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Abstract

Vegetation-atmosphere (V-A) interaction occurs through the exchange of energy, water,

and carbon dioxide between the leaf surface and the atmosphere. The solar radiation

absorbed by the leaves is partitioned into sensible heat, latent heat (water vapor), and

outgoing longwave radiation. In analogy to Ohm's law, sensible heat is commonly ex-

pressed using a �ux gradient relationship driven by the temperature di�erence between

the surface and the atmosphere with a resistance determined by the physics of convective

transfer. This aerodynamic canopy resistance is generally parameterized using wind con-

ditions, air temperature gradients (buoyancy), and bulk canopy roughness. For modelling

transpiration and CO2 uptake, an additional resistance is added to represent stomatal

control on canopy gas exchange, such that the aerodynamic canopy resistance connects

the physical control to the biological control (stomatal control) of canopy water and

carbon exchange. However, limited process-based understanding of these resistances re-

sults in a widespread use of semi-empirical, site-speci�c parameterizations of aerodynamic

canopy resistance based on a conceptual �aerodynamic temperature� instead of the actual

leaf surface temperature. This simpli�cation disconnects the leaf surface processes from

ecosystem-scale observations, resulting in inconsistent and potentially inaccurate predic-

tion of energy, water, and CO2 �uxes, thereby limiting our ability to predict ecosystem

response to environmental change, such as increasing CO2 concentrations, rising temper-

atures, and changing precipitation and wind patterns.

Flux towers measure the incoming and outgoing radiative energy exchange using a

radiometer and turbulent exchange of latent and sensible heat between the ecosystem

and the atmosphere using the eddy covariance technique. Commonly, observed long-

wave radiation and remotely sensed regional values of surface emissivity are used to

estimate surface temperature. Due to spatial heterogeneity of the land surface, the re-

gional emissivity values result in potential bias of the surface temperature with respect

to the observed turbulent �uxes. This further leads to wrong interpretation of ecosystem

processes. For direct estimation of the total resistance to sensible heat transfer from ob-

served sensible heat �ux and air temperature, accurate estimates of surface temperature,

adequately representing the sensible heat contributing surface, are required.

To investigate V-A exchange consistently at ecosystem scale, I developed self-consistent,

physics-based mathematical models for the use of �ux tower observations to evaluate the
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drivers and resistances related to sensible heat transfer.

The research presented here addresses the following overarching research questions:

1. How can we use �ux tower measurements to estimate ecosystem-scale emissivity

and surface temperature?

2. How does surface heterogeneity a�ect the compatibility of eddy covariance mea-

surements with the radiometric measurements at the �ux tower sites?

3. How can we quantify ecosystem-scale resistance to sensible heat exchange using

�ux tower observations and how can we predict it from �rst principles?

A novel method is proposed to estimate the ecosystem-scale emissivity and temper-

ature simultaneously using observed sensible heat �ux and longwave radiation. I found

that surface heterogeneity can result in a footprint mismatch between radiative and sen-

sible heat �ux measurements, which leads to inconsistency in the representation of the

energy �ux vs. temperature relationships. Despite this inconsistency, the observed slope

of the sensible heat and estimated surface to air temperature di�erence resulted in ro-

bust estimates of ecosystem-scale total resistance to sensible heat transfer. Based on

�rst principles, an ecosystem-scale total resistance model was developed that considers

the surface characteristics and micro-meteorological conditions. The proposed resistance

model is robust and estimates the surface-atmosphere resistance to sensible heat trans-

fer substantially better than existing parameterizations. The methodology presented in

this study can be used to improve the links between energy, water, and carbon exchange

in land surface models, and greatly reduce the need for empirical parameterization and

site-speci�c parameter tuning.



Zusammenfassung

Die Wechselwirkung zwischen Vegetation und Atmosphäre (V-A) erfolgt durch den Aus-

tausch von Energie, Wasser und Kohlensto� zwischen der Blattober�äche und der At-

mosphäre. Die von den Blättern absorbierte Sonnenstrahlung wird in fühlbare Wärme,

latente Wärme (Wasserdampf) und ausgehende langwellige Strahlung aufgeteilt. Analog

zum Ohm;schen Gesetz wird die fühlbare Wärme üblicherweise durch eine Flussgradi-

entenbeziehung ausgedrückt, die durch den Temperaturunterschied zwischen der Ober-

�äche und der Atmosphäre mit einem Widerstand bestimmt wird, der durch die Physik

der konvektiven Übertragung bestimmt wird. Dieser aerodynamische Kronenwiderstand

wird im Allgemeinen durch Windbedingungen, Lufttemperaturgradienten (Auftrieb) und

die Kronenrauhigkeit parametrisiert. Für die Modellierung von Transpiration und CO 2

Aufnahme wird ein zusätzlicher Widerstand hinzugefügt, um die stomatäre Kontrolle des

Gasaustauschs in der Baumkrone darzustellen, so dass der aerodynamische Widerstand

der Baumkrone die physikalische Kontrolle mit der biologischen Kontrolle (stomatäre

Kontrolle) des Wasser- und Kohlensto�austauschs in der Baumkrone verbindet. Das be-

grenzte prozessbasierte Verständnis dieser Widerstände führt jedoch zu einer weit verbre-

iteten Verwendung halbempirischer, standortspezi�scher Parametrisierungen des aerody-

namischen Kronenwiderstands, die auf einer konzeptionellen quot;aerodynamischen Tem-

peratur quot; anstelle der tatsächlichen Temperatur der Blattober�äche basieren. Durch

diese Vereinfachung werden die Prozesse auf der Blattober�äche von den Beobachtun-

gen auf der Ebene des Ökosystems abgekoppelt, was zu inkonsistenten und potenziell

ungenauen Vorhersagen von Energie-, Wasser- und CO 2 Flüssen führt und damit un-

sere Fähigkeit einschränkt, die Reaktion des Ökosystems auf Umweltveränderungen wie

zunehmende CO 2 Konzentrationen, steigende Temperaturen und veränderte Niederschlags-

und Windmuster vorherzusagen.

Flusstürme messen den ein- und ausgehenden Strahlungsenergieaustausch mit einem

Radiometer und den turbulenten Austausch von latenter und fühlbarer Wärme zwis-

chen dem Ökosystem und der Atmosphäre mit Hilfe der Wirbelkovarianztechnik. Zur

Schätzung der Ober�ächentemperatur werden in der Regel die beobachtete langwellige

Strahlung und die aus der Ferne erfassten regionalen Werte des Ober�ächenemissions-

grads verwendet. Aufgrund der räumlichen Heterogenität der Landober�äche führen die

regionalen Emissionswerte zu einer potenziellen Verzerrung der Ober�ächentemperatur in
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Bezug auf die beobachteten turbulenten Ströme. Dies führt auÿerdem zu einer falschen In-

terpretation der Ökosystemprozesse. Für eine direkte Schätzung des Gesamtwiderstands

der fühlbaren Wärmeübertragung anhand der beobachteten fühlbaren Wärmeströme und

der Lufttemperatur sind genaue Schätzungen der Ober�ächentemperatur erforderlich, die

die Ober�äche, die die fühlbare Wärme liefert, angemessen repräsentieren.

Um den V-A-Austausch auf Ökosystem-Ebene konsistent zu untersuchen, habe ich

selbstkonsistente, physikalisch begründete mathematische Modelle entwickelt, um mit

Hilfe von Flussturm-Beobachtungen die Triebkräfte und Widerstände im Zusammenhang

mit der fühlbaren Wärmeübertragung zu bewerten.

Die hier vorgestellten Forschungsarbeiten befassen sich mit den folgenden übergreifenden

Forschungsfragen:

1. Wie können wir die Messungen des Flussturms nutzen, um den Emissionsgrad und

die Ober�ächentemperatur auf Ökosystemebene zu schätzen?

2. Wie wirkt sich die Heterogenität der Ober�äche auf die Kompatibilität der Eddy-

Kovarianz-Messungen mit den radiometrischen Messungen an den Flussturmstandorten

aus?

3. Wie können wir den Widerstand gegen den Wärmeaustausch im Ökosystem an-

hand von Flussturmbeobachtungen quanti�zieren und wie können wir ihn anhand erster

Prinzipien vorhersagen?

Es wird eine neuartige Methode zur gleichzeitigen Schätzung des Emissionsgrads

und der Temperatur auf Ökosystemebene unter Verwendung des beobachteten fühlbaren

Wärme�usses und der langwelligen Strahlung vorgeschlagen. Ich habe festgestellt, dass

die Heterogenität der Ober�äche zu einer Fehlanpassung des Fuÿabdrucks zwischen den

Messungen des Strahlungs�usses und des fühlbaren Wärmestroms führen kann, was zu

Inkonsistenzen bei der Darstellung der Beziehungen zwischen Energie�uss und Temper-

atur führt. Trotz dieser Inkonsistenz führten die beobachtete Steigung der fühlbaren

Wärme und die geschätzte Temperaturdi�erenz zwischen Ober�äche und Luft zu ro-

busten Schätzungen des Widerstands gegen die fühlbare Wärmeübertragung auf Ökosys-

temebene. Auf der Grundlage erster Prinzipien wurde ein Widerstandsmodell auf Ökosys-

temebene entwickelt, das die Ober�ächeneigenschaften und mikrometeorologischen Be-

dingungen berücksichtigt. Das vorgeschlagene Widerstandsmodell ist robust und schätzt

den Ober�ächen-Atmosphären-Widerstand gegen die fühlbare Wärmeübertragung wesentlich

besser ab als bestehende Parametrisierungen. Die in dieser Studie vorgestellte Methodik

kann verwendet werden, um die Verbindungen zwischen Energie-, Wasser- und Kohlen-

sto�austausch in Landober�ächenmodellen zu verbessern und den Bedarf an empirischer

Parametrisierung und standortspezi�scher Parameterabstimmung erheblich zu verringern.



 

 

 

 

Energy from the sun, plants need for all the fun, 

and the control start to run. 

 

Water and energy exchange begins at the leaf, 

giving us all life in brief. 

Forming clouds by taking water from the soil, 

cooling the leaves down, not to boil. 

 

Fun control alternate in range, 

depending on the climate change. 

Atmospheric control plays a significant role 

quantifying it is the goal. 

 

We need to comprehend 

Flux tower measurement is the trend. 

For us to recommend 

we need to understand; not at all pretend. 

 

Summarizing literature: Focusing on physical control and 

surface temperature. 

Found inconsistency in formulations and scale, 

which required data intervention in detail. 

 

Estimation of atmospheric control is no more a troll. 

Let’s start to roll! 
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1.1 Motivation

The relentless growth of the global population and its increasingly intense interactions

with the natural environment exert signi�cant pressure on groundwater and land re-

sources, with the potential to cause irreversible environmental changes and catastrophic

tipping points. The International Association of Hydrological Sciences (IAHS) desig-

nated the past decade (2013-2022) as a Scienti�c Decade focused on understanding the

dynamic interplay between hydrology and society to address these pressing challenges.

This initiative aimed to develop innovative theoretical frameworks for representing hydro-

logical processes and environmental changes, emphasizing advanced monitoring and data

analysis techniques (Montanari et al. 2013). Recent advancements in sensing technolo-

gies have markedly improved our ability to observe regional and ecosystem-scale data.

These technologies enhance the estimation of ecosystem-scale parameters, such as spe-

ci�c vegetation cover, plant height, and leaf area index. In addition, Eddy covariance

measurements (ECM) in varying land cover types have been instrumental in measuring

energy partitioning by vegetation surfaces. ECMs are the most realistic measurement of

water and energy �uxes close to the surface at a ecosystem-scale, and widely used for cal-

1



2 Introduction

ibrating and evaluating land surface models (LSM). Accurate representations of energy,

water, and carbon exchanges between the Earth's surface and the atmosphere are crucial

for LSM, underscoring a promising future for climate models, which predict how Earth's

climate will respond to environmental variations. Integrating new sensors at �ux tower

(ECM and radiometers) sites has enhanced data quality control. Data fusion techniques

integrating data from multiple sources, such as remote sensing and high-resolution mete-

orological data, with �ux tower observations have enhanced our understanding of ecosys-

tem processes. Directly using these measurements can signi�cantly bene�t understanding

the interactions and feedback mechanisms within hydrological systems, particularly those

involving vegetation, soil, and the atmosphere.

The consequences of climate change on terrestrial ecosystems and human societies are

primarily experienced through changes to the global water cycle (Jiménez Cisneros et al.

