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Abstract

Ensemble forecasts from numerical weather pre-
diction models show systematic errors that re-
quire correction via post-processing. While there
has been substantial progress in flexible neural
network-based post-processing methods over the
past years, most station-based approaches still
treat every input data point separately which lim-
its the capabilities for leveraging spatial structures
in the forecast errors. In order to improve infor-
mation sharing across locations, we propose a
graph neural network architecture for ensemble
post-processing, which represents the station loca-
tions as nodes on a graph and utilizes an attention
mechanism to identify relevant predictive infor-
mation from neighboring locations. In a case
study on 2-m temperature forecasts over Europe,
the graph neural network model shows substantial
improvements over a highly competitive neural
network-based post-processing method.

1. Introduction
Modern weather forecasts utilize ensemble simulations from
numerical weather prediction (NWP) models with differ-
ent initial conditions or model physics. Even though NWP
ensemble predictions have seen substantial progress over
the past decades (Bauer et al., 2015), they often show sys-
tematic biases and fail to correctly quantify forecast uncer-
tainty. Therefore, statistical or machine learning methods
are required to correct these errors in a process referred to
as post-processing, which has become a standard practice
in research and operations. Most modern post-processing
methods yield forecast distributions as their output, e.g. in
the form of parameters of a pre-specified family of prob-
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ability distributions. A major focus of post-processing re-
search over the past years has been on flexible machine
learning (ML) techniques which have demonstrated supe-
rior forecast performance, primarily due to their ability to
incorporate additional predictor variables beyond ensemble
forecasts of the target variable (Haupt et al., 2021; Van-
nitsem et al., 2021). Specifically, neural network (NN)-
based distributional regression approaches first proposed
by Rasp & Lerch (2018) have shown considerable success.
Thereby, NNs enable the data-driven learning of nonlinear
relationships between arbitrary predictor variables and fore-
cast distribution parameters. Over the past years, NN-based
post-processing methods have been extended in several di-
rections, including non-parametric approaches (Bremnes,
2020), CNN-based methods for two-dimensional gridded
forecast fields (Scheuerer et al., 2020; Veldkamp et al., 2021;
Chapman et al., 2022; Horat & Lerch, 2024), generative ML
methods for multivariate post-processing (Chen et al., 2024),
or permutation-invariant set transformer architectures to
model interactions between individual ensemble members
(Höhlein et al., 2024).

The aforementioned CNN models incorporate spatial infor-
mation between locations for gridded domains. Most station-
based post-processing methods still treat every input data
point separately, which prevents the models from sharing
information across locations and thereby leveraging spatial
structures in the forecast errors. To address this limitation,
we propose graph neural network (GNN) architectures for
post-processing, where weather stations form the nodes on
a graph. By obtaining forecast distribution parameters in a
node-level prediction setting, GNN-based post-processing
methods are able to leverage spatial dependencies between
stations and enable improved sharing of information across
locations during model training and inference compared to
standard NN approaches.

2. Data
In order to facilitate a fair and standardized comparison to
other methods, we use EUPPBench, a benchmark dataset
for ensemble post-processing (Demaeyer et al., 2023). The
dataset includes medium-range ensemble forecasts from
the European Centre for Medium-Range Weather Forecasts
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(ECMWF) along with corresponding station observations
over an extended period for multiple lead times. In total,
the data spans from 1997 to 2018 and includes 122 weather
stations in Europe, see Figure A.1 for details. Motivated by
typical development practices for post-processing methods
in operational weather prediction at meteorological services,
the dataset contains both reforecasts and forecasts. Refore-
casts are NWP model runs for past dates, which are con-
ducted to obtain a large archive of past forecasts for analyz-
ing various properties of the NWP system. The EUPPBench
dataset contains 4180 reforecasts with a reduced number
of 11 ensemble members from 1997 to 2017. In addition,
the EUPPBench dataset includes of 730 daily operational
forecasts from 2017–2018, which consist of 51 ensemble
members. For both parts, a total of 31 predictor variables is
available. We refer to Demaeyer et al. (2023) for details.

