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ABSTRACT
As our society moves toward a decarbonized energy system, we
need to improve our ability to model, predict, and understand power
system behavior and dynamics. The balance between generation
and demand on short time scales is reflected by the power grid
frequency, making it central to the control of power grids. Hence,
an accurate understanding and forecasting of power grid frequency
could ease the planning of control actions and thus improve system
stability and help save costs. Whether deep learning approaches
can provide forecasts of the highly resolved and noisy time series,
as they are present in the case of power grid frequency, remains
an open question. In this paper, we find that the Temporal Fusion
Transformer (TFT) is able to outperform baseline models, while
a comparably simple multilayer perceptron is not. By reducing
the time resolution of the frequency time series, we investigate
and quantify the trade-off between the energy consumption and
prediction performance of the TFT. Furthermore, the inclusion
of additional exogenous variables (e.g. calendar features, load, or
generation) further improves the performance of the TFT. Utilizing
the TFT’s inherent interpretability, we identify the forecasted load
ramp, the current hour, and the current month as the most relevant
features.
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1 INTRODUCTION
The mitigation of climate change necessitates a fundamental trans-
formation of our energy system [29]. Power grids play a pivotal
role in this transformation and face several challenges. On the one
hand, additional consumers are introduced to the system, such as
electrical vehicles or heat pumps. These additional actors increase
consumer complexity and volatility [3, 4]. On the other hand, gen-
eration behavior also becomes more complex and volatile. The
massive integration of renewable wind and solar power genera-
tion is essential for a future sustainable energy system. However,
their variability on long (seasonal) and short (up to subsecond)
timescales [12, 25], their location dependence, and their missing
inherent inertia are core challenges that need to be tackled for a
stable and sustainable power grid [36]. To ensure a stable supply of
electrical power, power generation and demand need to be balanced
at all times [24]. The power grid frequency reflects this balance
and is the central observable to maintain it on short time scales.
A frequency value below the reference of 50 or 60Hz indicates a
shortage of generation, while a value above the reference indicates
an abundance of generation. Large deviations from the reference
frequency necessitate costly control actions to prevent a collapse of
the power system. A precise forecast of power grid frequency could
help in the planning and the optimized usage of control resources.
Hence, building precise forecasts and a solid understanding of the
diverse factors influencing power grid frequency is important for
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Figure 1: Continental European power grid frequency data. (top) Power grid frequency deviation from the reference frequency
(50Hz) over five years. The inset shows a typical one-hour excerpt. (bottom) The daily average profile of the Continental
European power grid frequency which also acts as a benchmark model. The colored area marks the standard deviation.

navigating the challenges posed by the integration of renewable
energy sources. Notably, power grid frequency data is more readily
available compared to high-resolution data on (renewable) gener-
ation and demand for a synchronous area [6, 31, 34]. Large-scale
unforeseen outages are rare events that we usually cannot predict.
However, even during normal operational conditions, the power
grid frequency shows deviations subject to various external factors,
contributing to its non-constant and non-linear variability. Specif-
ically, the deterministic frequency deviations can be observed at
regular market intervals due to a change in generation schedul-
ing [18, 35] (see Appendix B).

Forecasting power grid frequency presents unique challenges
as models must accommodate long time series. High resolution
is important as the short-term values and ramps are relevant for
balancing actions, while a long forecasting horizon aids in better
planning. Furthermore, as millions of consumers and thousands of
generators are connected to large-scale grids, they display large and
unpredictable fluctuations, whichwill likely only increase with addi-
tional renewable generation and new consumers. Hence, these grids
pose a special opportunity to investigate the feasibility of forecast-
ing highly resolved and noisy data with deep learning approaches.
Ideally, these approaches should be interpretable, as the black-box
nature of many algorithms can pose risks in critical infrastruc-
tures [1]. Moreover, the interpretability of the algorithms also helps
in gaining scientific insights and informed decision-making [30].

