
Abstract--In this paper a new method for efficient 

generation of fundamental and harmonic flux maps of 

squirrel cage induction motors is presented. The maps are 

generated only by using static finite element analysis in the 

rotor current reference frame. Thereby, symmetries of the 

flux linkages are analyzed to further reduce the calculation 

effort. This enables efficient simulation, real time modelling 

and control of induction motors including saturation effects 

and spatial harmonics. This is achieved by using a machine 

model based on inverse flux mapping. 

Index Terms—Induction motors, Nonlinear magnetics, 

Flux model, harmonics 

I. INTRODUCTION

Design of new control algorithms and evaluation over a 

large variety of operating points require machine models 

that are computationally efficient but still reflect the 

behavior in as much detail as possible. This is a particular 

challenge with induction motors, as it can take several 

seconds to reach the steady-state operating point after a 

setpoint change.  

Machine models based on inverse flux maps are a 

possible solution which allow efficient modelling and 

control of electrical machines [1]. But for these models, 

initial flux linkage maps must be calculated. In the case of 

doubly-fed induction motors, high-precision datasets can 

be generated by applying different current combinations to 

the two different three phase systems in the stator and rotor 

[2]. 

This approach is not possible for induction motors with 

squirrel-cage rotors, since they have a multi-phase winding 

system in the rotor instead of three-phase system which 

can be supplied with specific dq-current combinations. 

As the current distribution in the multi-phase system of 

the squirrel cage is unknown, full identification of the flux 

maps would require a large variety of extensive transient 

simulations to cover all operating points for the machine. 

This approach would be very time consuming, as the 

settling times of the machine can be large, which causes 

long evaluation times for each operating point.  

This paper proposes a new approach in which a series of 

static finite element analysis (FEA) simulations is solved 

time efficiently, allowing fast identification of the multi-

dimensional flux maps. In contrast to existing methods [3, 

4], the simulations are performed in a rotor current 

reference frame in order to streamline the simulation setup. 

II. MACHINE MODEL

The harmonic flux model of the induction machine is 

based on the known stator voltage equations in the stator 

oriented αβ-system. The αβ-stator voltages (𝑣Sα, 𝑣Sβ) are

described as a function of the stator resistance 𝑅S , the

stator αβ-currents ( 𝑖Sα , 𝑖Sβ ) and stator flux linkages

(𝜓Sα, 𝜓Sβ).

𝑣Sα = 𝑅S ⋅ 𝑖Sα +
d𝜓Sα

d𝑡
(1) 

𝑣Sβ = 𝑅S ⋅ 𝑖Sβ +
d𝜓Sβ

d𝑡
(2) 

The stator flux linkages are not only dependent on the 

stator current vector but are also significantly influenced 

by the rotor position and the rotor currents. Therefore, the 

currents in the squirrel cage must be modelled.  

The squirrel cage has 𝑄R rotor bars per pole pair where

Efficient nonlinear modelling of spatial flux 

harmonics of squirrel cage induction motors 

using inverse flux maps and static FEA 
Johannes Stoss, Pierre Mader, Leonard Geier, Akif Karayel, Andreas Liske and Marc Hiller 

Institute of Electrical Engineering (ETI) 
Karlsruhe Institute of Technology, Karlsruhe, Germany 

johannes.stoss@kit.edu 

+

-

-

-

+

-

-

+

RS RS RR RR

 m

 R 

 R 

 S 

 S      

    

 S 
 S 

 R 
 R 

 m

  

    

  

  

  

Fig. 1: Flux model of the induction machine 



each bar carries its own current 𝑖RB,𝑥 𝑥 ∈ [1,2,… , 𝑄R] .

This results in a 𝑄R-dimensional rotor current vector for a

complete characterization of each operating point.  

As this would lead to high model complexity, a 

simplification must be made for efficient real time 

modeling. Therefore, it is assumed that, in typical 

operating points, the fundamental rotor current component 

is significantly larger than all other components [5]. As 

this assumption is the foundation for the machine model 

and FEA setup in this paper it is further analyzed in section 

III. By using only the fundamental rotor current

component, modelling of the rotor can be done by the

known rotor voltage equations. In the stator-oriented

αβ-reference frame, these consist of the rotor resistance 𝑅R
′ ,

the αβ-currents ( 𝑖Rα
′ , 𝑖Rβ

′ ), the rotor flux linkages

(𝜓Rα
′ , 𝜓Rβ

′ ) and the mechanical rotor frequency 𝜔m. As the

rotor is short-circuited, its voltages are 𝑣Rα = 𝑣Rβ = 0.