2014). Accurate simulation and prediction of various water cycle components require

a comprehensive understanding of how vegetation and water resources respond to envi-

ronmental forcings. Vegetation signi�cantly in�uences land surface properties, including

roughness and albedo. These properties determine the absorption and re�ection of solar

radiation by the land surface, a�ecting the partitioning of net available solar energy into

�uxes of energy (sensible heat) and water (latent heat) that are returned to the atmo-

sphere. This in�uence of vegetation on land surface properties directly impacts weather

and climate on micro, macro and regional scales.

This doctoral research leverages ecosystem-scale and remote sensing measurements

to investigate the interactions between vegetation and the atmosphere (V-A). The pri-

mary motivation is to use fundamental principles alongside state-of-the-art measured data

(ECM, land surface parameter) to improve our ability to parameterize energy partitioning

by natural vegetation surfaces under changing environmental conditions. This approach

aims to deepen our understanding of the parameters controlling surface energy balance

(SEB) partitioning, which is crucial for accurately quantifying and predicting the energy,

water, and carbon �uxes exchanged between the Earth's surface and the atmosphere

using models.

1.2 Background

Land-atmosphere (L-A) interactions link the land surface with the atmospheric boundary

layer (ABL) through energy (solar and heat) and mass (carbon dioxide, water vapor

and other gases) exchange. These interactions, occurring across a continuum of spatial

and temporal scales, are an essential part of the hydrological cycle and climate. V-A

interaction is vital in the L-A exchange process as it contributes to all atmospheric oxygen

through carbon assimilation and 50% of the water vapor on land through transpiration

(E). The energy exchange in V-A interaction originates predominantly at the leaf surface,



1.2. Background 3

where the net available solar energy (Rnet) is partitioned into sensible (H) and latent

heat (LE) �ux. This energy partitioning is referred to as SEB. In analogy to Ohm's

law (Boulet et al. 1999), SEB components can be expressed mathematically using a �ux

gradient relationship. Leaf-scale H is driven by the leaf-to-air temperature di�erence

and is controlled by the leaf boundary layer resistance (physical control), which can be

parameterized using a �at-plate analogy (for heat exchange) by combining leaf geometry

(leaf width, Ll) with atmospheric properties (wind speed (Uz)) , air density (ρ). Similarly,

E, which drives LE �ux, is driven by the leaf-to-air water vapor gradient and is controlled

by stomatal resistance (biological control) in addition to the physical control. Stomata are

tiny pores on the surface of leaves that open and close to regulate the exchange of water

and carbon (CO2) between the plant and the atmosphere by responding to environmental

factors (wind speed, air temperature). This results in a two-way interaction between the

leaf-scale processes and the ecosystem-scale micro-climate.

The evaluation of leaf-scale exchanges is crucial at the ecosystem-scale (canopy-scale)

for both meteorological forecasting of ABL (Raupach and Finnigan 1988; Mauder, Foken,

and Cuxart 2020) and water resource management (computation of evaporation and

transpiration). The environmental variables (e.g., air temperature, wind speed) and

the �uxes of energy, water, and carbon exchanged between the canopy-surface and the

atmosphere, measured at hourly timescale using a �ux tower (eddy-covariance tower),

provide an excellent opportunity to investigate the controls of ecosystem-atmosphere

interactions. Flux tower observations give us integrated measurements of �uxes from

both vegetation and the soil surface. The turbulent �uxes of energy (H), water (LE),

and carbon are measured using the eddy-covariance (EC) technique, the solar radiation

(upwelling and downwelling) using radiometers, and the ground heat �ux (G) using a

heat plate placed beneath the soil surface. The incoming (solar radiation) and outgoing

(H, LE) measurements are combined using the law of energy conservation (referred to as

SEB), i.e., net available solar energy Rnet equal to the sum of H, LE, and G. SEB is

the core concept used in the models to estimate ecosystem-scale �uxes by parameterizing

the exchange of energy, water, and net radiation. These components are then used

to estimate the ecosystem-scale �uxes of carbon dioxide and water vapor through the

photosynthesis-respiration and Penman-Monteith equations, respectively (Tanner and

Fuchs 1968; Monteith 1965).

The ecosystem is generally approximated as a "big-leaf" surface treated as a homoge-

neous unit with a single set of surface properties (such as albedo, emissivity, roughness,

and temperature). The exchange of momentum, energy, water, and carbon from the big-

leaf surface to the atmosphere is parameterized using the physics of turbulent transfer,

which is based on the eddy di�usivity theory. Eddy di�usivity measures how e�ectively

turbulent eddies can transport heat or momentum in the air column and plays a key role

in parameterizing ecosystem-scale H and LE. Since eddy di�usivity theory is valid only
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in the air column, H is parameterized using aerodynamic temperature instead of surface

temperature and is controlled by canopy-scale aerodynamic resistance. Aerodynamic tem-

perature is de�ned as the average air temperature near the vegetation elements within the

canopy (where the big-leaf surface is positioned)(Allen et al. 1998). Aerodynamic canopy

resistance is generally parameterized using wind conditions, air temperature gradients

(buoyancy), and bulk roughness (Choudhury and Monteith 1988). For modeling transpi-

ration and CO2 uptake, additional resistance is added to represent stomatal control on

canopy gas exchange. The aerodynamic canopy resistance connects the physical control

to the biological control (stomatal control) of canopy water and carbon exchange. This

approach was designed to provide a mechanistic understanding of ecosystem processes

and for the prediction of how ecosystems will respond to environmental changes, such as

changes in temperature or precipitation.

1.3 Research gaps

The instantaneous value of ecosystem-surface temperature, commonly referred to as land

surface temperature (LST), is a function of the net radiation (Rnet), sensible heat �ux

(H), latent heat �ux (LE), and ground heat �ux (G). LST is de�ned as the �ensemble

directional radiometric surface temperature� (Norman and Becker 1995) and is estimated

from the infrared radiance emitted by a surface with known emissivity (ϵ). Emissiv-

ity is an intrinsic property of a surface, quantifying its e�ciency in radiating thermal

energy relative to a blackbody, with values ranging from 0 to 1. LST controls the mag-

nitude and variability of surface energy balance (SEB) components (H and LE) and is

also in�uenced by SEB partitioning, making it a critical variable for understanding L-A

interactions. Despite its importance, the lack of direct LST measurements at the canopy-

scale (ecosystem-scale) hampers a comprehensive understanding of the interactions and

feedback mechanisms between LST and H and LE �uxes. Deriving LST from observed up-

welling longwave radiation (Rlup) at �ux towers requires knowledge of surface emissivity,

which is not typically measured routinely. Flux tower observations capture a composite

signal from soil and vegetation, which generally exhibit di�erent surface temperatures

and emissivity ranges. The emissivity of soil and vegetation varies depending on soil

moisture content, vegetation structural attributes, and leaf area index. This variability

makes ecosystem-scale emissivity a dynamic parameter that �uctuates seasonally; thus,

the ϵ estimation representing the canopy surface is not straightforward. Consequently,

ecosystem-scale emissivity is crucial for accurate ecosystem-scale energy balance models.

However, constant ϵ values obtained through remote sensing technologies (satellites) at

landscape scale or estimated from look-up tables often lead to inaccurate LST estimations

for a canopy surface (rolim20comparison).

The ecosystem surface, comprising soil and vegetation, exhibits diverse surface prop-
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erties that in�uence its interactions with incoming solar radiation, such as absorption, re-

�ection, and emission of the received solar radiation. Flux tower uses an eddy-covariance

measurement system to measure solar radiation using radiometers, turbulent heat �uxes

(H), and water (LE). The radiometer and the EC tower have di�erent footprints. A

footprint is the surface area in�uencing the observation (Schmid 2002). Turbulent �uxes

(H, LE) measured using the EC system (ECS) are averaged over a relatively large area,

with footprints spanning several hundreds of meters. In contrast, radiometers, which

measure incoming and outgoing solar radiation (Rnet, Rlup), typically have much smaller

hemispherical footprints, about a tenth of a meter (Wohlfahrt and Tasser 2015). Spatial

heterogeneity due to variations in land cover types, canopy structure, and soil types within

the footprint results in a footprint mismatch between the radiometer and the ECS. Such

mismatches can lead to incorrect representations of the surface energy balance (SEB)

components and biases in the estimated LST (estimated using Rlup) compared to ob-

served turbulent �uxes (H, LE) due to the unrepresentativeness of the surface represent-

ing measurements. Furthermore, satellite-derived emissivity (ϵ), meant for landscape-

scale applications at canopy-scale, can introduce additional bias in canopy-scale LST.

Therefore, quantifying surface heterogeneity is crucial for accurate LST estimation and

calculating the canopy surface's SEB, ensuring that all �ux components represent similar

heterogeneity within their footprints.

Another signi�cant challenge with �ux tower measurements is the non-closure of the

SEB, where the sum of observed H, LE, and G does not equal Rnet, often the sum of

H and LE is smaller than Rnet, leading to energy imbalance (Twine et al. 2000). This

imbalance in incoming and outgoing �uxes is typically due to underestimating the H and

LE, mainly due to secondary eddies. Since in the models, the energy balance is closed

therefore, before using the H and LE �uxes to compare with the model result, a correction

is applied to the observed H and LE �uxes using the energy balance closure (EBC) scheme

(Twine et al. 2000). The EBC schemes applied to the observation can mask underlying

model biases, leading to incorrect conclusions about model performance (Ehret et al.

2012). Previous studies have suggested that surface heterogeneity could be a potential

reason for the non-closure of energy balance. However, there are no de�nitive studies that

directly link canopy-scale surface heterogeneity to energy imbalance. Therefore, to use

the �ux tower measurements to improve ecosystem-scale SEB models, further research is

needed to quantify the contribution of surface heterogeneity to the non-closure of energy

balance.

V-A interactions begin at the leaf surface; following Ohm's law, the heat �ux is rep-

resented using surface-air temperature di�erence and constrained by the resistance to

heat exchange. Current canopy models that study vegetation-atmosphere (V-A) inter-

actions typically parameterize sensible heat �ux (H) using aerodynamic theory (aero-

dynamic temperature, aerodynamic resistance). Aerodynamic temperature, representing
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the air temperature within the canopy (at heights closer to the canopy top), decouples

the canopy surface where energy partitioning occurs. The canopy surface includes all

surfaces within the canopy, primarily leaves, that partition solar energy into H and LE.

Canopy-scale heat exchange is the sum of the heat exchanges occurring with all surfaces

within the canopy depending on leaf surface temperature and leaf resistance to sensible

heat (Schymanski and Or 2017). Therefore, it is crucial to consider surface tempera-

ture (LST) to parameterize sensible heat �ux instead of using aerodynamic temperature.

However, using surface temperature in V-A heat exchange models is problematic due to

the aerodynamic theory's inapplicability near the surface (in the viscous sublayer). Con-

sequently, the semi-empirical parameterization of resistance to heat exchange typically

accounts only for aerodynamic resistance, neglecting leaf-scale resistance. These assump-

tions create a disconnect between leaf-scale processes and �uxes measured at the canopy-

scale by the �ux tower. This disconnect hinders the association of observed �uxes with

vegetation surface processes, leading to inadequate representation of the heat exchange

resistance and inaccurate predictions of energy, water, and CO2 �uxes. We need to con-

nect leaf-scale exchanges with canopy-scale measurements to predict ecosystem responses

to environmental changes. To predict ecosystem behaviour under varying environmental

conditions, including increasing CO2 concentrations, rising temperatures, and shifting

precipitation and wind patterns connecting the leaf-scale process with canopy-scale mea-

surement, is required.

To address these research gaps and to investigate the V-A exchange consistently using

�ux tower observations, the research presented here addresses the following overarching

research questions:

Research questions:

1. How can we use eddy-covariance measurements to estimate canopy-scale emissivity

and surface temperature?

2. How does surface heterogeneity a�ect the compatibility of eddy-covariance measure-

ments with the radiometric measurements at the �ux tower sites?

3. How can ecosystem-scale resistance to heat exchange be quanti�ed using �ux tower

observations, and how can a resistance model be formulated to connect leaf-scale pro-

cesses with canopy-scale aerodynamic theory?

1.4 Overall methodology

To address the research questions we used three years of �ux tower measurements from

fourteen sites having good data quality and di�erent land cover types. The measure-

ments were obtained from standard platforms sharing �ux tower measurements (ICOS

(https://www.icos-cp.eu/), TERN (https://www.tern.org.au/) ; Fluxnet (https:

https://www.icos-cp.eu/
https://www.tern.org.au/
https://fluxnet.org/
https://fluxnet.org/
https://fluxnet.org/
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//fluxnet.org/), Ameri�ux (https://ameriflux.lbl.gov/). The satellite derived

land surface measurements (LST and emissivity) were taken from MODIS TERRA satel-

lite (MODA011).