2 RELATEDWORK
A large part of the energy forecasting literature is focused on load
forecasting, which usually employs up to hourly or quarter-hourly

resolution [13]. There are comparably fewer studies on power grid
frequency forecasting: There are studies on very short-term fore-
casts that applied Recurrent Neural Network architectures to fore-
cast frequency with one-minute granularity for one-step-ahead pre-
dictions [38] or applied Machine learning methods to forecast grid
frequency with horizons ranging from 183ms up to 2min (in 1min
increments) [5]. Other studies utilized time series related to power
grid frequency, focusing on the forecasting of minutely power grid
frequency-corrected demand in Great Britain [33] or forecasting of
the intra-hour imbalance in Norway with 5min granularity [32].
Recently, a physics-informed machine learning approach was intro-
duced to construct an inductive biased probabilistic model of power
grid frequency dynamics [16, 26]. The closest research in terms of
time resolution, forecasting horizon, and dataset size is the work
by [17], who used a weighted-nearest-neighbor (WNN) predictor to
match similar frequency patterns. We use this model as a baseline.
In the present paper, we apply the Temporal Fusion Transformer
(TFT) to forecast power grid frequency. Examples of utilizing TFT
in energy forecasting include prediction of hourly day-ahead pho-
tovoltaic power generation [23] and short-term electricity load
forecasting [8, 14].

3 DATA
The power grid frequency data employed in this study originates
from the publicly available measurements of TransnetBW [34], a
German transmission system operator (TSO), in the Continental Eu-
ropean (CE) power grid. Specifically, we use the pre-processed data
by [19], which is shown in Figure 1 (top). The power grid frequency
data spans a period from 2015 to 2019 with a 1 s resolution. We split
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our data as follows: The first three years (2015-2017) were used for
training, while 2018 and 2019 were used for validation and testing
respectively. Each target sample consists of one hour of data, while
the preceding hour serves as input. At 1 s resolution, this yields a
vector of length 3600 for both input and output. For experiments at
lower resolutions, we downsample the data by averaging the data
points. For example for a 15 s resolution, we have 240 timesteps for
both input and output.

We use various techno-economic time series of the CE power
grid from [20, 21] as external features. Our total dataset consists of
15 features with hourly resolution that are either originally based
on data from the publicly available ENTSO-E Transparency Plat-
form [6] or encode the prediction time. Six features are day-ahead
forecasts of load and renewable generation provided by the TSOs,
the scheduled generation, and the day-ahead electricity price for the
target hour. Moreover, we include “ramp” features, i.e. we compute
the difference of a feature value from its value in the previous hour.
We complete the feature set with calendar features, specifically the
current hour, weekday, and month.

4 METHODOLOGY
To compare the performance of the employed deep learning models,
we use two baselinemodels as reference. The first baselinemodel we
employ is the daily profile of the power grid frequency. It is defined
as the average of all frequency recordings across all available days
for a specific second of the day. This means that the daily profile
is a time series consisting of 3600 · 24 = 86400 values. Due to its
dependence on the daily load patterns, the daily profile — as shown
in Figure 1 (bottom) — is the most pronounced recurring pattern in
power grid frequency [17]. As a second baseline model, we use the
weighted-nearest-neighbor (WNN) predictor introduced in [17].

In the present study, we utilize two deep-learning algorithms,
namely aMultilayer Perceptron (MLP) and a Temporal Fusion Trans-
former (TFT) [9, 22]. The MLP is a fully connected feed-forward
artificial neural network. The TFT is an attention-based architecture
designed specifically for time series forecasting [22]. The architec-
ture employs a gated variable selection mechanism, i.e. a feature
selection tool designed to exclude irrelevant inputs. The gated vari-
able selection networks and the multi-head attention offer inherent
interpretability that proves particularly valuable in three scenar-
ios: identifying significant events, capturing persistent temporal
patterns, and identifying globally relevant variables. Due to the
vastly different time resolutions of our external features and our
target time series (hourly and secondly), we treat all external fea-
tures as “static” in this study, i.e., we include a single value per
feature for each sample. For specifics of the model architectures
and experimental setup, refer to Appendix A.

