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Abstrat. Imperfetions have a signi�ant in�uene on ritial bukling loads of stru-

tures. These imperfetions an be variations of the nominal geometry or a spatial variabil-

ity of the material parameters. Regulations are not often available for omplex strutures

like ylindrial shells. The numerial stability analysis of strutures requires the onsid-

eration of data unertainty. The spatial variation of unertain geometri and material

properties an be desribed by random �elds. A wide variety of methods for the simula-

tion of Gaussian stohasti proesses are available. Often, the Karhunen-Loève Expansion

or - for an optimal disretization of the random �eld - the EOLE method is used. In all

methods a orrelation parameter has to be de�ned to ontrol the shape of the random

�eld and hene the shape of imperfetions. The proper determination of suh a orrelation

parameter is problemati to represent imperfetions lose to reality. If measured results

are available a orrelation length an be approximately determined. This hoie is more

di�ult in ase of material imperfetions, where the spatial variation of sti�ness values

is often unknown. In fat, that the unertain input parameters are fuzzy, a better way

to determine a realisti orrelation length is the appliation of polymorphi unertainty

models. The stohasti analysis is extended to the fuzzy randomness. The polymorphi

unertainty models are introdued in [6℄ and a good overview is given in [2℄. In this paper,

the orrelation length for geometrial imperfetions is desribed as a fuzzy input value.

The fuzzi�ation of the orrelation parameter leads to a more realisti onsideration of it's

unertainty. The goal is a robust fuzzy omputational model for a better representation

of the unertainty in the lak of input data for numerial bukling analyses of thin walled

strutures.

1 Introdution

In strutural engineering, the need of thin-walled strutures is beoming inreasingly

important. Beause of the slim design, the loss of stability beomes more relevant and

imperfetions have a major impat on the ritial bukling load. In Euroode 3 (DIN

EN 1993), the standard for design and onstrution of steel strutures a onventional

deterministi approah is proposed. Here, the material and geometrial imperfetions

should be taken into aount in the form of ritial eigenmodes with a spei�ed amplitude

for the FE-Model. Beside the auray in omputing methods, a detailed representation of

the imperfetions for the numerial model is needed. Beause of their random harater,

the spatial variation of unertain geometri and material properties an be desribed by

random �elds. If a struture is loaded with imperfetions, no distint stability point



ours, whih is shown in Figure 1. The di�erent postritial behaviour between beam

and plate strutures an be seen learly. The ritial displaement ucrit and load pcrit
are alulated with an eigenvalue analysis. The tangent sti�ness matrix an be divided

in linear KKK lin and nonlinear parts KKKnlin. If available, the nonlinear terms KKKnlin an be

identi�ed as KKKu, the initial displaement matrix and KKKσ, the geometrial matrix,

KKKT = KK lin+KKnlin = KK lin +KKu +KKσ . (1)

Consequently, an eigenvalue problem for a linear bukling analysis an be onstruted via

[KK lin + Λ(KKu +KKσ)]ϕϕ = 00 . (2)

If a linear pre-bukling behaviour is observed, the result of the eigenvalue problem is a

ritial load fator Λ and the ritial load an be alulated with the relation

PPP crit = Λ PPP . (3)

After the stability point of the perfet struture is alulated, random imperfetions are
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Figure 1: Elasti bukling behavior of a beam a) and a plate b) with imperfetions.

applied and the imperfet struture is loaded based on a displaement ontrol until the

ritial displaement ucrit is reahed (see also [1℄). This will be the evaluation point for

the fuzzy strutural analysis.

2 Representation of Imperfetions as Random Fields

2.1 Introdution to Random Fields

A random �eld H(xxx, θ) is a olletion of random variables indexed by a ontinuous pa-

rameter xx ∈ Ω [8℄,

{H(xxx, θ) : xxx ∈ Ω, θ ∈ Θ} . (4)

This means that a random �eld desribes a salar �eld, where for a given xxx0, H(xx0, θ) is
a random variable. Θ ontaining all possible outomes θ. Thus, for a given outome θ0,

h0(xxx) := H(xx, θ0) (5)



is a realization of the random �eld. One visualisation of a random �eld realization is

illustrated in Figure 2. A random �eld is Gaussian, if for every given point xxxn the random

variable is Gaussian,

H0(θ) := H(xx0, θ ) ∼ N (µ, σ2) . (6)

A Gaussian �eld is ompletely de�ned by it's mean funtion,

µ(xx) = E[H(xx)] (7)

and it's auto-orrelation funtion,

C(xxxi,xxxj) = E[(H(xxxi)− µ(xxxi))(H(xxj)− µ(xxxj))] , (8)

whih ontrols the shape of the random �eld and hene the shape of imperfetions.

