | fit_round 1: strategy sampled
3 clients (out of 3)
server.py:236 | fit_round 1 received 3 results
and 0 failures
fedavg.py:250 | No fit_metrics_aggregation_fn
provided
server.py:173 | evaluate_round 1: strategy
sampled 3 clients (out of 3)
server.py:187 | evaluate_round 1 received 3 results
and 0 failures
(...)
server.py:222 | fit_round 10: strategy sampled
3 clients (out of 3)
server.py:236 | fit_round 10 received 3 results
and 0 failures
server.py:173 | evaluate_round 10: strategy sampled
3 clients (out of 3)
server.py:187 | evaluate_round 10 received 3 results

and 0 failures
Only one metric has been entered.
server.py:153 | FL finished in 777.3200013944879
app.py:231 | app_fit: losses_distributed
[(1, 5.591757377963856), (2, 2.0657108459004596),
(3, 0.1423788307908854), (4, 0.06921767829660258),
(5, 0.5391561854287891), (6, 0.17663749540510354),
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(7, 0.06715587471137566), (8, 0.12410825495522447),

(9, 0.1657278991070079), (10, 0.19349358802192781)]
app.py:232 | app_fit: metrics_distributed_fit {}
app_fit: metrics_distributed

{'accuracy': [(1, 0.7430981524700037),

(2, 0.7684049252534937), (3, 0.9616564408036097),

(4, 0.9754601416229471), (5, 0.9164110243868975),

(6, 0.9516871268032518), (7, 0.9777607484463534),

(8, 0.9693251606876865), (9, 0.9662576779448914),

(10, 0.9616564420834641)1}

Code 7: Federated learning training. Monitoring from the
server side.

In Code 7 we can see the evolution (from the server side), of
the loss and the accuracy distributed and aggregated according
to the number of data of each client. While in the first round the
distributed loss (aggregated) was 5.5918, this value decreases to
0.1935 in the last round, showing the model convergence. The same
applies for the aggregated distributed accuracy, with was 0.7431
after the first round, and 0.9617 after the last one. This process can
also be monitored from the clients’ side during the training.

Then, for each client test set, we get the results in terms of
loss, accuracy, and AUC-ROC (in the following AUC) presented in
Table 1 when predicting using the global updated model. Here we
can note that the client which has the great amount of data (client
2) presents the best results in terms of both loss, accuracy and AUC,
which goes hand in hand with the fact that the weights have been
aggregated in a weighted way according to the number of training
data for each client.

Table 1: Loss, accuracy and AUC obtained for each test set
with the global model.

CLIENT Loss Accuracy AUC
Client 1 0.1657 0.9629 0.9958
Client 2 0.0577 0.9883 0.9991
Client3  0.4512 0.9153 0.9888

Thus, the federated training of a deep learning model has been
carried out in three clients deployed in three different external
cloud instances, with the federated server deployed in AI4EOSC,
managing to build a global model without having to share the
clients’ data at any time. All server configuration has been carried
out through the dashboard, being necessary only to execute the
code available in this deployment to initialize the server and start
the client connection process.

4.5 Example with intermittent clients

Some of the commonly encountered problems when implementing
and deploying a federated learning architecture in production are
related to the availability of the involved clients. For example, in
the study carried out in [49] used as a reference for this analysis,
different scenarios are analyzed related to the entry of a new client
in the training once it is started or in case a client leaves the training.
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The following describes how these casuistics are handled using
Flower in AI4EOSC.

One new client joins the training. To analyze the case where
anew client enters the training once it has already started, we have
created a new FL server on the platform with the same configuration
as in the previous case, except for the minimum number of clients,
which in this case will be 2. Therefore, we start by connecting
clients 1 and 2, and it will not be until training round number 9
that we will connect the third client (specifically during round 8).
Code 8 shows the evolution from the server’s point of view.

