Understanding, describing, and mitigating the flow of personal data
in ROS 2 systems to comply with the GDPR and beyond.*

Tim Zander', Jonas Wohnig? and Juergen Beyerer

Abstract— With the introduction of privacy protection laws
such as the GDPR in the EU, carrying out privacy impact
assessments (PIA) for new robotics applications interacting
with humans is becoming a necessary part of the development
process. We discuss a methodology and develop and release
software[1] to describe and mitigate the flow of personal data
as part of the development process or retroactively in the Robot
Operating System - ROS 2.

I. INTRODUCTION

Robots entering a broad range of use cases interacting
with humans will almost necessarily process personal data.
Because of this, many privacy laws have become applicable
to this robotics application. Hence the need to understand,
communicate, and mitigate the processing of personal data
becomes an integral part of development to fulfill existing
privacy laws. Moreover, data protection on the manufacturer
side is what users are the most concerned about[2].

We focus on the General Data Protection Regulation
(GDPR) of the European Union. This law was a guiding
example to many other privacy laws around the globe as
part of the so-called Brussels effect [3]. We discuss the
principles of GDPR which later guide our technical choices
such as the transparency of the processing and the right
to privacy by design and default as the GDPR’s “right
to explanation” which is sought to provide meaningful
information about the logic involved[4][5]. These principles
do de facto dictate a big part of the design of a robotics
product that interacts with humans today[6][7]. In terms of
the privacy threat analysis framework LINDDUN GO[8], we
especially try to reduce the “Overbroad Exposure of Personal
Data” beyond what is necessary for the application and try
to avoid having "INSUFFICIENT TRANSPARENCY - Data
subjects are insufficiently informed about the collection and
processing of their personal data.”

The Robot Operating System (ROS) is a software frame-
work for developing robotics applications. In particular, the
newest version of the Robot operating system - ROS 2
introduces many interesting new features. We will focus
on this version for the rest of the paper. Among the new
features is an underlying communication based on the Data
Distribution Service (DDS). DDS is a standard by the Object
Management Group (OMG) for a middleware for machine-
to-machine communication offering certain quality of service

*This work was supported by funding from the topic Engineering Secure
Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs.

Lvision and Fusion Laboratory IES, KIT, Karlsruhe, Germany

2Salzburg Research FG, Salzburg, Austria

3Fraunhofer IOSB, Karlsruhe, Germany

1,3

capabilities through a publish-subscribe pattern. A ROS 2
program’s underlying structure uses nodes that communicate
in such a publish-subscribe pattern through some DDS
implementation. These nodes use so-called topics, services,
and actions to send and receive messages to and from each
other[9].

The DDS standard has an additional security specifica-
tion (DDS-SECURITY) which can be utilized in ROS 2
programs. These capabilities are accessible under the SROS
package. SROS has two types of Certificate Authorities
(CAs) as centerpieces of the Public Key Infrastructure (PKI):
There are Identity CAs to enable authentication of and secure
communication between nodes. There are also Permission
CAs to sign the Mandatory Access Control (MAC) rules for
each node. The overhead of these security features was found
suitable even for very resource-constrained environments
[10].

SROS utilizes XML files to implement its security fea-
tures. It uses policy files to generate the permission files that
regulate the access controls in DDS. While permission files
apply to single nodes, policy files can describe access con-
trols for multiple enclaves, each containing multiple nodes,
at once. For these policy files, SROS has a custom XML
schema[11]. It is described by a ’policy’ root, which contains
one ’enclaves’ element, which in turn contains one or more
“enclave’ elements. These ’enclave’ elements stand for one
ROS 2 security enclave each, signified by the enclave path.
Each ’enclave’ consists of one or more ’profiles’ elements,
which in turn contain one or more ’profile’ elements each.
A ’profile’ contains a set of access rules for one specific
ROS 2 node, describing the use of which communication
channels are allowed or denied. Together, these ’profile’
elements contain all of the connection information needed
for the construction of the ROS 2 graph. It describes which
nodes are connected to which topics, services, and actions,
and in what role. [12]

