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Abstract

Making data FAIR—findable, accessible, interoperable, reproducible—has become the

recurring theme behind many research data management efforts. dtool is a lightweight data

management tool that packages metadata with immutable data to promote accessibility,

interoperability, and reproducibility. Each dataset is self-contained and does not require

metadata to be stored in a centralised system. This decentralised approach means that find-

ing datasets can be difficult. dtool’s lookup server, short dserver, as defined by a REST API,

makes dtool datasets findable, hence rendering the dtool ecosystem fit for a FAIR data man-

agement world. Its simplicity, modularity, accessibility and standardisation via API distin-

guish dtool and dserver from other solutions and enable it to serve as a common

denominator for cross-disciplinary research data management. The dtool ecosystem brid-

ges the gap between standardisation-free data management by individuals and FAIR plat-

form solutions with rigid metadata requirements.

Introduction

The immense amount of data underlying today’s scientific research requires strict manage-

ment principles. Over the last decade, the attributes findability, accessibility, interoperability,

and reusability have become the key guiding principles of good data management [1]. Making

data “FAIR” has since become the motivation behind countless data management efforts.

Often, the ultimate rationale for making data FAIR is making data AI-ready [2]. Yet, large

parts of the scientific community do not benefit directly from AI-ready data. In these cases

more direct motivators for FAIR data management are those that benefit the individual:

increased visibility in the academic world, improved collaboration with both the future self

and colleagues, and hence enhanced efficiency. Students and early-career researchers need

general-purpose tools with low entry barriers that facilitate data documentation. Once data is

documented, the transition to publishing data on large scale repository platforms becomes

natural.
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Citation: Hörmann JL, Yanes L, Vazhappilly A,

Sanner A, Holey H, Pastewka L, et al. (2024) dtool

and dserver: A flexible ecosystem for findable data.

PLoS ONE 19(6): e0306100. https://doi.org/

10.1371/journal.pone.0306100

Editor: Stephen R. Piccolo, Brigham Young

University, UNITED STATES

Received: March 11, 2024

Accepted: June 10, 2024

Published: June 25, 2024
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Lightweight data management with dtool as introduced by Olsson and Hartley [3] puts the

focus on local data first and fills a gap (see Fig 1) between manual, naming-convention-based

data management and complex discipline-specific, often cloud-based, integrated solutions

such as centralised electronic lab notebook platforms (e.g. Chemotion [4]), repositories for

computational data (e.g. NOMAD [5, 6]) or repositories for specialised metrology data (e.g.

contact.engineering [7]). dtool exposes a Python API (application programming interface) and

a command line tool to bundle data and metadata into a unified whole, referred to as a “data-

set”. dtool also implements robust consistency checking to ensure integrity of datasets.

dtool is designed for operation in decentralised and highly distributed environments where

needs differ substantially from group to group. This is a scenario where centralised solutions

are difficult to implement and storage technologies change rapidly. By bundling data and

descriptive metadata in datasets without imposing any discipline-specific constraints a priori,
dtool encourages the use of machine-readable metadata formats for data documentation and

allows templates adhering to specific schemas, but does not enforce either. The decision on the

degree of compliance with FAIRness, in particular in terms of interoperability and reusability,

lies with each user and their choice of documentation standards. Hence, dtool and its datasets

do not necessarily fulfil the FAIR principles in general, but they provide a didactic bridge, with

a low barrier to entry, between completely standardisation-free data management and fully

FAIR platform solutions with rigid metadata documentation.

The data and metadata within dtool datasets are made programmatically accessible via a

command line interface (CLI) and a Python API. This programmatic access asks researchers

to bring along a certain willingness for working on a terminal, but in turn empowers them to

transition more easily from manual data management to semi- and fully-automated work-

flows. Illustrative examples can be found in machine learning research [8], solid mechanics

[9–11], multiscale simulations [12, 13], and molecular dynamics simulations [14].

In summary, dtool improves accessibility, interoperability and reusability by packaging data

and metadata as a unified whole and providing programmatic means with said data and

metadata.

