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ABSTRACT
In order to enable the energy transition, a higher share of renew-
able energy sources is required in the electricity grid. However,
the volatile nature of these renewable sources can lead to stability
issues. Therefore, countermeasures must be integrated into modern
electricity grids to maintain stability. However, many countermea-
sures rely on optimization problems on multiple grid levels to be
successfully integrated. Furthermore, these optimization problems
often require forecasts that are tailored to deliver value for the con-
sidered optimization problem. Nevertheless, existing applications
of decision-focused learning to provide this value scale poorly for
energy system optimization problems. Therefore, we propose a
novel method called Decision-Focused Retraining that combines
prediction-focused learning and decision-focused learning. In this
method, an existing forecasting model is retrained to generate fore-
casts delivering increased value for the optimization problem. First,
a prediction-focused learning approach with a suitable base loss is
used to pre-train the forecasting model. Afterward, the model is
fine-tuned by combining a global instance-independent surrogate
NN with the prediction-focused base loss to optimize the forecast-
ing model. We evaluate our approach on an exemplary optimization
problem, the dispatchable feeder optimization problem, considering
over 199 buildings, which leads to an improvement of at least 7.29%.

CCS CONCEPTS
• Computing methodologies → Learning paradigms; Supervised
learning; • Applied computing→ Forecasting.

This work is licensed under a Creative Commons Attribution International
4.0 License.

E-Energy ’24, June 04–07, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0480-2/24/06
https://doi.org/10.1145/3632775.3661952

KEYWORDS
Decision-focused learning, energy systems, forecasting, predict
then optimize, applied optimization
ACM Reference Format:
Maximilian Beichter, Dorina Werling, Benedikt Heidrich, Kaleb Phipps,
Oliver Neumann, Nils Friederich, Ralf Mikut, and Veit Hagenmeyer. 2024.
Decision-Focused Retraining of Forecast Models for Optimization Problems
in Smart Energy Systems. In The 15th ACM International Conference on
Future and Sustainable Energy Systems (E-Energy ’24), June 04–07, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3632775.3661952

1 INTRODUCTION
To develop a low-carbon energy system, a higher share of dis-
tributed renewable energy sources must be integrated into the
electricity grid. However, the volatility of these renewable energy
sources can lead to stability issues. Thus, countermeasures to main-
tain grid stability are required. These countermeasures typically
focus on directly integrating power electronics to counteract insta-
bility or including energy storage systems that increase flexibility
and, thus, stability [22]. Furthermore, these countermeasures must
often be managed through optimization problems to be successfully
integrated into the energy system, especially when considering en-
ergy storage systems [22]. In addition, these optimization problems
are integrated into different levels in the energy system, for example,
on the grid level [5], in microgrids [25], or on building level [24] [3].
Therefore, these optimization problems must operate successfully
and efficiently on all grid levels, which leads to two requirements.

First, many of these optimization problems require forecasts as
inputs. Often, these forecasts are designed to maximize the pre-
cision of the predictions given a quality metric (forecast quality).
However, maximizing the forecast quality may not always result in
the most useful forecasts for the considered optimization problem
[7, 16] and [26]. Thus, it may be useful to evaluate the forecast
value, which is the practical utility cost impact on the considered
optimization problem derived from a forecast. It goes beyond the
usage of forecasting quality and considers the impact of forecasts
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Figure 1: An overview of the traditional Prediction-Focused-
Learning (PFL) approach and our proposed Decision-Focused
Retraining (DFR) method. DFR consists of four main steps to
obtain the retrained forecasting model. First, a surrogate
dataset is created. Second, this dataset is used to train a
global instance-independent surrogate Neuronal Network
(NN). Third, a PFL forecasting model is trained. Fourth, the
PFL forecasting model is retrained by incorporating the fore-
cast value into the loss through the trained surrogate NN.
This retrained forecasting model reduces the system costs
for the considered optimization problem.

in decision-making and planning. A forecast holds high value if it
contributes positively to the decision process, enabling better ac-
tions and, thus, more profitable outcomes based on the optimization
problem results.

Second, due to the high number of instances (e.g. buildings) in the
lower disaggregated grid level, it is important that the optimization
problem is efficiently scalable. Importantly, generating forecasts and
considering the forecast value for the given optimization problem
must also scale efficiently.

To address the first requirement, the difference between forecast
quality and forecast value motivates two learning strategies for pre-
diction models proposed in [14]. Prediction-Focused Learning (PFL)
is designed to minimize a forecasting quality metric, and decision-
focused learning aims to maximize the forecast value. However,

although previous work mostly considers both prediction-focused
learning and decision-focused learning separately, existing research
in literature fails to combine the advantage of both learning strate-
gies in a data-driven context for non-convex optimization problems.
Furthermore, previous work does not address the across various
instances scalability issues that are crucial for energy systems.

Therefore, in the present paper, we propose a novel method,
Decision-Focused Retraining (DFR), which combines both strate-
gies: prediction-focused learning and retraining in decision-focused
manner through global instance-independent surrogate NNs. Fig-
ure 1 presents an overview of the DFR method, which consists of
four main steps. First, we create a surrogate dataset, before we train
a global instance-independent surrogate NN in a second step. This
global surrogate NN is trained to predict the costs of the optimiza-
tion problem that are associated with a certain forecast. Thereby,
global refers to the surrogate accepting all values of the forecasting
space, and not only values very close to the ground truth value
[20]. Furthermore, instance-independent implies that only one sur-
rogate must be trained, and this surrogate can then be applied to
all instances within the same domain. In an energy system, these
instances are, for example, different buildings with similar char-
acteristics. To achieve this, the surrogate NN considers the actual
values, the forecasts, and further information about the building
as inputs. Based on this information, it predicts the optimization
problem costs, which correspond to the forecast value. Note that
the surrogate network is differentiable by design as it is modeled
by a NN architecture. In the third step, we use prediction-focused
learning to train an instance-dependent forecasting model. This
forecasting model is not yet adapted to the optimization problem.
Thus, in the final step, this forecasting model is retrained using
the surrogate model as a judge. In particular, we retrain the fore-
casting model to minimize the optimization problem costs that the
surrogate NN predicts. The resulting retrained forecasting model
generates forecasts with a higher value for the considered optimiza-
tion problem and thus reduces the system costs.

The remainder of the paper is structured as follows: We present
an overview of the related work and highlight our contribution
in Section 2. In Section 3, we formally introduce the proposed
decision-focused retraining approach. We then introduce an exem-
plary optimization problem, the dispatchable feeder [3] in Section 4,
which we use to evaluate the DFR. In Section 5, we describe the
applied experimental setup before presenting our evaluation results
in Section 6. We discuss these results and key insights in Section 7
before concluding in Section 8.