The goal of this paper is to describe a tool intended to
be used by software developers, data protection officers,
and professionals from adjacent areas (‘users’) as defined
in the GDPR to self-evaluate and communicate the personal
data processing of their ROS 2 system. We focus on data
generated or gathered by ROS 2 nodes and transmitted within
the ROS 2 graph. Other ways where sensitive data can be
transmitted within a system or made available to the outside
are not covered by this work. Although this an important
step, we assume that the ROS 2 nodes are evaluated by the
users to ensure that personal data only flows through the
ROS 2 communication layer. Hence as a demarcation to our

work stands the vulnerability assessment[13] of the ROS2
nodes itself and the of general vulnerabilities of the whole
ROS2 system[14][15]. Both are of course important topics
for ensuring that privacy and security goals are met. But
we consider them out of scope for this work, as we solely
concentrate on the flow of the private data in the ROS2
system and consider such techniques as complementary to
ensure that the whole system ensures privacy. Also the case
of timing attacks to get information out of the system we
consider out of scope as this would assume that certain ROS2
nodes we control would be compromised.

II. METHODOLGY AND IMPLEMENTATION

The basis for our reasoning about ROS 2 systems is a
directed graph structure with some additional information. A
directed graph is the main way a ROS 2 system is presented
in the literature and by ROS 2 itself[16][17][9]. We aim to
detect unwanted information flow in a ROS 2 system by
understanding the flow of personal information within such
a ROS 2 graph. We describe in the following the steps that
were taken to reason about the information flow of private
information in such a system and how to improve its privacy.

A. Categorization

As a first step in our tool, the user categorizes nodes,
topics, services, and actions. For this, a set of labels depend-
ing on the possible creation, transformation, or transportation
of sensitive data by a node or the content transmitted by
topics, services, and actions is applied. We now describe
the different privacy categories each node can fall into and
presents examples for each.

The node category source is applied to any node that
potentially introduces personal data into the ROS 2 system.
This could mean a node directly acquiring personal data such
as a camera stream with humans. Another way would be
a node that has access to personal data that was already
generated or collected outside of the ROS 2 system such as
a database with pictures of faces. This category of nodes is
the first and most crucial to be identified by the user because
only these nodes by definition produce or bring personal data
into the ROS 2 system. Independently from the status of
incoming edges, all outgoing edges of a source node are by
default assumed to potentially carry personal data.

The node category leak encompasses nodes that potentially
either directly make personal data accessible to untrusted
parties or relay personal data to untrusted systems outside
the ROS 2 graph. This would be a violation as it risks a
“Overbroad Exposure of Personal Data” as Personal data is
shared with more services or external parties than necessary
as defined in LINDDUN GO|[8].

The node category conduit is applied to nodes that neither
introduce personal data to the ROS 2 graph nor relay such
data to untrusted outside systems. A conduit node instead has
the potential to transmit personal data to other nodes within
the graph without changing their status as personal data. This
could be a node that takes a video stream and adds semi-
transparent image segmentation information onto the video

stream or it applies some face recognition algorithm to a
video and forwards the resulting information.

A node falls into the category of sanitizer when it takes
data containing personal data as input, processes the data
such that the personal data is removed, and then returns
non-critical data as output. This could be a node that
pseudonymizes or anonymizes data before it is forwarded to
other nodes. As an example we can use them as seen in [18]
and [19], or even through neural network-based semantic
segmentation[20]. Independently from the status of incoming
edges, all outgoing edges of a sanitizer node are by default
assumed to carry no personal data.

The communication channels between nodes get assigned
one of two labels. The first label mundane is assigned to
any channel which by its nature never transmits personal
data even if the adjacent nodes handle personal data. The
second label is that of sensitive which marks channels that
do or may transmit personal data. It is the default label if
there is no clear evidence that the label mundane applies.

If there exists an input to a conduit node that may transmit
personal data, all outputs of that conduit node by default are
assumed to possibly transmit personal data. Inversely, if, for a
conduit node, there exists no input that may transmit personal
data, all outputs are assumed to not transmit personal data.

