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Abstract
In the present work the geometrically exact beam model is formulated in terms
of unit quaternions. A projection-based discretization approach is proposed
which is based on a normalization of the quaternion approximation. The dis-
cretization relies on NURBS shape functions and, alternatively, on Lagrangian
interpolation. The redundancy of the quaternions is resolved by applying the
method of Lagrange multipliers. In a second step the Lagrange multipliers are
eliminated circumventing the need to solve saddle point systems. The resulting
finite elements retain the objectivity of the underlying beam formulation. Opti-
mal rates of convergence are observed in representative numerical examples.
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1 INTRODUCTION

In many engineering applications it becomes necessary to simulate the behavior of slender structures. It is well-known
in physics and engineering that slender structures can be approximated by beam models. One of the most impor-
tant beam formulations suitable for the treatment of large deformations is the so-called geometrically exact beam
model.1–3 In the literature, it can also be found under many other names such as Simo–Reissner formulation, (special)
Cosserat rod, or nonlinear Timoshenko beam. The geometrically exact beam model is described by quasi-linear par-
tial differential equations, making a numerical solution method necessary. To this end, the finite element method is
commonly applied.

Instead of using continuum elements, beam finite elements can achieve a significant size-reduction of the algebraic
system to be solved. However, the reduction from a three-dimensional continuum to a beam model comes at a cost.
Instead of a linear (or flat) configuration manifold in the case of continua, it becomes necessary to deal with a nonlinear
manifold.2 This is due to the fact that the orientation of the cross-sectional areas of the beam is independently described
from the placement of its centerline. Accordingly, rotations of the cross-sections need to be accounted for. Rotation tensors
belong to the special orthogonal group SO(3), which forms an embedded smooth nonlinear manifold.4–6

Thus, in the design of finite elements for beams it becomes necessary to discretize either the special orthogonal group
SO(3) or some parametrization of it. Multiple different parametrizations of SO(3) exist, for example, different global
rotational angle descriptions such as Euler or Tait angels. Even though they represent a set of minimal coordinates, all
parametrizations with three global angles exhibit singularities.7
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Another approach to handle the special orthogonal group was introduced in References 8–10. There, a moving frame
consisting of three so-called directors is considered. The director formulation coincides with the direct use of rotation ten-
sors belonging to SO(3).11–13 Thus, the corresponding director interpolation circumvents any parametrization of SO(3).
However, in this approach the orthonormality constraint on the director frame is typically relaxed to the nodal points
which complies with the interpolatory nature of the Lagrange shape functions. However, this implies that the director
interpolation is not consistent with the underlying configuration manifold outside the nodal points. Moreover, this dis-
cretization approach cannot be applied in the framework of isogeometric analysis, since NURBS-based shape functions
are not interpolatory,14 so that the imposition of the orthonormality constraint in the control points would make no sense
in general.

A very interesting alternative for the parametrization of the rotation group are unit quaternions.15,16 One major
advantage of unit quaternions is that they do not exhibit any singularities while staying close to the number of minimal
coordinates. Furthermore, in contrast to rotational angles no trigonometric functions, which are in general computation-
ally expensive, need to be evaluated to represent rotations.17 They are thus often employed in computer graphics.15,17

Unit quaternions were already applied multiple times to describe rotations in the context of beams. In the early work,18

the geometrically exact beam model has been formulated in terms of unit quaternions. By applying a normalization pro-
cedure the unit-length of the quaternions and thus the orthogonality of the rotation tensor is ensured. However, finite
elements are not considered in Reference 18.

In the context of beam finite elements, the interpolation of quaternions along with a subsequent normalization is
addressed in Reference 11. However, a detailed treatment of the resulting finite element formulation is lacking. The option
of employing spherical linear interpolation (SLERP) is also addressed in Reference 11. While in Reference 11 the focus
lies on the use of rotation matrices, a quaternion-based SLERP formulation is investigated in Reference 12.

The SLERP approach is well-known from computer graphics15,16 and connects two points on the manifold by a
geodesic. Sander19 introduces the concept of geodesic finite elements and applies it to the geometrically exact beam model
formulated in terms of quaternions. The resulting approximation of the rotation field is equivalent to the quaternion-based
SLERP approach. In essence, the SLERP discretization of rotations in the geometrically exact beam model can be traced
back to Reference 20. At that time, the main motivation behind the work20 was to obtain objective and path-independent
beam finite elements. Indeed, early finite element discretizations of the geometrically exact beam model21,22 were based
on the interpolation of incremental rotations, which again live in a linear space, but were shown to be path-dependent.20

Similarly, the interpolation of total rotations23,24 was shown to yield nonobjective finite element formulations.
Recently, the SLERP-type approach to the discretization of SO(3)20 has been extended to the special Euclidean group

SE(3).25,26 Although this approach leads to quite involved formulations, they come with the advantage of being free of
locking.25,26

In Reference 17 quaternions are interpolated by using Lagrange shape functions. The unit-length constraint on the
quaternions is weakly enforced by means of the Lagrange multiplier method. The algebraic nature of the quaternions
is used to yield semi-discrete equations of polynomial nonlinearity, which in turn is exploited in the numerical solution
approach.

Besides classical Bubnov–Galerkin finite element methods, collocation methods for the discretization of the geomet-
rically exact beam model relying on unit quaternions are investigated in References 27 and 28. Moreover, an isogeometric
collocation method is applied to the quaternion-based geometrically exact beam model in Reference 29.

Using quaternions in the interpolation of finite rotations offers the possibility of applying a normalization pro-
cedure to ensure the pointwise orthonormality of the director frame. This way, a consistent approximation of finite
rotations can be achieved. As pointed out above, quaternion interpolation and subsequent normalization has already
been addressed in Reference 11 and was further investigated in References 13 and 30. This approach falls into the
broader class of projection-based finite elements dealt with in Reference 31. In particular, it is shown in Reference 31 that
projection-based finite elements are closely related to geodesic finite elements and yield optimal order of convergence. In
the case of Reissner-Mindlin shells a projection-based finite element approach was proposed in Reference 32 to maintain
the unit-length of the director field throughout the shell finite elements.

In the present work we use unit quaternions to describe the geometrically exact beam model. Of course, this approach
is not new and has been followed in a number of previous works, many of which have been mentioned above. However,
to the best of our knowledge, the discretization by means of unit quaternions has not been investigated in the framework
of the isogeometric analysis of geometrically exact beams. It is one of the main goals of the present work to fill this
gap. In particular, we present an in-depth treatment of the projection-based quaternion discretization relying on both
Non-Uniform Rational B-Splines (NURBS) and Lagrange shape functions.
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To resolve the redundancy of the quaternions, we investigate two alternative options for the enforcement of the
unit-length constraint on the discrete quaternion field. While both alternative procedures rely on the Lagrange multiplier
method, we show that one procedure is particularly well-suited for the size-reduction of the resulting algebraic problem.
The size-reduction is based on the elimination of the discrete Lagrange multipliers without affecting the approximation
properties of the underlying space discretization. Moreover, the size-reduction circumvents the necessity to solve an alge-
braic system with saddle point structure. A similar size-reduction procedure has previously been applied in the context
of the director interpolation8 and can be extended to the realm of dynamics.33

The rest of this work is structured as follows. In Section 2, we give a brief summary of quaternions and introduce a
specific matrix notation which will be used in the sequel. Section 3 covers the geometrically exact beam model formulated
in terms of quaternions. The projection-based finite element discretization of the underlying beam theory is dealt with in
Section 4. The results of representative numerical examples are presented in Section 5. An appendix contains additional
details of the proposed method such as the formulation of beam intersections in Appendix D. Eventually, conclusions are
drawn in Section 6.