The dtool lookup server, or just dserver, described in this publication, makes dtool datasets

findable, hence rendering the dtool ecosystem fit for FAIR-completeness. It adds a centralised

Fig 1. Data maturity pyramid. Scientific data evolves through several stages of maturity from initial collection towards publication. Different types of data

management tools and platforms, indicated by curly braces, support the researcher along the stages of data maturity. Each of them operates on a different type

of storage infrastructure, from hard drives in individual machines to object storage behind centralised public archives. dtool focuses on low data maturity

where datasets are largely stored decentralised. dserver extends the scope of the ecosystem to an intermediate stage, where data is centrally archived and shared

group-internally. ELN: Electronic Lab Notebook.

https://doi.org/10.1371/journal.pone.0306100.g001
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instance to the distributed data management ecosystem that makes dataset repositories search-

able. Compared to dtool in isolation, dserver allows efficient querying of datasets indexed in a

database via a standardised REST (representational state transfer) API to build suitable inter-

faces for both human interaction as well as machine interaction for workflow-integration.

Their simplicity, modularity, accessibility and standardisation (via an API) distinguish dtool
and dserver from other solutions and enable it to serve as a common denominator across inter-

disciplinary research data management (RDM). Abstracting away the storage layer allows

quick and simple instantiation of searchable data repositories on the infrastructure at hand, be

it a Windows share, an S3 object storage, or just a local file system. Brokers for other storage

technologies are easily implemented and plugged into the ecosystem.

In this paper, we describe dserver and the decisions that lead to its design, and illustrate

how it can benefit individual researchers and research groups. dtool and dserver are also con-

textualised by comparing it to other research data management solutions.

Methodology

dtool design

The core of good data management is data documentation [15]. Thus, bundling data and doc-

umentation into a unified whole lies at the core of decentralised data management ecosystems.

dtool is no exception and the design decisions for the dtool dataset have been described in

detail by Olsson and Hartley [3]. Importantly, the datasets hold administrative (such as user-

name, date of creation, and file sizes) and descriptive (such as experimental conditions or sim-

ulation parameters) metadata in machine-processable plain text formats such as JSON

(JavaScript Object Notation) [16] and YAML (formerly Yet Another Markup Language, now

YAML Ain’t Markup Language) [17]. A dataset’s README.yml file contains descriptive meta-

data that should be formatted as machine-processable YAML. Plain text is not strictly for-

bidden, but the file extension strongly encourages the use of YAML. A dataset’s manifest holds

structural metadata on all files contained within the dataset. S1 Fig illustrates an abstract dtool
dataset together with examples on how to interact with it via the provided interfaces. Each

dataset contains documentation on its own structure to make itself understandable even in the

absence of any dtool software. In the following, we will refer to aforementioned descriptive

and structural metadata as a dataset’s readme and a dataset’s manifest respectively.

dtool abstracts away the storage infrastructure layer. Its core is a set of atomic operations on

datasets, like dataset creation or copying. Storage brokers are responsible for translating these

atomic actions to actual operations on the underlying storage infrastructure of a specific stor-
age endpoint. Within the dtool context, a storage endpoint is referred to as a base uniform
resource identifier (base URI). Examples of base URIs are,

• file:///path/to/repository,

• s3://some-bucket or

• smb://some-network-share.

The base URI consists of a scheme that determines the storage broker, in these examples

file for the local storage, s3 for Amazon’s Simple Storage System API and smb for Micro-

soft Windows Server Message Block protocol, followed by a resource endpoint name like a

server name or a location within the specific storage system.

Datasets are understandable in their raw representation on a specific storage system. Storage bro-

kers are required to attach a simple textual description and a machine-readable structure documenta-

tion of the dataset representation specific to the storage infrastructure. For the example of hierarchical
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file systems, textual description and machine-readable structural documentation are found within

the .dtool/README.txt and .dtool/structure.json files, respectively.

A dataset is globally identified by its universal unique identifier (UUID). Instances of the same

dataset may exist at several base URIs. The consistency of a dataset across multiple instances is

verifiable by hashes that are stored in the manifest and computed when a prototype dataset is

made immutable by freezing. One instance of a dataset at a particular storage location is uniquely

identified by its URI. This URI is composed of the base URI and a locally unique identifier, i.e. a

local folder name file:///home/my-user/some-dataset or the UUID as a suffix

s3://some-bucket/1a1f9fad-8589-413e-9602-5bbd66bfe675.

dserver design

dserver ingests datasets at targeted base URIs and indexes them to make them searchable.