𝑣Rα = 0 = 𝑅R
′ ⋅ 𝑖Rα

′ − 𝜓Rβ
′ ⋅ 𝜔m +

d𝜓Rα
′

d𝑡
(3) 

𝑣Rβ = 0 = 𝑅R
′ ⋅ 𝑖Rβ

′ + 𝜓Rα
′ ⋅ 𝜔m +

d𝜓Rβ
′

d𝑡
(4) 

The flux linkages are modelled in dependence of the 

stator and rotor current components in the stator oriented 

αβ-system. If spatial harmonics are to be modelled the 

electrical rotor angle 𝛾m of the rotor is also required. As

there is no simple analytical description for the flux 

linkages, they need to be described as a multi-dimensional 

mapping 𝑓𝜓 as shown in chapter IV.

𝑓𝜓: (𝑖Sα, 𝑖Sβ, 𝑖Rα
′ , 𝑖Rβ

′ , 𝛾m) ⟼ (𝜓Sα, 𝜓Sβ, 𝜓Rα
′ , 𝜓Rβ

′ ) (5) 

Combining stator and rotor equations, the whole system 

dynamics of the induction machine are modelled with the 

block diagram shown in fig. 1. This is an adapted form of 

the general model published in [1] which depends on 

inverse flux mapping. To run the model, inversion of the 

flux map (5) has to be performed once in advance by the 

method described in [1].  

As the rotor resistance of the induction machine depends 

on the operating point, it can also be adjusted accordingly 

in the model. The change in the rotor resistance is caused 

by the current displacement in the rotor due to the 

operating point dependent rotor frequency. Identification 

of frequency dependent 𝑅R
′  maps can be achieved by 

transient locked rotor FEA simulations [6].  

III. SPATIAL ROTOR CURRENT HARMONICS 

The assumption that the rotor current is sinusoidally 

distributed between the rotor bars is the foundation for the 

machine model and FEA setup in this work. Even though 

this assumption is reported to only cause negligible error 

in [3, 4], the real rotor current distribution is analyzed 

further using transient FEAs. All FEAs were performed 

with the machine data given in table I and the design 

shown fig. 2. Stator and rotor are not skewed. This favors 

the formation of current harmonics therefore this model 

presents a worst-case scenario.  

TABLE I 

BASIC MACHINE GEOMETRY DATA 

To analyze the rotor current harmonics, the FEA model 

was operated with a constant voltage amplitude at a supply 

frequency of 50 Hz. This is similar to grid or inverter 

operation at a stationary operating point. 

Fig. 2: Machine design and mesh grid used for FEA simulation. 

Fig.3 shows the resulting rotor bar currents at 0.51 Hz 

rotor frequency at stationary operation. This is equivalent 

to 𝑖d = 26.4 A and 𝑖q =  26.8 A in the rotor flux reference

frame. The current distribution along the rotor bar position 

shows a strong fundamental component, but harmonics are 

also present. Since a strictly sinusoidal current distribution 

is assumed in the model, the model error increases as the 

amount of harmonics rise. Therefore, the total harmonic 

distortion (THD) of the spatial rotor current distribution is 

used for evaluation. The average THD value for the data 

of fig. 3 is −28.83 dB.  

Fig. 3: Rotor bar currents during transient FEA simulation. 

In addition to analyzing the current THD, the rotor 

current distribution can also be analyzed using the rotor-

oriented αβR-system. This can be seen as a spatial Fourier 

transform along the rotor circumference. Therefore, the 

Symbol Meaning value 

𝒑 Number of pole pairs 𝟐 

𝑵 Stator slot number 𝟑𝟔 

𝑸𝐑 Rotor bars per pole pair 𝟏𝟒 

𝒅𝐑 Rotor diameter 𝟏𝟔𝟎 𝐦𝐦 

𝜹𝐑 Airgap 𝟎. 𝟕𝟓 𝐦𝐦 



𝑄R -dimensional current vector shown in fig. 3 is

transformed to the αβR-system using 𝑏 = ej⋅2π/𝑄R  

according to [7].  