2 RELATEDWORK
The related work is divided into three subsections. The first subsec-
tion presents a general overview of decision-focused learning. In
the second subsection, we analyze various applications of decision-
focused learning in the energy system. Finally, the third subsection
highlights our contributions.

2.1 Decision-Focused Learning Approaches
In decision-focused learning, a Machine Learning (ML) model is
trained to maximize the forecast value instead of the commonly
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used prediction-focused forecasting models that maximize the fore-
cast quality. To achieve this, different approaches exist in the litera-
ture. The first approach is to integrate the optimization problem into
the forecasting model and train this integrated model. However, this
requires differentiation through the optimization problem, which is
not straightforward. While there are analytical approaches tailored
to specific classes of optimization problems, e.g. [2, 8, 30, 31] for
strongly convex and quadratic optimization problems, the general-
ization to non-convex optimization problems is lacking.

The second type of approaches uses differentiable surrogate loss
functions [4, 6, 9, 20, 21, 29, 32]. More precisely, while Elmach-
toub and Grigas [9] approximates the analytical description of the
integrated model for linear optimization problems, multiple alter-
nate approaches assume specific parametric loss function families
and learn the respective parameters with respect to the forecast
value [4, 6, 20, 21]. Such restrictive assumptions are not made by
Zhang et al. [29], which empirically approximates the relation be-
tween forecast error and forecast value. However, for complex and
non-convex optimization problems, the forecast value is not solely
dependent on the forecast error.

Finally, the last approach is to simultaneously learn the forecast
model and the surrogate model for the objective of the optimization
problem based on the resulting forecast [32].

While the proposed approach does not require the integration of
the optimization problem into the forecasting model, nor does the
loss belong to a specific function family, it couples the training of
the surrogate NN with the training of the forecast model. Thus, it
requires fitting a surrogate model for each forecaster, which might
decrease its scalability.

2.2 Decision-Focused Learning in Energy
Systems

Various decision-focused learning papers show energy-relevant
use cases, specifically for different energy-related downstream op-
timizations [8, 13–15, 19, 29–31]. These optimizations are often
simplified compared to real-world optimization but already con-
sider a wide variety of different tasks. Specifically, Kong et al. [13]
using decision-focused learning applied to wind power biddingwith
a convex objective function, whilst Zhang et al. [30] and Zhang
et al. [31] focus on day-ahead and real-time energy dispatch of
a virtual power plant operator in charge of wind power in two
stages, without accounting for battery storage. Furthermore, Zhang
et al. [29] consider two energy-related use cases by solving both
a day-ahead economic dispatch optimization problem to schedule
the power output of generators and also the intraday power bal-
ance problem, which schedules battery storage. The approach from
Zhang et al. [29] is performed on a 30-bus bar grid with three bat-
teries and, therefore, considers the grid perspective. Mandi et al.
[14] and Mulamba et al. [15] focus on an optimization problem that
schedules computational tasks with respect to the energy pricing
from Simonis et al. [23], whilst a probabilistic energy arbitrage task
and a generator scheduling task are considered by Donti et al. [8].
Furthermore, the generator scheduling task is again addressed by
Kong et al. [12], whilst a cost-oriented energy storage arbitrage
task is dealt with by Sang et al. [19].

Whilst the identified literature shows that many applications
have considered decision-focused learning in energy systems, these
approaches are not easily scalable for multiple instances and are
usually not suitable for non-convex multiple-level optimization
problems, which are often found in energy systems.

2.3 Contribution of the Present Paper
Given the identified challenges in existing literature, the contribu-
tion of the present paper is three-fold:

First, this paper solves the scalability issue in classical decision-
focused learning by using a globally instance-independent learned
surrogate model and combining it with a prediction-focused loss.
Second, to the best of the author’s knowledge, this is the first paper
that introduces exogenous features into the surrogate model. Us-
ing exogenous information in the surrogate model strengthens its
ability to model the costs of the optimization problem as well as its
ability to generalize on further unseen instances. Third, we apply
the proposed novel decision-focused learning approach to a non-
convex multiple-level optimization problem and demonstrate that
globally instance-independent learned surrogate models can im-
prove the forecast value, even for this complex class of optimization
problems.

3 DECISION-FOCUSED RETRAINING (DFR)
In this section, we introduce Decision-Focused Retraining (DFR) of
a NN regarding the forecast value. It consists of two parts, each with
two steps. The first part generates a surrogate NN for the forecast
value by first creating a surrogate dataset and then training the
surrogate NN. The second part aims to generate a forecasting NN
that considers the forecast value. Therefore, the forecasting NN
is initially trained in a prediction-focused manner before being
retrained using the surrogate NN to consider the forecast value. In
the following, we describe each of these steps in detail.

Part 1: Generation of the Surrogate Neural
Network for the Forecast Value

Step 1.1: Creation of the Surrogate Dataset. First, we create the
dataset to train the surrogate NN for the forecast value. Such a
dataset should consider all relevant aspects that affect the forecast
value, such as forecasts with different characteristics and exogenous
factors. The surrogate dataset Dsurr can then be written as

Dsurr := {(𝑥surr, 𝑦surr)𝑖 } = {((𝑦,𝑦, 𝑒), 𝑣 (𝑦,𝑦, 𝑒))𝑖 } (1)

with Ground Truth (GT) 𝑦, forecast 𝑦, exogenous factors 𝑒 , the
resulting forecast value 𝑣 (𝑦,𝑦, 𝑒), and index 𝑖 = 1, ..., 𝑁 denoting
the 𝑖’th dataset tuple.

Step 1.2: Training of the Forecast Value Surrogate Neural Network.
In the next step, we train the surrogate NN 𝑓surr to forecast the
forecast value using the surrogate dataset Dsurr and loss function
𝐿surr. The parameters of the trained surrogate NN are then

𝜃∗surr := argmin
𝜃surr

∑︁
𝑖

𝐿surr (𝑦surr,𝑖 , 𝑓surr (𝑥surr,𝑖 ;𝜃surr)) (2)

and the output of the trained surrogate NN is

𝑓surr (𝑥surr,𝑖 ;𝜃∗surr) = 𝑦surr,𝑖 ≈ 𝑦surr,𝑖 = 𝑣 (𝑦,𝑦, 𝑒)𝑖 . (3)
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Therefore, the differentiable function 𝑓surr can be used as a proxy
for the forecast value.