B. Implementation

We built and tested our software tool and ran our ex-
periments using the Humble Hawksbill distribution of ROS
2. The code and the data of the experiments can be found
online[1]. The Humble Hawksbill distribution is the current
distribution with long-term support until 2027. As a DDS
implementation the default “Fast-DDS” by eProsima which
is shipped with Humble Hawksbill was used. We built code
in Python and made use of a Python package ‘Ixml’[21] for
parsing the SROS security XML files of ROS 2 systems. Fur-
thermore, the ROS 2 graphs computation and visualizations
were done with the package ‘networkx’[22].

First, we describe how to get the necessary SROS policy
files. The second part describes how these policy files are
turned into a ROS 2 system graph. Then the categorization
of nodes, topics, services, and actions is discussed. As a
last step in the process, the inspection of the graph for
vulnerabilities is presented. Finally, the different views that
are generated by the tool and their purposes are introduced.

The first step is to procure the SROS policy files for
the ROS 2 system that is being subjected to the audit.
If the system already exists and is in use, there are two
scenarios. If the ROS 2 system is already using SROS to
encrypt communication then there exist some policy files
which are collected. If the ROS 2 system is not using
SROS MAC or when governance and permission files were
created without using a policy file, the policy file can be
generated via the built-in SROS generate policy functionality.
This results in a policy file that sets the access rule to
ALLOW for all connections that were observed during some
chosen time-span called spin-time. This is necessary as there
are situations where client nodes are only active to send

a request and receive a response and are destroyed right
afterward and would otherwise not be captured. Furthermore,
we constructed our program in such a way that if a graph of
the ROS 2 system in question was already constructed we
can add new information from policy files to this graph.

The policy files are then loaded and a ROS 2 graph of the
system is then constructed. This is done by converting the
XML files contained thereby identifying every profile within
each policy and adding them iteratively to the graph. ROS 2
nodes, topics, services, and actions are represented as graph
vertices. In addition to the type and name of each element,
which includes the namespace, the vertices are assigned their
enclave. Of the two vertices between which an edge can exist,
one has to be a ROS 2 node and the other a message channel.
These edges signify the direction of data flow between the
node and the channel. While the role of a node in relation to
a topic would be clear from the directional information alone
(i.e., if the data flows from the node, it is the publisher, and if
it flows towards the node, it is a subscriber), the same is not
true for services and actions since both have bidirectional
communication. This is why edges also store information
about the role the node has in relation to the channel. The
roles are publisher and subscriber for topics, server and client
for services, and caller and executor for actions. At this point,
the graph can be visualized from a general ROS 2 perspective
to get a graphic representation of the status quo of the system.
This also serves as a starting point for the next step namely
the identification of the flow of potential personal data.

At this point, the graph elements have to be evaluated in
terms of their relevance to the protection of personal data
within the graph. Ideally, this is done by one or more users
who together have the expertise to understand the code of
ROS 2 nodes and the implications of their behavior for the
protection of personal data. For this, these categorizations as
defined in Section II-A are collected in a JavaScript Object
Notation (JSON) file. For a start, all source nodes need to
be identified and entered into the tool. This is the most
important part of this step because vulnerabilities can only be
detected if it is clear where personal data is introduced into
the system. Then the remaining nodes should be categorized
into leaks, conduits, and sanitizers, while communication
channels are categorized into mundane and sensitive. This
is done by starting with the vertices directly connected to
a source node and iteratively inspecting the neighboring
vertices. The remaining nodes that do not fit the description
of either source, leak, or sanitizer are conduits. Similarly, if it
cannot be ensured that a message channel fits the description
of the mundane category, it is classified as sensitive.