What part of the dataset is made searchable in what way is adaptable without much effort. At

its core, dserver allows free text search on administrative and descriptive metadata. Server-side

plugins may extend ingestion and search mechanisms.

dserver needs an immutable core interface that lives on a slowly evolving technological layer.

We choose a web server that serves HTTP/HTTPS requests. We draft a REST API adhering to the

OpenAPI v3 specification [18] that defines dserver at its core irrespective of implementation

details. Adhering to OpenAPI specification provides a way for automatically documenting and

validating API requests both on the web interface and the internal interfaces across dserver. This

prevents coding errors and provides stronger guarantees about how data is handled internally.

The architecture and design choices made during the creation of dserver were aimed at cre-

ating a system that is useful and sustainable. To make the system useful, it was designed to be

easy to deploy and consume. To make the system sustainable, it was designed to be as simple

as possible, yet flexible and extensible. Below are brief high-level descriptions of the key fea-

tures of the system which are: a design resting on the three modular pillars of the core applica-

tion, a search plugin and a metadata retrieval plugin; Python and Flask as the language and

framework of choice; the delegation of authentication to third-party services; authorisation for

searching and registering datasets on a per-base URI level; the dataset ingstion mechanism;

free-text search on all available metadata; piecewise metadata retrieval.

Modular design. We split our minimal dserver implementation into three components:

the core application, the search plugin and the retrieve plugin. Conceptually, the core applica-

tion exposes the consumable interface and manages privileges in a core database. The search

plugin takes responsibility for building a searchable index of registered datasets. For this pur-

pose, it may maintain its own database. The decision on which information is made searchable

in what way lies with the specific search plugin implementation. The retrieve plugin takes

responsibility for delivering metadata such as readme, manifest, or annotations for registered

datasets efficiently on demand and may maintain its own database as well. Beyond these three

core components, dserver supports arbitrary plugins that provide extended functionality, usu-

ally by introducing additional REST API routes. All interactions between dserver‘s components

and dtool datasets happen via dtool‘s API and the specific storage brokers. This conceptual

design illustrated in Fig 2 makes dserver agnostic in terms of the database technologies used.

The plugin architecture alleviates the need to modify the core code when introducing new fea-

tures and facilitates extending dserver for niche use cases with tailor-made plugins.

Language and framework. Python is a language with an extensive ecosystem of modules

for data- and web-applications. This makes it easy to create a web API that can talk to a variety

of databases. Furthermore, it is a popular language with many scientists. This means, an exten-

sion of the framework becomes possible even for scientists with only moderate software-
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development knowledge. For a lean implementation via Python’s web server gateway interface

(WSGI) [19], we choose Flask [20] as the web application framework and flask-smorest
[21] as the REST API framework with support for autogeneration of OpenAPI documentation.

Authorisation is handled by flask-jwt-extended [22].

Authentication. Authentication is the process of verifying a user‘s identity. In dserver,
authentication is implemented using JSON Web Tokens (JWT) [23]. The dserver implementa-

tion has the ability to create users and generate tokens for them. However, a feature of using

JWT is that the token generation can be delegated to a third party, for example an academic

institute’s central identity management system. dserver treats a user as authenticated as long as

a valid JWT token is provided, even if the user has not yet been registered on the server

instance. Such a user will, however, have no authorisation for any interaction with dserver.
Authorisation. The concept of authorisation is concerned with who can do what. The

problem requires the management of relationships between entities, for example to answer

questions like: “is user A allowed to search the metadata about the datasets stored in base URI

X?”. Authorisation is built into dserver and works at the base URI level. Users can be granted

permissions to search and/or register metadata about datasets in a base URI. The underlying

technology for implementing authorisation is a relational database. The interface to the rela-

tional database is abstracted away using the SQLAlchemy object-relational mapper so any rela-

tional database supported by SQLAlchemy can be used [24].

Ingestion. dserver delegates ingestion to registration clients that interface with dserver
either via its REST API, or, if integrated into the server application in form of a plugin, via its

Python API. The extraction and provision of correct metadata lies within the responsibility of

the registration client. dserver does not insist on having physical access to the actual dataset.