[

𝑖RαβR,1

𝑖RαβR,2

⋮
𝑖RαβR,QR]

=

[

1 1 … 1
1 𝑏 ⋯ 𝑏𝑄𝑅−1

⋮ ⋮ ⋱ ⋮

1 𝑏QR−1 ⋯ 𝑏(QR−1)2]

⋅

[

𝑖RB,1

𝑖RB,2

⋮
𝑖RB,QR]

(6) 

It should be noted that this transformation does not 

preserve the amplitude, meaning the real current amplitude 

of each component is 𝑄R-times lower than the amplitude

of 𝑖RαβR,𝑥 . The transformation leads to 𝑄R  complex

current components, of which the second half is conjugate 

complex to the first half. The DC component is given by 

𝑖RαβR,1 . Fig. 4 shows the results of the transform being

applied to the data shown in fig. 3. The 2nd, fundamental 

component, is significantly larger than all other 

components, confirming the assumptions made in section 

II. The DC component, given by index 1 is zero. This is

expected, as a squirrel cage rotor doesn’t allow a DC

current component due to its wiring connection. In

addition, the 2nd and 4th harmonic of the fundamental rotor

current component, given by index 4 and 6, are present. As

the induction motor is modeled symmetrically in the FEA,

components 3, 5 and 7 also become zero.

Fig. 4: Averaged amplitudes mean{|𝑖RαβR,𝑥|} over the time interval 

shown in fig. 3. 

As the model needs to be valid for the whole operating 

range, the rotor current distribution is analyzed for several 

operating points using transient FEA simulations. 

Postprocessing and data analysis were performed equal to 

the shown operating point of fig. 3. To provide a clear 

conclusion about the occurrence of current harmonics in 

the rotor, the THD was evaluated for each operating point. 

The stator frequency was set constant to 25 Hz. The stator 

voltage amplitude and rotor speed were adapted for each 

operating point. The results in fig. 5 are given in the rotor 

flux reference frame, as it is widely used for control and 

modelling for induction machines. 

Fig. 5 gives the spatial rotor current THD for different 

operating points in rotor flux orientation. As the stator 

frequency differs from the previously shown the operating 

point, a slight deviation is expected. For most operating 

points, the THD is larger than −20 dB  resulting in a 

damping ratio greater 10 for the harmonic components 

compared to the fundamental. As there is no rotor current 

at stationary operation for 𝑖Sq = 0 A, those areas have been

interpolated.  

Fig. 5: Rotor current THD in dB at transient FEA. 

For further evaluation, the sum of the rotor current 

harmonics is given in fig. 6. It shows roughly proportional 

behavior to the stator current amplitude. Therefore, the 

relative error of the stator currents caused by neglecting 

the rotor current harmonics can be assumed to be almost 

constant over the entire operating range. 

Fig. 6: Sum of averaged rotor current amplitudes 

mean{|𝑖RαβR,𝑥|} 𝑥 ∈ [3,4, … , 𝑄R] at transient FEA. 

The results of this section confirm the assumption of a 

dominant sinusoidal current distribution in the rotor bars. 

This was proved by transient FEA simulations over wide 

range of operating points, even if the rotor is not skewed. 

But the data also shows harmonic components at all 

operating points which inevitably lead to model errors. By 

analyzing the harmonic content, their impact on the output 

currents can assumed to be almost constant. As further 

demonstrated in the validation results in chapter VI, the 

overall model errors are mostly negligible.  

IV. GENERATION OF FLUX MAPS

As the model shown in fig. 1  requires detailed flux 

maps 𝑓𝜓 , they need to be acquired in advance by FEA



simulations or measurements [8, 9]. To make this process 

as efficient as possible, a series of static FEA simulations 

are performed instead of transient simulation. This 

significantly reduces the computation effort for each 

operating point. Using the simplifications of the rotor 

current distribution made in chapter II and III, the 

operating points of the static FEA simulation can be 

defined very conveniently.  

A. General FEA setup

The setup of the static FEA is performed in rotor current

orientation instead of stator orientation, as it streamlines 

the setup through the simplified geometry relationship. 

This results in a similar simulation grid and flux maps as 

for electronically excited synchronous machines that are 

shown in [1].  