After applying the labels from the categorization files to
the graph, our tool constructs a privacy graph based on the
ROS 2 graph. While the ROS 2 graph depicts the general data
flow in the ROS 2 system, the privacy graph is meant to only
represent the vertices and edges that potentially transport
personal data. To achieve the construction of such a privacy
graph, we start with a copy of the ROS 2 graph. Then,
all sanitizer nodes are removed because they can only be
endpoints for personal data. In the next step, all mundane

topics, services, and actions are deleted because they do
not transmit personal data. Next, all edges that represent
connections that are set to ’'DENY’ in the policy are removed
because no data is allowed to flow there. Lastly, all edges
for which at least one vertex was deleted are removed
as well, because without either of the vertices, there can
be no data flow. To check the resulting privacy graph for
vulnerabilities, all edge-disjointed paths from source to leak
nodes are determined. For this, paths that already contain
leaks not as endpoints are dismissed because their sub-paths
will already be contained in the list of paths. If this results
in at least one path, the system is considered vulnerable,
and the list of paths is returned to the user. The user can
now make appropriate changes to the ROS 2 system and
the categorization of nodes and vertices and run the analysis
again until no vulnerable paths remain. Finally, the tool then
does not consider the ROS 2 system to be vulnerable based
on the provided information and the resulting report can be
included in a privacy impact assessment for example.

In summary, two kinds of graphs were created. The ROS 2
graph represents the whole ROS 2 system, while the privacy
graph focuses on the elements of the system that handle
personal data. We also provide visualizations of these graphs
which both are presented in a way that expresses different
aspects of them.

The ROS 2 graph view shows the full ROS 2 system
as a network of nodes, topics, services, and actions. It
differentiates between nodes and communication channels
by the shape of the vertices and then between the different
types of channels by their color. Edges are either black
arrows signifying an allowed connection between a node and
a communication channel and its direction or grey to signify
an explicitly denied connection. This view is meant to serve
as an overview of the whole system and the connections
between its elements.

The privacy view contains only the relevant sub-graph
in which vulnerabilities could be. The full ROS 2 graph
serves as a starting point. From there, first, nodes that
are categorized as sanitizers, as well as topics, services,
and actions that are categorized as mundane, are removed
because they cannot transmit personal data. The same is done
for edges between nodes and communication channels that
are disallowed by the SROS policy. Then all vertices that
are not reachable from a source node are excluded since
no personal data can reach them within the ROS 2 system.
The remaining vertices are colored according to their privacy
categorization. Edges are either depicted in red if they are
part of a vulnerable path or in black if they are not. This view
is meant to focus on the relevant information when analyzing
a ROS 2 system for its vulnerabilities. An overview of all of
this described can be found in Figure 1.

C. Example; a factory system in developement

In this imaginary case, we tackle a scenario for the
planning of sanitizer nodes for a ROS system in its design
phase. In this scenario, a modern factory is being planned that
involves production steps where humans and robotic arms

‘ Policy Files } [Governance Files

[Permission Files

Graph Explorer Node

X Read by
Discovers

Y

Live ROS Graph

XML Parser

| Nodes Topics/Services/Actions
Build
@ Sensitive
ROS Graph
@ Mundane
Node Categorization
Conlbine @
) G
Privacy Graph
Analyze
Y

Critical Paths

Fig. 1. Schematics of the general architecture described in Section II-B. The Live ROS Graph is not used to build the ROS Graph yet in the implementation.
The same is true for the procession of the Governance and Permission Files by the XML Parser.

work collaboratively in spatial proximity to each other. To
enable this complex work, each robot has its own cameras,
which feed a safety and navigation system. The camera views
the area around the robot and, as such, can also monitor
human staff. The safety and navigation system takes the
video stream as an input and a pose of the humans in the
video. This pose is used to plan the future moves of the robot
to protect humans from collisions with robot arms. In some
cases, the robot needs to slow down or stop its actions to
avoid collisions. Such events are safety-critical incidents and
to analyze these events, the video feed from a few seconds
before such an event and a few seconds after should be saved.

To realize this project, first, a ROS 2 prototype is devel-
oped by the user which is depicted in Fig. 2. Since video data
generated in this section of the factory suffices to identify
identifiable natural persons (i.e., faces in the video can be
used to identify and track the factory staff), it is personal
data. This makes the company that plans and then runs the
factory and the staff involved in the respective activity data
controllers and data processors. This means that they are
mandated by Article 25 of the GDPR to implement appro-
priate technical and organizational data-protection measures,
such as data minimization already at the design stage. The

user also already has a filter that anonymizes faces in video
footage, but this is computationally expensive so its use is
limited.