Figure 2: One realization of a random �eld

2.2 Optimal Disretization of Random Fields using the

EOLE-Method

The numerial implementation requires a disretization of the random �eld

H(xxx)
Discretization−−−−−−−−→ Ĥ(xxx) . (9)

In this paper, for an optimal representation of a random �eld, the EOLE-method (Ex-

pansion Optimal Linear Estimation) from [3℄ is used. The advantage of the method is it's

ability to represent the random �eld with only a few random variables by minimising the

variane error. Here, the ovariane matrix is only required on a sub-set of �eld nodes

(random �eld mesh). This aspet is very interesting for the fuzzy strutural analysis,

beause a lot of omputational time an be saved. The random �eld is represented by

Ĥ(xxx, θ) = µ(xxx) + σ ·
(

M
∑

i=1

ξi(θ)√
λi

ϕϕϕi(xxx
S)

)

· C(xxxS,xxx) , (10)



where the vetor

xxS = [xx1 ... xxxS
i ... xxS

M ] ontains the M-nodes of the random �eld and

xxx = [xxx1 ... xxxj ... xxxN ] the N-nodes in full spae (e.g. FE-nodes). Consequently, C(xxxS,xxx) is
the orrelation matrix between the random �eld nodes and FE-nodes,

C(xxxS,xxx) =
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ϕϕi and λi are the eigenfuntions and eigenvalues of a given autoovariane funtion

C(xxxS
i ,xxx

S
j ) on the random �eld mesh. The variable ξi(θ) is the unorrelated Gaussian

random variable with zero mean and unit standard deviation. Herein, a quadrati expo-

nential ovariane funtion is used for numerial analysis,

C(xxS
i , xx

S
j ) = exp

[

−d2(i, j)

lc

]

, (12)

wherein d(i, j) is the distane between two nodes xxS
i , xxx

S
j and lc is the orrelation length.

This kind of orrelation funtion represents a di�erentiable proess and leads to a smoother

random �eld. The orrelation length ontrols how quikly the ovariane falls o�. For

lc tending to in�nity or a zero distane between two separated points, the exponential

ovariane funtion onverges to the value one, that means two points are full dependent.

The e�et on the random �eld is shown in Figure 3 for a 2-D struture with 8× 8 nodes.

The shape beomes more uniform for great values of lc.

covariance matrix
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Figure 3: Di�erent ovariane matries with realizations



3 Polymorphi Unertainty Modelling

3.1 Introdution to Fuzzy Randomness

A real random variable X is the mappping,

X : Θ → R
n . (13)

Fuzzy randomness is desribed by a fuzzy random variable, whih is the fuzzy result of

an unertain mapping,

X̃ : Θ
∼−→ F(Rn) , (14)

with F(Rn) the set of all fuzzy numbers on the fundamental set R
n
[2℄. Eah fuzzy number

of a fuzzy realization is de�ned as a normalized fuzzy set,

x̃i = {(x, µxi
(x)) | x ∈ R

1}; µx(x) ≥ 0 (one-dimensional), (15)

with µxi
(x), the normalized membership funtion [6℄. Therefore, similar to real random

�eld de�nition and the notation in setion 2.1, a fuzzy random �eld an be de�ned by a

olletion of fuzzy random variables,

{H̃(xxx, θ) : xxx ∈ Ω, θ ∈ Θ} , (16)

where H̃(xx0, θ) is a fuzzy random variable for a given xx0. Furthermore h̃0(xx) is a realization
of a fuzzy random �eld to an outome θ0 ∈ Θ, whih also desribes a fuzzy funtion [5℄.

Figure 4, aording to a representation in [6℄, shows one realization of a fuzzy random

�eld with the fuzzy number h̃0 for a given point xxx0.

membership
function

fuzzy number

Figure 4: One realization of a two-dimensional fuzzy random �eld [6℄



3.2 Fuzzy Strutural Analysis

fuzzy input
value

fuzzy result
valuemapping operator

(FE-Buckling Analysis)

-level optimization

Figure 5: Fuzzy strutural analysis sheme [6℄

The fuzzy strutural analysis desribes a mapping of fuzzy input values x̃i onto result

values z̃j , whih are also fuzzy values. In the presented examples, the fuzzy input is the

orrelation length lc, whih beomes to a fuzzy orrelation length l̃c and the fuzzy output

is the mean value of the bukling load P̃crit. The mapping operator is the deterministi

fundamental solution, whih is represented here by a �nite element model or more exatly

a numerial bukling analysis. So, the fuzzy strutural analysis hanges to a fuzzy �nite

element method (FFEM) [6℄. For the numerial implementation, the fuzzy values have

to be disretized with the help of so alled α-level sets Ai, αk, i = 1, ..., n and Bi, αk, i =
1, ..., n. The searh for the smallest and largest result element on the α-level represents
an optimization problem. The entire proedure is shown in Figure 5. For the α-level
optimization, the modi�ed evolution strategy from [7℄ is used. This algorithm works

reliably for a Monte Carlo Simulation. As part of this work a program was developed for

fuzzy strutural analysis, named FuFEAP (A Fuzzy Finite Element Analysis Program).

It's a MATLAB [4℄ program with an interfae to run FEAP [9℄ to get the fundamental

solution. Besides, the fuzzy and stohasti analysis are done by MATLAB. For numerial

bukling analyses of shell strutures a non-linear four-node isoparametri shell element

from [10℄ is used.