Fig. 7 shows the different reference systems used for 

simulation and modelling. The rotor flux reference frame 

is not shown, as it is exclusively used for evaluation of the 

results in chapter IV.  

The stator-fixed αβ-system is thereby only required for 

generation of the flux maps of the presented model in fig. 1. 

The FEA setup is performed in rotor current orientation 

defined by the dqiR-system shown in fig. 7. The current

space vector 𝑖R represents the fundamental amplitude of

the spatial sinusoidal current distribution in the rotor bars. 
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Fig. 7: Coordinate systems and angle definitions. ‘⋅’ and ‘x’ indicate 

rotor current amplitude and direction. 

The angle 𝛾iR  is the angular shift between the stator-

fixed αβ-system and the dqiR -system in rotor current

orientation. 𝛾m  is the angle between the rotor fixed

αβR-system and the stator-fixed αβ-system. It defines the

relative position of the rotor bars to the slots and windings 

in the stator. The current space vector 𝑖S  describes the

stator current distribution relative to the rotor current space 

vector represented by the dqiR-system.

Fig. 8 shows the simulation grid (red) for the stator 

current space vector 𝑖S that is required for each set of  𝑖R,

𝛾iR  and 𝛾m . This means, that for each of these current

combinations, different rotor d-currents need to be applied 

while rotating the coordinate system to evaluate the flux 

harmonics impressed by the stator windings and geometry. 

Furthermore, the rotor position needs to be varied to take 

the rotor angle dependent harmonics into account.  
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Fig. 8: Stator current grid for static FEA simulation for a defined 

rotor angle and rotor current. 

Table II shows the parameters used to set up the static 

FEA according to the procedure presented. The results are 

shown in chapter V. All values are thereby given in stator 

related quantities.  
TABLE II 

SIMULATION SETUP IN ROTOR CURRENT ORIENTATION 

B. Symmetries

Utilizing symmetries is a common way to reduce

computation effort on a FEA. Depending on evaluation of 

the fundamental component or the harmonics, different 

symmetries can be utilized.  

In addition to that, skewing can also be applied in 

postprocessing, further reducing the computation effort 

compared to a multi slice FEA [3]. Methods for continuous 

skewing during postprocessing are presented in [3, 4]. 

1) Fundamental flux maps

For the fundamental component of the flux maps, the

symmetries are equivalent to the ones of the electronically 

excited synchronous machine. Therefore, the stator and 

rotor d-flux linkages for negative stator q-currents can be 

calculated using the axial symmetry of the flux maps with 

𝑥 ∈ {Sd, Rd}.  

𝜓𝑥(𝑖Sd, −𝑖Sq, 𝑖Rd) = 𝜓𝑥(𝑖Sd, 𝑖Sq, 𝑖Rd) (7) 

As for the q-flux linkages, extension is performed by 

applying the point symmetry for 𝑥 ∈ {Sq, Rq}.   

𝜓𝑥(𝑖Sd, −𝑖Sq, 𝑖Rd) = −𝜓𝑥(𝑖Sd, 𝑖Sq, 𝑖Rd) (8) 

2) Harmonic flux maps

To further reduce the computation effort for the

harmonic flux maps, angular symmetries can also be 

Symbol min max increment 

𝑖Sd −60 A 60 A 7.5 A 

𝑖Sq −60 A 60 A 7.5 A 

𝑖Rd
′ 0 A 60 A 7.5 A 

𝛾iR 0° 60° − 20°/7 20°/7 

𝛾m 0° 180°/7 − 20°/7 20°/7 



utilized by analyzing the periodicities of the maps. 

Therefore, the isolated periodicities of the stator and the 

rotor are analyzed first.  

For the rotor harmonics, ∆𝛾m,per  is defined as the

periodicity along the 𝛾m -axis. It is caused by the

distribution of the rotor bars along the rotor circumference. 

This means that shifting the rotor angle 𝛾m one rotor bar

division while keeping 𝛾iR and the rotor current amplitude

constant, results in the same flux linkages. Therefore, 

∆𝛾m,per is chosen to 360°/𝑄R reducing the range of 𝛾iR in

the FEA to the interval of [0°, 360°/𝑄R].
Similar to synchronous machines, a symmetry of 

Δ𝛾iR,per = 60° for the stator flux linkage harmonics can be

observed. This reduces the range of 𝛾iR in the FEA setup

to the interval of [0°, 60°] . Both symmetries are also 

reflected in the simulation setup given in table II.  

