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Abstract. Imperfections have a significant influence on critical buckling loads of struc-
tures. These imperfections can be variations of the nominal geometry or a spatial variabil-
ity of the material parameters. Regulations are not often available for complex structures
like cylindrical shells. The numerical stability analysis of structures requires the consid-
eration of data uncertainty. The spatial variation of uncertain geometric and material
properties can be described by random fields. A wide variety of methods for the simula-
tion of Gaussian stochastic processes are available. Often, the Karhunen-Loéve Expansion
or - for an optimal discretization of the random field - the EOLE method is used. In all
methods a correlation parameter has to be defined to control the shape of the random
field and hence the shape of imperfections. The proper determination of such a correlation
parameter is problematic to represent imperfections close to reality. If measured results
are available a correlation length can be approximately determined. This choice is more
difficult in case of material imperfections, where the spatial variation of stiffness values
is often unknown. In fact, that the uncertain input parameters are fuzzy, a better way
to determine a realistic correlation length is the application of polymorphic uncertainty
models. The stochastic analysis is extended to the fuzzy randomness. The polymorphic
uncertainty models are introduced in [6] and a good overview is given in [2]. In this paper,
the correlation length for geometrical imperfections is described as a fuzzy input value.
The fuzzification of the correlation parameter leads to a more realistic consideration of it’s
uncertainty. The goal is a robust fuzzy computational model for a better representation
of the uncertainty in the lack of input data for numerical buckling analyses of thin walled
structures.

1 Introduction

In structural engineering, the need of thin-walled structures is becoming increasingly
important. Because of the slim design, the loss of stability becomes more relevant and
imperfections have a major impact on the critical buckling load. In Eurocode 3 (DIN
EN 1993), the standard for design and construction of steel structures a conventional
deterministic approach is proposed. Here, the material and geometrical imperfections
should be taken into account in the form of critical eigenmodes with a specified amplitude
for the FE-Model. Beside the accuracy in computing methods, a detailed representation of
the imperfections for the numerical model is needed. Because of their random character,
the spatial variation of uncertain geometric and material properties can be described by
random fields. If a structure is loaded with imperfections, no distinct stability point



occurs, which is shown in Figure 1. The different postcritical behaviour between beam
and plate structures can be seen clearly. The critical displacement u.,.;; and load pei
are calculated with an eigenvalue analysis. The tangent stiffness matrix can be divided
in linear K;, and nonlinear parts K,,. If available, the nonlinear terms K, can be
identified as K, the initial displacement matrix and K, the geometrical matrix,

KT:Klin+Knlin:Klin+Ku+Ka . (1)
Consequently, an eigenvalue problem for a linear buckling analysis can be constructed via
[Klln_'_A(Ku—i_KU)](p:O . (2)

If a linear pre-buckling behaviour is observed, the result of the eigenvalue problem is a
critical load factor A and the critical load can be calculated with the relation

Pcrit =AP . (3)

After the stability point of the perfect structure is calculated, random imperfections are
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Figure 1: Elastic buckling behavior of a beam a) and a plate b) with imperfections.

applied and the imperfect structure is loaded based on a displacement control until the
critical displacement u..;; is reached (see also [1]). This will be the evaluation point for
the fuzzy structural analysis.

2 Representation of Imperfections as Random Fields

2.1 Introduction to Random Fields

A random field H(z,0) is a collection of random variables indexed by a continuous pa-
rameter x € () 8],

{H(z,0) : 2 €Q,0c©} . (4)

This means that a random field describes a scalar field, where for a given xy, H(xo,0) is
a random variable. © containing all possible outcomes 6. Thus, for a given outcome 6,

ho(z) := H(z,0p) (5)



is a realization of the random field. One visualisation of a random field realization is
illustrated in Figure 2. A random field is Gaussian, if for every given point z,, the random
variable is Gaussian,