We here focus on forecasts of 2-meter temperature (T2M)
and report results for lead times of 24 h, 72 h and 120 h in
the interest of brevity. Given the structure of the EUPP-
Bench dataset and following Höhlein et al. (2024), we con-
sider two setups for post-processing tasks: “reforecast to
reforecast” (R2R) and “reforecast to forecast” (R2F). The
R2R task consists of fitting a post-processing models to the
reforecast data from 1997–2013, and testing this model on
reforecasts from 2014–2017, whereas the R2F task aims
applying the fitted model to the forecast data from 2017–
2018. The R2F task can be viewed as a typical pathway for
developing a post-processing model in operational weather
prediction, and comes with additional technical challenges,
e.g., the need to account for varying numbers of ensemble
members in the training and test data. Table A.1 lists the
sizes of the training, validation and test datasets.

3. Methods
3.1. Forecast Evaluation

The main evaluation metric in the post-processing literature
is the continuous ranked probability score (CRPS) given
by CRPS(F, y) =

∫∞
−∞ (F (z)− 1(y ≤ z))2 dz, where F

is the cumulative distribution function of the forecast dis-
tribution, y is the realizing observation, and 1 denotes the
indicator function (e.g., Gneiting & Katzfuss, 2014). The
CRPS simultaneously evaluates calibration and sharpness of
the forecast distribution, and can be computed in analytical
form for ensembles and many parametric families (Jordan
et al., 2019). To assess the statistical significance of score
differences, we use tests of equal predictive performance
(Diebold & Mariano, 1995).

3.2. DRN

We utilize the distributional regression network (DRN)
model originally proposed in Rasp & Lerch (2018) as a state-

of-the-art benchmark for station-based post-processing,
which remains widely used and yields highly competitive
benchmark forecasts (Vannitsem et al., 2021; Schulz &
Lerch, 2022; Höhlein et al., 2024). The DRN model es-
sentially is a standard fully-connected feed-forward NN
which outputs the parameters of a predictive distribution, in
our case the location µ and scale σ of a Gaussian distribution
which has been demonstrated to be an appropriate choice for
T2M prediction. Summary statistics from the NWP ensem-
ble predictions of various meteorological variables serve as
inputs to the NN. We estimate a single model jointly for all
stations by optimizing the CRPS as a loss function. Thereby,
station embeddings which map the station identifiers to a
vector of latent features are used as additional inputs to gen-
erate local adaptivity. Our specific implementation of DRN
follows Höhlein et al. (2024), see their Section 3 for details.

3.3. GNN

Graph neural networks (GNNs) are specialized deep learn-
ing models for graph-structured data, recognizing the value
of representing problems in graph form rather than fixed
grids or sequences (Gori et al., 2005; Scarselli et al., 2008).
Unlike traditional architectures, GNNs enable the modelling
of complex interactions between nodes and edges within the
graph. Figure 1 provides an overview of the proposed GNN
model architecture. In a first step, the graph G is created,
and, for each node, the station identifier is replaced with its
embedding, akin to the station embeddings in the DRN ap-
proach. The graph is then passed to K GNN-blocks, which
iteratively refine the hidden representations hs,n, where s
denotes the station and n the member of the NWP ensemble.
Using K blocks, each node incorporates information from
K hops away. Each of these blocks has skip connections
inspired by the ResNet model (He et al., 2015). The resid-
ual learning approach helps to combat learning instabilities
and leverage information from nodes multiple hops away.
After the hidden features are created, they are aggregated
using the Deep Set aggregation scheme (Zaheer et al., 2017).
For each station, the hidden features of the different ensem-
ble members are used to compute the final outputs µs and
σs. The weights of all components of the GNN model are
optimized jointly using the CRPS as a loss function.

