KIT | KIT-Bibliothek | Impressum | Datenschutz

Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing

Koneru, Sai 1; Exel, Miriam; Huck, Matthias; Niehues, Jan ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Large language models (LLMs) have demonstrated considerable success in various natu-
ral language processing tasks, but open-source
LLMs have yet to attain state-of-the-art performance in Neural Machine Translation (NMT).
Nevertheless, their significant performance in tasks demanding a broad understanding and
contextual processing shows their potential for translation. To exploit these abilities, we in-
vestigate using LLMs for MT and explore recent parameter-efficient fine-tuning techniques.
Surprisingly, our initial experiments found that fine-tuning with Q-LoRA for translation pur-
poses led to performance improvements in terms of BLEU but degradation in COMET
compared to in-context learning. To overcome this, we propose an alternative approach: adapt-
ing LLMs as Automatic Post-Editors (APE) rather than direct translators. Building on the
ability of the LLM to handle long sequences, we also propose extending our approach to
document-level translation. We show that leveraging Low-Rank-Adapter fine-tuning for APE
can yield significant improvements across both sentence and document-level metrics while gen-
eralizing to out-of-domain data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172405
Veröffentlicht am 11.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000172405
Erschienen in Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Mexico City, 16th-21st June 2024
Veranstaltung Annual Conference of the North American Chapter of the Association for Computational Linguistics : Human Language Technologies (NAACL 2024), Mexiko-Stadt, Mexiko, 16.06.2024 – 21.06.2024
Seiten 2711–2725
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page