Figure 1.1: Study sites used in this work

Table 1.1: Description of study sites

An example of �ux tower instrumentation at Yatir Forest (picture obtained from the

group of Prof. Dan Yakir through personal communication) is shown in Fig. 1.2.

1.5 Thesis outline

The three research questions have been answered in three chapters.

Chapter 2

Due to the involvement of two unknowns (temperature and emissivity (ϵ)) inside one

measurement variable (upwelling longwave radiation), estimating in-situ surface temper-

https://fluxnet.org/
https://fluxnet.org/
https://fluxnet.org/
https://fluxnet.org/
https://ameriflux.lbl.gov/
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Figure 1.2: Flux tower instrumentation at Yatir Forest. The site consists of an eddy-covariance
system (ECS), net radiometer, thermocouples, soil heat plate and rain gauge. ECS consist of
a three dimensional sonic anemometer that measures wind speed and direction in three dimen-
sions (u, v, w) and provides data on turbulence, and an infrared gas analyzer (IRGA) measures
concentrations of CO2 and H2O vapor to calculate their �uxes. Net radiometer measures net
radiation (Rnet) as the di�erence between incoming and outgoing shortwave and longwave radi-
ation. Thermocouples measure air and soil temperature. Soil heat �ux plates measure ground
heat �ux (G), and rain gauges measure precipitation.

ature (LST) is not straightforward. Most of the time, the models use satellite-derived

LST and ϵ values to estimate SEB and the SEB components are validated using �ux

tower measurements. Therefore, it is important to quantify the correspondence between

satellite-derived LST and the co-dependent variable, ϵ, with the �ux tower observations.

To address these complexities associated with ecosystem-scale LST and emissivity esti-

mation, this chapter formulates an alternative method to simultaneously estimate LST

and emissivity by combining the measured longwave radiation with sensible heat (H) and

air temperature (Ta). One of the early studies by Holmes et.al. (Holmes et al. 2009) used

a similar approach to estimate emissivity and LST; however, only one component of the

upwelling longwave, i.e., emitted longwave, was used, and the re�ected component was

ignored. Ignoring re�ected longwave component is a common approach in the literature

to estimate surface temperature by considering ϵ = 1.

For the adequate estimate of LST and ϵ and to quantify the consequence of omit-

ting the re�ected longwave radiation component for ecosystem-scale LST and emissivity.

Research question for chapter 2 are:

1. How much is the bias in LST and ϵ when we ignore the re�ected downwelling compo-

nent?

2. Does the estimation of ecosystem-scale ϵ have an advantage over satellite-observed ϵ?

3. How much uncertainty is introduced in plot-scale LST and ϵ due to uncertainty of the

observed �uxes?

Chapter 3

In this chapter, we investigate the impact of surface heterogeneity on ecosystem-
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scale estimates of surface temperature and ϵ at �ux tower sites. A two-source (ground-

vegetation) SEB model is formulated to quantify the impact of surface heterogeneity by

combining radiometric and EC measurements. The heterogeneity scenario was simulated

by hypothesizing that the fraction of vegetation seen by the radiometer is di�erent from

the fraction of vegetation measured by the ECS which will lead to footprint mismatch

between the radiometer and the eddy covariance tower.

Research questions for chapter 3 are:

1. How can we use �ux tower measurement to quantify the surface heterogeneity present

at the site?

2. To what extent does surface heterogeneity contribute to energy imbalance?

3. What is the most e�ective procedure for treating �ux tower measurements in the

presence of footprint mismatch due to spatial heterogeneity?

Chapter 4

A decent amount of literature exists on the empirical estimation of aerodynamic re-

sistances for various ecosystems based on roughness length parameterizations and atmo-

spheric stability correction. Most of these parameterizations do not explicitly include

the leaf boundary layer and, therefore, rely on a conceptual 'aerodynamic temperature'

at some distance from the actual leaf surfaces. This gap hampers reliable modeling of

canopy gas exchange (transpiration and CO2 assimilation) as these processes happen di-

rectly at the leaf surface and rely on accurately capturing the leaf surface temperature.

An additional resistance based on a `KB−1' parameterization is commonly added to the

classical aerodynamic resistance to bridge this gap. In this chapter, we estimate the

benchmark resistance values for canopy-scale heat and momentum exchange by inverting

the �ux-pro�le equations (eddy-di�usivity theory). A self-consistent mathematical model

was developed by using aerodynamic conditions and canopy properties to represent the

benchmark resistance value at the study sites.

Research questions for chapter 4 are:

1. How can we infer benchmark canopy-scale heat and momentum resistance from eddy

covariance measurements?

2. How can we compare existing canopy-scale aerodynamic resistance parameterizations

with the estimated benchmark resistance?

3. How can we formulate a consistent heat exchange resistance model by coupling leaf-

surfaces to the canopy-air space?
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Chapter 2

Surface emissivity and temperature

estimation using plot-scale

measurement

An edited version of this paper was published in Scienti�c Reports as:

Thakur, G., Schymanski, S.J., Mallick, K. et al. "Downwelling longwave radiation and

sensible heat �ux observations are critical for surface temperature and emissivity

estimation from �ux tower data." Sci Rep 12, 8592 (2022).

https://doi.org/10.1038/s41598-022-12304-3
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2.1 Introduction

The e�ects of global change are re�ected in land surface temperature (LST) anomalies and

their interannual variability (Rowell 2005). It controls the magnitude and variability of
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the surface energy balance (SEB) components and simultaneously gets modulated by the

SEB partitioning (Mallick et al. 2015; Timmermans et al. 2007). LST contains imprints

of surface moisture and is extremely sensitive to evaporative cooling, which makes it a

preeminent variable for studying evaporation and surface-atmosphere exchange (Mallick

et al. 2018a; Trebs et al. 2021a; Kustas and Anderson 2009). It directly a�ects the amount

of emitted longwave radiation and in�uences the saturation vapor pressure at the sur-

face that drives latent heat �ux. Thus, the ecohydrological functioning and carbon-water

coupling are largely controlled by the surface temperature of the soil-vegetation system

(Still et al. 2021). The availability of an extensive network of eddy covariance measure-

ments (�ux tower) allows us to understand the interactions and feedbacks between the

surface-atmosphere exchange processes such as evaporation, transpiration, and its control

by the atmosphere and vegetation at the diurnal time scale. However, the unavailabil-

ity of direct LST measurements at the same scale hinders a detailed understanding of

the interactions and feedbacks between LST and surface-atmosphere exchange processes,

which is of utmost importance to the climate modeling community (Migliavacca et al.

2021).

Inversion of the longwave radiation in �ux tower data to obtain LST has gained

popularity in recent years. LST estimation depends on the emissivity of the underlying

surface (Mallick et al. 2018b), which is not available as routine measurement. Therefore,

estimating in-situ LST is not straightforward due to the involvement of two unknowns

(LST and emissivity) inside one measurement variable (upwelling longwave radiation).

To circumvent this challenge, we conducted simultaneous retrievals of LST and emissivity

by exploiting the longwave radiation components in conjunction with associated SEB �ux

measurements (Holmes et al. 2009; Maes et al. 2019).

The SEB components can be sub-divided into radiative components (often lumped in

net radiation, Rnet) and thermodynamic components, including sensible heat �ux (H),

latent heat �ux (LE), and ground heat �ux (G) respectively as shown:

Rnet = H + LE +G (2.1)

The instantaneous value of LST is the result of interplay between the Rnet at the

surface, H, LE and, G (Wang and Dickinson 2013). Thus, LST can also be used for the

estimation ofH (Sun and Mahrt 1995) and LE (Jacob et al. 2001) between the surface and

the atmosphere. LST provides the lower-boundary condition in SEB models for diagnostic

estimates of LE and is highly relevant for drought monitoring (Trebs et al. 2021a; Mallick

et al. 2016; Mallick et al. 2015). As the surface-to-air temperature di�erence drives the

exchange of sensible heat between surface and atmosphere, all components of Eq. (2.1)

depend on the LST.

Net radiation (Rnet) can be sub-divided into downwelling and upwelling components
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(Verma et al. 2016) as shown below:

Rnet = Rsdwn +Rldwn −Rsref −Rlref −Rlem (2.2)

Here, Rsdwn and Rldwn are the shortwave and longwave downwelling components, Rsref

and Rlref are the shortwave and longwave re�ected components, and Rlem is the longwave

emitted component. Only a fraction of solar top-of-the-atmosphere radiation reaches the

Earth's surface, as some is re�ected back to space by clouds, some is absorbed by the

atmosphere and emitted later as longwave radiation. Re�ected shortwave (Rsref in Eq.

(2.2) is expressed as Rsref = α Rsdwn, while re�ected longwave (Rlref ) is represented

as Rlref = αRldown, where α is the surface albedo. The emitted longwave radiation

as a function of surface temperature (Ts) and surface emissivity (ϵ) is given by Stefan-

Boltzmann (SB) equation (Lhomme et al. 1988)

Rlem = ϵσT 4
s (2.3)

where, σ (W m−2 K−4) is the SB constant, ϵ is the surface emissivity ranging between 0

and 1, and Ts (K) is the LST. For a land surface, ϵ depends on soil type, vegetation cover,

soil moisture, soil chemistry, roughness, spectral wavelength, temperature and view angle

(Norman and Becker 1995).

The emitted and downwelling longwave radiance are measured at given angle within

its instantaneous �eld of view (FOV) by a downward facing sensor relatively close to the

surface (a few meters for an eddy covariance (EC) tower). The radiation received by

a pyrgeometer or infrared sensor is a combination of the radiation emitted (Rlem) and

re�ected (Rlref ) by the surfaces in its FOV as shown in Eq. (2.4):

Rlup = Rlem +Rlref (2.4)

Substitution of Eq. (2.3) into Eq. (2.4) and replacing α as 1− ϵ, Rlup becomes a function

of emissivity, surface temperature and downwelling longwave radiation:

Rlup = ϵσT 4
s + (1− ϵ)Rldwn (2.5)

Eq. (2.5) is then solved for LST as a function of measured longwave and known

surface emissivity:

Ts =
4

√
Rldwn

σ
− Rldwn

ϵσ
+
Rlup

ϵσ
(2.6)

In order to invert LST as shown in Eq. (2.6), ϵ values are required. However, ra-

diometers at eddy covariance sites (ECS) do not measure spectral bands separately to

deduce emissivity directly. Therefore, we will deduce site-speci�c ϵ from observations of
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air temperature (Ta), measured longwave (Rldwn, Rlup) and sensible heat �ux (H) (Holmes

et al. 2016). In analogy to Ohm's law, the linear relationship between H and ∆T can be

expressed mathematically as:

H = m(Ts − Ta) (2.7)

where, m (m s−1) is a proportionality constant (de�ned as m = ρCp/ra and broadly

referred to as heat transfer coe�cient) and depends on surface characteristics and micro-

meteorology (Lhomme et al. 1988), Ta (K) is the temperature of the air measured at a

reference height above the surface, Cp (J kg−1 K−1) is the speci�c heat capacity of air, ρ

(kg m−3) is the air-density, and ra (s m−1) is the total resistance to heat transport from

surface to the atmosphere. It is evident from Eq. (2.7) that for Ts − Ta = 0, H will be

zero. This boundary condition and the linear relationship between H and ∆T is used to

estimate ϵ (Holmes et al. 2009; Holmes et al. 2016). Another approach for plot-scale ϵ

estimation �lters the data where H is close to zero, substitutes Ts in Eq. (2.5) by Ta and

solves for ϵ (Maes et al. 2019).

However, due to surface heterogeneity, sparse canopies are prone to footprint mis-

match between the aerodynamic (�ux tower) footprint and radiometric (hemispherical)

footprint (Chu et al. 2021; Marcolla and Cescatti 2018; Morillas et al. 2013), where the

aerodynamic footprint represents the area contributing to measured sensible heat �ux,

while the radiometric footprint is dominated by the surface below the sensor at a Nadir

viewing angle, contributing to the measured longwave radiation (used for Ts estimation).

This can result in a di�erent boundary condition i.e. at ∆T = 0, H ̸= 0 as expressed in

Eq. (2.8):

H = m(Ts − Ta) + c (2.8)

where, H is representative of the sensible heat �ux from the EC tower footprint, Ts
is representative of all the radiating surfaces in the radiometric sensor's view, and c is

interpreted as the H from surfaces in the aerodynamic footprint that are not seen by the

radiometer.