server.py:104 | FL starting
server.py:222 | fit_round 1: strategy sampled
2 clients (out of 2)
server.py:236 | fit_round 1 received 2 results
and 0 failures
fedavg.py:250 | No fit_metrics_aggregation_fn
provided
server.py:173 | evaluate_round 1: strategy
sampled 2 clients (out of 2)
server.py:187 | evaluate_round 1 received 2 results
and 0 failures
(...
server.py:222 | fit_round 8: strategy sampled
2 clients (out of 2)
server.py:236 | fit_round 8 received 2 results
and 0 failures
server.py:173 | evaluate_round 8: strategy sampled
3 clients (out of 3)
server.py:187 | evaluate_round 8 received 3 results

and 0 failures

has been entered.

fit_round 9: strategy sampled

3 clients (out of 3)

fit_round 9 received 3 results

and 0 failures

evaluate_round 9: strategy sampled
3 clients (out of 3)

evaluate_round 9 received 3 results
and 0 failures

has been entered.

fit_round 10: strategy sampled

3 clients (out of 3)

fit_round 10 received 3 results

and 0 failures
evaluate_round
3 clients (out
evaluate_round
and 0 failures
Only one metric has been entered.

server.py:153 | FL finished in 642.8026974536479
app.py:231 | app_fit: losses_distributed [

Only one metric
server.py:222 |

server.py:236 |
server.py:173 |
server.py:187 |

Only one metric
server.py:222 |

server.py:236 |

server.py:173 | 10: strategy sampled
of 3)

server.py:187 | 10 received 3 results

(1, 6.624357072930587), (2, 0.20727387227510152),
(3, 0.059018391527627646), (4, 0.2510757273749301),
(5, 0.25708073220754923), (6, 0.2698057278206474),
(7, 0.08329900314933375), (8, 0.1921575677758254),
(9, 0.938873184147788), (10, 6.897786095829829)]
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app.py:232 | app_fit: metrics_distributed_fit {}

app.py:233 | app_fit: metrics_distributed
{'accuracy': [(1, 0.7894736779363531),
(2, 0.9515789402158636), (3, 0.9800000033880535),
(4, 0.9463157747921191), (5, 0.9052631698156658),
(6, 0.9631579173238654), (7, ©0.975789487361908),
(8, ©0.971625775281637), (9, 0.9302147407473231),
(10, ©.7944785255047441)1%

Code 8: Federated learning training: intermittent clients (new
client enters the training). Monitoring from the server side.

In view of the results observed in Code 8, both in relation to
the distributed metric (accuracy) and to the distributed loss, it is
immediate to observe the anomaly derived from round 8 to 10. This
is due to the fact that in this round client three is connected, which
had not participated before in the training, but is included during
the evaluation. However, in round 9 and 10 we see a high decrease
in the global distributed accuracy and an increase in the loss.

One client leaves the training. Here the idea is to simulate
the availability of a client that experiences connectivity issues and
therefore connects or disconnects at different times during the
training. This is a very common problem in different sectors and
can be due to different reasons, from latency, to internet connection
problems or computational difficulties that paralyze the training.

It should be noted that if we set 3 as the minimum number of
clients both available in the system and for training during the
federated configuration, and one of them disconnects, the process
will stop until there is a third client connected. Therefore, in this
case we initialize a server with 2 as the minimum number of clients,
and the rest of the parameters of the FL configuration as in the
previous case. Then, we connect for the first round the first two
clients, and during the course of this we connect the third one.
In this case, client number three leaves the training during round
number 9 (once it is started). The process followed from the server
side can be seen in Code 9.

server.py:104 | FL starting

server.py:222 | fit_round 1: strategy sampled
2 clients (out of 2)

server.py:236 | fit_round 1 received 2 results
and 0 failures

fedavg.py:250 | No fit_metrics_aggregation_fn
provided

server.py:173 | evaluate_round 1: strategy sampled
3 clients (out of 3)

server.py:187 | evaluate_round 1 received 3 results
and 0 failures

(...

server.py:222 | fit_round 9: strategy sampled
3 clients (out of 3)

server.py:236 | fit_round 9 received 3 results
and 0 failures

server.py:173 | evaluate_round 9: strategy sampled
2 clients (out of 2)

server.py:187 | evaluate_round 9 received 2 results

and 0 failures
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Only one metric has been entered.

server.py:222 | fit_round 10: strategy sampled
2 clients (out of 2)

fit_round 10 received 2 results
and 0 failures
evaluate_round
2 clients (out
evaluate_round
and 0 failures
Only one metric has been entered.