2 QUATERNIONS

This section provides a short summary of main properties pertaining to quaternions needed in the sequel. We refer to
References 15,34,35 for more background information. Denoting the set of quaternions by H, a quaternion q ∈ H is
given by

q = (q0,q) (1)

and consists of a scalar real part q0 ∈ R and a vector part q ∈ R3. The product of two quaternions is defined by

q◦p = (q0p0 − q ⋅ p, q0p + p0q + q × p), (2)

where the dot on the right-hand side denotes the standard scalar product and the cross represents the cross product of
two vectors in R3. Due to the presence of the cross product in the vector part of the resulting quaternion, the quaternion
product does not commute. The conjugate of a quaternion q ∈ H is defined by

q = (q0,−q). (3)

Furthermore, the norm of a quaternion is defined as for vectors in R4 by

||q|| =
√
q ⋅ q =

√

q2
0 + q2

1 + q2
2 + q2

3. (4)

Note that the norm is also referred to as the length of the quaternion. With this the inverse of a quaternion q−1 can be
computed via

q−1 = 1
||q||2q (5)

so that

q◦q−1 = (1, 0), (6)

where (1, 0) ∈ H is the identity element.

2.1 Unit quaternions

Quaternions of unit length are of special interest since they can be used to represent rotations. Imposing the unit-length
constraint q ⋅ q = 1, we obtain the set of unit quaternions
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4 of 27 WASMER and BETSCH

S3 = {q ∈ H | q ⋅ q = 1} (7)

which coincides with the unit sphere S3 in R4. Importantly, S3 is closed under quaternion multiplication introduced in
(2). The rotation of a vector a ∈ R3 can be expressed in terms of a unit quaternion q ∈ S3 through

q ◦ (0, a) ◦ q = (0, a′), (8)

where a′ ∈ R3 is the rotated vector, which can also be written as a′ = R(q)a in terms of a rotation tensor R(q) ∈ SO(3),
the special orthogonal group in R3. The expression for the rotation tensor R ∶ S3 → SO(3) follows from the left-hand side
of (8) by making use of the quaternion multiplication (2). Accordingly,

R(q) = (q2
0 − q ⋅ q)I + 2q⊗ q + 2q0q̂. (9)

Here, ⊗ stands for the dyadic product and q̂ is a skew-symmetric tensor, which follows from the relationship q × a = q̂a
for any a ∈ R3. Writing vector q ∈ R3 with respect to canonical base vectors ei ∈ R3 (i = 1, … , 3) as q = qiei, where the
summation convention applies to repeated indices, the corresponding matrix representation of q̂ is given by

q̂ =
⎡
⎢
⎢
⎢
⎣

0 −q3 q2

q3 0 −q1

−q2 q1 0

⎤
⎥
⎥
⎥
⎦

. (10)

It is worth noting that the quaternion representation of SO(3) does not exhibit any singularities which is in contrast to
alternative representations in terms of three parameters.7 Nevertheless, the parametrization of SO(3) using unit quater-
nions is not unique as it covers the rotational group twice. In particular, formula (9) yields the same rotation tensor for q
and −q.

2.2 Matrix representations of quaternion multiplication

In what follows it proves convenient to write the quaternion product defined in (2) by using specific matrices. Accordingly,
the product of two quaternions q,p ∈ H

v = q◦p (11)

can also be written as

v = Ql(q)p = Qr(p)q (12)

by using matrices Ql(q),Qr(q) ∈ R4×4 given by

Ql(q) =
[

q G(q)⊤
]

Qr(q) =
[

q E(q)⊤
]

, (13)

where the 3 × 4 matrices

G(q) =
[

− q q0I3 − q̂
]

E(q) =
[

− q q0I3 + q̂
]

(14)

have been used. The rotation tensor (9) can now be written in the form

R(q) = E(q)G(q)⊤ (15)

for any q ∈ S3. Further useful algebraic relationships involving the matrices E(p) and G(p) for any p ∈ H can be
summarized as follows:
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WASMER and BETSCH 5 of 27

E(p)p = G(p)p = 0,
E(p)E(p)⊤ = G(p)G(p)⊤ = ||p||2I3,

E(p)⊤E(p) = G(p)⊤G(p) = ||p||2I4 − p⊗ p.
(16)

Moreover, for p,u ∈ H

E(p)u = −E(u)p,
G(p)u = −G(u)p,

E(p)G(u)⊤ = E(u)G(p)⊤.
(17)

We further define the skew-symmetric matrix
+
v ∈ R4×4 mapping any vector v ∶ R3 → R4×4 such that

E(p)⊤v =
+
vp where

+
v =

[
0 −v⊤

v v̂

]

(18)

for any p ∈ H and v ∈ R3.

3 GEOMETRICALLY EXACT BEAM FORMULATION

3.1 Configuration space of the beam

The beam formulation relies on the reference curve 𝛗 ∈ R3 parametrized in terms of the arc-length s ∈ [0,L], where L is
the length of the beam in the reference configuration (Figure 1). To every point s on the reference curve there are attached
two directors d1(s),d2(s) ∈ R3 which span the cross-sectional plane. The third director d3(s) ∈ R3 points into the normal
direction of the cross-sectional plane. The three directors are assumed to be mutually orthonormal so that the director
frame can be expressed in terms of a rotation tensor R(s) ∈ SO(3) via

di(s) = R(s)ei (19)

for i = 1, … , 3, where the Cartesian base vectors ei ∈ R3 form an inertial reference frame. The configuration space of the
geometrically exact beam model can be written as

̃Q = {(𝛗,R) ∶ [0,L] → R
3 × SO(3)}. (20)

F I G U R E 1 Sketch of a geometrically exact beam configuration.
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6 of 27 WASMER and BETSCH

In the present work we employ unit quaternions to represent the rotation tensor. Accordingly, instead of (19), the directors
are expressed in terms of the unit quaternion q(s) ∈ S3 through the relationship

(0,di(s)) = q(s)◦(0, ei)◦q(s). (21)

Alternatively, we may write di = R(q)ei, where the rotation tensor R ∶ S3 → SO(3) assumes the form (9). Correspond-
ingly, the configuration space of the beam is now given by

Q = {(𝛗,q) ∶ [0,L]→ R
3 × S3}. (22)

Since q ∈ S3 implies the unit-length condition q ⋅ q = 1, the derivative of this condition with respect to the arc-length
yields q

,s ⋅ q = 0, so that q
,s ∈ TqS3, the tangent space of S3 at q ∈ S3 given by

TqS3 = {v ∈ H | q ⋅ v = 0}. (23)

3.2 Strain measures

In this section we provide the strain measures of the geometrically exact beam model based on the parametrization
(𝛗,q) ∈ Q. We start with the strains associated with bending and twist which can be arranged in vector K ∈ R3. Vector
K is defined as axial vector associated with the skew-symmetric tensor*

̂K = R⊤R
,s. (24)

Since

R
,s =

(
E(q)G(q)⊤

)

,s = 2E(q)G(q
,s)⊤ (25)

(24) yields

̂K = 2G(q)G(q
,s)⊤, (26)

where (17)3 and (16)1 have been used. It can be shown that the axial vector corresponding to (26) is given by

K = 2G(q)q
,s. (27)

For completeness this is shown in Appendix A. Note that strain measure (27) can also be written as

(0,K) = 2Ql(q)⊤q,s = 2q◦q
,s. (28)

The second strain measure of the geometrically exact beam model is defined by𝚪 = R⊤𝛗
,s − e3 and accounts for transverse

shear and normal strain. The representation of the rotation group by means of unit quaternions leads to

𝚪 = R(q)⊤𝛗
,s − e3, (29)

where the rotation tensor has been introduced in (15)

(0,𝚪) = q◦(0,𝛗
,s)◦q − (0, e3). (30)

3.2.1 Frame-indifference of the strain measures

The strain measures of the beam theory at hand are invariant under rigid motions. The so-called frame-indifference (or
objectivity) of the strains can be shown by considering a superposed rigid motion of the beam defined by
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WASMER and BETSCH 7 of 27

(0,𝛗#) = r◦(0,𝛗)◦r + (0, c),
q# = r◦q.