Part 2: Generation of the Forecasting Neural
Network regarding the Forecast Value

Step 2.1: Training of the Forecasting Neural Network. The next
step involves the prediction-focused training of a forecasting NN.
In doing so, we utilize a dataset

Dfc := {(𝑥fc, 𝑦fc)𝑖 }, (4)

with features 𝑥fc,𝑖 , ground truth historical values 𝑦fc,𝑖 , and index
𝑖 = 1, ..., 𝑁 denoting the i’th dataset tuple. With this dataset and
the loss function 𝐿base, the forecasting NN is trained and optimal
parameters

𝜃∗fc := argmin
𝜃fc

∑︁
𝑖

𝐿base (𝑦fc,𝑖 , 𝑓fc (𝑥fc,𝑖 ;𝜃fc)) (5)

resulting in forecasts

𝑓fc (𝑥fc,𝑖 ;𝜃∗fc) = 𝑦fc,𝑖 (6)

are obtained.

Step 2.2: Retraining of the Forecasting Neural Network regarding
the Forecast Value. The final step is the main contribution of the
proposed method, where we retrain the forecasting NN to increase
the forecast value (schematically in Figure 2). For this retraining, we
use the trained surrogate NN 𝑓surr with optimal parameters 𝜃∗surr,
which are kept constant during retraining. Further, we use a third
dataset

Dre := {((𝑥 𝑓 𝑐 , (𝑦fc, 𝑒fc)), 𝑦fc)𝑖 }. (7)

Figure 2: The retraining in Step 2.2 of the proposed method.
The rounded green boxes are NNs. The corned yellow boxes
display the loss functions used. The bold arrows symbolize
the gradient flow, and the small arrows the data flow.

This dataset extends the training dataset used for the generation of
the forecasting NN with additional exogenous information about
the optimization problem. Therefore,𝑦fc,𝑖 remains the same as in the
forecasting training dataset. The retraining consists of the following
steps.

First, the retrained NN 𝑓re is initialized with the parameters
of the forecasting NN 𝜃∗fc, making the retrained NN equal to the
forecasting NN.

Second, the parameters of the retrained NN are retrained1 so
that

𝜃∗re := argmin
𝜃re

∑︁
𝑖

𝐿re (𝑦re,𝑖 , 𝑦fc,𝑖 , 𝑓surr (𝑦re,𝑖 , 𝑦fc,𝑖 , 𝑒fc,𝑖 ;𝜃∗surr)), (8)

with
𝑓re (𝑥fc,𝑖 ;𝜃re) = 𝑦re,𝑖 (9)

and the retraining loss 𝐿re as

𝐿re := 𝛼 · 𝐿base (𝑦re,𝑖 , 𝑦fc,𝑖 ) + 𝛽 · 𝑓surr (𝑦re,𝑖 , 𝑦fc,𝑖 , 𝑒fc,𝑖 ) (10)

with weights 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1). We further specify the
weights as

𝛼 = 1 − 𝐿base
𝐿base + 𝑓surr

, 𝛽 = 1 − 𝑓surr
𝐿base + 𝑓surr

(11)

to keep the base loss’s influence equal to the surrogate NN’s in-
fluence. This is necessary to avoid convergence of the retrained
NN into regions where the surrogate NN has not seen comparable
data and therefore the surrogate does not model the forecast value
sufficiently.

In more depth, the retraining can be formulated in terms of the
weights of the forecasting NN𝑤𝑘,𝑟𝑒 ∈ 𝜃re for the backpropagation.
More precisely, we use the partial gradient of 𝐿𝑟𝑒 regarding𝑤𝑘,𝑟𝑒 ,
which can be written as

𝜕𝐿𝑟𝑒

𝜕𝑤𝑘,𝑟𝑒

= 𝛼
𝜕𝐿𝑏𝑎𝑠𝑒

𝜕𝑤𝑘,𝑟𝑒︸    ︷︷    ︸
Prediction-Focused

+ 𝛽
𝜕𝑓𝑠𝑢𝑟𝑟

𝜕𝑤𝑘,𝑟𝑒︸    ︷︷    ︸
Decision-focused

, (12)

as 𝐿𝑏𝑎𝑠𝑒 and 𝑓𝑠𝑢𝑟𝑟 are differentiable. This gradient is used to update
the weights𝑤𝑘,𝑟𝑒 during backpropagation via

𝑤𝑘,𝑟𝑒new = 𝑤𝑘,𝑟𝑒old − 𝜂
𝜕𝐿𝑟𝑒

𝜕𝑤𝑘,𝑟𝑒old

, (13)

with learning rate 𝜂 > 0.

4 SELECTED OPTIMIZATION PROBLEM: THE
DISPATCHABLE FEEDER

To evaluate the proposed DFR method, we apply it to an exemplary
optimization problem, namely the dispatchable feeder [24]. The
dispatchable feeder is a two-level non-convex optimization problem,
and as a result, existing decision-focused methods cannot simply be
applied. Furthermore, the dispatchable feeder optimization problem
is often solved on a building level, which highlights the importance
of scalability. Finally, previous work has shown the importance
of finding high-value forecasts for the dispatchable feeder [26],
which motivates the need for a decision-focused method. These
1For simplicity the forecast value is introduced as cost. Therefore, in Equation (8) max-
imizing the forecast value for the downstream application is equivalent to minimizing
the cost.
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Figure 3: The two levels of the optimization problems (edged
boxes) with their related costs (circles) and models (rounded
boxes). Showing further the dataflow of the schedules and
the forecasts.

three characteristics mean that the dispatchable feeder optimization
problem is ideal for evaluating the proposed DFR method.

In the following, we first introduce the dispatchable feeder op-
timization problem. In formulating this optimization problem, we
stay close to [26] and [27]. Afterward, we present the utilized fore-
cast value for the dispatchable feeder.

4.1 Optimization Problem
A dispatchable feeder consists of two components [24] [3]. The first
component is the inflexible and volatile prosumption of the residen-
tial building, which is defined as the residential load minus the PV
power generation. The second component is a flexible power and
energy-constrained residential battery. Using these components,
the dispatchable feeder intelligently manages the flexible battery to
counteract the uncertainty inherent in the uncertain consumption.
In doing so, the operation of the dispatchable feeder consists of
two steps illustrated schematically in Figure 3. First, a day-ahead
dispatch schedule is computed based on prosumption forecasts.
Second, the actual dispatch is calculated under the consideration of
the actual prosumption with the aim to minimize the deviation of
the dispatch schedule. This operation is formulated as a hierarchical
two-level non-convex optimization problem. To formally model
the optimization problem, the time operation is discretized into
time intervals indexed by 𝑘 ∈ N with interval length of Δ𝑡 ∈ R.
The components of the dispatchable feeder are then modeled as
follows. The flexible battery is modeled by its active power input
𝑃𝑠 (𝑘) ∈ [𝑃𝑠 , 𝑃𝑠 ] and SoE 𝐸𝑠 (𝑘) ∈ [𝐸𝑠 , 𝐸𝑠 ] with lower and upper
bounds 𝑃𝑠 , 𝑃𝑠 ∈ R and 𝐸𝑠 , 𝐸𝑠 ∈ R≥0. Thereby, the battery’s power
input transforms into the SoE according to

𝐸𝑠 (𝑘 + 1) = 𝐸𝑠 (𝑘) + Δ𝑡 ·
(
𝑃𝑠 (𝑘) − 𝜇𝑃+𝑠 (𝑘) + 𝜇𝑃−𝑠 (𝑘)

)
(14)

with loss coefficient 0 ≤ 𝜇 ≤ 1 and positive and negative directions
of the battery’s power input 𝑃+𝑠 (𝑘) ≥ 0 and 𝑃−𝑠 (𝑘) ≤ 0. The interac-
tion with the grid is solely modeled by the active power exchange

with the dispatchable feeder. Therefore, it consists of the sum of the
two components of the dispatchable feeder, namely the battery’s
power input and the uncertain building’s prosumption.