Plot-scale estimation of ϵ and LST using observed H, Ta, Rlup and Rldwn as described

above and in the Methods section (2.2), may be prone to substantial uncertainty. It is

unclear how uncertainties in observed �uxes propagate into the uncertainty of estimated

LST and ϵ. By design, infrared thermal (IRT) sensors only measure upwelling infrared

radiance and therefore cannot explicitly account for the amount of re�ected downwelling

infrared radiation in the signal. For a long time, downwelling longwave (Rldwn) was not

routinely observed at ECS (Wang and Liang 2009) and was also considered to be the

most poorly quanti�ed component of the radiation budget (Trenberth and Fasullo 2012).

Therefore, the second term in Eq. (2.5) is commonly omitted, arguing that ϵ ≈ 1, and
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hence, Eq. (2.5) is simpli�ed to Eq. (2.9) (Crago and Qualls 2014):

Rlup ≈ ϵσT 4
s (2.9)

Eq. (2.9) can be solved for Ts to yield what we will term the "short equation" (seq) for

Ts:

Ts ≈
4

√
Rlup

ϵσ
(2.10)

Note that the above derivation is actually �awed, as the second term of Eq. (2.5) was

omitted arguing that ϵ ≈ 1, and yet ϵ was retained in the �rst part of the equation.

Nevertheless, even with the availability of downwelling longwave measurements (Stephens

1995), the use of Eq. (2.9) is still a common practice (Crago and Qualls 2014; Mallick

et al. 2018b). This gives rise to the question if the short equation (Eq. (2.10)) is adequate

to estimate LST from ground-based measurements. In the remainder of this chapter, we

will refer to LST obtained using the long equation (Eq. (2.6)) as Tleq and to LST obtained

using the short equation (Eq. (2.10)) as Tseq.

To better understand and improve approaches of plot-scale LST estimation, the

present study addresses the following research questions:

1. Can we obtain an adequate estimate of plot-scale LST while neglecting the re�ected

downwelling longwave radiation?

2. Does the estimation of plot-scale ϵ based on observed sensible heat �ux (H) have

an advantage over satellite-derived ϵ for plot-scale LST estimation?

3. How much uncertainty is introduced in plot-scale LST and ϵ due to uncertainty in

measured EC �uxes?

To answer these questions, we analysed data for ten eddy covariance sites in di�erent

biomes and climates (see Table 2.1). Plot-scale broadband monthly emissivity (ϵplot) was

derived using observed H and estimated ∆T as proposed by Holmes et al. (Holmes et al.

2009). Plot-scale LST was estimated using either Eq. (2.6) or Eq. (2.10), and either

ϵplot or landscape-scale emissivity (ϵMODIS). Estimated LST was compared with Moder-

ate Resolution Imaging Spectroradiometer (MODIS) LST (TERRA satellite-sensed) for

the times of satellite overpass. Uncertainty in ϵplot and LST due to uncertainty in ob-

served �uxes was calculated using Sobol-based uncertainty analysis (implemented with

Sensitivity Analysis Library (SALib)) (Rosolem et al. 2012).

2.2 Methods

In the last two decades, plot-scale radiometric data collected at ECS have gained pop-

ularity for in-situ LST retrieval due to its high temporal resolution (Stoy et al. 2013;
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Cullen et al. 2007). In addition to this, the LST estimates at plot-scale originate from

a relatively homogeneous footprint in comparison to the satellite-derived LST (MODIS

pixels). This section describes: (i) how to retrieve plot-scale LST and ϵ using EC mea-

surements, (ii) how to quantify the correspondence between plot-scale LST with MODIS

LST and, (iii) how to quantify the uncertainty in plot-scale LST and ϵ.

Tower data: ECS collect micro-meteorological measurements above the surface (veg-

etation canopy) using �ux towers following common measurement protocols (Baldocchi et

al. 2001). The towers are generally equipped with an instrument made up of pyrgeometers

or radiometers to measure upwelling and downwelling shortwave and longwave radiation,

which is further used to calculate net radiation (Eq. (2.2)). Besides radiative �uxes,

measurement at ECS also include sensible and latent heat �uxes, net carbon-dioxide ex-

change and a range of meteorological variables, such as air temperature (Ta), humidity

and wind speed. Ta is the air temperature measured at a reference height above the

canopy. Each �ux measurement is accompanied by a �agging system based on the second

CarboEurope-IP QA/QC workshop (Gilberto et al. 2020). In our current work, we use

high quality available data (�ag 0) as it is without atmospheric corrections. For the anal-

ysis, ten sites were selected to represent a variety of land cover types and climates (Table

2.1). Eight sites belong to the North Australian Tropical Transect (NATT) and two

sites (Yatir Forest (YF), Brookings (BR)) are chosen to replicate results from Holmes

et.al (Holmes et al. 2009) as shown in Table 2.1. Eddy covariance level 3 data is ob-

tained from http://data.ozflux.org.au/portal/pub/listPubCollections.jspx for

Australian sites. The data for Brookings was obtained from Ameri�ux whereas the data

for Yatir Forest was obtained through personal communication with Professor Yakir's lab

in order to obtain the older version of the data, which was used by Holmes et al. (Holmes

et al. 2009).

MODIS data: Landscape-scale emissivity and LST data (MODIS product MOD11A1)

was downloaded from National Aeronautics and Space Administration (NASA) Earth

data . It is a level 3 daily LST product gridded in the sinusoidal projection at a spa-

tial resolution of 0.928 km by 0.928 km. The daily LST pixel values in each granule

(tile contains 1200 x 1200 grids in 1200 rows and 1200 columns) is retrieved by the gen-

eralized split-window algorithm under clear-sky conditions and MODIS LST values are

averaged by overlapping pixels in each grid with overlapping areas as weight (Wan 2007).

The downloaded data in hierarchical data format (HDF), were converted into tagged

image �le format (TIFF) using the python package pyModis (Delucchi 2014). Alter-

natively MODIS data can also be obtained from https://appeears.earthdatacloud.

nasa.gov/. MODIS measures spectral emissivity through four channels (28, 29, 30, 31)

at wavelengths ranging between 8-12 µm (Jin and Liang 2006) and the system of equa-

tions is iteratively solved for a given range of wavelengths (8 - 12 µm) to obtain ϵ and

LST using radiative transfer models (Hulley, Hughes, and Hook 2012; Jin and Liang 2006;

http://data.ozflux.org.au/portal/pub/listPubCollections.jspx
https://lpdaac.usgs.gov/
 https://appeears.earthdatacloud.nasa.gov/
 https://appeears.earthdatacloud.nasa.gov/
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Table 2.1: Description of study sites

Wang and Liang 2009). In the current study, dataset columns used to compare plot-scale

LST are day-time daily LST and local view time. In order to obtain landscape-scale ϵ,

the emissivity from bands 31 and 32 are used. These bands have stable emissivities than

other channels ranging from 0.92-1, and can be used to derive broadband emissivity

(Wan 2007).

Plot-scale ϵ and LST estimation: LST is de�ned as the �ensemble directional

radiometric surface temperature� (Norman and Becker 1995), and can be estimated from

the infrared radiance emanating from a given surface with known emissivity (Kustas et

al. 2007). The emissivity at ecosystem-scale can also be estimated using observed H,

Rlup, Rldwn, and Ta. A plot-scale ϵ (ϵplot) estimation approach was initially proposed

by Holmes (Holmes et al. 2009) using the short equation (Eq. (2.10)). In the present
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work, we have used both the long equation (Eq. (2.6)) and the short equation (Eq.

(2.10)) to estimate ϵplot. The prime variables used in the study are H, Rlup, Rldwn, and

Ta, whereas the ancillary variables Rnet and wind speed (Ws) are used to �lter the data

for analysis. The data �ltering criteria are su�cient net radiation (Rnet > 25 W m−2)

and wind speed (Ws > 2 m s−1) (Holmes et al. 2009). For each month, a linear regres-

sion (with and without intercept) between sensible heat (H) and (Ts − Ta) is performed

(Fig. 2.1b) using Scipy (https://docs.scipy.org/doc/scipy/reference/generated/

scipy.stats.linregress.html). Ts is estimated by solving Eq. (2.6) and Eq. (2.10)

using measured longwave radiation and prescribed ϵ, starting with the maximum possible

value for a grey body, 0.99, and then progressively reducing ϵ with step size of 0.002 until

we reach a minimum root mean square error (RMSE) for a linear relationship between

H and ∆T . Only months with coe�cient of determination (R2) > 0.5 between H and

∆T are considered for ϵplot estimation. An illustration plot for RMSE as a function of ϵ

is shown in Fig. A.5. The monthly ϵplot is obtained using the long (Eq. (2.6)) and short

equation (Eq.(2.10)) and termed as ϵleq and ϵseq respectively, as shown in Fig. 2.1b. For

two sites with a high value of intercept (HS and LF in Table 2.2) we tested if adding 6-8%

to the observed Rlup and closing the energy balance using Bowen ratio closure before ϵplot
estimation would remove the intercept (Fig. 2.6).

Recently, another approach for plot-scale ϵ estimation using Eq. (2.4) was used by

Maes et.al (2019) (Maes et al. 2019). In this approach, data sets are �ltered for non rainy

days without snow cover (α < 0.4) and near-zero H (−2 < H < 2). The ϵ values are then

estimated by substituting Ts = Ta in Eq. (2.4) as shown in Eq. (2.11). The monthly ϵ

was obtained as the median of ϵ obtained by substituting �ltered data in Eq. (2.11) (red

stars in Fig. 2.2).

ϵ =
Rldwn −Rlup

Rldwn − T 4
aσ

(2.11)

LST comparison: MODIS LSTs are a global reference for LST and used world-wide,

also in conjuction with plot-scale �ux measurements. To calculate plot-scale LST for the

exact time of TERRA day-time overpass for each site, the 30 minute tower data was

interpolated linearly, and the interpolated Rldwn and Rlup observations corresponding to

the time of overpass were used in conjunction with the monthly ϵplot or ϵMODIS for the

calculation. Plot-scale daily LST is compared to MODIS LST in terms of the mean, bias,

RMSE and R2 using a robust linear regression model (scipy stat model) as shown in Fig.

2.1a. The goodness of �t between plot-scale and landscape-scale LST was determined by

looking at R2 (Fig. 2.1b). The bias is estimated as the mean of the deviation between

daily MODIS LST and plot-scale Ts.

General approach: We estimate landscape-scale broadband ϵ using MODIS spectral

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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ϵ as shown in Bahir et. al (Bahir et al. 2017).

ϵMODIS = 0.4587ϵ31 + 0.5414ϵ32 (2.12)

Tower-based longwave radiation measurement (Rlup, Rldwn) passing the �ltering criteria

(as mentioned in plot-scale emissivity estimation) along with MODIS based ϵ was used to

invert LST using Eq. (2.6) and Eq. (2.10). The obtained plot-scale LST was compared

to landscape-scale MODIS LST using a robust linear regression as mentioned above and

shown in Fig. 2.1a.

Uncertainty estimation: Uncertainty in plot-scale ϵ and LST was quanti�ed based

on an assumed systematic error (caused by a potential bias in measurement devices) at

the study sites. In a �rst step, based on the literature (Trenberth and Fasullo 2012;

Foken 2008), the error bounds of each input variable (H, Rlup, Rldwn, Ta) used for plot-

scale ϵ estimation were de�ned. The error bounds for Rlup and Rldwn are -5 to 5 W

m−2 (Trenberth and Fasullo 2012), for H, we used -20 to 20 W m−2 and for Ta we used

-1 to 1 K (Foken 2008). The error samples (perturbation) within these bounds were

generated using the Saltelli sampling scheme (using the python package SALib (Saltelli

et al. 2017)). Each error sample is added to the monthly segregated measured �uxes as

explained above. Observed �uxes combined with perturbed �uxes are used to estimate

Ts using Eq. (2.10) and Eq. (2.6). The obtained range of diurnal Ts and observed Ta
based on the perturbation is used to calculate the uncertainty in ∆T ; an example for July

15 is shown in Fig. 2.7c. Perturbed sensible heat �ux (H+sample error) and perturbed

∆T is used to obtain ϵplot as described above. The distribution of monthly ϵplot values is

reported as uncertainty in monthly ϵ.

2.3 Results

2.3.1 Plot-scale ϵ using long and short equation

Following the method proposed by Holmes et al. (Holmes et al. 2009; Holmes et al.

2016), plot-scale monthly ϵ was estimated at the study sites by �tting ϵ to minimise the

RMSE of the regression between H and Ts − Ta (see Fig. A.3). In Fig. 2.2a, c, and

d, we used the original data and reproduced Figs. 2a, 3C, and 3Q from Holmes et al.