(31)

Here, r ∈ S3 represents an arbitrary rotation while c ∈ R3 represents an arbitrary translation. Inserting (31)1 into (28)
yields

(0,K#) = 2q#◦q#
,s

= 2q◦r◦r◦q
,s

= 2q◦q
,s

= (0,K)

(32)

which shows the invariance of K under rigid motions. Similarly, substituting from (31) into (30) yields

(0,𝚪#) = q#◦(0,𝛗#
,s)◦q# − (0, e3)

= q◦r◦r◦(0,𝛗
,s)◦r◦r◦q − (0, e3)

= q◦(0,𝛗
,s)◦q − (0, e3)

= (0,𝚪).

(33)

In the present work we aim at a beam finite element formulation that inherits the frame-indifference of the strain
measures from the underlying continuous formulation, compare References 8 and 20.

3.3 Weak form

The weak form of the equilibrium problem pertaining to the present beam formulation can be written in the standard
form

Gint(𝛗,q; δ𝛗, δq) = Gext(𝛗,q; δ𝛗, δq) (34)

for (𝛗,q) ∈ Q and arbitrary admissible variations (δ𝛗, δq) ∈ T(φ,q)Q lying in the tangent space

T(𝛗,q)Q = {(δ𝛗, δq) ∶ [0,L] → R
3 × TqS3}. (35)

The virtual work contribution of the internal forces results from

Gint(𝛗,q; δ𝛗, δq) = ∫
L

0
δ𝚪 ⋅N + δK ⋅Mds. (36)

For the stress resultants N and M Saint–Vernant type constitutive laws of the form N = D1𝚪 and M = D2K are assumed.
The stiffness tensors are given by D1 = diag(GA,GA,EA) and D2 = diag(EI1,EI2,GIp), respectively. Starting from the
strain measures (27) and (29), a straightforward calculation taking into account (17) yields

Gint(𝛗,q; δ𝛗, δq) = ∫
L

0

(
δ𝛗

,s ⋅ E(q) + 2𝛗
,s ⋅ E(δq)

)
G(q)⊤N

+ 2
(
δq

,s ⋅ G(q)⊤ − δq ⋅ G(q
,s)⊤

)
Mds.

(37)

The virtual work contribution of the external loading is given by

Gext(𝛗,q; δ𝛗, δq) = ∫
L

0
δ𝛗 ⋅ n + δq ⋅ 2E(q)⊤m ds, (38)
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8 of 27 WASMER and BETSCH

where n ∈ R3 and m ∈ R3 are prescribed external forces and torques, respectively, acting along the centerline of the
beam. Note that, for simplicity, boundary terms have been neglected in the above description.

4 FINITE ELEMENT FORMULATION

We aim at a finite element formulation of the present beam model that both inherits the objectivity of the strain measures
and preserves the unit-length of the quaternion field governing the rotation of the director frame throughout the discrete
beam formulation. For that purpose the unit quaternion field is approximated by

qh(s) =
ph(s)

‖
‖p

h(s)‖‖
, where ph(s) =

n∑

i=1
Ni(s)pi. (39)

As basis functions Ni(s)we employ either NURBS shape functions (see Section 4.1 for further details) or standard Lagrange
shape functions. Correspondingly, pi ∈ H are either the values at the control points or the nodal values of the discretized
quaternions, respectively.

Note that the normalization of the discretized quaternion field (39) ensures that the discrete quaternions belong point-
wise to the set of unit quaternions which are employed to parametrize the rotation manifold. That is, qh ∈ S3 holds
throughout the discrete beam formulation.

Taking the derivative of (39) with respect to the arc-length yields

qh
,s =

ph
,s

‖
‖p

h‖
‖
− ph 1

‖
‖p

h‖
‖

3

(
ph ⋅ ph

,s
)
= 1

‖
‖p

h‖
‖

P(qh)ph
,s, (40)

where relation (4) has been taken into account. Moreover, P(qh) is a projector onto the tangent space of the unit sphere
given by Reference 37

P(qh) = I4 − qh
⊗ qh

. (41)

Thus (40) ensures that qh
,s ∈ Tqh S3. Similarly, variations of qh ∈ S3 can be written in the form

δqh = 1
‖
‖p

h‖
‖

P(qh)δph (42)

ensuring that δqh ∈ Tqh S3 for any

δph(s) =
n∑

i=1
Ni(s)δpi. (43)

Concerning the finite element approximation of the center line of the beam we apply the standard discretization

𝛗h(s) =
n∑

i=1
Ni(s)𝛗i (44)

along with

δ𝛗h(s) =
n∑

i=1
Ni(s)δ𝛗i (45)

for the corresponding test function. Again, 𝛗i, δ𝛗i ∈ R3 play the role of either the respective values at the control points,
or the nodal values. In the sequel, we shall refer to the ith point of the discretization as control/nodal point.
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WASMER and BETSCH 9 of 27

We emphasize that the present discretization approach respects the configuration space of the geometrically exact
beam model in the sense that (𝛗h

,qh) ∈ Q and (δ𝛗h
, δqh) ∈ T(𝛗h

,qh)Q, respectively.

4.1 NURBS shape functions

As mentioned above, in addition to standard Lagrange shape functions we make use of NURBS shape functions which
are typically applied in isogeometric analysis (IGA), see Reference 14. A comprehensive introduction to the topic of
NURBS with many useful algorithms for their manipulation can be found in Reference 38. NURBS are based on B-Spline
functions. Each B-Spline function is defined through a knot vector†

Ξp = {0, … 0
⏟⏟⏟

p+1

, 𝜉p+2, … , 𝜉nele+p+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nele−1

, 1, … 1
⏟⏟⏟

p+1

}, (46)

where the index p denotes the polynomial degree of the shape function and nele the number of curve segments. The knot
vector defines the number of finite elements as well as the smoothness of the basis. Knots in the interior with multiplicity
k > 1 reduce the smoothness by Cp−k. Each unique entry defines the boundary of a finite element. Classically open knot
vectors are employed in the IGA, which are defined by repeating the first and last entry p + 1 times. In the case of open
knot vectors, the basis functions are interpolatory at the beginning (𝜉 = 0) and the end (𝜉 = 1). Using the Cox-de-Boor
recursive algorithm14,38 a B-Spline basis can be computed via

̂Ni,0(𝜉) =

{
1 if 𝜉i ≤ 𝜉 < 𝜉i+1,

0 otherwise,

̂Ni,p(𝜉) =
𝜉 − 𝜉i

𝜉i+p − 𝜉i
̂Ni,p−1(𝜉) +

𝜉i+p+1 − 𝜉
𝜉i+p+1 − 𝜉i+1

̂Ni+1,p−1(𝜉),

(47)

where division by zero is defined as zero ( (•)
0
≔ 0). The rational NURBS basis is constructed from

Ni(𝜉) =
̂Ni,p(𝜉)wi

W(𝜉)
=

̂Ni,p(𝜉)wi
∑nCP

î=1Nî,p(𝜉)wî
, (48)

where wi is the ith weight of the ith control point. If all weights are set to one (wi = 1) the NURBS basis coincides with
the B-Spline basis. As already mentioned before, in the present work both Lagrange shape functions and NURBS shape
functions are denoted as Ni(𝜉).