The first step is to construct the ROS 2 graph for a proto-
type that does not use any SROS features yet. Then our tool
takes the privacy evaluations of nodes and communication
channels as input and returns output that serves both as a
pointer to which elements need to be evaluated and if the
evaluation is completed, as input for decisions about how to
rectify vulnerable paths within the system.

We constructed this synthetic example in a way that allows
the application of all the designed features of our tool. At
the same time, it is an attempt to model a real process as
closely as possible. At the start of this scenario, the user has
a prototype of the ROS 2 system, including the robot arm
and the security camera watching the restricted area around
it. First, the user generates a policy for the initial prototype
utilizing the SROS tools. This was done with the built-in
ROS 2 functionality. A spin-time of 30 seconds was enough
to generate a full working policy. This generated policy is
then given to the tool as input, which creates the ROS 2 graph
shown in Fig. 2. This is subsequently combined with a list
of personal data sources that were identified by the user. In
this case, the obvious sources are the robot’s camera and the

((zafely_camera)
N -

- ™
(robot_camera)

mh Dt_arm_mm;ﬂ.!:)!—b stop_arm H(_?Fnerg en D)-_stgb_

|

save_footage

safety_video

(navigator

new_pose

w’ér:h ive_se: Wefl

(a) State before data-flow analysis.

TN
(robot_camera)
Ay =

(navigator)

(safety_camera)

(:r:n'hnt_arm_mmrraii)ﬂ stop_arm <—>(em erg enc}-_st;p_:

new_pose

safety_video

save_footage

T omer

iltered_safety_video

frchive_server)

(b) State after data-flow analysis

ROS Service

ROS Topic

ROS Node

(c) Legend

Fig. 2.

The ROS 2 graph of the system under development in Section II-C before and after the usage of our tool till a satisfactory state was reached.

ROS Nodes are oval and colored gray, Topics are rectangular and blue, and Services are rectangular and of orange color.

camera surveying the restricted area around the robot. Then,
iteratively, the paths to potential leak nodes are inspected,
which means the potential leak nodes and communication
channels to them are categorized according to their behavior
relating to personal data. In total 5 runs of the tool for the
construction of the privacy graph were necessary to reach
a state where the privacy analysis was without vulnerable
paths. These steps were the steps taken in each of the runs.

1) Categorized the nodes robot camera and safety camera
as sources.

2) Categorized the node archive server as a leak node, the
nodes navigator and emergency stop as conduits and
the topics robot video and safety video as sensitive.

3) Categorized the topic new pose and the service stop
arm as mundane.

4) Installed the sanitizer node filter and filtered safety
video, a mundane topic, between the topic safety video
and the node archive server.

5) Categorized the service save footage as mundane

Step 0 was the starting position. In steps 1 and 2, the user

inspected the previously uncategorized nodes and channels
that could come into contact with personal data. This leads
to a situation where the path from the source node safety
camera via the sensitive topic safety video to the leak node
archive server does not contain any uncategorized elements
and is still vulnerable. At the same time, the other source
node, robot camera is no longer included in any vulnerable
paths. This means that while the robot camera node does
not need a filter to keep personal data from leaking, the
node safety camera does. For the placement of the filter,
there are two options: before or after the topic safety video.
The main difference is that the filter before the topic safety
video would publish the filtered video to the other subscriber
emergency stop as well. The filter after the topic safety video
would only filter the video for the archive server node. Since
the execution of the emergency stop’s service stop arm is
time-critical, the filter was placed after the topic safety video

in step 3. This left another possible vulnerable path from
safety camera to archive server via the service save footage
which upon inspection in step 4 was categorized as mundane
as well. In the end, the ROS 2 system was found to not
be vulnerable anymore. The goal of the user was therefore
achieved.

