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Abstra
t. Imperfe
tions have a signi�
ant in�uen
e on 
riti
al bu
kling loads of stru
-

tures. These imperfe
tions 
an be variations of the nominal geometry or a spatial variabil-

ity of the material parameters. Regulations are not often available for 
omplex stru
tures

like 
ylindri
al shells. The numeri
al stability analysis of stru
tures requires the 
onsid-

eration of data un
ertainty. The spatial variation of un
ertain geometri
 and material

properties 
an be des
ribed by random �elds. A wide variety of methods for the simula-

tion of Gaussian sto
hasti
 pro
esses are available. Often, the Karhunen-Loève Expansion

or - for an optimal dis
retization of the random �eld - the EOLE method is used. In all

methods a 
orrelation parameter has to be de�ned to 
ontrol the shape of the random

�eld and hen
e the shape of imperfe
tions. The proper determination of su
h a 
orrelation

parameter is problemati
 to represent imperfe
tions 
lose to reality. If measured results

are available a 
orrelation length 
an be approximately determined. This 
hoi
e is more

di�
ult in 
ase of material imperfe
tions, where the spatial variation of sti�ness values

is often unknown. In fa
t, that the un
ertain input parameters are fuzzy, a better way

to determine a realisti
 
orrelation length is the appli
ation of polymorphi
 un
ertainty

models. The sto
hasti
 analysis is extended to the fuzzy randomness. The polymorphi


un
ertainty models are introdu
ed in [6℄ and a good overview is given in [2℄. In this paper,

the 
orrelation length for geometri
al imperfe
tions is des
ribed as a fuzzy input value.

The fuzzi�
ation of the 
orrelation parameter leads to a more realisti
 
onsideration of it's

un
ertainty. The goal is a robust fuzzy 
omputational model for a better representation

of the un
ertainty in the la
k of input data for numeri
al bu
kling analyses of thin walled

stru
tures.

1 Introdu
tion

In stru
tural engineering, the need of thin-walled stru
tures is be
oming in
reasingly

important. Be
ause of the slim design, the loss of stability be
omes more relevant and

imperfe
tions have a major impa
t on the 
riti
al bu
kling load. In Euro
ode 3 (DIN

EN 1993), the standard for design and 
onstru
tion of steel stru
tures a 
onventional

deterministi
 approa
h is proposed. Here, the material and geometri
al imperfe
tions

should be taken into a

ount in the form of 
riti
al eigenmodes with a spe
i�ed amplitude

for the FE-Model. Beside the a

ura
y in 
omputing methods, a detailed representation of

the imperfe
tions for the numeri
al model is needed. Be
ause of their random 
hara
ter,

the spatial variation of un
ertain geometri
 and material properties 
an be des
ribed by

random �elds. If a stru
ture is loaded with imperfe
tions, no distin
t stability point



o

urs, whi
h is shown in Figure 1. The di�erent post
riti
al behaviour between beam

and plate stru
tures 
an be seen 
learly. The 
riti
al displa
ement ucrit and load pcrit
are 
al
ulated with an eigenvalue analysis. The tangent sti�ness matrix 
an be divided

in linear KKK lin and nonlinear parts KKKnlin. If available, the nonlinear terms KKKnlin 
an be

identi�ed as KKKu, the initial displa
ement matrix and KKKσ, the geometri
al matrix,

KKKT = KK lin+KKnlin = KK lin +KKu +KKσ . (1)

Consequently, an eigenvalue problem for a linear bu
kling analysis 
an be 
onstru
ted via

[KK lin + Λ(KKu +KKσ)]ϕϕ = 00 . (2)

If a linear pre-bu
kling behaviour is observed, the result of the eigenvalue problem is a


riti
al load fa
tor Λ and the 
riti
al load 
an be 
al
ulated with the relation

PPP crit = Λ PPP . (3)

After the stability point of the perfe
t stru
ture is 
al
ulated, random imperfe
tions are
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Figure 1: Elasti
 bu
kling behavior of a beam a) and a plate b) with imperfe
tions.

applied and the imperfe
t stru
ture is loaded based on a displa
ement 
ontrol until the


riti
al displa
ement ucrit is rea
hed (see also [1℄). This will be the evaluation point for

the fuzzy stru
tural analysis.