When superimposing these individual periodicities for 

extension of the flux maps, it is necessary to consider the 

interaction between rotor and stator geometries. This 

means that a simple shift of the flux maps along the 𝛾iR-

axis by Δ𝛾iR,per is not sufficient as it does not cover the

harmonic components caused by the rotor geometry. 

Therefore, a further shift of ∆𝛾m to the rotor angle 𝛾m is

applied to establish the same magnetic path. The shifting 

angle ∆𝛾m depends on the previously determined isolated

periodicities.  

∆𝛾𝑚 = 𝛥𝛾𝑖𝑅,𝑝𝑒𝑟  mod(∆𝛾𝑚,𝑝𝑒𝑟)  (9) 

Using the calculated shifting angles the harmonic flux 

map can be extended along the 𝛾iR-axis for a fixed set of

𝑖Sd , 𝑖Sq and 𝑖Rd with 𝑥 ∈ {Sd, Sq, Rd, Rq} as follows:

𝜓𝑥(𝛾𝑖𝑅 + 𝛥𝛾𝑖𝑅,𝑝𝑒𝑟 , 𝛾𝑚) = 𝜓𝑥(𝛾𝑖𝑅 , 𝛾𝑚 + ∆𝛾𝑚) (10) 

Along the 𝛾m -axis no additional shifting needs to be

applied. Therefore, extension can be performed by:  

𝜓𝑥(𝛾𝑖𝑅, 𝛾𝑚 + ∆𝛾𝑚,𝑝𝑒𝑟) = 𝜓𝑥(𝛾𝑖𝑅 , 𝛾𝑚) (11) 

Fig. 9 shows the area which needs to be identified by 

FEA (blue). The full flux map (gray) is generated by the 

described periodic extension, which needs to be performed 

for each fixed set of 𝑖Sd, 𝑖Sq and 𝑖Rd.

 m

 iR

Δ m, per

Δ
 i

R
,p

er

Δ m

identical  
points

id
e

n
ti

fi
e

d
 

b
y

 F
E

A

Fig. 9: Extension of the harmonic flux maps 

Subsequently, extension for negative q-currents can be 

performed as well. By taking the angular dependencies 

into account, the extension of the rotor and stator d-flux 

linkages maps are adapted with 𝑥 ∈ {Sd, Rd} as follows.  

𝜓𝑥(𝑖Sd, −𝑖Sq, 𝑖Rd, 𝛾𝑖𝑅 , 𝛾𝑚)

= 𝜓𝑥(𝑖Sd, 𝑖Sq, 𝑖Rd, −𝛾𝑖𝑅 , −𝛾𝑚) 
(12) 

Like the d-components, the extension of the q-flux 

linkage maps is performed by adapting eqn. (8) to include 

the angular dependencies. This results for 𝑥 ∈ {Sq, Rq} in: 

𝜓𝑥(𝑖Sd,−𝑖Sq, 𝑖Rd, 𝛾𝑖𝑅 , 𝛾𝑚) 

     = −𝜓𝑥(𝑖Sd, 𝑖Sq, 𝑖Rd, −𝛾𝑖𝑅, −𝛾𝑚) 
(13) 

C. Conversion of the flux maps

The FEA simulation results in rotor and stator related

data. As the flux model shown in fig.1 requires stator 

related data, conversion of the rotor quantities to the stator 

side is necessary. This is performed based on the 

transformers equivalent circuit using the effective winding 

numbers [10]. The transformation factors for current 𝑘i

and voltage 𝑘v are defined first, with 𝑚S being the number

of strings, 𝑤S the number of windings and 𝜉𝑆 the winding

factor of the stator. 𝜉𝑆 is thereby analytically determined

according to [10].  

𝑘𝑖 =
2 ⋅ 𝑚𝑆 ⋅ 𝑤𝑆 ⋅ 𝜉𝑆

𝑄𝑅

 (14) 

𝑘𝑣 = 2 ⋅ 𝑤𝑆 ⋅  𝜉𝑆   (15) 

It is therefore assumed that the squirrel cage rotor has 

0,5 turns and a winding factor of 1. The parameters are 

then transformed to the stator side by:  

𝜓𝑅𝑑
′ = 𝜓𝑅𝑑 ⋅ 𝑘𝑣 (16) 

𝑖𝑅𝑑
′ =

𝑖𝑅𝑑

𝑘𝑖 
(17) 

𝑅𝑅
′ = 𝑅𝑅 ⋅ 𝑘𝑣 ⋅ 𝑘𝑖 (18) 

Furthermore, transformation of rotor current orientation 

to the stator fixed αβ-orientation and inversion of the flux 

map is performed as shown in [1]. 