To assess the performance of the forecasting models we use the
Root Mean Square Error (RMSE) as our main evaluation metric.
Furthermore, we include application-specific evaluation metrics,
namely the Rate of Change of Frequency (RoCoF) and the Nadir,
see also Figure 1 (top) and Appendix C [10]. The RoCoF describes
the steepest slope of the frequency trajectory. The Nadir is the
largest deviation from the reference frequency. Large values are
problematic as they indicate a need for large amounts of control
power (Nadir) and/or power ramps (RoCoF). We averaged results

Table 1: Performance comparison of themodels. We run each
of the deep learning models five times with varying random
seeds and report the mean and standard deviation of each
metric.

Model RMSE RoCoF error Nadir error

Daily Profile 16.3 0.768 42.1
WNN 15.5 0.766 40.1
MLP 15.795 ± 0.012 0.783 ± 0.007 38.1 ± 0.3
TFT 15.24 ± 0.04 0.735 ± 0.016 36.8 ± 0.3

Time resolution

TFT 2s 15.25 ± 0.05 0.75 ± 0.03 36.6 ± 0.5
TFT 5s 15.25 ± 0.05 0.751 ± 0.017 36.7 ± 0.3
TFT 10s 15.24 ± 0.04 0.79 ± 0.02 37.1 ± 0.3
TFT 15s 15.26 ± 0.05 0.83 ± 0.02 37.2 ± 0.4
TFT 30s 15.302 ± 0.019 0.939 ± 0.011 37.3 ± 0.2
TFT 60s 15.40 ± 0.04 1.201 ± 0.013 38.2 ± 0.8

Addition of external features

TFT 15.03 ± 0.06 0.744 ± 0.015 36.30 ± 0.14

over five runs with varying random seeds for each deep learning
model.

5 EXPERIMENTS
We compare the MLP and TFT models to the two baseline models
for the 1 s resolution data. We include the hour of the day as an
additional static feature but no other external information. This
information is inherently captured in both baseline models by de-
sign. As in [17], the WNN outperforms the daily profile. The results
show that the MLP outperforms the daily profile, but its perfor-
mance is worse than the WNN’s. The TFT outperforms all other
models. In terms of RMSE, it improves on the daily profile by 6%
and on the WNN by 2% (see Table 1). This performance increase
of the TFT compared to the WNN primarily stems from the first
minutes of the forecast horizon, see Figure 2 (left). In the first five
minutes, the performance increase exceeds the average, showing
a 11% improvement over the WNN and a 19% improvement over
the daily profile. The TFT seems to be more capable of modeling
the market-driven deterministic frequency deviation at the start
of the hour. Conclusively, the TFT also shows better performance
for both, the RoCoF and the Nadir error (see Appendix 1) We note
that at the beginning of each quarter-hourly trading interval, the
models have a visibly larger error (see Figure 2 (left)).

The full utilization of the 1 s resolution data for hourly forecast-
ing results in comparably long forecasting horizons (3600 timesteps).
This can be harder for the model to predict and could be an unneces-
sary computational burden. Therefore, we vary the time resolution
of the training data and quantify the changes in model performance
and energy consumption. The downsampled resolution is computed
by averaging data points. The final predictions of the model for
the test set are then linearly interpolated and evaluated against the
1 s resolution data. We estimate the GPU energy consumption by
integrating over half-minute power measurements from Weights
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Figure 2: Performance and energy consumption. (left) Model performance of the included models (average of five seeds)
compared to baselines for one-second resolution data over the forecasting horizon. TFT improvements are most noticeable in
the first ten minutes. (right) TFT performance and energy consumption for different time resolutions (average and standard
deviation of five seeds). Each consecutive model roughly doubles the resolution and halves the target length.