3.3.1. GRAPH TOPOLOGY

In order for a GNN to process data, the data must be trans-
formed into a graph. For our dataset at hand, a graph Gt is
created for each day t for which a forecast exists. Each node
vs,n represents the forecast for a particular station s made
by ensemble member n. Additionally, each node carries the
forecasts of several meteorological variables generated by
the respective ensemble member as attributes. Details are
provided in Tables A.2 and A.3. Stations that are closer than
a certain threshold dmax and stations with the same identifier
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Figure 1. Schematic illustration of the GNN model for ensemble post-processing. The input graph G is created from the N -member
ensemble forecasts at S stations. Next, the embedded station IDs are concatenated and passed to the GNN. The GNN block is repeated K
times with residual connections, followed by the node aggregation. Finally, a softplus function is applied to σ to ensure positivity.

are bidirectionally connected. Each edge carries the nor-
malized distance as a feature, while the edges between the
ensemble members have a very small value ε instead of 0
as an attribute to facilitate training. Accordingly, the set of
edges is E = {(vi,u, vj,v) | i = j ∨ d(vi,u, vj,v) < dmax} ,
where d(·) is the geodesic distance.

3.3.2. GRAPH NEURAL NETWORKS

GNNs operate on the principle that they can learn and rea-
son about graph-structured data by aggregating informa-
tion from neighboring nodes and edges iteratively through
message passing. One of the many types of GNNs is the
graph attentional network (GAT), which weights incom-
ing messages for each node using an attention function a
(Veličković et al., 2018; Brody et al., 2022). The hidden
representations in GATs are generally computed as hi =

φ
(
xi,
⊕

j∈ N (i) a(xi,xj)ψ(xj)
)

(Bronstein et al., 2021).
For details on φ, ψ, and a, see Brody et al. (2022). With the
attention mechanism, each node is able to discern important
from unimportant neighbors and aggregate only relevant
messages. Our implementation uses a GAT with multi-head
attention to stabilize learning, employing multiple indepen-
dent attention mechanisms and concatenating their outputs
for the new node representation (Vaswani et al., 2017).

3.3.3. PERMUTATION INVARIANT NODE AGGREGATION

After processing the input graph G, we generate predictions
for µs and σs based on the output of the GNN, which con-
sists of the hidden features hs,n, n = 1, ..., N . Since the en-
semble members are interchangeable, the aggregation along
the ensemble dimension n should be permutation invariant.
Such an aggregation scheme can be achieved by using Deep
Sets (Zaheer et al., 2017). Specifically, each set of hidden
features for a given station Hs = {hs,n, n = 1, . . . , N} is

aggregated using (µs, σs) = ρ
(

1
N

∑N
n=1 φ(hs,n)

)
as an

aggregation function. In our concrete implementation, ρ
and φ are both two-layer NNs.

4. Results
For our experiments we implemented the proposed method
with the PyTorch Geometric (Fey & Lenssen, 2019) frame-
work1. We evaluate the performance of the proposed model
by training it on the EUPPBench dataset described in Sec-
tion 2. Here, we focus on the “reforecast to forecast” (R2F)
task. Additional, qualitatively similar results for the “refore-
cast to reforecast” (R2R) task are available in the supplemen-
tal material. Although the number of ensemble members,
N , is arbitrary, we process the 51 ensemble members of the
forecast data batch-wise in groups of 4 × 10 and a remain-
ing group of 11, and average the predictions because the
reforecasts used as training data contain only 11 ensemble
members. This procedure aims to better account for the
different number of ensemble members in the reforecast
and forecast data, and results in better forecast performance.
Table 1 provides an overview of the results for the R2F task.
Results for the R2R task are available in the supplementary
material in Table A.5. We compare the proposed model
(GAT) against a GNN model which only operates on one
graph based on the summary statistics (i.e., mean and stan-
dard deviation) of the ensemble forecasts (SMRY), a pure
Deep Set architecture (DS), where all edges from the initial
graph except for self loops are removed, a fully-connected,
feed-forward DRN model described in Section 3.2, and
the unprocessed ensemble forecasts (ENS). For each lead
time, we train a separate model. These comparisons enable

1The implementation can be downloaded from https://
github.com/hits-mli/gnn-post-processing.
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Table 1. Scores for the reforecast to forecast task calculated per lead time, with the best CRPS scores highlighted in bold. The nominal
level of the central prediction interval (PI) is N − 1/N + 1, where N is the number of ensemble members. The coverage (PI COVER) is
the ratio of how often the observation is contained in the PI and should be close to the nominal level for a calibrated forecast.