4.2 Discrete strain measures

The discretized strain measures result from inserting the approximations (39) and (44) into the strain measures (27) and
(29). Accordingly, strain measure (27) leads to the discrete counterpart

Kh = 2G(qh)qh
,s. (49)

Inserting expression (40) for qh
,s into (49) and taking into account (16)1 eventually leads to the discretized strain measure

Kh = 2
‖
‖p

h‖
‖

2 G(ph)ph
,s. (50)

Similarly, the discretized version of strain measure (29) can be written in the form

𝚪h = 1
‖
‖p

h‖
‖

2 R(ph)⊤𝛗h
,s − e3. (51)
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10 of 27 WASMER and BETSCH

The discrete strain measures Kh and 𝚪h inherit the frame-indifference of the underlying continuous strain measures, as
will be shown below.

4.2.1 Frame-indifference of the discrete strain measures

Similar to the continuous case, frame-indifference of the discrete strain measures can be shown by considering a super-
posed rigid motion of the discrete model of the beam. Despite the non-interpolatory nature of the NURBS basis, affine
transformations of NURBS curves can be achieved by applying these transformations directly to the control points,14

which is in complete analogy to the use of standard Lagrange shape functions. Correspondingly, a rigid motion of the
control/nodal points is characterized by

𝛗#i = R(q)𝛗i + c,
p#i = r◦pi = Ql(r)pi.

(52)

As before, r ∈ S3 represents an arbitrary rotation with associated rotation tensor R(r) = E(r)G(r)⊤. It can be easily verified
that (52)2 implies

ph# = r◦ph = Ql(r)ph (53)

and

‖
‖
‖
ph#‖‖

‖

2
= ph# ⋅ ph# = ph ⋅Ql(r)⊤Ql(r)ph = ph ⋅ ph = ‖

‖
‖
ph‖‖

‖

2
, (54)

where Ql(r)⊤Ql(r) = I4 has been used. Now (50) gives rise to

Kh# = 2
‖
‖p

h#‖
‖

2 G(ph# )ph#
,s

= 2
‖
‖p

h‖
‖

2 G(r◦ph)Ql(r)ph
,s.

(55)

It can be verified by a straightforward calculation that the identity

G(r◦ph) = G(ph)Ql(r)⊤ (56)

holds. Using the last equation along with the orthogonality of Ql(r) leads to the result Kh# = Kh, which confirms the
invariance of the discrete strain measure Kh under rigid motions. Similarly, we consider

𝚪h# = 1
‖
‖p

h#‖
‖

2 R(ph# )⊤𝛗h#
,s − e3, (57)

where (44) together with (52)1 implies

𝛗h#
,s = R(r)

n∑

i=1
Ni

,s𝛗i + c
n∑

i=1
Ni

,s = R(r)𝛗h
,s. (58)

Here, the partition of unity property
∑n

i=1Ni = 1 has been used which holds for both the NURBS and the Lagrange shape
functions. We thus obtain

𝚪h# = 1
‖
‖p

h‖
‖

2 R(r◦qh)⊤R(r)𝛗h
,s. (59)
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WASMER and BETSCH 11 of 27

Since the identity

R(r◦p) = R(r)R(p) (60)

holds for any p ∈ H, we eventually obtain

𝚪h# = 1
‖
‖p

h‖
‖

2 R(ph)⊤R(r)⊤R(r)𝛗h
,s

= 1
‖
‖p

h‖
‖

2 R(ph)⊤𝛗h
,s

= 𝚪h

(61)

which corroborates the frame-indifference of the discrete strain measure 𝚪h.

4.3 Discrete weak form

The finite element formulation essentially follows from inserting the finite element approximations described above into
weak form (34). Although we ensure that (qh

, δqh) ∈ TS3 for all s ∈ [0,L] from the outset, we still have to take care of the
redundancy of (pi, δpi) ∈ H ×H. In essence, this redundancy occurs due to the fact that the quaternion variables in the
control/nodal points belong to a 4-dimensional space, whereas dim(S3) = 3. To account for the redundancy, we impose
the unit-length constraint on the quaternion field ph ∈ H by applying the method of Lagrange multipliers. Accordingly,
we introduce the discretized weak form

Gint(𝛗h
,qh; δ𝛗h

, δqh) + G
𝜆
(ph

, 𝜆

h; δph) = Gext(𝛗h
,qh; δ𝛗h

, δqh), (62)

where Gint and Gext are given by (37) and (38), respectively. Furthermore, G
𝜆

accounts for the unit-length constraint on
ph ∈ H. In this connection, 𝜆h represent the contribution of the Lagrange multipliers. Two alternative versions of G

𝜆
will

be introduced in Section 4.3.3.

4.3.1 Contribution of the internal forces

The contribution of the internal forces to the weak form, Gint in (62), can be obtained by starting from the con-
tinuous expression for Gint, (37), and making use of (39), (40) and (42). Accordingly, a straightforward calculation
yields

Gh
int(𝛗

h
,ph; δ𝛗h

, δph) =∫
L

0

(

δ𝛗h
,s ⋅ E(qh) + 2

‖
‖p

h‖
‖
𝛗h
,s ⋅ E(δph)

)

G(qh)⊤Nh

− δph ⋅
2

‖
‖p

h‖
‖

2

[(
ph

⊗ R(qh)⊤𝛗h
,s
)

Nh + 2
(
qh
⊗ G(qh)ph

,s
)

Mh]

+ 2
‖
‖p

h‖
‖

2

(
δph

,s ⋅ G(ph)⊤ − δph ⋅G(ph
,s)⊤

)
Mhds.

(63)

Here, Nh = D1𝚪h and Mh = D2Kh, where the discrete strain measures are given by (50) and (51). The last equation can
also be written in the form

Gh
int(𝛗i,pi; δ𝛗i, δpi) =

n∑

i=1

[
δ𝛗i

δpi

]
⊤

∫
L

0

[
Bi⊤
φφ 0

Bi⊤
pφ Bi⊤

pp

][
Nh

Mh

]

ds, (64)
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12 of 27 WASMER and BETSCH

where the nodal operator matrices are given by

Bi
φφ = Ni,sR(qh)⊤

Bi
pφ =

2Ni

‖
‖p

h‖
‖

2

(

G(ph)⊤
+
𝛗

h

,s − R(qh)⊤𝛗h
,s ⊗ p

h
)

Bi
pp =

2
‖
‖p

h‖
‖

2

[
Ni,sG(ph) − Ni

(
G(ph

,s) + 2G(qh)ph
,s ⊗ q

h)]
.

(65)

Note that in (65)2 use has been made of the notation introduced in (18). An alternative form of (64) is given by

Gh
int(𝛗i,pi; δ𝛗i, δpi) =

n∑

i=1

(

δ𝛗i ⋅ fφ,iint + δpi ⋅ fp,iint

)

, (66)

where

fφ,iint = ∫
L

0
Bi⊤
φφNhds

fp,iint = ∫
L

0
Bi⊤
p𝛗Nh + Bi⊤

ppMhds
(67)

denote the internal forces corresponding to the control/nodal points.

Remark 1. Expression Gh
int in (63) can also be obtained by starting from

Gh
int(𝛗

h
,ph; δ𝛗h

, δph) = ∫
L

0
δ𝚪h ⋅Nh + δKh ⋅Mhds (68)

and taking into account the discrete strain measures (50) and (51).

