

Overmolding of 3D Skeleton Winding Structures: Process effects and challenges for process modeling

Christina Dohmen¹, Nils Meyer², Jonathan Haas³, Björn Beck³, Florian Wittemann¹, Luise Kärger¹

¹ Karlsruhe Institute of Technology (KIT), FAST Lightweight Engineering; ² University of Augsburg; ³ Fraunhofer Institute for Chemical Technology

July 5th, 2024

ECCM21 N° 6VJCD

Continuous-discontinuous fiber-reinforced polymers (CoDiCoFRP) - II

Nantes, France

Agenda

Overmolding of 3D Skeleton Winding Structures

Motivation Process Simulation approach Conclusion

Motivation

3D Skeleton Winding technology (3DSW)

- = robot-based filament winding process
- Local continuous fiber reinforcement
 - Flexible positioning of the fibers
 - resource-saving
 - load path optimized
- → high-performance structural components

Beck et al. 2020 Minsch et al. 2019

3D Skeleton Winding technology

Schematic illustration of the 3D Skeleton Winding (3DSW) process chain

Beck 2023. Beck et al. 2024

Process

Process effects during overmolding

Deformation of skeleton fiber structure

Fiber positioning due to filling

Risk of visible fibers at the edge of the cavity

Specimen production

Pretension during overmolding

Beck et al. 2024

Mechanisms during overmolding of fiber skeletons

Process behavior for modeling

Mechanisms during overmolding of fiber skeletons

Process behavior for modeling

Coupled-Eulerian-Lagrangian (CEL) analysis

Eulerian time integration algorithm - Operator split

mass

$$\frac{\partial (\rho v)}{\partial t} + \operatorname{div}((\rho v) \otimes v) = \operatorname{div}(\sigma)$$

momentum

$$\frac{\partial (\rho c_{\mathbf{p}} T)}{\partial t} + \operatorname{div} \left((\rho c_{\mathbf{p}} T) \cdot \boldsymbol{v} \right) = -\operatorname{div}(\boldsymbol{d}) + \boldsymbol{\sigma} : \boldsymbol{D}$$
 energy

 \emph{v} : Velocity, ρ : Density, $\emph{\sigma}$: Cauchy stress, $c_{\rm p}$: Specific heat capacity,

d: Heat flux, T: Temperature, D: Strain rate tensor

based on Benson & Okazawa 2004

Lagrangian Step

$$\left. \frac{\partial \rho}{\partial t} \right|_{L} = 0$$

$$\frac{\partial (\rho v)}{\partial t} \Big|_{L} = \operatorname{div}(\boldsymbol{\sigma})$$

$$\frac{\partial (\rho c_p T)}{\partial t} \bigg|_{t} = -\operatorname{div}(\boldsymbol{d}) + \boldsymbol{\sigma} : \boldsymbol{D}$$

Eulerian Step

$$\frac{\partial \rho}{\partial t}\Big|_{E} + \operatorname{div}(\rho \boldsymbol{v}) = 0$$

$$\frac{\partial (\rho c_p T)}{\partial t} \bigg|_{E} + \operatorname{div} \Big((\rho c_p T) \cdot \boldsymbol{v} \Big) = 0$$

Benson 1992, 2002, 2004; Meyer 2021

Coupled-Eulerian-Lagrangian (CEL) analysis

Interface reconstruction method

Volume of fluid (VoF)

Based on the volume fractions of the material in an element and its neighboring elements the material interfaces are reconstructed

Interaction through Eulerian-Lagrangian-Contact

- Based on an enhanced immersed boundary method
- Lagrangian structure occupies void regions inside the Eulerian mesh
- Contact algorithm computes and tracks the interface between the Lagrangian structure and the Eulerian material
 - → guarantees that two materials never occupy the same physical domain

Abagus 2024

Simple loop structure

Model

Material

- Fiber strands: PP-GF
 - Density 10000 kg
 - **Engineering Constants**

$$E_1 = 23963 \text{ MPa}, E_2 = E_3 = 3750 \text{ MPa},$$

$$\nu_{12} = \nu_{23} = 0.32, \nu_{13} = 0.59$$

•
$$G_{12} = G_{23} = 1225 \text{ MPa}, G_{13} = 1125 \text{ MPa}$$

Matrix: PP

- Density $10000 \frac{\text{kg}}{\text{m}^3}$
- Viscosity 1000 Pas
- Equation of state
 - Mie-Grüneisen

$$C_0 = 1000 \frac{\text{m}}{\text{s}}, s = 0, T_0 = 0$$

Haas et al. 2021, 2022

Boundary Conditions

- Inlet
 - Constant volumetric flow 75 cm³
 - Inlet velocity $v_0 = 2 \frac{\text{m}}{\text{s}}$
- Walls
 - No slip $v_1 = v_2 = v_3 = 0 \frac{\text{m}}{\text{s}}$

Software

2023.HF4 **Explicit** Simulia

Interaction: General contact

- Contact between Matrix and Walls
 - Tangential Behavior: Rough
 - Normal Behavior: "Hard" contact
- Contact between Fiber strands and Matrix
 - Tangential Behavior: Frictionless
 - Normal Behavior: "Hard" contact

Results Simulation Approach

Simple Loop structure

Results Simulation Approach

Simple Loop structure

Numerical Challenges

- Explicit analysis
 - Explicit procedure integrates through time by using many small time increments
 - Stable time increment scales with the smallest element size

$$\Delta t \approx \frac{L_{\min}}{c_d}$$

 L_{min} : smallest element dimension c_d : dilatational wave speed

 Number of increments required scales by simulated time period

$$n = \frac{T}{\Delta t}$$

- → High computational cost
- Use mass scaling for Lagrangian parts
- Contact algorithm

Abaqus 2024

Conclusion and outlook

Overmolding of 3D Skeleton Winding Structures

It was motivated that ...