(2009) (Holmes et al. 2009) to validate our interpretation of their approach using the

short equation (Eq. (2.10)). We noted only marginal di�erences between the two results

based on the short equation, which are likely due to di�erent �tting algorithms. The

replication of the H(∆T ) plot using the long equation (Eq. (2.6)) with the same data

is given in Fig. 2.2b and the monthly ϵ values are shown in Fig. 2.2c, d, indicated by

blue stars. The retrieved LST values were slightly higher when using Eq. (2.6) (compare
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(a) (b)

Figure 2.1: Schematic representation of steps followed for plot-scale LST retrieval using
landscape-scale emissivity (a) or plot-scale emissivity (b). To estimate plot-scale ϵplot, surface-air
temperature di�erence (∆T ) is computed from observed longwave radiation (Rlup and Rldwn)
and Ta for given ϵplot, and then ϵplot is varied in a way to minimise RMSE of a linear relationship
between observed sensible heat �ux (H) and ∆T . The resulting surface temperatures (Tleq, Tseq)
are then compared to TMODIS , with the R2, RMSE, and bias reported in Fig. (2.4).

a and b in Fig. 2.2). The use of the long equation (Eq. (2.6)) resulted in substantially

(10%) lower values of ϵ as compared to the values estimated by Holmes et al. (Holmes

et al. 2009) for the common study sites (BR, Fig. 2.2c and YF, Fig. 2.2d). The reduction

in ϵ can be attributed to the sensitivity of the two equations to the emissivity. As shown

in Fig. A.4, the Ts estimation using the short equation is more sensitive to ϵ than for the

long equation, thus even a small reduction in ϵ can lead to a large increase in the Ts (to

minimise RMSE).

Another approach for plot-scale ϵ estimation (Maes et al. 2019) in combination with

Eq. (2.6) resulted in even lower ϵ values for BR, as shown in Fig. 2.2c (red stars), whereas

at YF, this approach gave an ϵ value higher than 1 (red star in Fig. 2.2d). Note that the

long equation also yielded an acceptable H ∆T relationship for more months at YF (blue

stars) than the short equation (black dots), as shown in Fig. 2.2d. The pattern of lower

ϵ and higher LST using the long equation compared to the short equation was con�rmed

for all the ten sites used in the present study (Table A.1).
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(a) (b)

(c) (d)

Figure 2.2: Reproduction of analysis presented in Figs. 2a, 3c, and Q in Holmes et al. (Holmes
et al. 2009). (a) Sensible heat (H) vs ∆T = Tseq − Ta based on the short equation (Tseq,
Eq. (2.10)); (b) H vs. ∆T based on the long equation (Tleq, Eq. (2.6)). Both show data for
August 2005 at BR. Blue crosses represent data points satisfying the �ltering criteria, while
black dots represent points not considered in the analysis. N is the number of blue crosses used
for regression (red line), m is the slope of regression, RMSE is the root mean square error and R2

is the square of the coe�cient of determination. The �tted ϵ value is reported in the title. (c)
Optimised ϵ values at BR obtained for the months where R2 > 0.5 using the short equation (Eq.
(2.9), black dots) and long equation (Eq. (2.6), blue stars), and ϵ obtained using the approach
of Maes et. al (Maes et al. 2019) (red stars). (d) Same as (c), but for YF.

2.3.2 Landscape-scale vs plot-scale estimates of ϵ and LST

At each site, LST was estimated using both the short equation (Tseq, Eq. (2.10)) and

the long equation (Tleq, Eq. (2.6)). In the �rst step, tower-based longwave radiation

and landscape-scale broadband ϵ from MODIS spectral ϵ (ϵMODIS, Eq. (2.12)) was used.

The yearly daytime surface-to-air temperature di�erence for each study site is estimated

and shown in Fig. 2.3. At all sites, Eq. (2.10) resulted in higher day-time plot-scale Ts
estimates as compared to Eq. (2.6), when using ϵMODIS, with the medians of surface-to-

air temperature di�erences (∆T ) di�ering by 0.8 to 1.5 K (Fig. 2.3). The di�erence in∆T

using the two equations is highest at the water limited sites, e.g. AS and YA. Note that

for two sites (LF and HS), the median values of daytime ∆T are negative. Comparison

of plot-scale LST estimated using ϵMODIS at satellite overpass time with landscape-scale

LST (TMODIS) revealed strong correlations at most of study sites but systematically lower
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Figure 2.3: Yearly distributions of half-hourly surface-to-air temperature di�erences (∆T =
Ts − Ta) for a representative year at each site. LST was calculated using the short equation
(Eq. (2.10)) or long equation (Eq. (2.6)) with landscape-scale emissivity (ϵMODIS). The median
values of ∆T are shown at the top of the plot and the ϵMODIS values used for the Ts retrieval
are shown at the bottom in orange. See Table 2.1 for site abbreviations. The shapes of the
violin represent the distributions of ∆T values.

plot-scale LST (Fig. 2.4a, b). Use of ϵplot for LST estimation (Tseq and Tleq) resulted in

substantial reduction of the bias as shown in Fig. 2.4c, d. This trend in bias reduction was

similar at other sites (Table A.1 for details). The minimum bias is found at TUM, a closed

canopy (eucalyptus forest) and the highest bias was obtained at LF and HS, heterogeneous

ecosystems with sparse canopies (woodland savanna). However, for some sites, weak

correlation between satellite-derived and local LST estimates were also evident (at DU,

R2 was reduced from 0.8 to 0.4, see Table A.1). The low correlation between MODIS

LST and plot-scale LST can be due to various reasons, such as di�erences in sensor types,

viewing angles and distance between the sensors and sources, e.g. requiring atmospheric

correction for satellite-based sensors. Also, using plot-scale ϵ for LST estimation resulted

in positive Ts − Ta at LF and HS as shown in Fig. A.1 in comparison to Fig. 2.3.

2.3.3 Plot-scale ϵ estimation using long equation with intercept

In order to account for the possibility of bias between radiometric and aerodynamic

measurements (e.g. due to footprint mismatch of measuring devices or instrument bias),

we also �tted Eq. (2.8), i.e. a relationship allowing for an intercept in the linear �t

between H and ∆T (instead of forcing it through zero as in Fig. 2.2) for plot-scale ϵ

estimation. As shown in Fig. 2.5, the plot-scale ϵ values resulting from this approach

(H = m∆T + c) were substantially closer to the landscape-scale ϵ values compared

with the approach without intercept (H = m∆T ), as shown in Table 2.2. However,

comparison of the resulting plot-scale LST with landscape-scale LST values revealed

an increase in bias at most sites compared to the LST obtained using ϵplot without an

intercept (Table 2.2). The median values of the resulting intercept ranged from -24 to
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(a) (b)

(c) (d)

Figure 2.4: Landscape-scale LST (TMODIS derived from MOD11A1) vs. plot-scale LST at AS
for 2016-2018. (a) Tseq based on short equation (Eq. (2.10)) and satellite-derived (MODIS)
broadband emissivity; (b) Same as (a), but Tleq based on long equation (Eq. 2.6); (c) Tseq
based on short equation (Eq. (2.10)) and monthly plot-scale emissivity; (d) Same as (c), but
Tleq based on long equation (Eq. (2.6)). Bias is mean Tseq − TMODIS , N is the number of daily
overpasses of MODIS between 2016 and 2018, c is the intercept, m the slope, RMSE is the root
mean square error and R2 is coe�cient of determination. At each site, LST was estimated using
both the short equation (Tseq, Eq. (2.10)) and the long equation (Tleq, Eq. (2.6)). In a �rst
step, we used satellite-derived landscape-scale broadband emissivity from MODIS (ϵMODIS , Eq.
(2.12)) for estimating plot-scale LST from tower-based longwave measurements, and compared
these with landscape-scale LST extracted from MODIS LST dataset (TMODIS).

+258W m−2, with the highest intercept values at HS (amounting to 70% of the maximum

observed H at this site). The minimum value of intercept was obtained at TUM (5%

of the maximum observed H). Note, that if we assumed just a slight under-estimation

of upwelling longwave radiation by 40 W m−2 at HS (ca. 8% of observed Rlup), the

intercept was reduced from 294 (Fig. 2.5c) to 17 W m−2 (Fig. 2.6a) without change in

other regression parameters (m, RMSE, R2). In this study, we did not apply any energy

balance closure scheme, as a Bowen ratio closure, although resulting in higher R2 values

at HS, also led to even greater intercept (c) (Fig. 2.6b). Interestingly, adding 40 W m−2

to the measured upwelling longwave radiation and subsequent energy balance closure

largely removes the intercept and at the same time increases R2, as shown in Fig. A.6.

Also, the bias between MODIS and plot-scale LST is reduced from -10.66 K (Table 2.2)
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to 4.01 K by adding 40 W m−2 and closing the energy balance.

(a) (b)

(c) (d)

Figure 2.5: Sensible heat �ux as a function of surface-to-air temperature di�erence based on
Eq. (2.8) (H = m(Ts − Ta) + c). ϵ was �tted to minimise RMSE of a robust linear regression.
The title of the plot contains site, year, month and the �tted ϵ-value. The legend correspond
to Fig. 2.2. The colour code indicates the degree of energy imbalance of each data point (i.e.
Rnet −H − LE −G).

(a) (b)

Figure 2.6: Sensible heat �ux as a function of surface-to-air temperature di�erence based on Eq.
(2.8) (H = m(Ts − Ta) + c). Same analysis and legends as in Fig. 2.5c), but (a) After adding
40 W m−2 to measured Rlup, and (b) after closing the energy imbalance using a Bowen ratio
closure scheme.
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Table 2.2: Correspondence between daytime landscape-scale LST (TMODIS) and plot-scale LST
(Ts) (estimated at TERRA time of pass), using di�erent emissivity estimates. The emissivity
values used to retrieve plot-scale LST is either taken from MODIS (ϵland), or derived �ux tower
data (ϵplot), using Eq. 2.7 (H = m∆T ) or Eq. 2.8 (H = m∆T + c). The reported ϵplot and
intercept (c) are median values over all months for each site. Bias is de�ned as the mean of
Ts − TMODIS , R

2 is the coe�cient of determination between plot-scale LST in comparison to
landscape-scale LST. The site acronyms are explained in Table 2.1.

2.3.4 Uncertainty in plot-scale ϵ and LST

Each of the observed input variables used for the estimation of plot-scale ϵ and LST has an

associated uncertainty. Here we present exemplary results for Alice Springs (AS), which

showed the highest correlation between plot-scale and landscape-scale LST estimations

(Table 2.2). The uncertainty in plot-scale ϵ estimated using Eq. (2.6) ('leq') and Eq.

(2.7) (i.e. without intercept in H vs ∆T was mainly in the range of ±0.02 to ±0.05,
with a maximum of ±0.2 if outliers are included (blue color in Fig. 2.7a). The short

equation (Eq. (2.10), 'seq') resulted in a vary narrow range of ϵ values between 0.94 and

0.99 throughout the year, with very small uncertainty (around ±0.01, black boxes in Fig.

2.7a). Interestingly, the di�erences in ϵ uncertainty did not propagate into di�erences

in LST uncertainty, which were around ±0.2 K at the hourly scale for each equation if

plot-scale emissivity was used (blue boxes in Fig. 2.7b and black boxes in Fig. 2.7c).

In fact, if landscape-scale values of ϵ were used, the LST uncertainty was even bigger

(±0.5 K, orange boxes in Fig. 2.7b and c). However, if an intercept in the H vs ∆T

relationship was allowed during estimation of ϵplot, the uncertainty in ϵplot largely vanished

(Fig. A.6a), while the uncertainty in Ts − Ta at the diurnal scale doubled (Fig. A.6b).

2.4 Discussion

Our analysis revealed a fundamental �aw in the commonly used short equation (Eq.

(2.10)) for estimating plot-scale LST and ϵplot, as it does not produce the same results

as the long equation (Eq. (2.6)) even with high values of ϵMODIS. In fact, the short



26 Surface emissivity and temperature estimation using plot-scale measurement

(a)

(b) (c)

Figure 2.7: Uncertainty in plot-scale estimations of ϵ and surface-air temperature di�erences
(Ts − Ta) at AS, based on Eq. (2.7) (no intercept in H vs ∆T ). Monthly values of ϵ shown for
2017 and hourly Ts−Ta for 15 August 2017. (a) Uncertainty in monthly ϵplot due to uncertainty
in H, Rlup, Rldwn and Ta, using Eq. (2.5) (leq, blue) and Eq. (2.9) ('seq', black). (b) Hourly
uncertainty in Ts − Ta on 15 July based on Eq. (2.5), due to uncertainty in Rlup, Rldwn and
Ta when landscape-scale emissivity is used (ϵMODIS , orange) or due to uncertainty in H, Rlup,
Rldw and Ta when ϵplot is used (blue). (c) Same as (b), but based on Eq. (2.9). The white
dots represent the median values of each distribution, the bars extend between the 25 and 75%
quantiles and the outermost violin represent the full distributions of the data.

equation strongly over-estimates the sensitivity of LST to ϵ (Fig. A.4), as it neglects the

fact that low emissivity results in a greater fraction of re�ected longwave in the sensor

signal (compare Eq. (2.10) and (2.6)). The sensitivity of the long equation (Eq. (2.6)) to

ϵ is driven by the contrast between Rlup and Rldwn, whereas for the short equation (Eq.