& Biases [2]. As visible in Figure 2 (right), lowering the resolution
negatively impacts the RMSE, i.e. high-resolution data still con-
tains relevant information for the TFT. Meanwhile, the training
consumes less energy for coarser resolutions, with the most notable
changes around target lengths of over 1000 timesteps (i.e. 1 s & 2 s
resolutions). Notably all models utilizing the different resolutions
are still able to beat the two baseline models. We notice that the
RMSE up to about 10 s stays roughly the same and degrades more
for higher resolutions. The RoCoF performance is steadily degrad-
ing and underperforms the baseline models already for resolutions
lower than 5 s. The Nadir performance only decreases slightly for
resolutions lower than 5 s and surpasses the baselines for all reso-
lutions. Our results suggest that time resolutions up to 10 s seem
to achieve viable performance in terms of RMSE, with the most
notable degradation in RoCoF, while achieving about a tenfold re-
duction in power consumption. Further downsampling degrades
performance without substantially reducing power consumption.

The inclusion of exogenous variables enhances the performance
of the TFT by 1.5% on average and 4% in the first five minutes com-
pared to the TFT without exogenous variables. This model further
outperforms the baseline models (15% over WNN and 23% over
daily profile in the first five minutes). To understand which fea-
tures contributed to the improvement of the model’s performance,
we quantify the importance of features by evaluating the variable
selection weights of the TFT’s static variable selection network as
proposed in [22]. We identify the load ramp forecast, the current
hour, and the current month as the three most important features
as shown in Table 2. The importance of the hour and month points
to the effects of daily and yearly patterns. The load ramp forecast
is probably a useful indicator for the deterministic frequency devia-
tion at the start of the hour. To further understand the importance
of certain time stamps, we evaluate the model’s attention weights.
The quarter-hourly patterns in the attention weights once again un-
derline the impact of the market intervals on power grid frequency
(see Appendix D for a more detailed discussion).

Table 2: Variable importance of static external features sorted
by importance. We show the average and standard deviation
of five runs with varying seeds. The three variables with the
highest importance scores are bold.

Variable Importance

hour 0.106 ± 0.007
load ramp forecast 0.090 ± 0.010
month 0.089 ± 0.010
scheduled generation ramp 0.085 ± 0.005
weekday 0.071 ± 0.004
day-ahead price ramp 0.067 ± 0.003
solar ramp forecast 0.063 ± 0.004
day-ahead price 0.059 ± 0.010
solar forecast 0.058 ± 0.007
load forecast 0.057 ± 0.006
onshore wind forecast 0.056 ± 0.019
offshore wind forecast 0.051 ± 0.007
scheduled generation 0.051 ± 0.013
onshore wind ramp forecast 0.051 ± 0.007
offshore wind ramp forecast 0.046 ± 0.013

6 CONCLUSION
In conclusion, our study emphasizes the importance of accurate
power grid frequency forecasting in managing modern power sys-
tems, particularly as renewable energy integration increases. Our
findings show that Temporal Fusion Transformers (TFT) outper-
form Multilayer Perceptrons (MLP) and offer better interpretability
which is useful for understanding the reasoning behind the forecast
and identifying which factors impact power grid frequency. Further-
more, this demonstrates that applying deep learning approaches to
highly resolved time series data is feasible. The high resolution is
useful if higher accuracy is needed or if application-specific metrics
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(RoCoF or Nadir) have to be determined (see Table 1). We note that
there exist algorithms, either attention-based or not, that are specif-
ically built for long sequence time-series forecasting [11, 37, 39, 40].
Although these algorithms seem promising to be explored in a
future study, we consider the TFT for this feasibility study due
to its straightforward implementation of external (static) features
and its easy access to inherent interpretations. Future research
should explore more models on highly resolved data and consider
different data, either from other power grids [31] or generation and
imbalance data. With this contribution we hope to inspire more
research in the area of highly resolved energy time series, advance
forecasting of such time series, including power grid forecasting,
and thereby support the stability and control of future renewable
energy systems.
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A EXPERIMENTAL SETUP
To determine optimal hyperparameters, we conducted a Bayesian
search within the parameter space shown in Table 3, employing
Weights & Biases [2]. We conducted one hyperparameter search
at 1 s resolution for the TFT and used the best hyperparame-
ters throughout this paper. Both models were trained using mean
squared error (MSE) as the optimization criterion, with stochastic
gradient descent (SGD) employed as the optimizer for the MLP and
ADAM [15] for the TFT. During the final runs, we implemented
early stopping with a patience of 20 epochs. The algorithmic imple-
mentations were adapted from [27] and executed using PyTorch and
PyTorch Lightning [7, 28]. Notably, the hour feature was encoded
using sine and cosine transformations for the MLP. We averaged
results over five runs with varying random seeds for each deep
learning model.