2 Representation of Imperfe
tions as Random Fields

2.1 Introdu
tion to Random Fields

A random �eld H(xxx, θ) is a 
olle
tion of random variables indexed by a 
ontinuous pa-

rameter xx ∈ Ω [8℄,

{H(xxx, θ) : xxx ∈ Ω, θ ∈ Θ} . (4)

This means that a random �eld des
ribes a s
alar �eld, where for a given xxx0, H(xx0, θ) is
a random variable. Θ 
ontaining all possible out
omes θ. Thus, for a given out
ome θ0,

h0(xxx) := H(xx, θ0) (5)



is a realization of the random �eld. One visualisation of a random �eld realization is

illustrated in Figure 2. A random �eld is Gaussian, if for every given point xxxn the random

variable is Gaussian,

H0(θ) := H(xx0, θ ) ∼ N (µ, σ2) . (6)

A Gaussian �eld is 
ompletely de�ned by it's mean fun
tion,

µ(xx) = E[H(xx)] (7)

and it's auto-
orrelation fun
tion,

C(xxxi,xxxj) = E[(H(xxxi)− µ(xxxi))(H(xxj)− µ(xxxj))] , (8)

whi
h 
ontrols the shape of the random �eld and hen
e the shape of imperfe
tions.

Figure 2: One realization of a random �eld

2.2 Optimal Dis
retization of Random Fields using the

EOLE-Method

The numeri
al implementation requires a dis
retization of the random �eld

H(xxx)
Discretization−−−−−−−−→ Ĥ(xxx) . (9)

In this paper, for an optimal representation of a random �eld, the EOLE-method (Ex-

pansion Optimal Linear Estimation) from [3℄ is used. The advantage of the method is it's

ability to represent the random �eld with only a few random variables by minimising the

varian
e error. Here, the 
ovarian
e matrix is only required on a sub-set of �eld nodes

(random �eld mesh). This aspe
t is very interesting for the fuzzy stru
tural analysis,

be
ause a lot of 
omputational time 
an be saved. The random �eld is represented by

Ĥ(xxx, θ) = µ(xxx) + σ ·
(

M
∑

i=1

ξi(θ)√
λi

ϕϕϕi(xxx
S)

)

· C(xxxS,xxx) , (10)



where the ve
tor

xxS = [xx1 ... xxxS
i ... xxS

M ] 
ontains the M-nodes of the random �eld and

xxx = [xxx1 ... xxxj ... xxxN ] the N-nodes in full spa
e (e.g. FE-nodes). Consequently, C(xxxS,xxx) is
the 
orrelation matrix between the random �eld nodes and FE-nodes,

C(xxxS,xxx) =
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ϕϕi and λi are the eigenfun
tions and eigenvalues of a given auto
ovarian
e fun
tion

C(xxxS
i ,xxx

S
j ) on the random �eld mesh. The variable ξi(θ) is the un
orrelated Gaussian

random variable with zero mean and unit standard deviation. Herein, a quadrati
 expo-

nential 
ovarian
e fun
tion is used for numeri
al analysis,

C(xxS
i , xx

S
j ) = exp

[

−d2(i, j)

lc

]

, (12)

wherein d(i, j) is the distan
e between two nodes xxS
i , xxx

S
j and lc is the 
orrelation length.

This kind of 
orrelation fun
tion represents a di�erentiable pro
ess and leads to a smoother

random �eld. The 
orrelation length 
ontrols how qui
kly the 
ovarian
e falls o�. For

lc tending to in�nity or a zero distan
e between two separated points, the exponential


ovarian
e fun
tion 
onverges to the value one, that means two points are full dependent.

The e�e
t on the random �eld is shown in Figure 3 for a 2-D stru
ture with 8× 8 nodes.