4.3.2 Contribution of the external loading

The contribution of the external loading to the weak form follows from (38) by taking into account (42) and (45).
Accordingly, we obtain

Gh
ext(𝛗

h
,ph; δ𝛗h

, δph) = ∫
L

0
δ𝛗h ⋅ n + δph ⋅

2
‖
‖p

h‖
‖

E(qh)⊤m ds (69)

leading to

Gh
ext(𝛗i,pi; δ𝛗i, δpi) =

n∑

i=1

(

δ𝛗i ⋅ fφ,iext + δpi ⋅ fp,iext

)

, (70)

where

fφ,iext = ∫
L

0
Nin ds

fp,iext = ∫
L

0

2Ni
‖
‖p

h‖
‖

E(qh)⊤m ds
(71)

denote the discrete external forces corresponding to the control/nodal points.
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WASMER and BETSCH 13 of 27

4.3.3 Contribution of the unit-length constraints

As outlined above we impose the unit-length constraint on the quaternions to resolve the redundancy of the quaternions
at the control/nodal points. To this end we investigate two alternative procedures for imposing the unit-length constraint

g(p) = 1
2
(p ⋅ p − 1) = 0 (72)

on the quaternion field. While the first option imposes the unit-length constraint in weak form, the second option is based
on a strong (or point-wise) imposition at the control/nodal points.

Weak enforcement
The weak imposition of the constraint (72) yields the following contribution of the conjugate constraint forces to the weak
form

Gh
𝜆

(ph
,𝝀

h; δph) = ∫
L

0
δg(ph)𝜆hds

= ∫
L

0
δph ⋅ ph

𝜆

hds.
(73)

In addition to that, the weak enforcement of the unit-length constraint is based on the condition

∫
L

0
δ𝜆hg(ph)ds = 0. (74)

Concerning the discretization of the Lagrange multiplier field we apply a Bubnov–Galerkin approach which applies the
same NURBS/Lagrangian shape functions as before. Accordingly,

𝜆

h(s) =
n∑

i=1
Ni(s)𝜆i and δ𝜆h(s) =

n∑

i=1
Ni(s)δ𝜆i. (75)

Making use of these ansatz functions in (74) and (73) yields the discrete constraint functions

gi = ∫
L

0
Nig(ph)ds = 0 (76)

for i = 1, … ,n, together with the contribution to the weak form of the discrete constraint forces

Gh
𝜆

(pi,𝝀i; δpi) =
n∑

i=1
δpi ⋅ fi

𝜆

, (77)

where the discrete constraint forces corresponding to the control/nodal points are given by

fp,i
𝜆

= ∫
L

0
Nip

h
𝜆

hds. (78)

Strong enforcement
To account for the redundancy of the quaternions pi ∈ H4, the unit-length constraint can also be enforced directly at the
control/nodal points. In this case, the discrete constraints are given by

gi = g(pi) =
1
2
(pi ⋅ pi − 1) = 0 (79)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7538 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 27 WASMER and BETSCH

for i = 1, … ,n. The contribution of the conjugate constraint forces to the weak form can again be written in the form
(77) where

fp,i
𝜆

= pi𝜆i (80)

denote the constraint forces corresponding to the control/nodal points.

4.3.4 Algebraic system of equations

To summarize the discretization procedure described above, weak form (62) eventually yields

n∑

i=1

⎡
⎢
⎢
⎢
⎣

δ𝛗i

δpi

δ𝜆i

⎤
⎥
⎥
⎥
⎦

⊤

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎣

fφ,iint

fp,iint

0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
fp,i
𝜆

gi

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

fφ,iext

fp,iext

0

⎤
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

= 0 (81)

which has to hold for arbitrary (δ𝛗i, δpi, δ𝜆i) ∈ R3 ×H ×R (i = 1, … ,n). One may either apply the strong or the weak
enforcement of the constraints described in Section 4.3.3. To solve the algebraic system of nonlinear equations we apply
Newton’s method. Accordingly, in each Newton iteration a saddle point system has to be solved in order to eventually
determine (𝛗i,pi, 𝜆i) ∈ R3 ×H ×R (i = 1, … ,n). In this connection a standard additive update procedure is applied in
each Newton iteration.

4.3.5 Elimination of the Lagrange multipliers and the constraints

The strong enforcement of the constraints makes possible to apply a simple procedure for the elimination of the discrete
constraint forces along with the constraints. This approach is referred to as the discrete null space method.33,39,40 The
discrete null space method essentially relies on two steps. Starting from the algebraic constraint (79), the corresponding
consistency condition δgi = pi ⋅ δpi = 0 can be identically fulfilled by choosing δpi = G(pi)⊤δ𝛉i for any δ𝛉i ∈ R3. The last
relationship for δpi can be inserted into (81) to annihilate the constraint forces since

(
G(pi)⊤δ𝛉

)
⋅ fp,i
𝜆

= δ𝛉i ⋅ G(pi)fp,i
𝜆

= δ𝛉i ⋅ G(pi)pi𝜆i = 0

for arbitrary δ𝛉 ∈ R3 due to (16)1. Accordingly, (81) can be recast in the size-reduced form

n∑

i=1

[
δ𝛗i

δ𝛉i

]
⊤
([

fφ,iint

G(pi)fp,iint

]

−

[
fφ,iext

G(pi)fp,iext

])

= 0 (82)

which has to hold for arbitrary (δ𝛗i, δ𝛉i) ∈ R3 ×R3 (i = 1, … ,n). Of course, the constraints (79), that is, gi = 0, still have
to be satisfied. However, in a second step we make these constraints obsolete by replacing the redundant unknowns
pi ∈ H with new unknowns 𝛉i ∈ R3 such that

pi = expS3

((

0, 1
2
𝛉i

))

◦p0
i , (83)

where expS3 ∶ Tp0
i
S3 → S3 denotes the exponential map on S3. Provided that the reference value p0

i ∈ S3, the update
formula ensurespi ∈ S3 so that the unit-length constraint is automatically satisfied. In equilibrium problems,p0

i ∈ S3 may
be chosen to coincide with the last equilibrium configuration. Then, the application of a new load increment yields a new
equilibrium configuration which is characterized by the rotation increments 𝛉i ∈ R3. During a load step the incremental
rotations 𝛉i are updated additively. Further details of the discrete null space method in the context of unit quaternions
can be found in Reference 34.
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WASMER and BETSCH 15 of 27

5 NUMERICAL EXAMPLES

In this section, we present several numerical examples to examine the numerical performance of alternative element
formulations. In particular, we investigate to what extend the quaternion projection (39) does improve the performance
when compared to the ‘classical’ quaternion discretization based on

ph(s) =
n∑

i=1
Ni(s)pi (84)

The classical discretization can be easily realized by skipping the projection in (39). Furthermore, we impose the
unit-length condition on the quaternions either in weak or in strong form, as described in Section 4.3.3. Last but not least
we compare the NURBS-based formulation with that based on Lagrange shape functions.

To distinguish between the alternative formulations we introduce the abbreviations summarized in Tables 1 and 2.
For example, NPS3 means the NURBS-based formulation of order three relying on the projection (39) and the strong
enforcement of the unit-length constraint (79). Similarly, LCS2 means the Lagrange element of order two based on the
classical approximation (84) and the strong enforcement of the unit-length constraint (79).

Concerning the initialization of the quaternions in the control points of the NURBS-based elements, we first com-
pute auxiliary director frames at the Gauss points from which unit-quaternions can be extracted by applying Spurrier’s
algorithm.41 Subsequently, the unit quaternions in the control points are calculated by applying the procedure originally
proposed in Reference 42 in the context of shells. Due to the interpolatory nature of the Lagrange shape functions, the
initial director frames can be directly set up at the nodes. Application of Spurrier’s algorithm directly yields the nodal
quaternions.

T A B L E 1 Abbreviations for elements based on NURBS shape functions.