(2.10)), it is only driven by observed Rlup (Fig. A.2). For instance, an error of 0.01 in ϵ

at a water-limited site (e.g. AS) can cause an error of 0.17 K using Eq. (2.6) and 0.79

K using Eq. (2.10) respectively (Fig. A.4). This means that small errors in ϵ can result

in large di�erences in LST when using the short equation, or conversely, unrealistic LST

values can conveniently be recti�ed by slightly changing the ϵ value. This is illustrated

e.g. in Fig. 2.7, where estimation of ϵplot resulted in similar LST values between the

short and long equations, but with vastly di�erent ϵ values and much greater uncertainty
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in estimated ϵ using the long equation compared to the short equation. Considering

that the short equation ignores an important component of longwave radiation, it must

be concluded that in this case, it achieves seemingly the right results for the wrong

reasons. The reduced sensitivity of the long equation (Eq. (2.6)) to ϵ is of advantage

for plot-scale LST estimation, since ϵplot is usually unknown and therefore used as an

approximate value (Mallick et al. 2018b). However, when using the long equation in

conjunction with plot-scale H measurements to estimate ϵplot, we obtained unrealistically

low ϵ values at some sites (e.g. HS and LF, Table 2.2) in comparison to previously reported

ϵ values for a soil-vegetation system (Sugita and Brutsaert 1996; Snyder et al. 1998). This

strong bias in plot-scale ϵ estimates was largely removed if H vs ∆T linear�t was allowed

to have an intercept (Table 2.2, plot-scale ϵ). The intercept (i.e. ∆T ̸= 0 at H =

0) could be caused by combining measurements coming from instruments (radiometer,

eddy covariance system) with di�erent footprints (Marcolla and Cescatti 2018). The

mismatch of source areas becomes important if the surface underlying the instruments has

heterogeneous land cover. Although "footprint awareness" is often omitted at ECS under

the assumption of homogeneity (Chu et al. 2021), in patchy vegetation, the radiometer can

be "seeing" a di�erent vegetation fraction than that contributing to EC measurements,

meaning that H ̸= 0 at ∆T = 0. This problem was not detected by Holmes et al.

(Holmes et al. 2009), as the short equation (Eq. (2.10)) was used, and due to its high

sensitivity to ϵ (Fig. A.4a) even a small reduction in ϵ corrected the o�set in H vs ∆T

(Fig. 2.2a). In contrast, when repeating the same analysis using the long equation (Eq.

(2.6)), a larger reduction in ϵ is required to remove the intercept, resulting in lower ϵ (Fig.

2.2b). By allowing an intercept in the H vs ∆T linear �t, we implicitly account for the

possibility of a footprint mismatch or instrument bias in the data. This small change in

methodology enables us to detect such problems by inspecting the value of the intercept

(c). Considering the aerodynamic footprint to be larger than the radiometric footprint

(Marcolla and Cescatti 2018; Chu et al. 2021), a positive intercept can be interpreted as

the H from the aerodynamic footprint which is not seen by the radiometer.

The intercept was very high for the sites HS and LF (Table. 2.2). A close inspection

of the H vs ∆T plots at these sites (Fig. A.1) revealed negative day-time Ts − Ta (Fig.

2.3), which may suggest an underestimation of Rlup. While testing this hypothesis at

HS (having the highest intercept, Fig. 2.5c) we found that adding roughly 40 W m−2

(approx. 8% of observed Rlup, Fig. 2.6 in observed Rlup led to signi�cant reduction in the

intercept from 294 W m−2 (Fig. 2.5c) to 17 W m−2 and positive day-time Ts − Ta (Fig.

2.6a). The other linear regression parameters (m, R2, RMSE) were not a�ected (compare

Fig. 2.6a and Fig. 2.5c). The hemispherical view of the radiometers looking down at a

heterogeneous canopy makes it possible that they "see" more tree crowns and less soil

than the area contributing to the EC footprint. This could lead to an underestimation of

Rlup, and an underestimation by 30 − 40 W m−2 would be equivalent to approximately
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5-10% of the observed �ux, which is within the range of a typical energy imbalance found

at this site. Previous studies have found a dependence of footprint mismatch on wind

direction (Chu et al. 2021; Marcolla and Cescatti 2018; Morillas et al. 2013), but we did

not �nd a signi�cant relation between monthly intercept and dominant wind direction at

HS.

Surface heterogeneity has also been recognized as one of the potential causes for the

lack of energy balance closure observed at most ECS at diurnal scales (Wilson et al. 2002;

Stoy et al. 2013). However, in our analysis the use of an energy balance closure scheme

(based on the Bowen ratio) led to much lower values of ϵplot using Holmes approach with

the long equation and without intercept. In contrast, if an intercept was allowed, energy

balance closure led to an increase in positive intercept (Fig. 2.6b). Perhaps this is the

reason why other studies on plot-scale ϵ estimation have also used the observed �uxes

without correction (Holmes et al. 2009; Holmes et al. 2016; Maes et al. 2019). Other

energy balance closure schemes add the missing energy to H in water limited ecosystems

(Twine et al. 2000), or to LE in energy limited ecosystems (Chakraborty et al. 2019).

However, our analysis suggests that the footprint mismatch may cause a small bias in the

upwelling longwave radiation measurements that is not accounted in any conventional

energy balance closure approaches. When we added 35 W m−2 (instead of 40 W m−2,

see Fig. 2.6a) to the measured upwelling longwave radiation and subsequently closed

the energy balance at the HS site (which had the largest H vs ∆T intercept), we largely

removed the intercept and at the same time obtained realistic ϵ values and an increased

R2 (Fig. A.6). In addition, the bias between MODIS LST and plot-scale LST at HS was

reduced by 6.4 K (Fig. A.6b), compared to using upwelling longwave without correction.

When estimating plot-scale LST using ϵMODIS values, we found at many sites with a

sparse canopy strongly negative bias in comparison to MODIS LST, which is in agreement

with previous studies where the bias for sparse canopies reached up to 12 K (Guillevic

et al. 2018). The MODIS overpass can have a large o�-Nadir viewing angle, which

would lead to an elongated foot-print (Margulis, Liu, and Baldo 2019) and therefore,

a di�erent distribution of bare soil and vegetated areas compared to the mostly Nadir

viewing angle of the tower-mounted sensor. The di�erence in footprint and viewing

angles between the tower mounted pyrgeometers and MODIS radiometers could also be

the reason for bias between the two LST estimates. Plot-scale LST estimates based on

plot-scale ϵ using a linear H vs ∆T �t without an intercept largely reduced this bias

between plot-scale and MODIS LST (Table 2.2) and also reduced the uncertainty in

diurnal LST (Fig. 2.7b, c) in comparison to the use of ϵMODIS. However, the resulting

plot-scale ϵ values were unrealistically low at some sites (Table 2.2, center). In contrast,

allowing an intercept (H = m ∗ ∆T + c) in ϵplot estimation resulted in more realistic

ϵ values at these sites, but very large intercept values (over 200 W m−2 at some sites),

indicating that the plot-scale LST values cannot be used in combination with the observed
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aerodynamic �uxes at these sites, as strongly positive H at 0 surface-air temperature

di�erence is physically inconsistent (Fig. 2.5c). In addition, this approach increased the

bias between plot-scale and MODIS LST at most of the study sites (Table 2.2). Note that

the correspondence between landscape-scale LST and plot-scale LST can vary strongly

between sites, depending on canopy densities and viewing angles (tower vs. satellite)

(Margulis, Liu, and Baldo 2019), sensor installation height and position, and sensor

types (Marcolla and Cescatti 2018). At the sites with the largest intercept values, we

found that an assumed bias in upwelling longwave radiation by only 6-9% would largely

remove the intercept and also reduce the bias between MODIS and plot-scale LST (Fig.

2.6a, Fig. A.6b). A detailed analysis of such bias and potential correction approaches is

beyond the scope of this study. Given that the �t of a linear model without intercept

is statistically questionable in general (Eisenhauer 2003), and the fact that such a �t

resulted in unrealistically low values of ϵ at some sites, we conclude that �tting a model

with intercept is the more robust approach, and that a signi�cant intercept should be used

as a red �ag for the utility of the data for estimation of plot-scale LST. Additionally, the

uncertainty in ϵplot values obtained using a regression model with intercept nearly vanished

in comparison to the uncertainty resulting from a regression model without intercept (see

Fig. A.6a).

Note that the �uxes observed at ECS are representative of the composite signal from

both, soil and vegetation, which typically have di�erent ranges of surface temperatures

and emissivities (Jin and Liang 2006). The ϵ of soil strongly depends on soil moisture

content (Mira et al. 2007), whereas the ϵ of a canopy depends on its structural attributes

and leaf area index, the latter of which can vary strongly at the seasonal scale (Chen 2015).

For example, the laboratory-measured directional ϵ for various canopy elements (bark,

leaf and its arrangement, stem wood) ranged between 0.9 to 1 at the YF (Vishnevetsky

et al. 2019). Laboratory measurements of thermal infrared re�ectance spectra suggest

that the ϵ uncertainty due to structural unknowns, such as leaf orientation, is more

signi�cant than the di�erences in leaf component emissivity among plant species (Snyder

et al. 1998). Consequently, it is clear that the ϵ of a surface is a function of many factors

and a detailed analysis of all these factors is out of scope of the present study. Derivation

of landscape-scale broadband emissivity (ϵMODIS) from narrowband spectral emissivity

is a �rst-order approximation for capturing the integrated e�ects of land cover from

MODIS spectral bands (Jin and Liang 2006), whereas the derivation of ϵplot from EC �ux

data provides an independent alternative for the estimation of e�ective plot-scale ϵ. Our

�nding that inclusion of an intercept in the H vs ∆T relationship when estimating ϵplot
signi�cantly reduces uncertainty in ϵplot while increasing uncertainty in ∆T suggests that

this method could be used for reliable estimates of e�ective ϵplot within the radiometer

footprint even in the presence of a footprint mismatch between the radiometric and H

measurements. The approach could also be extended to urban settings if reliable EC
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measurements are available and anthropogenic heat components are known. Although

the e�ects of footprint mismatch between radiometric and EC measurements could be

large in such a heterogeneous setting, ϵplot estimation based on H vs ∆T with intercept

could provide a robust estimate of e�ective ϵplot, which is important for climate models

simulating urban heat island e�ects (Chakraborty et al. 2021).

In summary, our results reveal that the short equation (Eq. (2.10), neglecting down-

welling longwave radiation) leads to biased estimates of LST and substantially over-

estimated sensitivity of LST to surface emissivity. Therefore, the use of Eq. (2.10) is

not recommended and should be replaced by Eq. (2.6) if downwelling longwave radiation

measurements are available. At some sites, the use of Eq. (2.6) resulted in plot-scale

LST estimates that were far below satellite-derived landscape-scale LST values, and also

inconsistent with plot-scale �ux data (negative surface-air temperature di�erence when

sensible heat �ux is strongly positive). In many previous studies, such bias would have

been removed by slightly lowering surface emissivity (ϵ), but the reduced sensitivity of

Eq. (2.6) to ϵ would require unrealistically low values of ϵ to remove the low-bias in LST.

When estimating plot-scale ϵ values, realistic estimates based on Eq. (2.6) are only pos-

sible at these sites if we include an intercept in the H vs ∆T relationship, but this again

results in very high intercept values (over 200W m−2). Note that high values of intercept

do not necessarily make ϵplot unreliable, they rather suggest poor correspondence between

H and Ts due to footprint mismatch. Hypothesizing that the intercept is a consequence of

a foot print mismatch between the aerodynamic and radiometric measurements, a small

correction in upwelling longwave (6-9%) and subsequent energy balance closure (based

on the Bowen ratio) largely removed the intercept and produced realistic ϵplot values and

self-consistent H vs ∆T plots. This approach also reduced the bias between plot-scale

LST and MODIS LST, although it did not improve the weak correlation between these

LST estimates (Fig. A.5b). In the past, ground-based radiometric measurements have

been used for the validation of the MODIS LST product (Wang, Liang, and Meyers 2008),

whereas here we compared the plot-scale LST with MODIS LST to check its dependency.