The shape be
omes more uniform for great values of lc.

covariance matrix

realization

Figure 3: Di�erent 
ovarian
e matri
es with realizations



3 Polymorphi
 Un
ertainty Modelling

3.1 Introdu
tion to Fuzzy Randomness

A real random variable X is the mappping,

X : Θ → R
n . (13)

Fuzzy randomness is des
ribed by a fuzzy random variable, whi
h is the fuzzy result of

an un
ertain mapping,

X̃ : Θ
∼−→ F(Rn) , (14)

with F(Rn) the set of all fuzzy numbers on the fundamental set R
n
[2℄. Ea
h fuzzy number

of a fuzzy realization is de�ned as a normalized fuzzy set,

x̃i = {(x, µxi
(x)) | x ∈ R

1}; µx(x) ≥ 0 (one-dimensional), (15)

with µxi
(x), the normalized membership fun
tion [6℄. Therefore, similar to real random

�eld de�nition and the notation in se
tion 2.1, a fuzzy random �eld 
an be de�ned by a


olle
tion of fuzzy random variables,

{H̃(xxx, θ) : xxx ∈ Ω, θ ∈ Θ} , (16)

where H̃(xx0, θ) is a fuzzy random variable for a given xx0. Furthermore h̃0(xx) is a realization
of a fuzzy random �eld to an out
ome θ0 ∈ Θ, whi
h also des
ribes a fuzzy fun
tion [5℄.

Figure 4, a

ording to a representation in [6℄, shows one realization of a fuzzy random

�eld with the fuzzy number h̃0 for a given point xxx0.

membership
function

fuzzy number

Figure 4: One realization of a two-dimensional fuzzy random �eld [6℄



3.2 Fuzzy Stru
tural Analysis

fuzzy input
value

fuzzy result
valuemapping operator

(FE-Buckling Analysis)

-level optimization

Figure 5: Fuzzy stru
tural analysis s
heme [6℄

The fuzzy stru
tural analysis des
ribes a mapping of fuzzy input values x̃i onto result

values z̃j , whi
h are also fuzzy values. In the presented examples, the fuzzy input is the


orrelation length lc, whi
h be
omes to a fuzzy 
orrelation length l̃c and the fuzzy output

is the mean value of the bu
kling load P̃crit. The mapping operator is the deterministi


fundamental solution, whi
h is represented here by a �nite element model or more exa
tly

a numeri
al bu
kling analysis. So, the fuzzy stru
tural analysis 
hanges to a fuzzy �nite

element method (FFEM) [6℄. For the numeri
al implementation, the fuzzy values have

to be dis
retized with the help of so 
alled α-level sets Ai, αk, i = 1, ..., n and Bi, αk, i =
1, ..., n. The sear
h for the smallest and largest result element on the α-level represents
an optimization problem. The entire pro
edure is shown in Figure 5. For the α-level
optimization, the modi�ed evolution strategy from [7℄ is used. This algorithm works

reliably for a Monte Carlo Simulation. As part of this work a program was developed for

fuzzy stru
tural analysis, named FuFEAP (A Fuzzy Finite Element Analysis Program).

It's a MATLAB [4℄ program with an interfa
e to run FEAP [9℄ to get the fundamental

solution. Besides, the fuzzy and sto
hasti
 analysis are done by MATLAB. For numeri
al

bu
kling analyses of shell stru
tures a non-linear four-node isoparametri
 shell element

from [10℄ is used.

4 Numeri
al Examples

The 
orrelation is des
ribed by a fuzzy 
orrelation length l̃c with the 
orresponding fuzzy


orrelation fun
tion C̃. Other parameters su
h as the varian
e and mean value are de-

terministi
. The fuzzi�
ation of the 
orrelation length 
an be �tted, if measurements are

available. In addition, expert knowledge 
an be taken into a

ount. Here, the 
orrela-

tion lengths are only 
hosen due to plausible representation of random �eld realizations.

Figure 6 (left) shows the 
hosen 
orrelation lengths by a fuzzy triangular number. For

the numeri
al analysis, four α-levels are investigated, α = [0, 0.33, 0.66, 1℄. On the

right side of the �gure, the 
orresponding homogeneous 
orrelation fun
tions with the

quadrati
 exponential form a

ording to equation (12) are plotted. The fuzzy 
ovarian
e



is a fuzzy fun
tion [6℄. Thereby, a fuzzy number C̃(di) 
an be spe
i�ed for every distan
e

di.

Figure 6: Fuzzy 
orrelation length l̃c and fuzzy 
orrelation fun
tion C̃(d(i, j))

4.1 Bu
kling of an Elasti
 Bar

cross section:

Figure 7: Elasti
 bar with Euler 
ase 2 boundary 
onditions and visualisation of the ran-

dom geometri
al imperfe
tions (enlarged)

Geometri
al imperfe
tions are applied on an elasti
 bar, see Figure 7. The �gure also

shows three realizations of the imperfe
tions for the 
hosen range of 
orrelation lengths.