LEAD TIME 24 h 72 h 120 h

METHOD CRPS PI LENGTH PI COVER CRPS PI LENGTH PI COVER CRPS PI LENGTH PI COVER

ENS 1.12 2.66 56.06 1.18 4.72 72.90 1.38 7.14 81.16
DRN 0.61 4.26 94.87 0.79 5.90 96.37 1.11 7.99 95.82

SMRY 0.62 4.45 95.53 0.79 6.17 97.01 1.10 8.31 96.64
DS 0.61 4.41 95.72 0.78 4.43 89.87 1.14 4.56 77.79
GAT 0.60 4.16 95.04 0.78 5.93 96.42 1.09 8.27 96.80

us to assess whether there is important information in the
distribution of the NWP ensemble members and if the infor-
mation sharing among weather station enabled by the GNN
improves performance.

Not surprisingly, all post-processing methods substantially
improve the raw ensemble predictions, which provide the
sharpest prediction intervals, but fail to achieve a coverage
close to the nominal value and thus clearly lack calibra-
tion. The proposed GAT model outperforms all other post-
processing models in terms of the mean CRPS across all
lead times and tasks. The statistical significance of these
improvements is assessed via formal statistical tests follow-
ing Diebold & Mariano (1995). Detailed results available in
the supplemental material indicate that the improvements
achieved by the GAT model are significant at the 5% level
for a large fraction of the investigated stations and lead times.
Interestingly, the DS model produces substantially sharper
prediction intervals at longer lead times, but fails to achieve
improvements over the DRN model in terms of the CRPS.

In order to investigate local differences, Figure 2 shows
the relative improvement in terms of the CRPS, i.e., the
station-specific continuous ranked probability skill score,
CRPSS (= 1 − CRPSGAT/CRPSDRN), where DRN serves
as a reference method and CRPSGAT and CRPSDRN denote
the corresponding mean CRPS at a station. The GAT model
achieves improvements over DRN for almost all investigated
stations, which range up to around 14% in terms of the
mean CRPS. While there is no clear geographical pattern,
the improvements seem slightly larger at stations which are
more centrally located within the graph.

Additional results on the calibration of the forecast dis-
tributions are available in the supplemental material. To
asses feature importance, we employ a permutation impor-
tance procedure with two stage feature shuffling, following
Höhlein et al. (2024). The four most important features are
all related to temperature variables from the NWP ensemble,
followed by the station ID and the station altitude. Together
these six features are responsible for roughly 80 % of the
total feature importance. Details and graphical illustrations
are provided in the supplemental material.
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Figure 2. Station-specific improvement in terms of the CRPS of the
GAT model over DRN, computed in terms of the CRPSS; where
higher values indicate larger improvements by the GAT model.

5. Conclusion
We propose a graph neural network architecture for ensem-
ble post-processing which enables an improved information
sharing across station locations and achieves consistent and
significant improvements over a highly competitive NN-
based post-processing model across lead times and fore-
casting tasks on a benchmark dataset. Within the proposed
GAT architecture, the attention mechanism is a specifically
important component to achieving these improvements. Po-
tential future extensions of the GAT model include exten-
sions towards spatio-temporal GNNs (Li & Zhu, 2021) as
well as other graph generation methods based on alternative,
e.g. meteorologically motivated similarity-based distance
metrics (Lerch & Baran, 2017). Further, a more detailed
investigation of station-specific benefits of the GAT model
and their relation to meteorological factors such as weather
patterns or seasonality provides an interesting avenue for
further analysis.
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Dabernig, M., Evans, G., Faganeli Pucer, J., Hooper, B.,
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A. Supplementary Material
The supplementary material is organized as follows. Appendix A.1 gives an overview of the data and features used, and
Appendix A.2 provides additional details on the model architecture and training, as well as additional results.