This allows users with registration privileges to construct dserver‘s database in any fashion of

their choice. Our dserver implementation comes with a simple server-integrated registration
client that indexes all datasets on a specific base URI. For this, dserver of course needs to have

direct accessibility to any ingested base URI.
Free-text searching. The ability to do free text searching on all the metadata of datasets

within dserver is the key functionality of the system. There are many different database tech-

nologies that implement free text searching of documents. To allow the system to be flexible,

Fig 2. Generic components of a dserver instance embedded in a hypothesised environment. Arrows indicate dependencies and interaction. The dserver
implementation is formally split into three components: a core app, a search plugin and a retrieve plugin. This makes dserver flexible in terms of database

technologies. Each of the core components independently interacts with an underlying database deemed best suitable for its purpose. In a meaningful

application case, dserver interacts with storage infrastructure holding datasets via dtool storage brokers to build its search index. Components of an exemplary

environment providing S3 object storage and a Windows share are shown slightly greyed out.

https://doi.org/10.1371/journal.pone.0306100.g002
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and allow users to be able to employ their technology of preference, free-text searching is

implemented using a plug-in architecture. Provided with this paper is an implementation cre-

ated using MongoDB [25]. However, it would be trivial to create implementations based on dif-

ferent database technologies. Search results contain basic administrative metadata relating to

the datasets identified, such as the UUID and URI.

Metadata retrieval. Metadata retrieval is separated from free-text searching to make sure that

the bodies of responses from searches do not become too large. In other words searches only return

responses with basic administrative metadata, not all the structural and descriptive metadata stored

in dataset manifest and readme files respectively. The retrieval of manifest and readme metadata is

also implemented using a plugin architecture. This allows the database technology for doing these

actions to be different from that used for searching. However, the implementation provided with

the paper also uses MongoDB. Metadata for a particular dataset are accessed using the dataset’s URI.

Use-cases

Data repository

The core use-case of a data management tool is to facilitate data storage. dtool and dserver are

presently used for managing small to medium-scale (~ 100 TB, ~ 10,000 datasets) data repositories

on S3 and SMB storage infrastructure in a variety of disciplines from plant science, bioinformatics,

materials science and chemistry at the author’s institutions. Metadata is largely manually created

by the user before freezing and uploading to the storage system. Large scale repositories have been

migrated seamlessly between storage infrastructures (e.g. from SMB to S3) using dtool.
An emergent benefit of using dtool and dserver has been improved internal communication

and sharing of data. UUIDs of datasets are easily communicated by email or on group chats.

Datasets not shared in this manner are easily findable by other group members via the group-

central dserver. In addition, embedding UUIDs in the comment sections of slide decks or man-

uscripts allows tracking data from the final products of scientific research, which are typically

presentations or publications.

While dtool does not impose any metadata standards, some of us have formalised a meta-

data scheme for relationships between datasets. This gives a directed graph of datasets, that

allows tracking the data processing pipeline from the raw data (e.g. a measurement or simula-

tion input file) to various levels of derived data (e.g. interpretation of a spectroscopic experi-

ment, simulation output, or a manuscript).

Data transfer

Transferring large amounts of data between group members, institutions, or computer centres

can be a challenge, and dedicated file-transfer solutions (e.g GridFTP [26]) have been created

for various applications. dtool facilitates transfer in particular because it enables researchers to

use modern web-based storage platforms such as Azure or S3 that have robust security mecha-

nisms and are not hidden in private networks. For some of us, dtool has been instrumental in

direct transfer of datasets from high-performance compute centres, collecting results of simu-

lations run at various sites into a central location. On the S3 storage broker, dtool can also be

used to share large datasets with outside collaborators by generating temporary URIs based on

presigned-key mechanisms available in this system.

Workflow automation

dtool datasets can be created programmatically through the Python API. This enables work-

flows that automatically generate dtool datasets and upload them to the storage system. This is
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particularly useful for complex simulations that need to be run for a variety of input parame-

ters. These parameters are easily documented in the readme metadata and then become

searchable within dserver. In combination with workflow management systems, this becomes

a powerful ecosystem for automatically orchestrating simulations on high-performance com-

puting systems. For example, we have used dtool and dserver in combination with the work-

flow system FireWorks [27] to orchestrate parametric runs of molecular dynamics simulations

(see Ref. [14]). Analysis and postprocessing of these simulations then occurs through Python

scripts that query simulation results for specific sets of parameters.