server.py:153 | FL finished in 667.3757740734145
app.py:231 | app_fit: losses_distributed

[(1, 7.547033552743175), (2, 0.2451032611764282),
(3, 0.8357470439621276), (4, 0.1293588922204781),
(5, 2.1022320605494493), (6, 0.6716479192847854),
(7, 0.15273705459674078), (8, 0.0717641580392795),
(9, 0.057207336943400536),
py:232 | app_fit: metrics_distributed_fit {}
py:233 | app_fit: metrics_distributed
{'accuracy': [(1, 0.7430981524700035),

(2, 0.9271472321331866), (3, 0.8558282225958409),
(4, 0.955521475135183), (5, 0.7783742496755225),
(6, 0.8949386509466757), (7, 0.9647239230893141),
(8, 0.9746932575673414), (9, 0.9852631688117981),
(10, 0.9084210615409049) 1}

server.py:236 |
server.py:173 | 10: strategy sampled
of 2)

server.py:187 | 10 received 2 results

app.
app.

Code 9: Federated learning training: intermittent clients (new
client enters the training). Monitoring from the server side.

As in the previous case, the inclusion of a client in a round that
has already begun is reflected in the loss and accuracy. In this
case it is especially seen in the loss, which is 7.5470 for the first
round, while in the previous cases this value was 5.5918 and 6.6244
respectively. This is because the third client entered the training
when there were already 2 clients training the first round, so this
client did not train the model in that round but was used during the
aggregated evaluation. The rest of the training continues with the
3 clients, with an anomaly in round 5, where there is a worsening
in both metrics that is corrected in the next round. Specifically, the
impact of removing a client from the training is clearly seen in
round 10 (the loss increases from 0.0572 to 0.5715 and the accuracy
decreases from 0.9853 to 0.9084). From the model performance point
of view, this was as expected, and from the computational one, the
elimination of this client from the training has not impacted the
process, which has continued normally (showing that no up-dates
have been received from one of the clients in round 9), since the
minimum number of clients both available and to fit was set to 2.

5 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents the implementation of a complete federated
learning architecture implemented on the AI4EOSC platform using
flower. The platform allows users to request the computational
resources needed for their applications and can use these resources,
including the availability of GPUs, to train the models from the
clients’ side.

(10, 0.5714634751018725)]
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The platform’s intuitive interface allows to deploy in a few steps
the server with the desired IDE (it is recommended to use Jupyter
Notebook or VS Code for better interaction and functionality). The
FL server configuration is performed on the dashboard itself.

In addition, we introduce the implementation of the platform,
the API and the dashboard with the focus on the FL server as a tool
for the latter. In addition, modifications made to the Flower Python
library in order to connect the clients when the server runs behind
a proxy (in this case Traefik), and to allow client authentication
when connecting to the server are explained. In the last case, a
service for secret management has also been deployed.

Finally, the application of FL to a medical imaging use case is
demonstrated with three clients simulating three hospitals. Specifi-
cally, the three clients run and store their data on three different
OpenStack cloud instances. The implementation of the architecture
applied to this use case is shown step-by-step through several code
snippets. Finally, the impact on the configuration and development
of the training with the server running on the AI4EOSC platform
is analyzed in the case of intermittent clients; both if one joins the
training once it has already started and if a client leaves it.

Regarding future directions, there is a lot of work that can be done
in the near future to support the use of privacy-aware distributed
Al especially concerning federated learning applications in the
EOSC. An example of such support of the research infrastructure is
training scalability or a research approach to reduce computational
and communication overhead. From a data privacy point of view,
the possibility of supporting other PETs is also still open, in addition
to provide users with the possibility of validating the efficiency of
their privacy-enhancing solutions using techniques for attacking
FL. Furthermore, explore ways of preventing poisoning attacks
when authenticated clients misbehave and send anomalous updates.
Finally, it is key to allocate even more high memory resources
(RAM or GPUgs) for simulations of more clients, higher computation
requirements for encryption operation testing, and cooperation
with the security infrastructure to ensure integrity and confidential
computing in the mean of decentralized data security.
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