With this description, the two levels of the optimization problem
can be formulated in the following.

First Level: Computation of Dispatch Schedule. The first level
determines offline the Dispatch Schedule (DS) 𝑃𝑔 (𝑘) ∈ R regarding
costs for the following day, considering deterministic forecasts of
the prosumption 𝑃𝑙 (𝑘) ∈ R. Thereby, the cost function considers
both self-consumption and peak shaving

𝐶DS
(
𝑃+𝑔 (𝑘), 𝑃−𝑔 (𝑘)

)
= 𝑐+q · (𝑃+𝑔 (𝑘) · Δ𝑡)2 + 𝑐+l · 𝑃+𝑔 (𝑘) · Δ𝑡
+ 𝑐−q · (𝑃−𝑔 (𝑘) · Δ𝑡)2 + 𝑐−l · 𝑃−𝑔 (𝑘) · Δ𝑡

(15)

with positive and negative directions of the DS 𝑃+𝑔 (𝑘) ≥ 0 and
𝑃−𝑔 (𝑘) ≤ 0 and cost coefficients 𝑐+q , 𝑐+l , 𝑐

−
q , 𝑐

−
l ∈ R≥0. The first level

optimization problem is then formulated as

min
{𝑋 }K

∑︁
𝑘∈K

𝐶𝐷𝑆

(
𝑃+𝑔 (𝑘), 𝑃−𝑔 (𝑘)

)
s.t. for all 𝑘 ∈ K

(14)
𝐸𝑠 (𝑘0) = 𝐸0𝑠

𝑃𝑔 (𝑘) = 𝑃𝑠 (𝑘) + 𝑃𝑙 (𝑘)
𝑃𝑔 (𝑘) = 𝑃+𝑔 (𝑘) + 𝑃−𝑔 (𝑘)
𝑃+𝑔 (𝑘) ≥ 0

𝑃−𝑔 (𝑘) ≤ 0

𝑃𝑠 (𝑘) = 𝑃+𝑠 (𝑘) + 𝑃−𝑠 (𝑘)
𝑃+𝑠 (𝑘) ≥ 0
𝑃−𝑠 (𝑘) ≤ 0

0 = 𝑃+𝑠 (𝑘) · 𝑃−𝑠 (𝑘)

𝑃𝑠 ≤𝑃𝑠 (𝑘) ≤ 𝑃𝑠

𝐸𝑠 ≤𝐸𝑠 (𝑘) ≤ 𝐸𝑠

(16)

with discrete scheduling horizonK , decision vector𝑋 (𝑘) =
(
𝑃𝑔 (𝑘),

𝑃+𝑔 (𝑘), 𝑃−𝑔 (𝑘), 𝐸𝑠 (𝑘+1), 𝑃𝑠 (𝑘), 𝑃+𝑠 (𝑘), 𝑃−𝑠 (𝑘)
)𝑇 , parameters𝐸0𝑠 , 𝑃𝑠 , 𝑃𝑠 ,

𝐸𝑠 , 𝐸𝑠 , and deterministic forecasts 𝑃𝑙 (𝑘). Note, it is necessary to
know or estimate the SoE at the beginning of scheduling 𝑘0 ∈ N.

Second Level: Calculation of the Actual Dispatch. After the com-
putation of the DS, the actual dispatch is calculated for every time
interval based on the actual prosumption 𝑃𝑙 (𝑘) ∈ R. Thereby, the
aim is to minimize the deviation of the corresponding computed
DS Δ𝑃𝑔 (𝑘) ∈ R considering the technical constraints of the battery.
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The second-level optimization problem can be formulated as

min
𝑋 (𝑘 )

(
Δ𝑃𝑔 (𝑘)

)2
(14)

𝐸𝑠 (𝑘) = 𝐸𝑘𝑠

𝑃𝑔 (𝑘) = 𝑃𝑠 (𝑘) + 𝑃𝑙 (𝑘)
𝑃𝑔 (𝑘) = 𝑃𝑔 (𝑘) + Δ𝑃𝑔 (𝑘)
𝑃𝑠 (𝑘) = 𝑃+𝑠 (𝑘) + 𝑃−𝑠 (𝑘)
𝑃+𝑠 (𝑘) ≥ 0
𝑃−𝑠 (𝑘) ≤ 0

0 = 𝑃+𝑠 (𝑘) · 𝑃−𝑠 (𝑘)

𝑃𝑠 ≤𝑃𝑠 (𝑘) ≤ 𝑃𝑠

𝐸𝑠 ≤𝐸𝑠 (𝑘) ≤ 𝐸𝑠

(17)

with decision vector𝑋 (𝑘) =
(
𝑃𝑔 (𝑘), 𝐸𝑠 (𝑘+1), 𝑃𝑠 (𝑘), 𝑃+𝑠 (𝑘), 𝑃−𝑠 (𝑘)

)𝑇 ,
parameters 𝑃𝑔 (𝑘), 𝑃𝑙 (𝑘), 𝐸𝑘𝑠 , 𝑃𝑠 , 𝑃𝑠 , 𝐸𝑠 , 𝐸𝑠 , and actual dispatch 𝑃𝑔 (𝑘) ∈
R. Note, the SoE in 𝑘 ∈ N is known.