We are currently extending this system to decide which molecular simulation to run based

on an active-learning scheme. dserver hosts the database that is used to train a nonparametric

regression of a macroscopic constitutive law [12]. Retraining happens when a new dataset is

uploaded to the storage system, and we decide the parameters of new simulation runs based

on the estimated prediction error of the regression.

Data management training

Discussions, and training material, around data management benefit from tools that can be

used to illustrate its purpose and benefits. We have incorporated dtool and dserver into

research data management workshops for junior researchers from an interdisciplinary spec-

trum of backgrounds. Trainings are based on the documentations for the dtool command line

client [28], the dtoolcore Python API [29], and dserver [30]. Hands-on exercises illustrate a few

core concepts of good research data management in a discipline-agnostic manner beyond con-

ventions on file naming and folder hierarchy [31]. dtool and dserver force workshop partici-

pants to think about granularity and documentation when packaging data as datasets. It also

introduces them to globally unique identifiers. When making their datasets findable through

dserver, they come in touch with the benefits of machine-readable metadata above purely tex-

tual documentation.

Discussion

Producing FAIR data is at the core of Open Science [32] and in the interest of research insti-

tutes, of science and society as a whole. For the scientific community, FAIR data means

increased data quality, reproducibility, and verifiability. By extension this means enhanced

efficiency, reduced redundancy, and reduced costs. For the individual, FAIR data should mean

increased visibility in the academic world, improved collaboration with both the future self

and colleagues.

Initially, however, improving data management standards is laborious and costly, and often

these initial barriers hamper a change towards better practices. A system that supports data

management should hence have a shallow learning curve and acknowledge the fact that FAIR-

ness is a spectrum. Going FAIR is not a binary all-or-nothing choice and users should not be

coerced dogmatically into going all the way at once.

dtool itself is installable by a single command and accessible to anyone with familiarity of

Python and the command line. Installing and managing dserver requires a working knowledge

of databases, specifically, in the case of the default setup, MongoDB and a relational database

of choice. A working setup of dserver will also require access to a shared storage system for

depositing datasets to be ingested. To extend dserver to handle alternative database technolo-

gies or add new functionality requires knowledge of Python programming.

dtool alone targets individual data management and encourages machine-readable data

documentation. dserver extends the distributed dtool ecosystem by making the datasets in one

or more base URIs searchable. The setup of a dserver can be done ad-hoc on storage
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infrastructure at hand. dtool datasets become findable at the desired level, whether group-

wide, institutional, or global. Doing so moves the data a step closer towards true FAIRness.

The following overview embeds dtool and dserver within the current open-source landscape

of research data management systems. The data taxonomy pyramid in Fig 1 correlates the

quality (or maturity) of data with its storage location conceptually. It sorts data into four sim-

ple tiers [33]: data that is private and stored locally, data that is private but stored in some cen-

tral location, shared data, and published data. Data starts privately at its creation. This data is

often curated (and reduced in volume) while migrating to the shared and published tiers.

The ubiquitous data life cycle in Fig 3 visualises the chronological evolution of data through

subsequent phases in the course of an (academic) endeavour. The image of a cycle is not adequate

in the sense that data does not just circulate repeatedly through a predefined flow, but evolves

continuously. Nevertheless, the data life cycle is a widely accepted depiction of the chronological

dimension in data evolution. We have extended the cycle by “Review” and “Publish” segments. In

a generic scientific project kicked off with a planning phase, data is collected, processed, analysed,

preserved, shared, reviewed, and published. Some of these steps may be skipped. If reused, the

primary data enters another iteration of the cycle, leading to secondary data.