The combination of radiometric and aerodynamic measurements for the estimation

of ϵplot and LST provides a quality check on the correspondence between observed �uxes

and temperatures at ECS. The intercept value can be used as a consistency criterion

for observed data (radiometric and aerodynamic measurements) before using them in

combination, as a strong intercept indicates inconsistency between observed sensible heat

�ux and surface-to-air temperature di�erence. Therefore, the proposed method of �t-

ting a linear relation with intercept to H and ∆T has the potential to provide more

reliable benchmark data sets for model evaluation and validation at the ecosystem scale

(plot-scale). The ϵplot estimates could also be used to parameterize climate and weather

prediction models at ecosystem scale, but this was not tested in the present study. Over-

all, the implications of our study are of particular relevance for the research community
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interested in process-based understanding of the diurnal and seasonal feedbacks in soil-

vegetation systems based on observed �uxes.

2.5 Code and data availability

The data and code used for this study is freely available from zenodo.org (https://doi.

org/10.5281/zenodo.6385016)

https://doi.org/10.5281/zenodo.6385016
https://doi.org/10.5281/zenodo.6385016
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Impact of surface heterogeneity on �ux

tower measurements

An edited version of this paper will be submitted to Biogeosciences as:

Thakur, G., Schymanski, S.J., Trebs, I., "Assessing the e�ects of surface heterogeneity

and footprint mismatch on ecosystem-scale observations using a two source energy

balance model"
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3.1 Introduction

Flux tower installed over an ecosystem measures the energy, water, and carbon exchange

between the surface and the atmosphere and the environmental variables (e.g., air temper-

ature, wind speed) are recorded at an hourly timescale. The instrumentation at the �ux

tower sites consists of a radiometer measuring incoming and outgoing solar and infrared

radiation from the ecosystem-surface, an Eddy Covariance System (ECS) measuring the

turbulent exchange of energy (H) and water �uxes (LE), and heat plate placed beneath

the ground (2-20 cm) to measure the ground heat �ux (G). Rnet represents the balance

between incoming solar radiation (Rsdwn), and the radiation from the sky (Rldwn) and

outgoing solar radiation (Rsref , Rlref , Rlup). By idealizing the ecosystem as homogeneous

surface and applying the law of energy conservation, the net solar radiation received by

the surface (Rnet) equals the sum of H, LE, and G which is termed as surface energy

balance as shown in Eq. (3.1)

Rnet = H + LE +G (3.1)

H (W m−2) is the sensible heat �ux; it represents the energy transfer between the land

surface and the atmosphere due to convection and conduction. LE (W m−2) is the latent

heat �ux; it is the energy removed by the land surface when water evaporates from the

surface into the atmosphere (evaporation/transpiration). G (W m−2) is the ground heat

�ux; it refers to heat exchange from the Earth's surface into the soil calculated using soil

heat conductivity and the vertical gradient of air-temperature (Buchan 2000; Sánchez

et al. 2008). EC measurements (H, LE) are averaged over a typically larger area and

have a footprint of several hundreds of meters. In contrast, a radiometer measures the

incoming and outgoing solar radiation (used to estimate Rnet) has a footprint of a tenth

of a meter (hemispherical footprint). The footprint of the G measuring plate is in meters

(Wohlfahrt and Tasser 2015). The footprint represents the spatial extent from which

the measured �uxes originate and describes the region over which the �uxes are repre-

sentative and can be attributed to the measurements taken at a particular site (Schmid

2002). The radiometric footprint is determined by the size of its hemispherical �eld of

view (FOV ). In contrast, the EC footprint is determined by the characteristics of the

atmospheric turbulence, which typically covers a larger area than the radiometeric foot-

print (Ho�mann et al. 2016). Thus, any variations in land-cover, canopy structure, soil

types, etc., within the radiometer FOV w.r.t the EC footprint can lead to spatial repre-

sentativeness issues and a mismatch in footprints, which implies the spatial composition

representing Rnet is di�erent from the H and LE (Wohlfahrt, Klumpp, and Soussana

2011). The footprint of an EC system depends on the installation height (Zm), surface

roughness, and atmospheric stability. In contrast, the radiometric footprint depends on
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the installation height and the area the radiometr sees (Schmid 1994; Göckede, Rebmann,

and Foken 2004). It has been reported that almost 100% of the hemispherical radiometric

signal originates from within a diameter of two to �ve times of radiometer installation

heights (installed on a tower, looking vertically up and down), while about 50�80% of the

turbulent �ux signal is generated within a distance of about twenty times the installation

heights (Marcolla and Cescatti 2018). Flux tower observation represents the combined

vegetation and ground (soil, dry leaves) surface �uxes, and the observed H is related to

the average surface-to-air temperature di�erence using Eq. (3.2) (Lhomme 1991).

H =
ρCp
rah

(Ts − Ta) (3.2)

rah (m s−1) is the aerodynamic resistance that the ecosystem-surface provides to the heat

exchange, Ta (K) is the average air temperature measured above the surface (at Zm) and

Ts (K) is the average surface temperature of the ecosystem-surface estimated using Eq.

(3.3)(Thakur et al. 2022).

Ts =
4

√
Rldwn

σ
− Rldwn

ϵσ
+
Rlup

ϵσ
(3.3)

Rldwn, Rlup is the observed downwelling and upwelling longwave radiation, and ϵ is the

e�ective emissivity of the ecosystem-surface composed of ground and vegetation. The

ecosystem- surface comprise of ground (ϵs) and vegetation (ϵv). ϵs depends mainly on

the soil moisture, soil organic matter and ϵv depends on the vegetation type, vegetation

density, leaf orientations, etc. (Guillevic et al. 2003) (Valayamkunnath et al. 2018). In

Chapter 2, we combined observed H with the estimated Ts− Ta using a linear regression

model at lux tower sites to estimate the monthly value of ecosystem-scale ϵ (ϵopt) found

that to represent H vs ∆T we need to consider intercept meaning Eq. (3.2) was replaced

by Eq. (3.4) (Thakur et al. 2022).

H = m(Ts − Ta) + c (3.4)

The slope (m) of Eq. (3.4) can be used to estimate canopy-scale total resistance to H

as explained in Chapter 4. rah plays a crucial role in understanding the functional re-

sponse of climate change to the exchange of H and LE between the Earth's surface and

the atmosphere. It provides important insights into how changes in the Earth's surface

properties, such as changes in vegetation cover, a�ect the exchange of energy and water

vapor with the atmosphere (Shaver et al. 2000). There exist multitude of semi-empirical

parameterisations to estimate rah using canopy height, shear wind speed (Verma, Kim,

and Clement 1989), wind speed (Allen et al. 1998), and atmospheric stability (Thom

et al. 1975). c(W m−2) is the intercept of the regression (between H vs Ts − Ta), i.e.,
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Figure 3.1: Conceptual representation of the footprint mismatch between the EC measurement
system and the radiometers. Fv,ec is the fractional vegetation cover and contributing to EC
measurements and Fv,rad is the fractional vegetation seen by the radiometer. The red dotted
line shows the radiometeric footprint and the blue dotted line is showing the ECS footprint.
Zm is the height above the ground where radiometers are placed and Zh is the average canopy
height at the study site. It means for a heterogeneous ecosystem, the vegetation fraction seen
by the radiometer (Fv,rad) contributing to Rnet, Rlup, Rldwn can be di�erent than the vegetation
fraction (Fv,ec) contributing to the measurement of turbulent �uxes (H,LE). The heat plate
measuring G is shown by black box located within the radiometric footprint

H contribution from the ground or vegetation surface that contributes to the EC mea-

surements but is not accounted by the radiometric measurement (radiometer's FOV ). A

conceptual representation of small-scale spatial heterogeneity at the �ux tower site re-

sulting in c as shown by Eq. (3.4) is shown in Fig. 3.1. Understanding the consequences

of spatial surface heterogeneity is crucial to correctly interpret �ux tower observations

and derive meaningful insights from them. These measurements are also used to validate

and calibrate land surface models (LSM)(Chu et al. 2021) and diagnose process represen-

tations in surface energy balance models (SEB) models (Butterworth et al. 2021). SEB

models evaluate the functional response of land -cover types to energy or water exchange

under changing environments by mathematically representing the physical processes such

as radiation, convection, conduction, and evaporation. The model parameterizes Rnet by

using downwelling solar radiation, ϵ and surface albedo (α). H is represented using the

�ux-gradient relationship as shown in Eq. (3.2), rah is parameterized using semi-empirical

formulations and Ts values are obtained by remote sensing measurement (Lhomme 1991)

(Su 2002). G is parameterized using the soil heat conduction equation, which describes

the transfer of heat through the soil using thermal conductivity, volumetric heat capacity
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and, the temperature gradient within the soil layers (Corbari et al. 2010; Su 2002) iter-

ated over time such that Eq. (3.1) is satis�ed and most of the time LE is estimated as

a residual (Choudhury, Reginato, and Idso 1986a). The model performance is evaluated

by comparing steady state estimates of SEB components to the observations of H, LE

and G.

A common challenge in comparing modelled SEB component to the measured �uxes

is the non-closure of the energy balance (EB) at the �ux tower sites, also known as the

energy balance closure problem. Energy balance closure, a formulation of the �rst law of

thermodynamics, requires that the sum of the energy �uxes (H, LE and G) should equal

the net available energy (Rnet) for a given surface. However, in practice, the measured

turbulent �uxes (H, LE) and soil heat �ux (G) often fall short of balancing the available

energy (Rnet), leading to the non-closure of the energy balance equation (Wohlfahrt et

al. 2009). Primary method to quantify energy imbalance involves deriving linear regres-

sion coe�cients, speci�cally the slope and intercept using ordinary least square (OLS)

relationship between the half hourly estimates of the dependent �ux variables (H+LE)

against independent net available energy (Rnet-G) (Wilson et al. 2002; Kidston et al.

2010). The slope of the energy balance shows the ratio of incoming (Rnet) and outgoing

energy (H+LE+G) at a �ux tower site and in an ideal condition should be one with

negligible intercept (Wilson et al. 2002). For most of the time the slope is smaller than

one (between 0.7 to 1) meaning the outgoing �uxes are less than the incoming radiation.

Numerous studies worldwide indicate that the turbulent �uxes (H, LE) are generally

underestimated when the turbulence is low as smaller eddies are unable to reach the

eddy-covariance measurement system (Mauder, Foken, and Cuxart 2020) resulting in un-

der estimation of H and LE. Thus, the observed turbulent �uxes (H,LE) are corrected

using bowen ratio energy balance closure scheme (Wilson et al. 2002; Kidston et al. 2010)

such that Eq. (3.1) is satis�ed and the slope of energy balance regression is one. Another

reason for the non-closure of energy balance is overestimation of the net available energy

(Rnet) and primary reason for this is the mismatch between the instruments measuring

incoming solar energy (Rnet) and the ECS measuring turbulent �uxes (Wilson et al. 2002;

Kidston et al. 2010). Quantifying the component of imbalance due to footprint mismatch

using measurements is challenging because the impacts of various factors are combined

and represented together in the measurements however, more attention must be given

to the energy imbalance resulting from footprint mismatch. In chapter 2 (Thakur et al.

2022), we found that only by considering the footprint mismtach the intercept of H vs

∆T can be explained. Here we investigate in how far a footprint mismatch can indeed

cause an intercept in the H vs. Ts − Ta and H + LE vs. Rn − G using a two source

energy balance model (TSEB).

1. Is there a relation between slope and intercept of H vs ∆T and the energy imbal-

ance?
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2. Can footprint mismatch between radiometer and eddy covariance tower can lead to

a positive intercept in H vs ∆T and signi�cant energy imbalance?

3. What is the best approach for achieving a consistent H vs ∆T plot in the presence

of footprint mismatch?

3.2 Methods

The �ux tower sites where the study was conducted are described in Table. 3.1.

3.2.1 H vs ∆T regression and energy imbalance regression

The half-hourly daytime observations of the �ux tower measurement are used, which

include sensible heat (H), Latent heat (LE), ground heat �ux (G) upwelling longwave

(Rlup), downwelling longwave (Rldwn), air temperature (Ta), wind speed ( Uz) and shear

wind speed (U∗) is used. The data �ltering criteria was Rnet > 25 Wm−2, Uz > 2 ms−1,

U∗ > 0.2 (Holmes et al. 2009). For the regression between H and∆T, we used measured H

and Ta, whereas Ts was deduced from observed Rlup and Rldwn and prescribed emissivity

values, taken either from MODIS, or by �tting to achieve a maximum R2 between H and

∆T. The ϵ value at which RMSE is minimum and R2 > 0.5 is called as ϵopt. The robust

linear regression between H and Ts − Ta is performed as shown in Eq. (3.5) (Thakur

et al. 2022) using a python package scipy. stats.linregress().