D. Example; Turtlebot

We searched for public examples of a complex ROS 2
system that included policy files for the whole system. The
only one that was found was the TurtleBot3[23] with SROS
policy files as described in [24]. The version of TurtleBot3
the policy was written for does not have a video camera but
instead a laser-based navigation system. Still, as the laser
system could be used to eavesdrop on humans[25], it is
treated as the source of personal data in this scenario. In
a self-study, the node that introduces this laser data was
classified as a source node. Further in any step run by
our program, various nodes and topics are inspected and
user-classified into various categories. After 6 steps and the
identification of a side channel between to mapping nodes
in the ROS 2 system, we are left with a connection to the
so-called recoveries server which is responsible for robot
recovery and was classified as a leak. This was due to the
server storing data without ensuring that no personal data
was stored or that storing such data was warranted. As this
node is responsible for robot recovery, storing of most recent
data is probably warranted but one would need to reasonably
ensure that it can not be externally read. We will publish the
full analysis of the TurtleBot3 alongside the release of our
software.

III. DISCUSSION

First, we discuss the limitations of our work. Then we
discuss possible future work. Finally, we will recapitulate
the central thoughts and findings made.

One limitation of the tool is that it only considers the
policy files SROS works with and not the governance and
permission files of DDS. Although it still covers the core
information, this makes the tool less flexible as we cannot
apply our work to general DDS systems. Another issue is
that for big ROS 2 systems without existing policy files, it
is impractical or very costly to create a policy without in-
depth knowledge. Workarounds are using multiple policies
for the whole system or dividing it up into subsystems and
analyzing them separately. Further, the tool is limited to ROS
2, while real systems often do not solely rely on ROS 2
but include communication channels and software that is
not using the ROS 2 framework as seen in the Turtlebot
case. Furthermore, there was a lack of real-world examples
of complex ROS 2 systems that already had a complete
SROS policy file describing their access controls. Because
there were no experts in law or privacy protection involved
in creating this tool, a more in-depth legal perspective on
the usefulness of the tool would be interesting. Still, the tool
helps to make a full analysis of the flow of private sensitive
data in ROS 2 easier and assists in providing reasonable
assurance that the controller or a third party has a legitimate
interest (in the sense of the GDPR) in processing the data in
the ROS 2 system.

For potential further work, we have the following sugges-
tions. One way to improve the tool could be the incorporation
of the DDS governance and permission files into the process.
Both are files that belong to the DDS security system.
They are created in the process of applying SROS methods
to ROS 2 systems. Governance files document the general
settings for a security enclave. While the tool so far assumes
default governance settings as provided by SROS commands,
reading the governance files can improve the flexibility of
the tool for different environments. Permission files each
contain the access privileges of one DDS node. While they
can be created from policy files, and as such, all their
information would be contained in a concentrated form in
these policy files, reading the permission files directly can
have its benefits. For one, the permission files directly set
the conditions in the security layer of DDS and are signed
by the CA. As such, they would be better suited for stronger
threat models than the one used.

So far there is no modeling of the ROS 2 graph at runtime,
which limits the applicability to dynamic ROS 2 systems.
Creating a policy file based on the current ROS 2 graph uses
the built-in functionality of SROS. A custom implementation
could detect elements of the ROS 2 graph at runtime and
directly add them to the graph, simplifying the process for
bigger systems. This would make the security system more
flexible and would allow certain nodes to be added while
still keeping the privacy analysis valid.

Similar to established methods[26], code comments could
be one way to increase automation in this tool. Users
could annotate nodes and the data they transmit via topics,
services, and actions while developing them. From these
comments, the lists for source, conduit, and leak nodes could
be generated automatically. After changes to the system, only

the labels of the edited sections of nodes would have to be
reevaluated. With access to the code of running nodes, the
system could even evaluate the privacy status of ROS 2 at
runtime.

Another addition that might make our tool more practical
and versatile is the addition of non-ROS 2 graph elements.
As for now, it is limited to ROS2 nodes interacting with
each other. These elements could, for example, model exter-
nal servers, storage devices, or non-ROS 2 communication
channels between nodes like shared memory. That way,
things that are right now only indirectly expressed via the
categorization of ROS 2 elements can be made explicit in the
graph. This would mean extending the categorization system
to include information like the duration of storage for storage
devices. It could help analyze a wider range of threats.