Specific data can be located at a unique point within the taxonomy pyramid in Fig 1 or

within the life cycle in Fig 3, but no direct bijection between these two diagrams exists. While

Fig 3. Data life cycle. Inspired by the ELIXIR Research Data Management Kit [34]. Scientific data evolves through

subsequent stages, from planning and collecting to publication and reuse. Different types of data management tools

and platforms, indicated by thin arrows, support the researcher along different segments of the data life cycle. dtool
and dserver focus on the early stages from data collection to sharing, where data is handled by single individuals or

within a research group.

https://doi.org/10.1371/journal.pone.0306100.g003

PLOS ONE dtool and dserver: A flexible ecosystem for findable data

PLOS ONE | https://doi.org/10.1371/journal.pone.0306100 June 25, 2024 8 / 15

https://doi.org/10.1371/journal.pone.0306100.g003
https://doi.org/10.1371/journal.pone.0306100


the life cycle captures the chronological evolution of data, the taxonomy pyramid captures

their qualitative evolution. To understand how dtool and dserver fill a gap in the tool supply, it

helps to identify which publicity tier or stage of life other research data management systems

operate on.

General or discipline-specific platform solutions often come in pairs of a web-repository

and an RDM framework. This is, for example, the case for general purpose repository zenodo.

org [35] and its spin-off invenioRDM [36]. Clearly, such platforms target data at and beyond

the transition from shared to published tier—or at a late stage in the data life cycle, as indicated

by the annotation “repository platforms” within Figs 1 and 3. They are managed by indepen-

dent organisations or on the institutional level.

Often discipline-specific electronic lab notebooks (ELNs) tackle a lower level in the taxon-

omy pyramid—or an earlier stage in the life span, as suggested with “ELN” annotations in Figs

1 and 3. An example are chemotion ELN and chemotion-repository.net [4]. Paired with a pub-

licly accessible instance as in this case, they target data at and beyond the transition from pri-

vate to shared data all the way to the published top. Ideally, raw data should enter ELNs at

creation. Same as above, ELNs usually require central server instances, often managed on the

department or institutional level, and hence cannot reach the local, truly private data at the

bottom of Fig 1. Notably, recently developed PASTA-ELN [37] puts the focus on the lowest

end of the data taxonomy pyramid in Fig 1 and may run locally, yet still requires a database

instance.

Holistic approaches like openBIS [38] unite features of electronic lab notebooks and labora-

tory information management systems. They aim to capture the whole research data lifecycle

within a single system. Consequently, this enforces modifications to existing processes and

hence brings along the need for extensive staff training. Provision requires significant infra-

structure and management resources, making sustainable instantiation and upkeep meaning-

ful only on an institutional scope.

Contrary to above systems, dtool offers a distributed option for data management at the

lowest level, where the responsibility for the format of data annotation rests with the user, as

annotated within Figs 1 and 3. Together with dserver, the scope extends to the shared tier,

making dtool datasets findable. This is possible on commodity storage infrastructure and with

minimal administrative overhead, feasible even for groups with only a handful of members

and a group-wide accessible network share. Yet, dtool and dserver span a scalable system that

adheres to all applicable rules for workflow-readiness [39].

To understand the advantages and limits of dtool and dserver, we compare with other data-

set-like digital objects. In an earlier publication [3], dtool was compared against the BagIt stan-

dard [40]. The major conceptual difference between BagIt and dtool is that dtool defines an

abstract interface to data and metadata of a dataset in the form of an API, while BagIt is a spec-

ification for data and metadata storage on a classical file system. This difference applies in the

comparison to other dataset-like standards as well. Other file system layout standards next to

BagIt are Moab [41] and the Oxford Common File Layout (OCFL) [42], with the key goal of

making a data repository rebuildable from the OCFL file system root without any further infor-

mation. BagIt, Moab and OCFL reflect an evolution in the effort of making digital preservation

sustainable at the low level of organising data and metadata on a classical file system. In dtool,
this falls into the responsibility of the file system storage broker. The layout on a standard file

system is described by Olsson and Hartley [3]. BagIt, Moab and OCFL were proposed in this

chronological order by a community of institutional and preservation repositories with a focus

on sustainable long-term archival of large volumes of data. The typical use case is under-the-

hood in a platform solution. Here lies a fundamental difference to the origin of dtool and its
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datasets, which started with the idea of helping individuals with their distributed data

management.