4.2 Forecast Value
In order to effectively retrain the forecast model for generating
suitable forecasts for the optimization problem, it is essential to
establish a metric to evaluate the performance of the optimization
problem in relation to the corresponding forecast. Therefore, for the
dispatchable feeder optimization problem, we introduce the daily
total costs as considered forecast value with lower daily total costs
implying a higher forecast value. More precisely, the total costs
consider both the DS costs of the first level optimization problem in
Equation (15) and the imbalance costs resulting from the deviation
from the DS after the calculation of the actual dispatch in the second
level optimization problem, see Figure 3. These imbalance costs are
defined as

𝐶Imb
(
Δ𝑃𝑔 (𝑘)

)
= 𝑐Δq · | Δ𝑃𝑔 (𝑘) · Δ𝑡 |2 + 𝑐Δl · | Δ𝑃𝑔 (𝑘) · Δ𝑡 | (18)

where Δ𝑃𝑔 (𝑘) is the difference between the actual dispatch and the
DS and 𝑐Δq ∈ R≥0 and 𝑐Δl ∈ R≥0 are weighting parameters. The
total costs can then be written as

𝐶Total
(
𝑃+𝑔 (𝑘), 𝑃−𝑔 (𝑘),Δ𝑃𝑔 (𝑘)

)
= 𝐶DS

(
𝑃+𝑔 (𝑘), 𝑃−𝑔 (𝑘)

)
+ 𝛼 ·𝐶Imb

(
Δ𝑃𝑔 (𝑘)

)
,

(19)

with imbalance costs factor 𝛼 ∈ R≥0. For the daily total costs, we
aggregate the total costs for each day.

5 EXPERIMENTAL SETUP AND EVALUATION
STRATEGY

This section is divided into five subsections. The first subsection
presents the parameter specifications of the selected optimization
problem, namely the dispatchable feeder (see Section 4). The second
subsection describes the used data. The third subsection displays
the loss functions utilized for both the NNs and the evaluation.
The fourth subsection describes the evaluation metrics used. The

last subsection describes how our DFR method is applied to the
dispatchable feeder optimization problem.2

5.1 Parameter Specifications of the
Dispatchable Feeder Optimization Problem

Table 1 shows the parameter specifications of the dispatchable
feeder optimization problem. Note that the parameter 𝛼 is set to 10,
which results in a high weighting of the imbalance costs and, thus,
high costs for deviations from the dispatch schedule.

5.2 Used Data
We use the "Ausgrid - Solar home electricity data" set [17] for the
evaluation. This dataset contains load and PV power generation
time series from 300 residential buildings in Australia. The dataset
spans three years, from 1st July 2010 to 30th June 2013, and is
measured at a 30-minute resolution using a gross meter. The resi-
dential buildings are randomly selected from the Ausgrid electricity
network, which uses the residential electricity tariff.

For our evaluation, we resample the data to an hourly resolution
and calculate the prosumption by subtracting the PV power gen-
eration from the load. Further, we split the dataset into training,
validation and test datasets as displayed in Figure 4. First, we use a
distinct set of buildings for each of the two parts of our proposed
DFR method in Section 3 to ensure independence. For the first part
– the generation of the surrogate NN – we use the first 50 buildings
for training and buildings 51 to 100 for validation3. For the second

2Code is publicly available via GitHub: https://github.com/KIT-IAI/Decision-Focused-
Retraining
3Buildings 16 and 19 are omitted due to convergence issues of the optimization problem.

Table 1: Parameter specifications of the Equations (15-19).

Parameter Value

Δ𝑡 1 (hour)
K {𝑘𝑠 , ..., 𝑘𝑠 + 29} 1

𝑐+𝑞 0.05 (€/kWh2)
𝑐+
𝑙

0.3 (€/kWh)
𝑐−𝑞 0.05 (€/kWh2)
𝑐−
𝑙

0.15 (€/kWh)
𝑃𝑠 −5 (kW)
𝑃𝑠 5 (kW)
𝐸𝑠 0 (kWh)
𝐸𝑠 13.5 (kWh)
𝜇 0.05
𝐸0𝑠 day 1: 6 (kWh)
𝛼 10 as proposed in [18]
𝑐Δq 0.05 (€/kWh2)
𝑐Δl 0.3 (€/kWh)

1 𝑘𝑠 ∈ N is the index of the time interval starting at midnight timestamp and schedule

calculation starts at noon timestamp of the "Ausgrid - Solar home electricity data" set [17]
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Figure 4: Displays the data split for the experimental setup,
further it shows the data usage within the different parts of
the experiment.

part – the generation of the forecasting NN – we use buildings 101
to 300 for training, validation, and testing4.

5.3 Loss Functions
We use the following loss functions for the NNs.

Pinball. The Pinball loss is typically used as a loss function in
quantile regression. It evaluates how well the predicted value5
match the actual quantile. For the quantile 𝑞, it is defined as

Pinball (𝑞) = 1
𝑁

𝑁∑︁
𝑖=1

max ((𝑦𝑖 − 𝑦𝑖 ) · 𝑞, (𝑦𝑖 − 𝑦𝑖 ) · (𝑞 − 1)) . (20)

MAE. The Mean Absolute Error (MAE) is a loss function that
measures the average absolute difference between predicted and
actual values. It is defined as

MAE =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |. (21)

MSE. The Mean Squared Error (MSE) is a loss function that
measures the average squared difference between predicted and
actual values. This loss function is sensitive to outliers and is defined
as

MSE =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 . (22)

Huber. The Huber loss is a loss function that combines character-
istics of both MAE and MSE. It is less sensitive to outliers compared
to MSE and is defined as
4Building 157 is omitted because its PV power generation is compared to the other
buildings extremely high. This results in negative average daily total costs, which are
not covered by the total average skill score difference. However, even for this outlier
building, the DFR method reduces the average daily total costs compared to PFL.
5 𝑦̂ refers in this term to a quantile prediction and not to a direct estimate of 𝑦.

Huber =
1
𝑁

𝑁∑︁
𝑖=1

{
1
2 (𝑦𝑖 − 𝑦𝑖 )2 if |𝑦𝑖 − 𝑦𝑖 | ≤ 1
( |𝑦𝑖 − 𝑦𝑖 | − 1

2 ) otherwise.
(23)

5.4 Evaluation Metrics
The following describes the evaluation metrics used, namely the
costs, the average skill score difference and the 𝑝-value of the
Wilcoxon signed-rank test.

Costs. We use three different costs, namely the average daily
total costs, the average daily imbalance costs, and the average daily
DS costs6. These costs are the respective daily costs from Section 4.2
averaged over all days and buildings under consideration.

Further, we use the building-specific average daily total costs for
the average skill score difference and the 𝑝-value of the Wilcoxon
signed-rank test. These costs are the daily total costs averaged over
all considered days for each building denoted by𝐶Total,𝑖 for building
𝑖 .

In the case of multiple runs, the costs are calculated as the mean
of every evaluation run for the building.

Skill Score. We use the average difference between the skill score
of our DFR method and the skill score of the PFL method. The
skill score thereby corresponds to the percentage improvement of
a method’s building-specific average daily total costs relative to a
reference and is defined as

Skill Score𝑖 (Method) = ©­«1 −
𝐶
Method
Total,𝑖

Reference
ª®¬ ∗ 100. (24)

In the evaluation, we consider the building-specific average daily
total costs resulting from the usage of the actual prosumption as a
reference. These total costs consist only of dispatch schedule costs
and are the minimal total costs for the respective prosumption.
However, these costs are unrealistic to achieve as they require a
perfect forecast. In case of multiple runs, it is calculated as the mean
of the skill score of every evaluation run for the building.