The examples presented are each limited to one kind of
personal data, but larger and more complex systems are
likely computing different types simultaneously. In that case,
a user could benefit from the separation and visualization
of different personal data categories within the tool. The
differentiation could be based on the computational data type
(e.g., string, integer, or visual data), the GDPR category (e.g.,
physiological, genetic, or economic data), the sensitivity of
the data as described in Article 9 of the GDPR (e.g., espe-
cially protected data like religious affiliation and biometric
data have to be handled differently than an online identifier),
or on a combination of those options. At this point, one
limitation is that the user would have to run the tool for each
kind of data separately to get individual results for multiple
categories. A differentiation could, for example, mark a node
as a sanitizer for one kind of personal data and a potential
leak for a different kind because it only transmits one type of
data to an untrusted outside system but computes the other
kind internally.

ROS 2 does not support the optional DDS security data
tagging in the Service Plugin Interface (SPI). If that changed
or workarounds based on DDS implementations support-
ing data tagging were created, this could offer a different
approach to tracing the flow of personal data. Instead of
building a model of the ROS 2 graph, inspecting it from
the outside, and intervening when the structure allows data
to leak, data could directly be tagged as sensitive and limited
in the nodes that could handle it. This seems like a promising
way to cut the necessary effort users have to expend to secure
personal data and could be one way to extend the ROS 2
framework.

One project that could decrease the workload for this tool
user could be an automated categorization of nodes according
to their relationship to personal data using large language
models. Current code generation tools like GitHub’s Copilot
are already capable of suggesting comments based on the
code context. Similar models could be trained to recognize
typical structures in nodes that collect or potentially leak
personal data and either directly suggest privacy labels or
provide code comments.

Aside from the suggestions for improvements to the work
we just made, we still achieved the following. We modeled

data flow and protection in ROS 2 and created a tool that
can assist data controllers and data processors in describing
the processing of personal data and finding vulnerabilities in
the privacy of ROS 2 systems. A model was presented that
described different privacy roles for elements of the ROS
2 graph. This was implemented in a tool that used SROS
features to map the graph, apply user-generated privacy
labels to its vertices, and analyze the result for possible paths
that might lead personal data out of the system. This tool
was tested both on a synthetic and a real-world example
and worked well in our self-study. Hence the tool can play
a crucial role in helping guarantee compliance of robotic
systems with GDPR rules or similar privacy laws.

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

“ROS 2 private data flow analysis tool and experiments,” Feb. 2024.
[Online]. Available: https://github.com/JonasWoh/ROS2PrivacyGraph
C. Lutz and A. Tamo-Larrieux, “The robot privacy paradox:
Understanding how privacy concerns shape intentions to use
social robots,” Human-Machine Communication, vol. 1, p. 87-111,
2020. [Online]. Available: https://search.informit.org/doi/10.3316/
INFORMIT.097053479720281

G. V. Cervi, “Why and how does the eu rule global digital policy:
an empirical analysis of eu regulatory influence in data protection
laws,” Digital Society, vol. 1, no. 2, Sep. 2022. [Online]. Available:
http://dx.doi.org/10.1007/s44206-022-00005-3

S. Wachter, B. Mittelstadt, and L. Floridi, “Transparent, explainable,
and accountable ai for robotics,” Science Robotics, vol. 2, no. 6, p.
eaan6080, 2017. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.aan6080

H. Felzmann, E. Fosch-Villaronga, C. Lutz, and A. Tamo-Larrieux,
“Robots and transparency: The multiple dimensions of transparency
in the context of robot technologies,” IEEE Robotics & Automation
Magazine, vol. 26, no. 2, pp. 71-78, 2019.

S. Wachter, B. Mittelstadt, and L. Floridi, “Transparent, explainable,
and accountable ai for robotics,” Science robotics, vol. 2, no. 6, p.
eaan6080, 2017.

T. Hoffmann and G. Prause, “On the regulatory framework for last-
mile delivery robots,” Machines, vol. 6, no. 3, p. 33, 2018.