A.1. Data

The EUPPBench dataset (Demaeyer et al., 2023) includes (re)forecasts and observations of 2-m air temperature and
additional auxiliary variables at lead times of 6 to 120 h in 6 h intervals for a total of 122 stations. The stations, along with
their altitude, are shown in Figure A.1. The auxiliary variables are listed in Table A.2, and station-specific information
included in the dataset is listed in Table A.3. The EUPPBench dataset is available through the CliMetLab API (Demaeyer &
Stauffer, 2024)

We focus on the lead times of 24 h, 72 h and 120 h, and define a training, validation and testing datasets for the R2F and
R2R tasks described in Section 2. An overview of the datasets and tasks is provided in Table A.1. Note that for the final
model training, the valid set is used for training as well.
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Figure A.1. Weather stations in the EUPPBench dataset with their corresponding altitude.

Table A.1. Sizes of the training, validation and test datasets in terms of the number of days for which a forecast is available. There is a
forecast for 122 stations for each day, generated by either 11 or 51 ensemble members for the reforecasts and forecasts, respectively.
RF Test and F Test denote the test datasets for the R2R and R2F task.

DATASET SIZE YEARS REFORECAST?

TRAIN 2611 1997-2009 X
VALID 836 2010-2013 X
RF TEST 733 2014-2017 X
F TEST 730 2017-2018 ×
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Table A.2. Description of auxiliary variables, their corresponding units, full name, and levels which they were measured at (Demaeyer
et al., 2023). Temperature at 2m is the target variable of interest for our study. Processed indicates if the variable has been accumulated,
averaged or filtered over the past 6 h. Note that cin is not used in the final dataset since the data is incomplete.

SHORT NAME UNITS FULL NAME LEVELS PROCESSED?

T K TEMPERATURE 2m, 850 hPa
MX2T6 K MAX TEMPERATURE 2m X
MN2T6 K MIN TEMPERATURE 2m X
Z m2 s−2 GEOPOTENTIAL 500 hPa
U ms−1 U COMPONENT OF WIND 10m, 100m, 700 hPa
V ms−1 V COMPONENT OF WIND 10m, 100m, 700 hPa
P10FG6 ms−1 MAX WIND GUST 10m X
Q kg kg−1 SPECIFIC HUMIDITY 700 hPa
R % RELATIVE HUMIDITY 850 hPa
CAPE J kg−1 CONVECTIVE AVAILABLE POTENTIAL ENERGY —
CIN1 J kg−1 CONVECTIVE INHIBITION —
TP6 m TOTAL PRECIPITATION — X
CP6 m CONVECTIVE PRECIPITATION — X
TCW kgm−2 TOTAL COLUMN WATER —
TCWV kgm−2 TOTAL COLUMN WATER VAPOR —
TCC ∈ [0, 1] TOTAL CLOUD COVER —
VIS m VISIBILITY —
SSHF6 Jm−2 SURFACE SENSIBLE HEAT FLUX — X
SLHF6 Jm−2 SURFACE LATENT HEAT FLUX — X
SSR6 Jm−2 SURFACE NET SHORTWAVE (SOLAR) RADIATION — X
SSRD6 Jm−2 SURFACE NET SHORTWAVE (SOLAR) RADIATION

DOWNWARD
— X

STR6 Jm−2 SURFACE NET LONGWAVE (THERMAL) RADIATION — X
STRD6 Jm−2 SURFACE NET LONGWAVE (THERMAL) RADIATION

DOWNWARD
— X

SWV m3 m−3 VOLUMETRIC SOIL WATER L1: 0 - 7 cm
SD m SNOW DEPTH-WATER EQUIVALENT —
ST K SOIL TEMPERATURE L1: 0 - 7 cm

1 Omitted in the final analysis due to missing data.

Table A.3. Further auxiliary variables, which are station specific except for yday, see Schulz & Lerch (2022) for details.