The average skill score difference is then the difference between
the skill score of the DFR method and the skill score of the PFL
method averaged over all buildings,

Average Skill Score Difference

=
1
𝑁

𝑁∑︁
𝑖=1

(Skill Score𝑖 (DFR) − Skill Score𝑖 (PFL)) . (25)

A positive average skill score difference indicates an improvement
in the average daily total costs of our DFR method.

Wilcoxon Signed-Rank Test. The Wilcoxon signed-rank test is a
paired difference test and is considered as non-parametric alterna-
tive to the paired t-test [28]. It is utilized to assess the differences
in medians between two paired samples. In our case, the paired
samples are the building-specific average daily total costs of DFR
and PFL (𝐶DFR

Total,𝑖 ,𝐶
PFL
Total,𝑖 ), 𝑖 = 1, .., 𝑁 . The test statistic is defined as

6In the following, we use these costs without its unit (€).
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𝑇 = min ©­«
∑︁

𝑖:𝐷𝑖>0
rank( |𝐷𝑖 |),

∑︁
𝑖:𝐷𝑖<0

rank( |𝐷𝑖 |)
ª®¬ (26)

with 𝐷𝑖 = 𝐶
DFR
Total,𝑖 − 𝐶

PFL
Total,𝑖 , 𝑖 = 1, ..., 𝑁 . We use the one-sided 𝐻0

hypothesis
𝐻0 : 𝐶DFR

Total ≥ 𝐶PFL
Total (27)

with medians of the building-specific average daily total costs𝐶DFR
Total

and 𝐶PFL
Total.

5.5 Decision-Focused Retraining for the
Dispatchable Feeder

This subsection details each step in the application of the proposed
DFR method applied on the dispatchable feeder optimization prob-
lem. Furthermore, we introduce the chosen hyperparameters and
discuss the evaluation strategy applied.

Part 1: Generation of the Surrogate Neural
Network for the Forecast Value

Step 1.1: Creation of the Surrogate Dataset. To generate the surro-
gate NN training dataset, we use a synthetic set of buildings with
diverse shares of load regarding the installed PV power generation
based on the first 50 buildings. Thereby, in addition to the original
dataset, we scaled their PV power generation with the factors 5
and 10 and the load with factors 1/5, 1/2, 2, and 5, leading to a data
augmentation, as in [26]. Further, we limit the battery to 13.5 𝑘𝑊ℎ.
In addition, we consider different forecast properties by generat-
ing forecasts with multiple models using different loss functions
{𝑃𝑖𝑛𝑏𝑎𝑙𝑙 x for x ∈ {0.10, 0.25, 0.75, 0.90}, 𝑀𝐴𝐸,𝑀𝑆𝐸,𝐻𝑢𝑏𝑒𝑟 }. The
Pinball Losses are selected to ensure that systematic over- and un-
derestimation are reflected in the dataset. Further, the MAE, MSE,
and Huber directly estimate the prosumption. For every building of
this dataset, the simulation of the optimization problem generating
the forecast value builds the foundation for the dataset to train the
surrogate NN. This is carried out over the first 50 buildings of the
dataset, and the non-scaled buildings 51 to 100 are used to validate.

As exogenous variables, we use statistical properties of the build-
ings, such as minimum, maximum, mean, and standard deviation
of the midday hour prosumption. This should influence the surro-
gate to prioritize important properties of the forecast regarding the
statistical values. In addition, we use the State of Energy (SoE) at
the beginning of the schedule which is uniformly drawn inside the
range of the battery storage. This should ensure that every achiev-
able battery state is considered. These exogenous variables are
scaled with a min-max scaler before being input into the network.

Since we found a distribution within total costs in which many
values lie within the same value range, we carried out a quantile
transformation to a uniform distribution to simplify the forecast
for the surrogate. As the absolute value is not relevant for the
prediction and only the ratio of the values is relevant, it should
simplify the prediction of this relation and, therefore, strengthen
the surrogate quality regarding the gradient.

Step 1.2: Training of the Forecast Value Surrogate Neural Network.
The surrogate networks are trained as an ensemble of multiple
networks with the dataset generated in Step 1.1. The surrogate

NN architecture is a multilayer perceptron. The network takes the
forecast and the GT and encodes them in two separate layers with
64 neurons and Scaled Exponential Linear Unit (SELU) activation
[11]. Further, these layers are concatenated with the scaled statis-
tical input features and the scaled SoE. These layers are followed
by layers with (64,64,64,32,8) neurons using SELU activation. The
last layer with one neuron uses sigmoid activation to ensure that
the value is in (0, 1). A detailed overview of the surrogate network
architecture is given in Table 3 in the Appendix. In our case, to
smoothen the surrogate function and make it less sensitive to poor
generalization, we used an ensemble of five members to approxi-
mate the function 𝑓𝑠𝑢𝑟𝑟 , all trained using the Adam optimizer [10]
(𝛼 = 0.001), batch size 256, 𝐿1 and 𝐿2 Regularization. Further, we
applied early stopping (𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 20, 𝛿 = 0.0001) to the surrogate
NN and set the maximal epochs to 100. In training, we use the MAE
between the prediction of the transformed forecast value and the
GT transformed forecast value.

Part 2: Generation of a Forecasting Neural
Network regarding the Forecast Value

Step 2.1: Training of the Forecasting Neural Network. We train a
forecasting model per building of the retraining evaluation dataset.
The aim of this forecasting model is to forecast the upcoming 42
hours of prosumption. Therefore, the forecasting model takes as
input features the last 168 historical values of the prosumption.
Further, it takes additional calendar information (weekday, hour,
month) sin- and cos-encoded and the one-hot encoded public holi-
days and work days for the next 42 hours. These features are nor-
malized to have a mean of zero and a standard deviation of one. The
architecture is a Multilayer Perceptron containing four fully con-
nected layers (128,64,32,42 neurons). The first three use the ReLU
[1] activation function, and the last uses a linear activation function
to be able to forecast positive and negative prosumption values. The
architecture of the used forecasting model is given in Table 4 in the
Appendix. Further, we use a batch size of 32, the Adam optimizer
(𝛼 = 0.0001) and applied early stopping (𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 20, 𝛿 = 0.0001)
in training. This early stopping ensures the selection of a well-
converged model, according to the forecasting metric.