DataLad [43] is a tool motivated by the technical challenges of distributed data manage-

ment. Built as a thin layer on top of git [44] and git-annex [45], it takes inspiration from estab-

lished code management practices and puts a heavy focus on versioning. dtool and DataLad
behave similarly in providing a command line interface (CLI) and a Python API at their core.

DataLad covers a broader scope of features. Importantly, DataLad captures workflows and

provenance next to data itself. Yet, to our knowledge no direct equivalent to dserver exists in

the DataLad ecosystem. The DataLad-Registry project [46], however, comes close as it intro-

duces benefits of centrality to the DataLad ecosystem and builds a catalogue of DataLad data-

sets publicly available on the web [47].

RO-Crate [48] addresses both the individual researcher as well as digital repository manag-

ers and infrastructure providers. Of all open-source RDM systems we are aware of, RO-Crates
and the affiliated tool ecosystem are most suitable for direct comparison with dtool datasets

and dserver in the sense that they comprise both a core specification for a dataset-like digital

object that bundles data and metadata, the RO-Crate (Research Object Crate) [49], as well as

libraries and tools for manipulating these objects. Arkisto [50] constitutes a repository plat-

form built on top of RO-Crates and OCFL—in the purpose of providing a searchable collection

of digital objects not unlike dserver. dtool datasets encourage YAML-formatted metadata, but

essentially allow data documentation of any syntax, even plain text data. RO-Crates use

JSON-LD and require adherence to the Schema.org dataset type [51] per specification. The

more stringent documentation approach of RO-Crates certainly supports machine-readability

better. JSON-LD [52] as a concrete Resource Description Framework (RDF) [53] syntax, for

example, allows linking to external data and hence embedding metadata in ontologies, an

important requirement for FAIRness. We argue that this apparent advantage of RO-Crates in

terms of FAIRness and hence “machine-friendliness” comes at the cost of “human-friendli-

ness”. RO-Crates fulfil their purpose as building blocks for data repositories well and could

possibly become a standard format for FAIR digital objects [54]. They will, however, appeal

less to the group leader who wants to improve their research data management without

thoughts on semantic interoperability.

OCFL, dtool, RO-Crates and DataLad all bundle data and metadata but put their focus on

different challenges of data management. The OCFL specifications [55] target completeness,

parsability, versioning, robustness, and storage diversity on storage systems that present their

data in a hierarchical manner. Completeness refers to datasets being a self-contained unit of

metadata and content. A dataset needs to be understandable from their raw representation on

the underlying storage infrastructure in the absence of any mediating software layer. Parsabil-

ity refers to the ability of both humans and machines to understand the layout and inventory

of a dataset. Versioning refers to the ability to incrementally change metadata or the content

of a dataset and to track those changes. Robustness against errors, corruption and manipula-

tion usually involves a mechanism for verifying the validity of an immutable dataset. Storage

diversity refers to the ability to store datasets on a wide variety of storage technologies. The

key features of dtool datasets overlap with OCFL in terms of completeness, parsability, and

robustness. Versioning is deliberately excluded, but freezing a dataset, making it immutable,

essentially makes versioning unnecessary. A new version in the dtool ecosystem would simply

be a new dataset. Contrary to hierarchy specifications, dtool defines a dataset by API and

hence carries the storage layer abstraction further, widening the scope of storage diversity. The

foundation of RO-Crates lies in the principles of Linked Data [56] and hence they focus on par-

sability by standardising rich metadata and the semantics of data. Other aspects like complete-

ness and robustness are delegated to the likes of BagIt or OCFL [55]. DataLad datasets put the
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focus on versioning—they are essentially git repositories. Table 1 compares how OCFL, dtool,
RO-Crate and DataLad behave when regarded under the aspects of completeness, parsability,

versioning, robustness, and storage diversity.

Summary & conclusions

dtool helps researchers to package data and metadata into a unified whole, the dataset. dtool
datasets encourage systematic data documentation even for local distributed data, long before

sharing or publication on a centralised repository. dserver makes dtool datasets searchable.