PREDICTOR TYPE DESCRIPTION

YDAY TEMPORAL COSINE AND SINE TRANSFORMED DAY OF THE YEAR
ID — UNIQUE ID ASSIGNED TO EACH STATION
LAT SPATIAL LATITUDE OF THE STATION
LON SPATIAL LONGITUDE OF THE STATION
ALT SPATIAL ALTITUDE OF THE STATION
OROG SPATIAL DIFFERENCE OF STATION ALTITUDE AND MODEL SURFACE HEIGHT OF NEAREST GRID POINT
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A.2. Additional results

A.2.1. DETAILS ON HYPERPARAMETER OPTIMIZATION AND MODEL TRAINING

Following Rasp & Lerch (2018), a collection of 10 models is trained based on different random initalizations to address
uncertainty during training and improve overall performance for all investigated post-processing models. The predictions,
i.e., the distribution parameters obtained as the output of the resulting 10 models are averaged to generate the final prediction.
We use an early stopping algorithm to enable faster training; if the CRPS does not increase for 10 epochs, we revert to the
best model iteration and stop training. Model parameters are estimated using adaptive moment estimation with weight decay
(AdamW) (Loshchilov & Hutter, 2017).

Table A.4 shows the results of a grid search for the GAT model. Note that dmax was not included in the grid search, however
preliminary testing showed that 100 km delivered good results. Further, the DS and SMRY models were optimized using the
same hyperparameter grid as for the GAT model. Similar to the approach for the graph based models, the DRN model was
also optimized using a grid search of the relevant hyperparameters, see also the model descriptions in Rasp & Lerch (2018);
Schulz & Lerch (2022), and Höhlein et al. (2024). Training times ranged from a few minutes for the DRN to up to an hour
for the GAT-based models on one NVIDIA P40 GPU. Note that in contrast to the computational costs of all post-processing
methods are negligible compared to the costs of obtaining the raw forecasts by running ensembles of NWP models.

Table A.4. Choice of hyperparameters of the GAT model. The column ‘Optimized?’ indicates whether the hyperparameters were
optimized based on the validation dataset using a grid search.

PARAMETER 24 h 72 h 120 h OPTIMIZED?

MAXIMAL DISTANCE (dMAX ) 100 km 100 km 100 km

BATCH SIZE 8 8 8
TRAINING EPOCHS 31 42 35 X
LEARNING RATE 0.0002 0.0001 0.0005 X

EMBEDDING DIMENSION 20 20 20
HIDDEN CHANNELS (GNN) 265 128 64 X
GNN LAYERS 2 2 1 X
ATTENTION HEADS 8 8 8 X

DEEP SET LAYERS (IN) 3 3 3
DEEP SET LAYERS (OUT) 2 2 2
DEEP SET HIDDEN CHANNELS SAME AS “HIDDEN CHANNELS (GNN)” (X)

A.2.2. ADDITIONAL RESULTS

To compare the different post-processing models, we report the average CRPS for the two tasks (R2R and R2F) and all
models in Table A.5, along with the average length of the prediction interval (PI length) based on a nominal level of
N − 1/N + 1, where N is the number of ensemble members. This evaluates to 96.15 % and 83.33 % for the R2F and R2R
task, respectively. Overall, qualitatively similar results are obtained for the two tasks, with similar rankings and relative
improvements of the GAT model over the alternative specification of GNN models and the DRN model.

To assess the statistical significance of score differences, we use Diebold-Mariano tests (Diebold & Mariano, 1995) of equal
predictive performance. The test is conducted for each combination of two models and separately for the considered lead
times, with the null hypothesis of equal predictive performance at a given station. The test statistic is

t =
√
n
S̄Fn − S̄Gn

σ̂n
, where σ̂n =

1

n

n∑
i=1

(S(Fi, yi)− S(Gi, yi))
2
,

and S̄F and S̄G denote the corresponding mean scores for a fixed observation station and lead time for the two models’
forecast distributions F and G and a corresponding test dataset of size n. Under the assumption of equal predictive
performance, the distribution of t approximately follows a standard Gaussian distribution. In order to account for multiple
testing, the Benjamini-Hochberg correction is applied (Benjamini & Hochberg, 1995), which corresponds to sorting the
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Table A.5. Scores for the reforecast to reforecast (R2R) and reforecast to forecast (R2F) tasks. Scores are calculated per lead time, with
the best CRPS scores highlighted in bold.