Shape functions Projection Constraints Order Abbreviation

NURBS Yes Strong 1 NPS1

NURBS Yes Strong 2 NPS2

NURBS Yes Strong 3 NPS3

NURBS Yes Weak 1 NPW1

NURBS Yes Weak 2 NPW2

NURBS Yes Weak 3 NPW3

NURBS No Strong 1 NCS1

NURBS No Strong 2 NCS2

NURBS No Strong 3 NCS3

NURBS No Weak 1 NCW1

NURBS No Weak 2 NCW2

NURBS No Weak 3 NCW3

T A B L E 2 Abbreviations for elements based on Lagrange shape functions.

Shape functions Projection Constraints Order Abbreviation

Lagrange Yes Strong 1 LPS1

Lagrange Yes Strong 2 LPS2

Lagrange Yes Strong 3 LPS3

Lagrange No Strong 1 LCS1

Lagrange No Strong 2 LCS2

Lagrange No Strong 3 LCS3
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16 of 27 WASMER and BETSCH

To eliminate transverse shear locking we apply selectively reduced numerical integration. In particular, we choose the
number of Gauss points equal to the element order.

The mesh refinement for the NURBS-based elements was performed with the algorithm proposed in Reference 43, to
keep the Jacobian of the isoparametric transformation constant over the domain. The mesh refinement for the Lagrange
elements was performed by using an equidistant distribution of the finite element nodes.

5.1 Cantilever beam under end moment

The first example deals with the well-known bench mark problem of an initially straight cantilever beam, which is
deformed into a circle by an end moment, while being fixed on the other end. A sketch of the problem is shown in Figure 2.
The beam has length L and m is an external torque applied at the right end of the beam given by m = Me3. The corre-
sponding contribution to the weak form in the present beam formulation is provided in Appendix B. For M = 2𝜋 EI

L
the

beam forms a complete circle, where EI is the bending stiffness of the beam. The beam has an initial length of L = 1 and
the following stiffness parameters GA = 1∕270, EA = 1∕100, EI = 1∕12 ∗ 1 × 10−4 and GIp = 1∕6 ∗ 1 × 10−4.

The total load is applied in 10 equally spaced incremental steps. As convergence criteria of the Newton solver ||R|| =
1 × 10−12 is used, where ||R|| is the 2-norm of the residual vector. The error measure is defined as e = ‖

‖𝛗num(s = L)‖‖,
where 𝛗num(s = L) is the placement of the tip of the numerical model.

The convergence behavior is shown in Figure 3 for various element formulations under consideration. In partic-
ular, Figure 3A shows the results for NURBS shape functions of order p = 1, … , 3. Accordingly, the projection-based
approach shows the best convergence behavior for both the strong enforcement of the unit-length constraint (NPSp,
p = 1, … , 3) and the weak enforcement (NPWp, p = 1, … , 3). In both cases the rate of convergence turns out to
be (h2p).

However, if the projection is skipped the results worsen significantly if the strong enforcement of the unit-length
constraint is used (Figure 3A, NCSp, p = 1, … , 3). In particular, the order of convergence does not improve with increased
order of the NURBS shape functions but stays at a level of (h2). This can be explained by the non-interpolatory nature
of NURBS shape functions. Thus, enforcing the unit-length constraint at the control points in general does not imply
unit-length of the quaternion discretization inside the computational domain. Still considering the classical interpolation
(without projection) but choosing the weak enforcement instead of the strong enforcement of the unit-length constraint
improves the convergence results (see NCWp, p = 1, … , 3, Figure 3A).

It is also worth mentioning that the projection-based formulation in general exhibits a superior convergence behav-
ior in the iterative solution procedure, in the sense that coarser meshes still reach a solution. In particular, while the
projection-based formulation reaches a solution for the coarse discretization with 8 elements, this is not the case for the
classical formulation which requires more than 8 elements to reach converged results (cf. Figure 3A).

We now turn to the convergence results of the elements based on the Lagrange shape functions (Figure 3B) where
we focus our attention to the strong nodal enforcement of the unit-length constraint. Accordingly, the projection-based
formulation (LPSp, p = 1, … , 3) again shows superior convergence of order (h2p), in analogy to the NURBS-based
case. The classical formulation (LCSp, p = 1, … , 3) again shows an order reduction, which, however, is not as pro-
nounced as in the case of NURBS shape function. Specifically, for Lagrange elements the order reduction is deferred
to p ≥ 3. This slightly improved convergence behavior presumably is caused by the interpolatory nature of Lagrange
polynomials.

The deformed configurations of the beam corresponding to five different load levels are shown in Figure 4. As
expected, a complete roll-up takes place for M = 2𝜋 EI

L
.

F I G U R E 2 Sketch of a cantilever beam with an end torque.
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F I G U R E 3 Convergence behavior of the quaternion beam formulation for the roll-up into a circle. (A) Convergence behavior for the
isogeometric analysis. (B) Convergence behavior for the Lagrange elements.

F I G U R E 4 Snapshots of the roll-up movement of the cantilever beam (32 NPS3 elements) for the load levels M = 0, 1
5

M,

2
5

M,

3
5

M, 4
5

M,
M = 2𝜋 EI

L
.
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18 of 27 WASMER and BETSCH

5.2 3D bending and twist

This example is taken from Reference 36. It consists of an initially straight beam clamped at one end and loaded at the
other end with a torque, which is applied in 250 load steps. The torque is applied in such a way that the beam forms a
helix with two complete coils. The helix has a radius of R0 = 10 and a height of h = 50. The applied torque is given by

m =
(

m1d1 +m3d3
)

where m1 = −4R0
𝜋

3r4

L2 and m3 = 𝜋

2hr4

L2 . The corresponding contribution to the weak form of the present beam formulation

is provided in Appendix B. The initial length of the beam is given by L =
√

1 + c2R04𝜋, where c = h
4R0𝜋

. A slenderness

ration 𝜁 is used to define the radius of the beam r = L
2𝜁

. The beam stiffness parameters are given by GA = 1
2
𝜋r2, EA = 𝜋r2,

EI = 𝜋

4
r4 and GIp = 𝜋

2
r4. The straight initial configuration is defined through

𝛗(s) = −R0e2 + sd0
3,

where s ∈ [0,L], and the initial director frame is given by

d0
1 = R0𝛼(ce1 − e3) d0

2 = e2 d0
3 = R0𝛼(e1 + ce3),

where 𝛼 = 4𝜋
L

.
Figure 5 shows three deformed configurations of the beam corresponding to three different load levels. In Figure 6 the

convergence behavior of the alternative beam elements under consideration is shown for a slenderness ratio of 𝜁 = 25. The
error measure plotted is given by e = ‖𝛗num(s=L)−𝛗ana(s=L)‖

‖𝛗num(s=L)‖
, where 𝛗ana(s = L) is the analytical solution for the displacement

of the tip under the final external torque m.
The convergence behavior is in complete analogy to that of the previous example. Accordingly, the projection-based

approach yields superior convergence rates of (h2p), together with a more robust solution behavior, in the sense that
already 16 elements suffice to yield convergence of the iterative solution procedure. In contrast to that, the classical formu-
lation (without projection) requires more elements to yield converged results. In addition to that, the classical formulation
again exhibits order reduction for p ≥ 2, which is especially pronounced for NCS2 and NCS3.