Ho(0) := H(zo, 0) ~ N(it,0%) . (6)
A Gaussian field is completely defined by it’s mean function,

(@) = E[H(z)] (7)
and it’s auto-correlation function,

Clxi ;) = BI(H(x:) — p(2:)) (H (25) — p(z;))] (8)

which controls the shape of the random field and hence the shape of imperfections.
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Figure 2: One realization of a random field

2.2 Optimal Discretization of Random Fields using the
EOLE-Method

The numerical implementation requires a discretization of the random field

~

H(a:) Discretization, H(x) . (9)

In this paper, for an optimal representation of a random field, the EOLE-method (Ex-
pansion Optimal Linear Estimation) from [3] is used. The advantage of the method is it’s
ability to represent the random field with only a few random variables by minimising the
variance error. Here, the covariance matrix is only required on a sub-set of field nodes
(random field mesh). This aspect is very interesting for the fuzzy structural analysis,
because a lot of computational time can be saved. The random field is represented by

]:I(x’ 9) = :u(x) +o- (Z i\/;) ‘pz(xs)> ’ C(xsax) ) (10)



where the vector ° = [z, ... 7 ... £3;] contains the M-nodes of the random field and

z = [z ... T; ... zy| the N-nodes in full space (e.g. FE-nodes). Consequently, C(z*, z) is
the correlation matrix between the random field nodes and FE-nodes,

[ C(zf,21) ... Clzf,z;) ... C(zf,zn) ]
Clx® xz)=| Cxf z) ... O z;) ... O zy) . (11)
| C(xy, 1) ... C(=%,x;) ... C(zy,zy) |

@; and \; are the eigenfunctions and eigenvalues of a given autocovariance function
C(z7,27) on the random field mesh. The variable &(6) is the uncorrelated Gaussian
random variable with zero mean and unit standard deviation. Herein, a quadratic expo-
nential covariance function is used for numerical analysis,

C(z7,a7) = exp [—@] , (12)

wherein d(i, j) is the distance between two nodes x7, 25 and . is the correlation length.
This kind of correlation function represents a differentiable process and leads to a smoother
random field. The correlation length controls how quickly the covariance falls off. For
l. tending to infinity or a zero distance between two separated points, the exponential
covariance function converges to the value one, that means two points are full dependent.
The effect on the random field is shown in Figure 3 for a 2-D structure with 8 x 8 nodes.
The shape becomes more uniform for great values of [..

covariance matrix

Figure 3: Different covariance matrices with realizations



3 Polymorphic Uncertainty Modelling

3.1 Introduction to Fuzzy Randomness

A real random variable X is the mappping,
X:0—->R" . (13)

Fuzzy randomness is described by a fuzzy random variable, which is the fuzzy result of
an uncertain mapping,

X:05 FRY (14)

with F(R™) the set of all fuzzy numbers on the fundamental set R" [2]. Each fuzzy number
of a fuzzy realization is defined as a normalized fuzzy set,

T = {(z, e, (7)) | ¥ € R}, pp(2) >0 (one-dimensional), (15)

with p,,(z), the normalized membership function [6]. Therefore, similar to real random
field definition and the notation in section 2.1, a fuzzy random field can be defined by a
collection of fuzzy random variables,

{H(z,0) :x€Q,0 0} |, (16)

where H (o, 0) is a fuzzy random variable for a given x,. Furthermore hq(z) is a realization
of a fuzzy random field to an outcome 6y € ©, which also describes a fuzzy function [5].
Figure 4, according to a representation in [6], shows one realization of a fuzzy random
field with the fuzzy number hq for a given point x.
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Figure 4: One realization of a two-dimensional fuzzy random field [6]



3.2 Fuzzy Structural Analysis
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Figure 5: Fuzzy structural analysis scheme [6]