LEAD TIME 24 h 72 h 120 h

METHOD CRPS PI LENGTH PI COVER CRPS PI LENGTH PI COVER CRPS PI LENGTH PI COVER

R2R

ENS 1.20 1.82 38.94 1.28 3.29 54.98 1.54 4.88 61.60
DRN 0.65 2.79 78.38 0.86 3.89 80.32 1.19 5.27 79.53

SMRY 0.66 2.91 79.73 0.87 4.04 82.37 1.18 5.48 81.51
DS 0.64 2.92 81.11 0.87 2.90 68.53 1.25 3.01 54.97
GAT 0.63 2.75 79.39 0.85 3.90 81.66 1.17 5.47 82.32

R2F

ENS 1.12 2.66 56.06 1.18 4.72 72.90 1.38 7.14 81.16
DRN 0.61 4.26 94.87 0.79 5.90 96.37 1.11 7.99 95.82

SMRY 0.62 4.45 95.53 0.79 6.17 97.01 1.10 8.31 96.64
DS 0.61 4.41 95.72 0.78 4.43 89.87 1.14 4.56 77.79
GAT 0.60 4.16 95.04 0.78 5.93 96.42 1.09 8.27 96.80

p-values of the per-station tests in ascending order and selecting the corrected significance level as

p∗ = max(pi | pi ≤
αi

M
).

For all p-values smaller or equal to p∗ the null hypothesis is rejected. Results are reported in Table A.6 and indicate that the
GAT models’ scores tend to be significantly better those of DRN at up to 38% of the stations, while the null hypothesis is
never rejected in favor of the DRN model. For longer lead times, the fraction of stations with significant score differences
tends to decrease, and overall, qualitatively similar results can be observed for the two tasks.

Table A.6. Percentage of combinations of stations showing statistically significant differences in terms of the CRPS after applying the
Benjamini–Hochberg correction at a nominal level of 0.05. Two-sided test were conducted, the table shows the ratio of stations for which
the null hypothesis of equal predictive performance was rejected in favor of the model in the row, while comparing it to the model in the
column.

Lead time 24 h 72 h 120 h

Method DRN SMRY DS GAT DRN SMRY DS GAT DRN SMRY DS GAT

R2R

DRN — 29.2 0.0 0.0 — 11.7 0.8 0.0 — 1.7 84.2 0.0
SMRY 2.5 — 0.0 0.0 5.8 — 0.0 0.0 5.0 — 89.2 0.0
DS 18.3 36.7 — 1.7 3.3 2.5 — 0.0 0.8 0.8 — 0.0
GAT 30.0 70.0 23.3 — 20.8 45.8 51.7 — 16.7 22.5 97.5 —

R2F

DRN — 30.0 0.0 0.0 — 22.5 0.0 1.7 — 8.3 50.8 0.0
SMRY 7.5 — 5.0 0.0 10.0 — 0.0 3.3 10.0 — 55.0 0.0
DS 10.8 40.8 — 2.5 20.0 28.3 — 10.0 1.7 3.3 — 0.0
GAT 38.3 50.0 24.2 — 14.2 35.8 0.0 — 10.8 11.7 72.5 —

A.2.3. PIT HISTOGRAMS

To assess the calibration of the different post-processing approaches, we use probability integral transform (PIT) histograms.
The PIT F (y) is the value of the predictive CDF F , evaluated at the T2M observation y. In our case, the predictive
distribution is Gaussian and thus F (y) = Φ

(
y−µ
σ

)
is the PIT. If the model is calibrated, meaning the realizing T2M

observation is indistinguishable from a random draw from the forecast distribution, the PIT values should follow a uniform
distribution U (0, 1), and the visual inspection of histograms of the PIT values can point to different kinds of mis-calibration.
For example, histograms that follow a U-shape indicate that the forecast is underdispersive (i.e., the observation too often
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Figure A.2. PIT histograms of the post-processed forecasts of the DRN and GAT model for 24 h, 72 h and 120 h lead times based on the
R2R and R2F tasks.

falls outside a plausible predicted range). Figure A.2 shows PIT histograms of the DRN and GAT models for the different
lead times. All PIT histograms resemble an uniform distribution fairly well, however, for the reforecast data there exists a
spike for the lower PIT values and larger PIT values are under-presented, specifically for the R2F task. Overall, only minor
differences between the PIT histograms of the DRN and the GAT model can be observed.