5.3 Numerical path-independence test

As mentioned in Section 1, early discretization approaches of the geometrically exact beam model were neither
frame-indifferent nor path-independent. The frame-indifference of the present formulation was shown in Section 4. With

(A) (B) (C)

F I G U R E 5 Configurations of the deformed beam corresponding to different numbers of load steps. Eventually, a helix with two
complete coils is reached. (A) Load level: 8

25
m – 80 loads steps. (B) Load level: 16

25
m – 160 load steps. (C) Load level: m – 250 load steps.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7538 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [10/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WASMER and BETSCH 19 of 27

16 32 64 128

10− 8

10− 6

10− 4

10− 2

100
1

2

1
4

1

6

number of finite elements

er
ro

r 
e

er
ro

r 
e

er
ro

r 
e

er
ro

r 
e

102 102. 5 103

10− 8

10− 6

10− 4

10− 2

100
1

2

1
4

1

6

number of degrees of freedom

NPS1

NPS2

NPS3

NPW1

NPW2

NPW3

NCS1

NCS2

NCS3

NCW1

NCW2

NCW3

16 32 64 128
10− 12

10− 9

10− 6

10− 3

100 1
2

1
4

1

6

number of finite elements

102 102. 5 103 103. 5
10− 12

10− 9

10− 6

10− 3

100 1
2

1
4

1

6

number of degrees of freedom

LPS1

LPS2

LPS2

LCS1

LCS2

LCS3

(A)

(B)

F I G U R E 6 Convergence behavior of the quaternion beam formulation. (A) Convergence behavior for the isogeometric analysis. (B)
Convergence behavior for the Lagrange elements.

F I G U R E 7 Sketch of 3D cantilever beam with an applied point force.

this example we verify that the proposed quaternion formulation is also path-independent. As shown in Figure 7, the ini-
tial configuration corresponds to a curved beam forming 1∕8th of a circle in the e1 − e3 plane. The circle has a radius of
100.

An external force F = Fiei is applied in a loading cycle at the tip of the beam. Specific values of the loading cycle are
shown in Table 3. The cycle begins with a force of F = 0. The load level is than varied with ||F|| = 25 in each load step.
This results in a total of 144 load steps. In the last load step the force is removed so that the initial configuration should be
obtained again. The beam’s stiffness parameters are given by GA = 5 × 106, EA = 1 × 107 and EI = GIp = 1∕12 ∗ 1 × 107.
The convergence criteria for the Newton method is set to ||R|| = 1 × 10−6.
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20 of 27 WASMER and BETSCH

T A B L E 3 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels.

Load level

Tip displacement in 2-direction

𝚫𝛉 formulation8 Lagrange (LPS1) NURBS (NPS1)[
F1, F2, F3

]
32 el. p = 1 32 el. p = 1 32 el. p = 1

[

0 0 0
]

0 0 0
[

−600 0 0
]

0 −8.8844 × 10−20 −2.3202 × 10−14

[

−600 600 0
]

59.7884 59.8262 59.8796
[

−600 600 600
]

38.6655 38.6875 38.6952
[

0 600 600
]

37.5087 37.5269 37.5247
[

0 0 600
]

0.0190 −1.6362 × 10−11 −1.6369 × 10−11

[

0 0 0
]

0.0374 1.2632 × 10−23 −7.8410 × 10−16

(A) (B)

F I G U R E 8 Beam patches with slope discontinuity. (A) Sketch of the problem. (B) Deflection of the tip versus force.

The results obtained with 32 linear elements are displayed in Table 3. For comparison, the results of the ‘Δ𝛉 for-
mulation’ taken from Reference 8 are also shown. This formulation goes back to Reference 2 and is known to be
path-dependent.20 Further results obtained with varying number of elements and different element orders can be
found in Appendix C (Tables C1–C6). All the results have been obtained with a strong enforcement of the unit-length
constraint.

In contrast to the path-dependent Δ𝛉 formulation, which does not return to the e1 − e3 plane, both quaternion for-
mulations under investigation turn back to the initial configuration after the load has been removed (up to numerical
round-off), which verifies their path-independence.

5.4 Beam patches with slope discontinuity

In this example we investigate the capability of the present formulation to deal with discontinuities of the reference curve
of the beam. This example has been treated previously in References 36,44,45. The initial geometry is shown in Figure 8A.
It consists of three beam segments with the length L = 1, which are connected rigidly at a 90◦ angel.

The rigid intersection of the beam segments can be either formulated by means of quadratic constraints in the frame-
work of Section 4.3.4 or, alternatively, without constraints in the framework of Section 4.3.5. Both alternative formulations
are described in Appendix D.

One end of the beam structure is fixed, while at the other end a dead load of F = −10e1 − 10e3 is applied in 30 equally
spaced load steps. The beam stiffness parameters are given by EA = 1 × 104, GA = 5 × 103 and EI = GIp = 100∕12. The
stopping criteria for Newton’s method is set to ||R|| = 1 × 10−10. Each beam segment is discretized with 3 finite elements
of order p = 3.
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WASMER and BETSCH 21 of 27

(A) (B) (C)

F I G U R E 9 Configuration of the beam patches for different load levels. (A) Load level: 1
3

F – 10 load steps. (B) Load level: 2
3

F – 20 load
steps. (C) Load level: F – 30 load steps.

In Figure 8B the components of the tip deflection are plotted over the load level. Both NURBS (NPS3) and Lagrange
(LPS3) elements are used with a strong enforcement of the unit-length constraint. It can be seen that the results of the
NURBS and Lagrange elements agree very well. In particular, no difference can be observed in Figure 8B. Furthermore,
the results are in very good agreement with those in References 36,44,45.

In Figure 9 different configurations of the deformed beam structure corresponding to different load levels are shown.

6 CONCLUSION

We have presented the geometrically exact beam model in terms of unit-quaternions along with a consistent spa-
tial discretization. The proposed discretization conserves the unit-length constraint on the unit-quaternions along the
beam. Correspondingly, the orthonormality of the director frame is ensured throughout the discrete beam model. This
feature of the proposed discretization is ensured by applying a projection approach which coincides with the normal-
ization of the approximated quaternion field. In this connection both Lagrange shape functions and NURBS shape
functions have been employed. It was shown that the projection approach yields objective and path-independent beam
finite elements that exhibit superior convergence properties. In particular, shape functions based on polynomial order
p exhibit convergence rates of (h2p). In addition to that, the projection approach was shown to improve the coarse
mesh behavior.

Although the projection approach ensures the unit-length of the discrete quaternion field, the redundancy of
the quaternion degrees of freedom still needed to be resolved. To this end, we applied two alternative procedures.
The first one is based on the method of Lagrange multipliers for the explicit enforcement of the unit-length con-
straint. The constraints can be either enforced in weak form or in strong form at the control/nodal points. We
prefer the strong imposition of the unit-length constraint since it makes possible the elimination of the constraint
forces along with the introduction of rotational degrees of freedom. This procedure circumvents the treatment of
saddle point systems and retains the advantageous approximation properties of the projection-based finite element
formulation.

In future work we intend to extend the present approach to dynamic problems. It might also be of interest to discretize
quaternions and displacements of the centerline with different approximation order. Previous work in this direction led
to promising results in the context of a director formulation of the geometrically exact beam model.36
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22 of 27 WASMER and BETSCH

ENDNOTES
∗For simplicity, we content ourselves here with initially straight beams. The extension to initially curved beams is straightforward, see, for
example, References 8 and 36.
†Note that we here assume a knot vector with unique entries in the interior leading to a Cp−1 continuous basis.
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APPENDIX A. STRAIN MEASURE FOR BENDING AND TWIST

We verify that strain measure (27) corresponds to the axial vector of the skew-symmetric matrix (26). Accordingly, one
has to show that K = 2G(q)q

,s is the axial vector of matrix 2G(q)G(q
,s)⊤. To see this, consider the identity

G(q)q
,s = −q0

,s q + q0q
,s − q × q

,s. (A1)

The skew-symmetric matrix associated with the above vector is given by

S = −q0
,s q̂ + q0q̂

,s − q̂ × q
,s

= −q0
,s q̂ + q0q̂

,s −
(
q
,s ⊗ q − q⊗ q

,s
)
.