- 3DSW allows to reinforce complex structural components
- Process modeling requires a fully coupled thermomechanical analysis for the fluid flow and the deformation of the fiber bundles

It was show that ...

- Coupled-Eulerian-Lagrangian (CEL) approach is suitable to capture the fluid-structure-interaction
 - Fluid phase is modeled as Eulerian elements while fiber strands are described by Lagrangian solid elements
 - Numerical difficulties

Outlook

- Extend the considered material behavior to a more realistic material model
- Extend the simulation approach with temperature dependencies
- Validation of the simulation approach to experimental results

Thank you for your attention.

Karlsruhe Institute of Technology (KIT)

FAST Institute of Vehicle System Technology

LB **Lightweight Engineering**

Prof. Dr.-Ing. Luise Kärger, Professor of Digitization in Lightweight Design Prof. Dr.-Ing. Frank Henning, Professor of Lightweight Technology

Rintheimer Querallee 2, 76131 Karlsruhe, Germany www.fast.kit.edu | LinkedIn: Lightweight Engineering at FAST, KIT

Christina Dohmen

Research Associate christina.dohmen@kit.edu phone +49 721 608 45409

Acknowledgement

DFG Prosim-3DSW (project no. 516991978)

"Process simulation of the overmolding of three-dimensional skeleton winding structures to improve the manufacturing process of highly stressed structural Components"

Lightweight Design Network

References (1/2)

•	Beck et al. 2020	Beck, B., Tawfik, H., Haas, J., Park, YB., Henning, F., 2020. Automated 3D Skeleton Winding Process for Continuous-Fiber-Reinforcements in Structural Thermoplastic Components, in: Hopmann, C., Dahlmann, R. (Eds.), Advances in Polymer Processing 2020. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 150–161. https://doi.org/10.1007/978-3-662-60809-8_13
	Beck 2023	Beck, B., 2023. Implementation of the 3D skeleton winding technology for thermoplastic structural components, Wissenschaftliche Schriftenreihe des Fraunhofer ICT. Fraunhofer Verlag, Stuttgart.
•	Beck et al. 2024	Beck, B., Haas, J., Eyerer, P., Park, YB., Henning, F., 2024. 3D skeleton winding (3DSW) – Overmolding of wound continuous fiber reinforcements. Presented at the Proceedings of the TIM22 Physics Conference, Timisoara, Romania. https://doi.org/10.1063/5.0194766
•	Benson 1992	Benson, D.J., 1992. Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering 99, 235–394. https://doi.org/10.1016/0045-7825(92)90042-I
	Benson 2002	Benson, D.J., 2002. Volume of fluid interface reconstruction methods for multi-material problems. Applied Mechanics Reviews 55, 151–165. https://doi.org/10.1115/1.1448524
•	Benson & Okazawa 2004	Benson, D.J., Okazawa, S., 2004. Contact in a multi-material Eulerian finite element formulation. Computer Methods in Applied Mechanics and Engineering 193, 4277–4298. https://doi.org/10.1016/j.cma.2003.12.061
•	Haas et al. 2021	Haas, J., Aberle, D., Krüger, A., Beck, B., Eyerer, P., Kärger, L., Henning, F., 2022. Systematic Approach for Finite Element Analysis of Thermoplastic Impregnated 3D Filament Winding Structures—Advancements and Validation. J. Compos. Sci. 6, 98. https://doi.org/10.3390/jcs6030098

References (2/2)

	Haas et al. 2022	Haas, J., Hassan, O.N., Beck, B., Kärger, L., Henning, F., 2021. Systematic approach for finite element analysis of thermoplastic impregnated 3D filament winding structures – General concept and first validation results. Composite Structures 268, 113964. https://doi.org/10.1016/j.compstruct.2021.113964
	Meyer 2021	Meyer, N., 2021. Mesoscale simulation of the mold filling process of Sheet Molding Compound (Dissertation). Karlsruhe Institute of Technology (KIT), Karlsruhe.
•	Minsch et al. 2019	Minsch, N., Müller, M., Gereke, T., Nocke, A., Cherif, C., 2019. 3D truss structures with coreless 3D filament winding technology. Journal of Composite Materials 53, 2077–2089. https://doi.org/10.1177/0021998318820583
	Simulia	Mounir.rouabah, https://commons.wikimedia.org/wiki/File:Abaqus0.png, 2023. Simulia Logo.
•	Peery & Carroll 2000	Peery, J.S., Carroll, D.E., 2000. Multi-Material ALE methods in unstructured grids. Computer Methods in Applied Mechanics and Engineering 187, 591–619. https://doi.org/10.1016/S0045-7825(99)00341-2
•	Abaqus 2024	Abaqus User Assistance: Explicit dynamic analysis, URL http://scclic7.scc.kit.edu:4040/English/?show=SIMACAETHERefMap/simathe-c-expdynamic.htm (accessed 6.25.24).