4 Numerial Examples

The orrelation is desribed by a fuzzy orrelation length l̃c with the orresponding fuzzy

orrelation funtion C̃. Other parameters suh as the variane and mean value are de-

terministi. The fuzzi�ation of the orrelation length an be �tted, if measurements are

available. In addition, expert knowledge an be taken into aount. Here, the orrela-

tion lengths are only hosen due to plausible representation of random �eld realizations.

Figure 6 (left) shows the hosen orrelation lengths by a fuzzy triangular number. For

the numerial analysis, four α-levels are investigated, α = [0, 0.33, 0.66, 1℄. On the

right side of the �gure, the orresponding homogeneous orrelation funtions with the

quadrati exponential form aording to equation (12) are plotted. The fuzzy ovariane



is a fuzzy funtion [6℄. Thereby, a fuzzy number C̃(di) an be spei�ed for every distane

di.

Figure 6: Fuzzy orrelation length l̃c and fuzzy orrelation funtion C̃(d(i, j))

4.1 Bukling of an Elasti Bar

cross section:

Figure 7: Elasti bar with Euler ase 2 boundary onditions and visualisation of the ran-

dom geometrial imperfetions (enlarged)

Geometrial imperfetions are applied on an elasti bar, see Figure 7. The �gure also

shows three realizations of the imperfetions for the hosen range of orrelation lengths.

A 2-node 2D Timoshenko beam element with linear shape funtions and �nite rotations

is used. The bar is disretised with 20 �nite and stohasti elements. The ritial dis-

plaement ucrit = 0.08239mm and load Pcrit = 1730N are alulated with an eigenvalue

analysis of the perfet struture whih is desribed in setion 1. The evaluation point for

the fuzzy strutural analysis is the orresponding load at ucrit of the imperfet struture.



In equation (10), the variane is σ = 5mm, the mean value is µ = 0 and the random

geometrial imperfetions are saled to an amplitude L/200 = 5mm with an exeeding

probability of 5% (2,5% on eah side). The fundamental solution is obtained in eah ase

by a Monte Carlo Simulation based on 500 simulations. Figure 8 shows a test run for

di�erent orrelation lengths with the hosen fuzzy orrelation lengths ontained in the

grey area. For orrelation lengths tending to in�nity, the mean value of the bukling load

onverges to the ritial load Pcrit. In this ase, the imperfetions vanish. The minimum

and maximum of the mean value in the grey area �t to the left and right limit of the

zero α-level in Figure 9, where the fuzzy expeted value of the bukling load is presented.

The fuzzy result shows a onvex shape, wherein eah α-level inludes the higher levels.

Both �gures show the great impat of geometrial imperfetions on the bukling load, a

derease of the mean value of ≈ 45 %.

in

Figure 8: Monte Carlo Simulation for the elasti bar with 500 samples for eah orrelation

length

in

stable perfect
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Figure 9: Fuzzy expeted value of the bukling load Pcrit



4.2 Bukling of an Axially Compressed Steel Plate

Figure 10: Steel plate (simply supported) and visualisation of the random geometrial

imperfetions

Now, 2D random geometrial imperfetions are applied on an axially ompressed steel

plate as illustrated in Figure 10. For the FE-mesh and random �eld mesh, 20 × 20
elements are used. The illustrated slab is simply supported, whereby all edges are free to

rotate. The ritial displaement of the perfet struture is ucrit = 0.361mm together with

an assoiated ritial load pcrit = 758,73N/mm. The saling and sto hasti parameters

are the same as in the previous example. To determine the mean value of the bukling

loads in eah ase, the Monte Carlo Simulation is again based on 500 samples.

in

Figure 11: Monte Carlo Simulation for the steel plate with 500 samples for eah orrelation

length



in
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Figure 12: Fuzzy expeted value of the bukling load pcrit

The mean value urve in Figure 11 di�ers from the urve in Figure 8. A derease of the

mean value of the bukling loads of approximately 20 % an be observed. The implemented

optimization algorithm works and �nds the orret minimum and maximum. The fuzzy

result in Figure 12 has also a onvex shape. Summarizing, the results learly show the

impat of the orrelation lengths on the bukling load.

5 Conlusions

In this paper, the fuzzy analysis is used for a more realisti representation of imperfetions

in bukling analyses. In the onventional stohasti analysis the de�nition of a orrelation

length is quite di�ult, beause also very few measurements are available. Polymorphi

unertainty modelling with the fuzzi�ation of the orrelation length allows a more realis-

ti representation of spatial varying imperfetions. If experiments are available, the fuzzy

input an be veri�ed. Furthermore, other parameters an be onsidered, e.g. the orre-

lation length for spatial material imperfetions, the mean value, variane or the loading.

However, the fuzzy analysis requires a lot of omputational time, espeially the α-level
optimization. Therefore, the program needs to be developed, e.g. testing other optimiza-

tion algorithms, parallelization of the program ode and a data redution. The goal is to

investigate more omplex strutures like ylindrial shells or dynami problems.
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