The fuzzy structural analysis describes a mapping of fuzzy input values z; onto result
values Z;, which are also fuzzy values. In the presented examples, the fuzzy input is the
correlation length [., which becomes to a fuzzy correlation length [, and the fuzzy output
is the mean value of the buckling load P,.;;. The mapping operator is the deterministic
fundamental solution, which is represented here by a finite element model or more exactly
a numerical buckling analysis. So, the fuzzy structural analysis changes to a fuzzy finite
element method (FFEM) [6]. For the numerical implementation, the fuzzy values have
to be discretized with the help of so called a-level sets A;, ap, i = 1,...,n and B;, a1 =
1,...,n. The search for the smallest and largest result element on the a-level represents
an optimization problem. The entire procedure is shown in Figure 5. For the a-level
optimization, the modified evolution strategy from [7] is used. This algorithm works
reliably for a Monte Carlo Simulation. As part of this work a program was developed for
fuzzy structural analysis, named FuFEAP (A Fuzzy Finite Element Analysis Program).
It’s a MATLAB [4] program with an interface to run FEAP [9] to get the fundamental
solution. Besides, the fuzzy and stochastic analysis are done by MATLAB. For numerical
buckling analyses of shell structures a non-linear four-node isoparametric shell element
from [10] is used.

4 Numerical Examples

The correlation is described by a fuzzy correlation length I, with the corresponding fuzzy
correlation function C. Other parameters such as the variance and mean value are de-
terministic. The fuzzification of the correlation length can be fitted, if measurements are
available. In addition, expert knowledge can be taken into account. Here, the correla-
tion lengths are only chosen due to plausible representation of random field realizations.
Figure 6 (left) shows the chosen correlation lengths by a fuzzy triangular number. For
the numerical analysis, four a-levels are investigated, o = [0, 0.33, 0.66, 1]. On the
right side of the figure, the corresponding homogeneous correlation functions with the
quadratic exponential form according to equation (12) are plotted. The fuzzy covariance



is a fuzzy function [6]. Thereby, a fuzzy number C(d;) can be specified for every distance
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Figure 6: Fuzzy correlation length [, and fuzzy correlation function C(d(i, j))

4.1 Buckling of an Elastic Bar
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Figure 7: Elastic bar with Euler case 2 boundary conditions and visualisation of the ran-
dom geometrical imperfections (enlarged)

Geometrical imperfections are applied on an elastic bar, see Figure 7. The figure also
shows three realizations of the imperfections for the chosen range of correlation lengths.
A 2-node 2D Timoshenko beam element with linear shape functions and finite rotations
is used. The bar is discretised with 20 finite and stochastic elements. The critical dis-
placement u..;; = 0.08239 mm and load P.,;; = 1730 N are calculated with an eigenvalue
analysis of the perfect structure which is described in section 1. The evaluation point for
the fuzzy structural analysis is the corresponding load at u..; of the imperfect structure.



In equation (10), the variance is o = 5mm, the mean value is 4 = 0 and the random
geometrical imperfections are scaled to an amplitude L/200 = 5mm with an exceeding
probability of 5% (2,5% on each side). The fundamental solution is obtained in each case
by a Monte Carlo Simulation based on 500 simulations. Figure 8 shows a test run for
different correlation lengths with the chosen fuzzy correlation lengths contained in the
grey area. For correlation lengths tending to infinity, the mean value of the buckling load
converges to the critical load P,.;;. In this case, the imperfections vanish. The minimum
and maximum of the mean value in the grey area fit to the left and right limit of the
zero a-level in Figure 9, where the fuzzy expected value of the buckling load is presented.
The fuzzy result shows a convex shape, wherein each a-level includes the higher levels.
Both figures show the great impact of geometrical imperfections on the buckling load, a
decrease of the mean value of =~ 45 %.
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Figure 8: Monte Carlo Simulation for the elastic bar with 500 samples for each correlation
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Figure 9: Fuzzy expected value of the buckling load P.,;