A 2-node 2D Timoshenko beam element with linear shape fun
tions and �nite rotations

is used. The bar is dis
retised with 20 �nite and sto
hasti
 elements. The 
riti
al dis-

pla
ement ucrit = 0.08239mm and load Pcrit = 1730N are 
al
ulated with an eigenvalue

analysis of the perfe
t stru
ture whi
h is des
ribed in se
tion 1. The evaluation point for

the fuzzy stru
tural analysis is the 
orresponding load at ucrit of the imperfe
t stru
ture.



In equation (10), the varian
e is σ = 5mm, the mean value is µ = 0 and the random

geometri
al imperfe
tions are s
aled to an amplitude L/200 = 5mm with an ex
eeding

probability of 5% (2,5% on ea
h side). The fundamental solution is obtained in ea
h 
ase

by a Monte Carlo Simulation based on 500 simulations. Figure 8 shows a test run for

di�erent 
orrelation lengths with the 
hosen fuzzy 
orrelation lengths 
ontained in the

grey area. For 
orrelation lengths tending to in�nity, the mean value of the bu
kling load


onverges to the 
riti
al load Pcrit. In this 
ase, the imperfe
tions vanish. The minimum

and maximum of the mean value in the grey area �t to the left and right limit of the

zero α-level in Figure 9, where the fuzzy expe
ted value of the bu
kling load is presented.

The fuzzy result shows a 
onvex shape, wherein ea
h α-level in
ludes the higher levels.

Both �gures show the great impa
t of geometri
al imperfe
tions on the bu
kling load, a

de
rease of the mean value of ≈ 45 %.

in

Figure 8: Monte Carlo Simulation for the elasti
 bar with 500 samples for ea
h 
orrelation

length

in

stable perfect
for

Figure 9: Fuzzy expe
ted value of the bu
kling load Pcrit



4.2 Bu
kling of an Axially Compressed Steel Plate

Figure 10: Steel plate (simply supported) and visualisation of the random geometri
al

imperfe
tions

Now, 2D random geometri
al imperfe
tions are applied on an axially 
ompressed steel

plate as illustrated in Figure 10. For the FE-mesh and random �eld mesh, 20 × 20
elements are used. The illustrated slab is simply supported, whereby all edges are free to

rotate. The 
riti
al displa
ement of the perfe
t stru
ture is ucrit = 0.361mm together with

an asso
iated 
riti
al load pcrit = 758,73N/mm. The s
aling and sto hasti
 parameters

are the same as in the previous example. To determine the mean value of the bu
kling

loads in ea
h 
ase, the Monte Carlo Simulation is again based on 500 samples.

in

Figure 11: Monte Carlo Simulation for the steel plate with 500 samples for ea
h 
orrelation

length



in

stable perfect
for

Figure 12: Fuzzy expe
ted value of the bu
kling load pcrit

The mean value 
urve in Figure 11 di�ers from the 
urve in Figure 8. A de
rease of the

mean value of the bu
kling loads of approximately 20 % 
an be observed. The implemented

optimization algorithm works and �nds the 
orre
t minimum and maximum. The fuzzy

result in Figure 12 has also a 
onvex shape. Summarizing, the results 
learly show the

impa
t of the 
orrelation lengths on the bu
kling load.

5 Con
lusions

In this paper, the fuzzy analysis is used for a more realisti
 representation of imperfe
tions

in bu
kling analyses. In the 
onventional sto
hasti
 analysis the de�nition of a 
orrelation

length is quite di�
ult, be
ause also very few measurements are available. Polymorphi


un
ertainty modelling with the fuzzi�
ation of the 
orrelation length allows a more realis-

ti
 representation of spatial varying imperfe
tions. If experiments are available, the fuzzy

input 
an be veri�ed. Furthermore, other parameters 
an be 
onsidered, e.g. the 
orre-

lation length for spatial material imperfe
tions, the mean value, varian
e or the loading.

However, the fuzzy analysis requires a lot of 
omputational time, espe
ially the α-level
optimization. Therefore, the program needs to be developed, e.g. testing other optimiza-

tion algorithms, parallelization of the program 
ode and a data redu
tion. The goal is to

investigate more 
omplex stru
tures like 
ylindri
al shells or dynami
 problems.
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