A.2.4. FEATURE IMPORTANCE

To identify the most important input features, we employ a permutation importance approach, which operates on the
fundamental assumption that an input feature’s importance can be determined by measuring the impact of randomly shuffling
it on the model’s performance. If an input variable is important, the predictive performance deteriorates notably after
permuting it, while for unimportant variables, performance remains relatively unchanged. This can be due to the variable
being generally unimportant for the task at hand, or the redundancy of the variable, meaning the information of this variable
is already captured by other variables through multicollinearities (McGovern et al., 2019). The main advantage is that
the model does not have to be retrained each time, saving computational resources. However, colinearities or interactions
between variables cannot be captured.

Following Höhlein et al. (2024), we employ a two-step permutation is employed to first permute the feature across the time
dimension and subsequently across the station (s) and ensemble member (n) dimension to evaluate the importance of an
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input variable i. Let
Xt = {xt,s,n|s = 1, . . . , S; n = 1, . . . , N}

denote the entire dataset at time step t, where xt,s,n is a vector in RP describing the prediction at station s and time t, made
by ensemble member n, and P is the total number of input features. To simplify notation, we omit the index for the i-th
feature, however note that the following transformations are only applied to the i-th dimension of xt,s,n. First, the data is
permuted along the time dimension, according to a permutation π. Second, for each time-stamp t, the feature of interest is
permuted along the station and ensemble member dimension together. Therefore,

Π(Xt) = {xπ(t),πt(s,n)|s = 1, . . . , S; n = 1, . . . , N} (1)

is the permuted feature set, which is then used to generate the graphs, as detailed in Section 3.3.1. The two-stage shuffling
is designed to maintain certain structural information in the graph, such as ensuring that each station ID appears an equal
number of times each day, irrespective of the shuffling. The importance of each feature is calculated by comparing the mean
CRPS of the permuted dataset and to the original one computed on the non-permuted data via

Imp(i) =
CRPS(F|Πi(X),Y)− CRPS(F|X,Y)

CRPS(F|X,Y)
. (2)

The importance of feature i is estimated by evaluating Equation (2) 10 times using a different training run of a single GNN
model.

Figure A.3 shows the feature importance for the 24 h, 72 h and 120 h lead times for the two tasks. Note that the feature
importances are normalized to allow for a better comparison. Not surprisingly, the top 3 most important predictor variables
(T2M, MX2T6, MN2T6) all concern the 2-m temperature and account for about 61.8 % of the total importance together (in
the R2F task). Even though the distribution of importances across these three variables varies substantially depending on the
lead time, the total importance always sums up to 61.8±1 %. For the R2F task, the temperature variables are followed by
the level 1 soil temperature (STL1), which is recorded in a a depth of 0 - 7 cm. As the lead time increases, the importance of
soil temperature increases as well. Subsequently, two station-specific features follow, where ID refers to the station identifier,
which is arbitrarily assigned in the beginning, but is mapped via the embedding layer to a 20-dimensional vector. Using this
embedding, the model encodes station specific information in the node id during training. ALT refers to the altitude of the
station location. Qualitatively similar results are obtained for the R2R task, with a change in the raking between the soil
temperature and the station identifier being the most notable difference in the most important predictors. However, note that
these feature importances should be interpreted with care, as the quality of the prediction made by the NWP model varies
across the features. Thus low importance can also be due to decreased forecasting performance by the NWP model, instead
of the variable being irrelevant for the task. For details, see also the corresponding discussions in Rasp & Lerch (2018) and
Schulz & Lerch (2022).
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Figure A.3. Relative feature importance of the GAT model for the R2F (top) and the R2R task (bottom). Error bars show the standard
deviation, which is calculated based on 10 training runs of the individual GNNs.
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