(A2)

Since â̂b = b⊗ a − (a ⋅ b)I3 for any a,b ∈ R3,

q
,s ⊗ q = q̂q̂

,s + (q,s ⋅ q)I3. (A3)

Moreover, since q ∈ S3 implies q
,s ⋅ q = 0 or q

,s ⋅ q = −q0
,s q0, we eventually obtain

S = −q0
,s q̂ + q0q̂

,s + q⊗ q
,s − q̂q̂

,s + q0q0
,s I3. (A4)

A direct calculation yields the result G(q)G(q
,s)⊤ = S.
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APPENDIX B. APPLICATION OF EXTERNAL TORQUES

In the examples dealt with in Sections 5.1 and 5.2 an external torque m ∈ R3 is applied at one end of the beam. Since the
collocation property holds at the end-points of both finite element formulations under consideration, the contribution to
the weak form is given by

Ge
ext = δqe ⋅ 2E(qe)⊤m

= δpe ⋅
1

‖pe‖
(I4 − qe ⊗ qe)2E(qe)⊤m

= δpe ⋅
2

‖pe‖
2 E(pe)⊤m,

(B1)

where the quaternion normalization procedure has been accounted for. Furthermore, index e refers to the control/nodal
point at the end of the beam. While in Section 5.1 the external torque m = Me3 can be directly inserted into the above
formula, the external torque in Section 5.2 is a follower load defined by m = mide

i = E(qe)G(qe)⊤miei. Inserting this
expression into the above formula yields

Ge
ext = δpe ⋅

2
‖pe‖

2 G(pe)⊤miei. (B2)

Here, the normalization procedure along with the properties summarized in (16) have been taken into account.

APPENDIX C. NUMERICAL PATH-INDEPENDENCE TEST

As mentioned in Section 5.3 we here show the results for other discretizations with 8, 16, and 32 elements and element
order p = 1, … , 3. The number of elements is analogous to the results found in Reference 8, where only results for a first
order discretization are shown. As we use NURBS basis functions we are able to conserve the geometry of the 1∕8-circle
exactly for the order p = 2, 3. For this purpose the initial control points of the NURBS formulation and their weights
were computed with an algorithm from Chap. 7.5 in Reference 38 to define a section of a circle in combination with the
refinement strategy for k-refinement in Chap. 5.5 in Reference 38 and for h-refinement in Reference 43 as mentioned in
Section 5.

All values are evaluated for the same loads as in Table 3.

T A B L E C1 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and linear elements (p = 1).

Tip displacement in 2-direction

Lagrange elements (LPS1)

8 el. 16 el. 32 el.

0 0 0

−8.9232 × 10−20 −8.6515 × 10−20 −8.844 × 10−20

59.7206 59.8038 59.8262

38.5488 38.6585 38.6875

37.3891 37.4987 37.5269

−1.5671 × 10−11 −1.6225 × 10−11 −1.6362 × 10−11

4.1576 × 10−22 −4.9593 × 10−23 1.2632 × 10−23
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T A B L E C2 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and linear elements (p = 1).

Tip displacement in 2-direction

NURBS elements (NPS1)

8 el. 16 el. 32 el.

0 0 0

1.2277 × 10−14 −1.1828 × 10−15 −2.3202 × 10−14

59.7132 59.8029 59.8261

38.5469 38.6584 38.6875

37.3916 37.4491 37.5270

−1.5783 × 10−11 −1.6246 × 10−11 −1.6369 × 10−11

−1.1852 × 10−15 9.2804 × 10−16 −7.8410 × 10−16

T A B L E C3 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and quadratic elements (p = 2).

Tip displacement in 2-direction

Lagrange elements (LPS2)

8 el. 16 el. 32 el.

0 0 0

1.8588 × 10−17 6.4369 × 10−18 9.3133 × 10−21

58.6129 59.7042 59.8232

37.7556 38.5692 38.6869

35.7855 37.3584 37.5233

−1.1916 × 10−11 −1.6153 × 10−11 −1.6386 × 10−11

−7.4184 × 10−20 −1.002 × 10−21 8.9024 × 10−22

T A B L E C4 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and quadratic elements (p = 2).

Tip displacement in 2-direction

NURBS elements (NPS2)

8 el. 16 el. 32 el.

0 0 0

−4.9258 × 10−14 −1.1828 × 10−15 −2.3202 × 10−14

57.6927 59.5842 59.8542

37.1466 38.4948 38.7195

35.1708 37.3045 37.5619

−8.6269 × 10−12 −1.5806 × 10−11 −1.6403 × 10−11

5.0916 × 10−14 6.6981 × 10−15 −1.4206 × 10−14
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26 of 27 WASMER and BETSCH

T A B L E C5 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and cubic elements (p = 3).

Tip displacement in 2-direction

Lagrange elements (LPS3)

8 el. 16 el. 32 el.

0 0 0

−2.7663 × 1016 5.9239 × 10−20 −1.275 × 10−19

59.8085 59.8332 59.8338

38.6732 38.6969 38.6974

37.5207 37.5361 37.5364

−1.6403 × 10−11 −1.6408 × 10−11 −1.6407 × 10−11

−1.9518 × 10−21 −2.0485 × 10−23 −2.2070 × 10−12

T A B L E C6 Numerical path-independence test: tip displacement in 2-direction corresponding to specific load levels–additional results
for different number of elements and cubic elements (p = 3).

Tip displacement in 2-direction

NURBS elements (NPS3)

8 el. 16 el. 32 el.

0 0 0

−2.8256 × 10−14 −1.0551 × 10−14 −8.5072 × 10−15

59.7312 59.8724 59.8754

38.6098 38.7347 38.7374

37.5061 37.5795 37.5809

−1.6504 × 10−11 −1.6453 × 10−11 −1.6448 × 10−11

4.3234 × 10−16 2.6724 × 10−15 −2.5779 × 10−15

APPENDIX D. RIGID INTERSECTION BETWEEN TWO BEAMS

In this Appendix, we address the rigid connection of two beams as required in the numerical example in Section 5.4.
In particular, we consider a rigid intersection between the end-points of two beams (Figure D1). Accordingly, the two
end-points, say A and B, experience the same rotation r ∈ S3 with respect to some previous cross-sectional orientations
q0

A ∈ S3 and q0
B ∈ S3. That is, the new cross-sectional orientations are given by pA = r◦q0

A and pB = r◦q0
B. These two

equations can be rewritten as r = pA◦q
0
A and r = pB◦q

0
B, respectively. Since r◦r = (1, 0), we obtain

pA◦q
0
A◦q

0
B◦pB = (1, 0). (D1)

We take the vector part of the above condition to obtain three equations of constraint to impose the rigid intersection
between the two beams. Three more conditions arise from the additional constraint 𝛗A − 𝛗B = 0. Accordingly, the rigid
coupling of two beams can be realized by appending a total of six algebraic constraints to the beam formulation in
Section 4.3.4.

Alternatively, algebraic constraints can be circumvented by applying the discrete null space method outlined in
Section 4.3.5. Accordingly, starting with the constrained formulation in Section 4.3.4, the quantities (𝛗B,pB) and
(δ𝛗B, δpB) related to control/nodal point B can be expressed in terms of the corresponding quantities in point A via

𝛗B = 𝛗A, (D2)
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F I G U R E D1 Sketch of two rigidly connected beams and .

pB = pA◦q
0
A◦q

0
B, (D3)

and

δ𝛗B = δ𝛗A, (D4)

δpB = δpA◦q
0
A◦q

0
B. (D5)

A further size-reduction of the algebraic system to be solved can be achieved by applying the procedure described in
Section 4.3.5.
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