Step 2.2: Retraining of the Forecasting Neural Network regarding
the Forecast Value. In retraining, we use the models given in Steps
1.2 and 2.1. We use the surrogate networks trained in Step 2 and
average their results. The retraining again uses the Adam optimizer
(𝛼 = 0.0001) and a batch size of 32. Further, we use early stop-
ping (𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 20, 𝛿 = 0.0001). The weights are updated every
batch before calculating the loss and applying backpropagation.
The dataset of this step consists of the features already used for
training the prediction-focused forecast, extended by the statistical
building information of the midday hour, prosumption, and a sim-
ulated SoE at schedule begin. The building is simulated using the
MAE and MSE for SoE estimation over the training period. These
decisions account for the use of the dispatchable feeder under the
assumption of a realistic and unbiased forecast. Further, the scaler
of Step 1.1 is used.
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Evaluation Strategy for DFR
To evaluate this approach, we compare two models. The first is
the resulting model of Step 2.1. Therefore, this is a forecasting
model trained with traditional prediction-focused learning. The
second model we compare is the forecasting model after Step 2.2,
therefore after DFR. For both of these models, we simulated the
outcome of the optimization problem using this forecasting model
for schedule calculation and SoE estimation (Section 4). Using the
test period we evaluate the forecast value within a realistic daily
operation of the optimization problem. The Evaluation of Step 2.1
and Step 2.2 is performed over three different runs with different
initialization and the same surrogate networks of Step 1.1 for the
runs regarding the two best-suiting losses, the Pinball 0.70 and
Pinball 0.75 Loss. We use as base loss the Pinball loss with the
quantiles {0.40, 0.50, 0.60, 0.70, 0.75, 0.80, 0.90} to sample the effect
of systematically under-, or overestimating, the MSE, we omit the
MAE as it is schematically the same as forecasting with pinball 0.50
loss. We chose the evaluated base losses regarding the observations
regarding the original data presented in [26].

6 RESULTS
In this section, we present the results of the evaluation of the DFR
method applied to the dispatchable feeder optimization problem.
For this, we first consider the average skill score difference before
comparing the mean average total daily costs. We then consider
the mean average daily cost difference for each of the components
of the total costs separately. Finally, we analyze the significance of
our results.

Average Skill Score Difference. The average skill score difference
across all buildings on the retraining dataset is shown in Figure 5,
with the values reported in Table 2. We first observe that the pro-
posedDFRmethod results in a positive average skill score difference,
i.e. an improvement, for all base losses considered. Additionally,
we observe that the size of this improvement depends on the base
loss considered. The largest improvement is achieved when using
Pinball 0.90 as a base loss, with an average skill score difference of
over 130%, whilst the smallest improvement is with Pinball 0.75,
where the DFR method only results in an improvement of 7.29%.

Average Daily Total Costs. We compare the average total daily
costs when using PFL and our proposed DFR method in Figure 6
and additionally report these values in Table 2. These results also
highlight that the DFR method outperforms PFL for all considered
base losses, as the total costs from the dispatchable feeder optimiza-
tion problem are always lower. Again, the degree to which these
costs are lowered depends on the base loss considered.

Average Daily Cost Difference. As described in Section 4, the
forecast value of the dispatchable feeder problem relates to a com-
bination of imbalance and dispatch schedule costs. Therefore, to
better analyze the performance of our proposed DFR method we
visualize all components of these costs in Figure 7. We first observe
that the imbalance costs are reduced by applying DFR for every
base loss considered. Furthermore, the degree of this reduction
depends on the base loss considered, with the largest reduction
occurring for Pinball 0.90. Second, we observe that for the base
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Figure 5: An overview of the average skill score difference
in percent calculated across all buildings on the retraining
dataset (see Figure 4). The improvements are larger for loss
functions that are noticeably under- or overestimated.
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Figure 6: An overview of the average total daily costs for
the different base losses using PFL (blue) and DFR (yellow)
calculated on the test dataset (see Figure 4). The DFR method
results in lower total costs for all considered losses.

loss functions Pinball 0.40, Pinball 0.50, MSE, Pinball 0.60 and Pin-
ball 0.70 the mean dispatch schedule costs increase when applying
DFR. Importantly, these increases are of a far smaller magnitude
than the decrease in the imbalance costs, and therefore, the total
costs are still noticeably reduced. Furthermore, we observe that for
the Pinball loss of 0.75, 0.80, and 0.90, the mean dispatch schedule
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Figure 7: An overview of the average daily cost difference
over the three different costs relevant for the dispatchable
feeder, the dispatch schedule costs in blue, imbalance costs in
yellow, and total costs in green. The costs are calculated for
different base losses and the retraining as (PFL - DFR). Note
that a positive value indicates an improvement in cost, while
a negative indicates a deterioration. The numerical values
are given in the Appendix (Table 5).

costs are also decreased by applying DFR. The DFR approach re-
duces imbalance and dispatch schedule costs for each of these loss
functions.

Significance of Results. We report a summary of our results, in-
cluding the P-Values for the applied Wilcoxon Signed-Rank Test in
Table 2. This summary highlights that our proposed DFR approach
results in reduced total costs and, as a result, a positive average skill
score difference for all considered base losses. Furthermore, the
reduction in costs is highly significant according to the Wilcoxon
Signed-Rank Test for all base losses.

7 DISCUSSION
To discuss the results of our evaluation, we consider two main
aspects. First, we discuss some key insights from our results. Second,
we discuss the limitations and benefits of our proposed DFRmethod.

7.1 Key Insights
Given our results, we observe three major insights, which we dis-
cuss in more detail below.

DFR is Useful Regardless of the Base Loss. The results show that
applying the proposed DFR method reduces total costs independent
of the base loss. Importantly, the DFR results in reduced total costs
even in cases where the selected base loss used in the prediction-
focused model performs well, for example, Pinball 0.70. Therefore,
we conclude that it always makes sense to apply DFR, even when
the initial solution appears near-optimal. We also note that the

Table 2: An overview of the average daily costs for both the
PFL and our proposed DFR approach and the P-Values re-
porting the significance of the Wilcoxon Signed-Rank Test
and the average skill score difference for each considered
loss function. The DFR method outperforms PFL for all con-
sidered loss functions.

Average Daily Average Daily
𝑝-Value Average Skill

𝐶𝑇𝑜𝑡𝑎𝑙 PFL [€] 𝐶𝑇𝑜𝑡𝑎𝑙 DFR [€] Score Diff.[%]

Pinball 0.40 9.12 7.85 1.08E-34 83.35
Pinball 0.50 7.11 6.22 1.86E-34 58.78
MSE 5.53 5.07 2.66E-33 33.81
Pinball 0.60 5.56 5.13 8.70E-31 29.88
Pinball 0.70 4.60 4.49 2.40E-14 7.53
Pinball 0.75 4.59 4.45 4.37E-02 7.29
Pinball 0.80 5.22 4.86 9.18E-09 18.96
Pinball 0.90 11.14 8.82 4.38E-34 130.77

degree of this improvement depends on the base loss considered,
with the improvement generally smaller when the base loss already
results in low total costs. However, this is expected since the closer
the original result is to an optimal result, the less improvement
possible.