V. SIMULATION RESULTS

The flux maps in this chapter were generated using the 

FEA setup given in table II. Subsequently, the maps were 

extended using the symmetries presented to generate a full, 

angle-dependent flux map. This result is a 5-dimensional 

flux map as described in eq. (5). To allow presentation of 

the data, a dimensionality reduction was conducted for the 

plots. Therefore, the fundamental flux linkages are shown 

first neglecting all harmonic components. Second, the 

angular dependencies of the flux linkages for a defined 

stator- and rotor current are presented.  

A. Fundamental flux maps

Fig. 10 shows the stator flux maps. The rotor and stator

flux linkage maps only differ slightly due to stray flux. As 



the differences are barely visible, they are not shown 

separately in this paper. The fundamental flux maps are 

generated by averaging the results of the FEA simulation 

across all rotor angles and all rotor current angles.  

a)

b) 
Fig. 10: Fundamental stator flux linkages maps of 𝜓Sd in a) and 𝜓Sq

in b) in rotor current orientation at different rotor currents. 

As expected, the maps shown in fig. 10 have a similar 

shape as the electrically excited synchronous machine [1, 

11]. For use in the flux model, the data needs to be 

transformed into stator orientation and inverted. The full 

inverse flux map has a size of approximately 70MB.  

B. Harmonic flux maps

For evaluation of the spatial harmonics, no averaging is

applied. The data is extended for the rotor angle and rotor 

current angle using the symmetries given in chapter IV.  

Fig. 11 shows the harmonic flux maps for the operating 

point of 𝑖Sd = 15 A , 𝑖Sq = 30 A  and  𝑖Rd
′ = 30 A  in

dependence of the rotor current angle 𝛾iR  and the rotor

angle 𝛾m. Thereby, the periodicities presented in chapter

IV can be observed. The 14 rotor bars per electrical period 

lead to a 14th order harmonic visible along the axis of 𝛾m.

The stator is dominated by its typical harmonics which are 

to be seen as a multiple of the 6th order along the 𝛾iR axis.

As both components affect each other, this results in a 

2-dimensional map for the spatial harmonics, leading to a

overall 5-dimensional flux map for all current and angle

components.

For use in the flux model, the data was also transformed 

into stator orientation and inverted. The full inverse flux 

map has a size of approximately 980MB. For real-time 

operation the resolution can be further decreased without 

drastically reducing the model quality. 

a)

b) 
Fig. 11: Harmonic flux maps of 𝜓Sd in a) and 𝜓Sq in b) in rotor 

current orientation for 𝑖Sd = 15 A, 𝑖Sq = 30 A and  𝑖Rd
′ = 30 A. 

VI. VALIDATION

The machine model is validated using voltage 

excitation as it differs from the current excitation used in 

the static FEA. Validation is only performed for the 

harmonic model, as it is the most challenging system. The 

results are first shown for transient operations followed by 

stationary operation.  

The presented flux model was built in MATLAB 

Simulink® using the flux maps presented in chapter V in 

inverted form. For comparison a transient simulation of the 

machine was performed in Ansys Maxwell® using a step 

size of 100 μs. No skewing was applied to the stator or 

rotor. Each model was supplied by identical ideal voltage 

sources at a defined rotational speed.  

To allow an unbiased evaluation of the results, the data 

is shown in the rotor flux reference frame as it is typically 

used for control of induction machines. It should be noted 

that the data in the previous chapters was presented in the 

rotor current reference frame, therefore it cannot be 

directly transferred to the presented validation results in 

this chapter. 

A. Transient performance

The harmonic model is first shown during a transient

operation. The input variables are shown in fig. 12. The 

rotor speed was changed from 0 rpm to 744 rpm, resulting 

in a rotor frequency of 0.2 Hz at 𝑡 = 0.25 𝑠. The frequency 

of the three-phase stator voltage was kept constant at 

25 Hz. The voltage amplitude was increased from 0 V to 

62.5 V according to fig. 11.  



Fig. 12: Phase voltages and frequencies of stator and rotor during 

startup shown in fig. 13 and fig. 14.  