Table 3: Value ranges for hyperparameter tuning

MLP

Parameter Range Best
batch size {64, 128, 256, 512, 1024} 256
hidden size {256, 512, 1024, 2048, 4096} 4096
learning rate [0.0001, 10] (log uniform) 0.187
number of layers {1, 2, 3, 4, 5, 6} 3

TFT
Parameter Range Best
attention heads {1, 4} 1
hidden size {64, 128, 256} 128
dropout rate [0.05, 0.5] (uniform) 0.27
learning rate [0.0001, 0.1] (log uniform) 8.5 × 10−4

B DETERMINISTIC FREQUENCY DEVIATIONS
Deterministic frequency deviations (DFDs) are comparably large
deviations from the reference frequency that occur at the begin-
ning of market intervals [18, 35]. On the day-ahead markets in the
Continental European power grid electricity is procured in hourly
or quarter-hourly intervals. The rapid adjustment of power genera-
tion and demand following the intervals causes an almost step-like
behavior — constant during the market intervals and jumping in
between. Combined with the continuously changing demand that
is led by consumer behavior, not necessarily directly bound to the
market intervals, there arise power mismatches at the beginning
of the market intervals. DFDs can affect the frequency quality and
stability of the power system, as they deplete the frequency control
reserves and make the grid vulnerable to additional disturbances.

C ROCOF & NADIR
The Rate of Change of Frequency (RoCoF) and the Nadir both
describe relevant metrics in power system operation, linked to the
stability of the system [10]. A large value in one or both quantities
signifies a substantial imbalance and a potential stability problem
of the system.

We calculate the RoCoF from the grid frequency deviation time
series 𝑓 (𝑡) similar to the procedure described in [18, 20]. To estimate
the derivative 𝑑 𝑓 /𝑑𝑡 , we compute the increments
𝑓 (𝑡 + 1s) − 𝑓 (𝑡). Next, using a rectangular rolling window with
a length of 30 s, we smooth the increment time series. We then
set the RoCoF to the absolute maximum of this smoothed time
series. To evaluate our forecasts we apply the same procedure to
the prediction and the ground truth and calculate the absolute
difference between the two values.

The Nadir describes the largest deviation from the reference
frequency in an Interval 𝐼 and is therefore defined as

Nadir(𝐼 ) = 𝑓 (argmax
𝑡 ∈𝐼

|𝑓 (𝑡) |).

To calculate the error, we compute this number for the prediction
and the ground truth and again calculate the absolute difference
between the two values.

D INTERPRETABLE ATTENTION
To identify which parts of the past time series are important for the
prediction of the TFT, we visualize the average attention weights of
one of the TFT models with exogenous features, as proposed in [22].
We find that, apart from a very sharp peak at the last timestep before
the prediction interval, the model attends to the past timesteps more
or less uniformly for all time horizons. At each quarter hour, there
are slight bumps visible in the attention which coincide with the
market intervals. The impact of the market intervals is even more
visible for the attention to the timesteps that the model predicted
itself. We observe that both, for the 𝑡0+20 min horizon as well as the
𝑡0 +30 min horizon, the model has a decreased attention between 𝑡0
and 𝑡0 + 15 min. Similarly, we notice a decreased attention between
𝑡0 and 𝑡0 + 30 min for the 𝑡0 + 50 min and 𝑡0 + 60 min horizons. This
loss of attention probably links to the market-based memory loss
observed in [17].
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Figure 3: Average attention weights for forecasts at different horizons.

453


	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Methodology
	5 Experiments
	6 Conclusion
	Acknowledgments
	References
	A Experimental Setup
	B Deterministic Frequency Deviations
	C RoCoF & Nadir
	D Interpretable Attention