Total Performance of the DFR is Still Dependent on the Base Loss.
Whilst the DFR always results in a reduction in total costs compared
to PFL, the total costs still depend on the initial base loss. For
example, the largest improvement when using DFR is found when
considering Pinball 0.90 as a base loss, but the resulting DFR total
costs are still noticeably larger than the DFR total costs when other
base losses. This result is not surprising since DFR can only correct
a poor forecast via retraining, and this correction has boundaries.
However, this highlights that the selection of the base loss is still
important.

Applying DFR Offers Insights into Forecast Value for an Optimiza-
tion Problem. By analyzing the separate components of the total
cost difference for the considered optimization problem, namely
the dispatch schedule costs and the imbalance costs, we are able to
gain some insights into what kind of forecasts deliver value for the
dispatchable feeder. For example, in a forecast that generally un-
derestimate prosumption, e.g. Pinball 0.40, we observe a reduction
in total cost, by decreasing imbalance cost and increasing dispatch
schedule cost. This could be induced by an increase of the forecasted
prosumption and, therefore, an increase in the dispatch schedule
cost. This may result in a higher state of charge of the battery as
more energy is consumed from the grid, and therefore, the battery
can be better used in the scheduling task. This is observable until
Pinball 0.70. If the overestimation is greater, the reverse effect is
visible, as the battery has probably reached its upper limit.

Therefore, the DFR method may also be useful as a tool to help
inform users as to the characteristics of forecasts that are valuable
for certain optimization problems.

7.2 Limitations and Benefits
This section briefly discusses some of the key limitations and ben-
efits of our proposed DFR method in the context of smart energy
systems.
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Limitations. First, we note that the proposed method is not a
pure decision-focused learning method. It achieves optimal results
for the optimization problem only when domain knowledge is used.
But as we observe, when an unsuitable base loss is selected, DFR
still contributes positively. A second limitation of our proposed
method is that the surrogate NN is not constrained to parameterize
a certain loss function, as in [4, 6, 20, 21]. As a result, the trained
surrogate NN does not guarantee convexity. Therefore, the base loss
is needed to ensure the forecast is in a feasible area. This makes the
retraining process rather difficult and results in fluctuations within
the training process. This leads to a small number of retraining
epochs until the best tradeoff between the surrogate and the base
loss is achieved, which is the current model selection criteria in the
early stopping process.

Therefore, it would be interesting to investigate the effects of this
surrogate NN in more detail by considering different architectures,
different regularization techniques, different scenarios of learning
rates and weightings, and investigating the impact of the parame-
terization of the loss function. Furthermore, our evaluation does
not explicitly consider building-specific results, which are affected
by outliers and building characteristics. In Future work, it would
be interesting to analyze these effects in more detail.

Benefits. In addition to the positive results, our approach demon-
strates several key benefits. Firstly, as a data-driven method, DFR
can be applied to complex multiple-stage optimization problems,
as we show through our evaluation of the dispatchable feeder opti-
mization problem. Second, our proposed DFR method uses a global
instance-independent surrogate NN. Independence from the in-
stance of the optimization problem is advantageous, as this network
can be trained once and used over many other instances afterward.
This is specifically advantageous for energy systems, where multi-
ple buildings with similar characteristics may all have independent
optimization problems to solve. Furthermore, this independence
implies that the computational effort to generate a surrogate dataset
for training can be neglected, as the surrogate dataset generation
only occurs once. However, the properties of the objects considered,
for example, buildings, still play a role in surrogate training, and
therefore, it would be interesting to investigate methods to increase
this independence. Finally, the novel method is not specifically
designed for a specific optimization problem and can, therefore,
be applied to a range of optimization problems both within and
outside the energy domain.

8 CONCLUSION
Many countermeasures to maintain stability in energy systems
require that complex non-convex optimization problems are suc-
cessfully solved. Often, these optimization problems require high-
value forecasts as input, and many instances of the optimization
problems must be solved. Therefore, the present paper introduces
Decision-Focused Retraining (DFR), a retraining method combining
decision-focused and prediction-focused learning advantages. Our
method provides retraining through an instance-independent sur-
rogate NN, leading to a scalable method that can deliver high-value
forecasts to multiple instances of optimization problems. We evalu-
ate our approach on the dispatchable feeder optimization problem,

showing that it results in an average reduction in average difference
skill score of 7.29% across 199 buildings.

In light of these positive results, future work should consider
the application of DFR. In addition to considering further optimiza-
tion problems, future work should also investigate methods for
improving the independence of the surrogate model.
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A APPENDICES
A.1 Architectures

Table 3: A detailed overview of the surrogate NN architecture.
It is a multilayer perceptron consisting of multiple Fully
Connected Layers (FCL).

Layer Input Size Output Size Activation Comments

Split 𝑥0 42 42 - Forecast
Split 𝑥1 42 42 - GT
Split 𝑥2 5 5 - SoE + Stats

FCL01 42 (𝑥0) 64 SELU Forecast part of input
FCL02 42 (𝑥1) 64 SELU GT part of input

Concatenate 133 133 - Concatenation (FCL01, FCL02, 𝑥2)

FCL1 133 64 SELU -
FCL2 64 64 SELU -
FCL3 64 64 SELU -
FCL4 64 32 SELU -
FCL5 32 8 SELU -

FCL6 8 1 Sigmoid Output layer between 0 and 1

Table 4: Detailed overview of the architecture of the NN for
forecasting.

Layer Input Size Output Size Activation

FCL1 504 128 ReLU
FCL2 128 64 ReLU
FCL3 64 32 ReLU
FCL4 32 42 Linear

A.2 Absolute Results of the Differences

Table 5: Results of the differences (PFL- DFR) of the three
costs𝐶𝐷𝑆 ,𝐶𝐼𝑚𝑏 and𝐶𝑇𝑜𝑡𝑎𝑙 . Denote imbalance costs are scaled
by the imbalance factor. The results of this table represent the
numerical values of the graphical representation in Figure 7.

Average Daily Average Daily Average Daily
𝐶𝐷𝑆 [€] Diff. 𝐶𝐼𝑚𝑏 (𝑥10) [€] Diff. 𝐶𝑇𝑜𝑡𝑎𝑙 [€] Diff.

Pinball 0.40 -0.140 1.404 1.264
Pinball 0.50 -0.108 0.996 0.888
MSE -0.066 0.523 0.458
Pinball 0.60 -0.060 0.489 0.429
Pinball 0.70 -0.007 0.113 0.107
Pinball 0.75 0.023 0.115 0.138
Pinball 0.80 0.053 0.305 0.358
Pinball 0.90 0.234 2.085 2.320
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