K. Wuyts, L. Sion, and W. Joosen, “Linddun go: A lightweight
approach to privacy threat modeling,” in 2020 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW). 1EEE, 2020,
pp. 302-309.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

G. Spilere Nandi, D. Pereira, J. Proenca, E. Tovar, A. Rodriguez,
and P. Garrido, “Secure integration of extremely resource-constrained
nodes on distributed ros2 applications,” 2023. [Online]. Available:
https://doi.org/10.12688/openreseurope.16108.1

R. White, G. Caiazza, H. Christensen, and A. Cortesi, “Procedurally
provisioned access control for robotic systems,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018. [Online]. Available: https://doi.org/10.1109/IROS.2018.8594462
K. Hjerppe, J. Ruohonen, and V. Leppinen, Annotation-Based
Static Analysis for Personal Data Protection. Cham: Springer
International Publishing, 2020, pp. 343-358. [Online]. Available:
https://doi.org/10.1007/978-3-030-42504-3-22

M. Dowd, J. McDonald, and J. Schuh, The art of software security as-
sessment: Identifying and preventing software vulnerabilities. Pearson
Education, 2006.

Y. Patel, P. H. Rughani, and D. Desai, “Analyzing security
vulnerability and forensic investigation of ros2: A case study,”
in Proceedings of the 8th International Conference on Robotics
and Artificial Intelligence, ser. ICRAI "22. New York, NY, USA:
Association for Computing Machinery, 2023, p. 6-12. [Online].
Available: https://doi.org/10.1145/3573910.3573912

V. DiLuoffo, W. Michalson, and B. Sunar, “Robot operating system
2: The need for a holistic security approach to robotic architec-
tures,” International Journal of Advanced Robotic Systems, vol. 15,
p. 172988141877001, 05 2018.

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

V. Mayoral-Vilches, R. White, G. Caiazza, and M. Arguedas, “Sros2:
Usable cyber security tools for ros 2,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2022,
pp. 11253-11259.

R. R. Beck, A. Vijeev, and V. Ganapathy, “Privaros: A framework
for privacy-compliant delivery drones,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 181-194. [Online]. Available:
https://doi.org/10.1145/3372297.3417858

D. J. Butler, J. Huang, F. Roesner, and M. Cakmak, “The privacy-
utility tradeoff for remotely teleoperated robots,” in Proceedings of
the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction, ser. HRI *15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 27-34. [Online]. Available:
https://doi.org/10.1145/2696454.2696484

S. Jana, A. Narayanan, and V. Shmatikov, “A scanner darkly: Pro-
tecting user privacy from perceptual applications,” in 2013 IEEE
Symposium on Security and Privacy, 2013, pp. 349-363.

M. H. Abbasi, B. Majidi, M. Eshghi, and E. H. Abbasi, “Deep
visual privacy preserving for internet of robotic things,” in 2019 5th
Conference on Knowledge Based Engineering and Innovation (KBEI),
2019, pp. 292-296.

S. Behnel, M. Faassen, and I. Bicking, “Ixml: Xml and html with
python,” 2005.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 — 15.

R. Amsters and P. Slaets, Turtlebot 3 as a Robotics Education
Platform. Cham: Springer International Publishing, 2020, pp. 170-
181.

V. Mayoral-Vilches, R. White, G. Caiazza, and M. Arguedas, “Sros2:
Usable cyber security tools for ros 2,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022, pp.
11253-11259.

S. Sami, Y. Dai, S. R. X. Tan, N. Roy, and J. Han, “Spying
with your robot vacuum cleaner: eavesdropping via lidar sensors,”
in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, ser. SenSys *20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 354-367. [Online]. Available:
https://doi.org/10.1145/3384419.3430781

K. Hjerppe, J. Ruohonen, and V. Leppénen, Annotation-Based
Static Analysis for Personal Data Protection. Cham: Springer
International Publishing, 2020, pp. 343-358. [Online]. Available:
https://doi.org/10.1007/978-3-030-42504-3_22