4.2 Buckling of an Axially Compressed Steel Plate
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Figure 10: Steel plate (simply supported) and visualisation of the random geometrical
imperfections

Now, 2D random geometrical imperfections are applied on an axially compressed steel
plate as illustrated in Figure 10. For the FE-mesh and random field mesh, 20 x 20
elements are used. The illustrated slab is simply supported, whereby all edges are free to
rotate. The critical displacement of the perfect structure is u..;; = 0.361 mm together with
an associated critical load p..; = 758,73 N/mm. The scaling and sto hastic parameters
are the same as in the previous example. To determine the mean value of the buckling
loads in each case, the Monte Carlo Simulation is again based on 500 samples.
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Figure 11: Monte Carlo Simulation for the steel plate with 500 samples for each correlation
length
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Figure 12: Fuzzy expected value of the buckling load pe,:

The mean value curve in Figure 11 differs from the curve in Figure 8. A decrease of the
mean value of the buckling loads of approximately 20 % can be observed. The implemented
optimization algorithm works and finds the correct minimum and maximum. The fuzzy
result in Figure 12 has also a convex shape. Summarizing, the results clearly show the
impact of the correlation lengths on the buckling load.

5 Conclusions

In this paper, the fuzzy analysis is used for a more realistic representation of imperfections
in buckling analyses. In the conventional stochastic analysis the definition of a correlation
length is quite difficult, because also very few measurements are available. Polymorphic
uncertainty modelling with the fuzzification of the correlation length allows a more realis-
tic representation of spatial varying imperfections. If experiments are available, the fuzzy
input can be verified. Furthermore, other parameters can be considered, e.g. the corre-
lation length for spatial material imperfections, the mean value, variance or the loading.
However, the fuzzy analysis requires a lot of computational time, especially the a-level
optimization. Therefore, the program needs to be developed, e.g. testing other optimiza-
tion algorithms, parallelization of the program code and a data reduction. The goal is to
investigate more complex structures like cylindrical shells or dynamic problems.

References

[1] Fina, M.; WAGNER, W.: Einfluss von raumlich korrelierten, zufallsverteilten Imper-
fektionen auf das Beulverhalten diinnwandiger Tragwerke. In: Baustatik - Baupraxis
13, G. Meschke, S. Freitag, C. Birk, J. Menkenhagen, T. Ricken, 2017, S. 545-552

[2]| GrAF, W.; GOTZ, M. ; KALISKE, M.: Strucural design with polymorphic uncer-



13l

4]
[5]

[6]

17l

18]

19]
[10]

tainty models. In: Pro eedings 6th International Workshop on Reliable Engineering
Computing (REC) (2014)

L1, C.-C. ; KIUREGHIAN, A. D.: Optimal Discretization of Random Fields. In:
Engineering Mechanics 119(6) (1993), S. 1136-1154

MATHWORKS, Inc.: MATLAB, Version R2016b, hitp://www.mathworks.com

MOLLER, B.: Fuzzy randomness - a contribution to imprecise probability. In: ZAMM
84 (2004), S. 754-764

MOLLER, B. ; BEER, M.: Fuzzy Randomness - Un ertainty in Civil Engineering and
Computational Mechanics. Springer, 2004

MOLLER, B. ; GRAF, W. ; BEER, M.: Fuzzy structural analysis using a-level
optimization. In: Computational Mechanics 26 (2000), S. 547-565

SUDRET, B. ; KIUREGHIAN, A. D.: Stochastic Finite Element Methods and Reliabil-
ity - A State-of-the-Art Report. In: Department of Civil Environmental Engineering
Univ. of California, Berkeley (2000)

TAYLOR, R.: FEAP, hitp://www.ce.berkeley.edu/projects/feap/

WAGNER, W. ; GRUTTMANN, F.: A robust non-linear mixed hybrid quadrilateral

shell element. In: International Journal for Numerical Methods in Engineering 64
(2005), S. 635-666