Fig. 13 shows the resulting stator currents. The data of 

the presented model are indicated by the index SIM. 

Although the operating point is continuously changed 

during the simulation, the stator currents are accurately 

modelled.  

Fig. 13: Comparison of the machine model stator currents with 

transient FEA at startup. 

The stator flux linkages for both models are given in 

fig. 14. Due to the increasing supply voltage amplitude, the 

stator flux linkages are also rising. The presented 

simulation model can thereby reproduce the whole 

transient behavior of the machine to a high degree. This 

makes the model also suitable for parameterizing and 

testing dynamic machine control algorithms. 

Fig. 14: Comparison of the machine model stator flux linkages with 

transient FEA at startup. 

B. Stationary performance

For the evaluation of the stationary performance, both

models were supplied with a constant voltage amplitude of 

325 V at 51.1 Hz. The rotational speed was kept constant 

at 1517 rpm resulting in a rotor frequency of 0.53 Hz.  

Fig. 15: Comparison of the machine model rotor and stator  

q-currents with transient FEA at constant voltage amplitude. 

As the currents remained constant, during computation 

of the flux maps, the angular dependency of the magnetic 

path resulted in harmonics of the flux linkage maps. Here, 

the voltage amplitude is chosen constant. As shown in 

fig. 15, the angular dependencies are thus reflected by the 

currents. Despite the neglection of the additional rotor 

current components the current harmonics are precisely 

mapped by the model. 

Fig. 16: Comparison of the machine model rotor and stator d-flux 

linkages with transient FEA at constant voltage amplitude. 

Fig. 16. shows the stator and rotor d-flux linkage. Since 

the stator is supplied with constant voltage, almost no flux 

harmonics are expected. This is also reflected by both 

models. The results further demonstrate that the stray flux, 

which is represented by the deviation of stator and rotor 

flux linkage, is covered by both models identically.  

For a better evaluation of the overall accuracy of the 

model, the error of the stator currents has been evaluated 

for different operating points. Therefore, the relative error 

of the stator currents at stationary operation was calculated 

as shown in eqn. (19).  The results were averaged for a time 

interval of 0.3 s for each operating point.  

∆𝑖% =
mean{|𝑖S,FEA−𝑖S,SIM|}

mean{|𝑖S,FEA|}
⋅ 100%  (19) 



Fig. 17: Relative error in ∆𝑖% of the stator currents at different 

operating points compared to FEA. 

Fig. 17 shows the model error ∆𝑖% . For almost all

operating points it is below 2 %. The presented model error 

∆𝑖% is thereby a combination of various causes:

• Neglection of the rotor current harmonics as shown in

chapter III

• Neglection of the frequency dependence of the model

resistances

• Numerical errors caused by transformation,

interpolation and inversion of the flux map

• Different mesh grids for transient and static FEA

VII. CONCLUSION

This paper presents a new technique, that allows 

efficient simulation and modelling of the fundamental 

machine behavior as well es the spatial harmonics of 

squirrel cage induction machines. Using the presented 

model in MATLAB Simulink reduces the simulation time 

by a factor of 20,000 compared to transient FEA 

simulation in Ansys Maxwell. This allows to tune 

controllers more efficiently for transient behavior and 

harmonics.  

The model data is thereby generated only using static 

FEA simulations to reduce the computational effort. 

Further reduction was achieved by utilizing the 

symmetries of the machine and flux maps. Furthermore, 

the simulation procedure, postprocessing and modelling 

technique was validated by several transient FEA 

simulations. It shows a good alignment of the results for 

the given machine design.  

In comparison to known methods for modelling of 

doubly-fed induction motors, the model lookup table size 

could be reduced in this paper due to improved memory 

utilization by a factor of eight while even modelling a more 

complex system at high precision [1, 2]. 

As only one machine geometry was examined in this 

paper, no conclusions can be drawn to the general validity 

and transferability of the shown methods. For evaluation 

of new machine designs, the shown spatial current 

distribution and harmonics analysis can give a clear and 

fast indication of the transferability to a new design. 
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