In comparison to other distributed data management ecosystems, dtool and dserver favour

simplicity over features. They aim to make data management as painless as possible, whilst

offering benefits of programmatic data access up front. Groups, labs, or institutes not yet pro-

vided with adequate RDM solutions through their organisations, disciplines, or communities,

but in need for FAIRer data management solutions with little administrative overhead may

benefit from the dtool ecosystem. Similarly, anyone overwhelmed by the endeavour for FAIR

data and challenged by a rapidly changing infrastructure and services environment may find it

a lightweight option for self-sufficient data documentation and archival. At the same time,

human-accessible and programmatic interfaces allow seamless integration into any kind of

workflow, from completely manual to fully automated examples.

dtool and dserver encourage the use of machine-readable metadata formats for data documen-

tation and allow offering fillable templates adhering to specific schema, but do not enforce either.

While the contents of a dataset are immutable, its metadata can be changed and therefore evolve

with changes in requirements. Eventually, the decision on how far to go in terms of FAIRness lies

with each user community and their choice of documentation standards. This distinguishes dtool
and dserver from other data management ecosystems that either build conceptually around the

strict adherence to standardized metadata schemas (e.g. RO-Crate) or exclude the handling of

metadata from their core and delegate this task to extensions (e.g. DataLad).

Table 1. Delineation of four distributed RDM concepts by their characteristics on the atomistic dataset level.

aspect OCFL dtool & dserver RO-Crate DataLad

completeness Recommends self-containedness and

self-description.

Administrative and structural metadata

always bundled with content in the

dataset. Documentation with descriptive

metadata encouraged.

Recommends self-

containedness and self-

description.

Built on top of git and git-annex.

parsability Both humans and machines can

understand the layout and

corresponding inventory regardless of

software and infrastructure used.

Storage brokers create machine and

human-readable structural descriptions

of dataset representation.

Structured descriptive metadata

recommended, but not enforced.

JSON-LD and Schema.

org Dataset mandated

for metadata.

Delegates metadata handling to

extension MetaLad, which automatically

extracts metadata from a dataset and its

contents by means of “extractors”.

versioning Offers sophisticated versioning

scheme

Data is immutable, metadata can be

updated.

Offers sophisticated

provenance tracking

scheme.

Built on top of git and git-annex.

robustness Checksums in inventory. Checksums in manifest. No built-in mechanism

for data integrity

verification.

Built on top of git and git-annex.

storage

diversity

Designed for hierarchical storage

systems.

Storage brokers allow the use of arbitrary

storage infrastructure.

Assumes classical

hierarchical file system.

Inherits limitations of git and git-annex.

git-annex special remotes allow the use

of arbitrary storage infrastructure.

Background coloring in red, yellow, or green indicates the degree to which the different concepts fulfill the aspects of completeness, parsability, versioning, robustness,

and storage diversity. Note that these colors do not constitute a quality metric. The non-fulfillment of certain aspects often is a desired feature omission, such as the

binary freezing mechanism for dtool datasets in place of incremental versioning.

https://doi.org/10.1371/journal.pone.0306100.t001
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To extend dtool and dserver to a fully FAIR ecosystem, one could develop a plugin for dtool
that validates and enforces the use of metadata schemas. Similarly, one could create a plugin

for dserver to validate that the metadata of ingested datasets adheres to specific schemas.

With dserver, a system administrator or data steward may create productive general pur-

pose repositories on existing storage infrastructure, which can be a local file system, S3, Azure

storage, or Windows share, with little configurational effort. Data management advocates in

need of a complete RDM ecosystem for education purposes, i.e. for the duration of a work-

shop, find a quick and simple demonstrator solution in dtool and dserver.
As to be expected, just as with other RDM solutions the pay-off comes in the long run. The

effort invested in deploying dtool and dserver, however, is scalable depending on the needs of

the specific user group.

Supporting information

S1 Fig. dtool & dserver cheat sheet. Examples on how to inspect and, where applicable,

manipulate metadata and data of a dtool dataset with the dtool command line interface (CLI),

with the underlying dtoolcore Python API, and with the OpenAPI-compliant REST API of

dserver for ingested datasets. These examples illustrate how dtool and dserver embed them-

selves well within the concept of workflow-ready software visualized in Fig 1 of Ref [39]. The

right-hand side block shows the components of an abstract dtool dataset: descriptive metadata,

administrative metadata, structural metadata, and the actual data. Descriptive metadata offers

three levels of increasing complexity: tags, annotations (key-value pairs), and free-format

YAML.
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