H = m(Ts − Ta) + c (3.5)

The intercept (c) corresponds to the H measured by the EC system when the surface

contributing to the radiometer readings has ∆T=0, i.e. H=0. c represents the H from

the fraction of vegetation or ground which is not seen by the radiometer but contributes

to the H measured by the EC measurement system. We hypothesise that the value of c

is positive if the radiometer sees a higher vegetation fraction than that contributing to

the EC �uxes. To quantify the strength and direction of the energy imbalance and to

interpret how c from Eq. (3.5) relates to the imbalance (cimb, mimb) a linear regression

model was applied, as shown in Eq. (3.6)

H + LE = mimb(Rnet −G) + cimb (3.6)

The EC measurement system measures H and LE within the same footprint, while the

footprint of G is smaller but always contained within the radiometer footprint. The

value of mimb in Eq. (3.6) is consistently less than one due to non closure of energy

balance at EC sites (Foken 2008). The intercept in Eq. (3.6) (cimb) is the H+LE when
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Table 3.1: Description of study sites
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Rnet−G = 0. Considering that Rnet−G is measured by the radiometric instruments and

ground heat �ux plates, representing the radiometer footprint, whereas H and LE stems

from the EC footprint, an non-zero intercept can indicate a footprint mismatch between

these measurements. Intecept c in Eq. (3.5) corresponds to the H measured by the

ECS when ∆T=0, meaning no measurements by radiometer. To determine if there is a

consistent pattern between the intercepts in Eq. (3.6) and Eq. (3.5), both of which could

indicate a footprint mismatch between the radiometric and turbulent �ux measurements,

we calculated the regressions for individual months at di�erent study sites.

Rnet = Rsdwn +Rldwn −Rsref −Rlref −Rlem (3.7)

3.2.2 Numerical two-source model

A physically based two-source energy balance model (TSEB) was formulated to test the

footprint mismatch hypothesis. This model was derived from the leaf model developed

by Schymanski et al. (Schymanski, Or, and Zwieniecki 2013), with equations and co-

e�cients adapted for a vegetation canopy and the ground surface (soil or dried leaves).

Meteorological data from an EC station were used as input and the surface energy balance

equation was solved. The model estimates steady-state sensible heat �ux (H), latent heat

�ux (LE), and longwave radiation �ux (Rlup) from both ground and vegetation surfaces.

These simulated �uxes are then combined to simulate the footprint mismatch between

the radiometer and the eddy covariance system within the two-source energy balance

framework as explained below.

Vegetation surface energy balance model

The absorbed shortwave solar radiation is partitioned by the vegetation into sensible

heat �ux by the vegetation (Hveg), latent heat �ux by the vegetation (LEveg), and the

upwelling longwave from the vegetation surface (Rlup,veg) as shown in Eq. (3.8).

Rsdwn +Rldwn −Rsref −Rlref = Hveg + LEveg +Rlem (3.8)

Rsdwn is the observed downwelling shortwave radiation, Rsref is the re�ected shortwave

radiation, Rlref is the re�ected longwave radiation, Rlem is the emitted longwave radiation.

Hveg is parameterized using vegetation temperature (Tveg), observed air temperature (

Ta) (K) and aerodynamic resistance (rah,veg) o�ered by the vegetation surface as shown

in Eq. (3.9).

Hveg =
ρCp
rah,veg

(Tveg − Ta) (3.9)

Here, Cp (J kg−1 K−1) is the speci�c heat capacity of the air, ρ (kg m−3) is the air

density.rah,veg is parameterized using formulation by Allen et al. (Allen et al. 1998) as
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shown in Eq. (3.10)

rah,veg =
log

(
Zh−d
Zoh

)
log

(
Zm−d
Zom

)
k2Uz

(3.10)

Zm is the measurement height, Zh is the canopy height, d is the displacement height,

Zom is the roughness length for momentum exchange, Zoh is the roughness length of

heat exchange, estimated using the rule of thumb d = 0.67Zh, Zom = 0.123Zh, Zoh =

0.1Zom (Thom et al. 1975). The exchange of LE was parameterized as a function of the

concentration of water vapor inside the leaf (cw,veg, mol m−3) and in the free air (cwa,

mol m−3) as shown in Eq. (3.11).

LEveg =
ρCp
rcw,veg

(cw,veg − cwa) (3.11)

cw,veg is a function of Tveg as shown in Eq. (3.12), rcw,veg is the e�ective resistance of the

vegetation to the exchange of water.

cw,veg =
Pwl

RmolTveg
(3.12)

Pwl is the saturation vapour pressure at the leaf temperature (Schymanski, Or, and

Zwieniecki 2013).The vegetation resistance to the exchange of water (rcw,veg) is de�ned

as the sum of rah,veg and stomatal resistance (rs). For simplicity, rs was assumed to be

constant, at 100 m s−1, which is the standard resistance for a single leaf proposed for a

grass reference crop by Allen et al. (1998) (Allen et al. 1998). The stomatal resistance

for the canopy (rsc) was calculated by dividing the stomatal resistance of a single leaf

(rs) by leaf area index (LAI).

rcw,veg = rah,veg + rsc (3.13)

rcw,veg =
log

(
Zh−d
Zoh

)
log

(
Zm−d
Zom

)
k2Uz

+ rsc (3.14)

Rlup,veg is calculated using Eq. (3.15), the ϵv was prescribed as 0.97 and observed Rldwn

value was given as input

Rlup,veg = RldwnFv,rad (+1− ϵv) + ϵvFv,radσT
4
veg (3.15)

As shown in Eq. Eq. (3.15), Rldwn is the downwelling longwave observed by the radiome-

ter. The observed meteorological variables used as input are Uz, Ta. Canopy structural

properties (as, ash, Ll, Zh, LAI), the stomatal resistance (rs) are given as an input to

calculate the steady state energy balance (Eq. 3.8) for each observed input in time we

get Tveg, Hveg,Eveg,Rlup,veg
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Ground surface energy balance model

The ground-surface energy balance model is represented in Eq. (3.16), the absorbed

shortwave solar radiation (Rsdwn −Rsref ) is partitioned into Hgr, LEgr, Rgr and G.

Rsdwn +Rldwn −Rsref −Rlref = Hgr + LEgr +Rlem,gr +G (3.16)

For the ease of modelling, we considered G = 0. Ground surface heat �ux (Hgr), is simu-

lated similar to that for vegetation (Eq. 3.10), but using the ground surface temperature

(Tgr) and ground resistance to sensible heat �ux (rgr) as shown in Eq. (3.17):

Hgr =
ρCp
rgr

(Tgr − Ta) (3.17)

rgr is parameterized using wind speed, air temperature at a height two meters above the

ground surface, Ta,2m, and Tsoil is the ground temperature measured by the soil sensor at

eddy-covaiance sites (Kustas et al. 2016).

rgr =
1

c
(
Tgr − Ta,2m

)0.33
+ bU2

(3.18)

Ta,2m, Uz,2m is the air temperature and wind speed at two meters above the soil surface,

and Eq. (3.18) was substituted in Eq. (3.17) to estimate Hgr. For simplicity, we assumed

the evaporation from ground to be zero (Egr = 0). The Rlup,gr is de�ned as a function of

Tgr, emissivity of the ground surface (ϵs) and observed Rldwn. The prescribed value of ϵs
was 0.93.

Rlup,gr = Rldwn (1− ϵs) + ϵsσT
4
gr (3.19)

Eq. (3.17) are substituted in Eq. (3.16) and the energy balance equation is solved until

steady state is reached and for each observed input in time we get Tgr, Hgr,Rlup,gras

shown in Eq. (3.16).

Combining ground and vegetation: Two-source model accounting for footprint

mismatch

The vegetation and ground energy balance model is combined to represent the footprint

mismatch and their respective contribution to the eddy covariance and radiometric foot-

prints. Given that the radiometer has a much smaller footprint than the eddy covariance

tower, there is a possibility that the fraction of vegetation in the radiometer footprint

(Fv,rad) is di�erent to that in the footprint of the eddy-covariance tower (Fv,ec) Consid-

ering the one-dimensional description of energy partitioning for sparse canopy assuming

horizontal uniformity (Shuttleworth and Wallace 1985), the total sensible heat �ux is

represented as the sum of sensible heat �uxes from the ground and vegetation, scaled by
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the vegetated fraction in the EC footprint (Eq. 3.20):

Htot = Fv,ecHveg + (1− Fv,ec)Hgr (3.20)

Similarly, the total upwellling longwave radiation is computed as the sum of contributions

by the vegetation and the ground, scaled by the vegetated fraction seen by the radiometer

(Eq. 3.21):

Rlup,tot = Fv,radRlup,veg + (1− Fv,rad)Rlup,gr (3.21)

Rlup,tot, Rlin are used to estimate the average temperature of the ground-vegetation com-

posite surface (Ts,avg), the ϵ range was de�ned between (0.998 to 0.7) such that the RMSE

between Htot and Ts,avg−Ta regression was minimum. Average temperature of the ground
and vegetation surface (Ts,avg) using the Rlup,tot was estimated Eq. 3.22

Ts,avg =
4

√
Rldwn

σ
− Rldwn

ϵσ
+
Rlup,tot

ϵσ
(3.22)

3.3 Results

The details of the method can be found in (Thakur et al. 2022). The energy imbalance

(∆E) of each data point was estimated using Eq. (3.23).

∆E = Rsdwn −Rsref − (Htot + LEtot +Rlup,tot) (3.23)

3.3.1 Intercept between H vs. ∆T and Energy balance closure

(EBC) using observation

To investigate the correspondence between the intercept (c) of the H vs Ts−Ta regression
and energy imbalance,the intercept (cimb) and slope (mimb) of the H+LE vs. Rn − G

regression (Eq. (??)) is plotted. In Fig. 3.2a produces a high intercept value for H vs.

DT, such that DT is negative throughout the dataset, using an optimized emissivity (ϵopt)

of 0.948. The energy balance regression plot (3.2 at Litch�eld (LF). In Fig. 3.2a, a high

intercept value for H with a negative surface temperature di�erence and an optimized

emissivity (ϵopt) of 0.948 is observed. In Fig. 3.2b shows the energy balance regression

plot with mimb = 0.715 and cimb = 29 Wm−2, which is 3% of H+LE. These analyses were

extended to all study sites, and the monthly values of the two intercepts (cimb and c) were

estimated over three years at each site, as illustrated in the box plot in Fig. 3.2c. At the

TUM, AR, DU, YF, and SP, the box plots shows that the intercept of the energy balance

regression (black boxes) is generally higher than that of the H vs. Ts − Ta regression

(blue boxes). The median value of cimb across di�erent sites ranged from -1.33 to 68.87

Wm−2, while c varied from -22 to 285Wm−2. In Fig. 3.2c shows no clear correspondence
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between the median values of c (blue dotted lines) and cimb (black dotted lines). The

slope of the energy balance closure (mimb) from Equation ?? and the intercept in H vs.

∆T is also plotted as shown in Fig. 3.2d, with no discernible pattern emerging. For most

sites, the slope (m) was greater than 0.7, as shown in Fig. 3.2d. The average mimb was

highest for the AR site at approximately 0.85 (black box in Fig. 3.2d), with a relatively

small c value (blue box in Fig. 3.2d).

(a) (b)

(c) (d)

Figure 3.2: Intercept plot (a) monthly linear regression for observed H and ∆T estimated using
ϵopt as given in the plot title along with the year and month;(b) monthly linear regression for
observed H+LE and Rnet−G the year and month is shown in the title of the �gure; (c) box-plot
showing monthly c (Eq.3.5), cimb (Eq.3.6) obtained using a linear regression as shown in Fig.
3.2a,b is calculated for three years of data across the study sites (d) box-plot shown monthly c
and mimb as shown in Eq. (3.6) for three years of data across the study sites

3.3.2 Simulation of footprint mismatch using TSEB model

In this section, we are presenting the result for one site (AS) where the C and Cimb

values are similar Fig. 3.2a presents an exemplary plot for one month at the AS, showing

the relationship between measured sensible heat �ux (H) and the estimated temperature

di�erence (Ts − Ta), where Ts is calculated using the optimum emissivity and observed

energy balance regression is shown in Fig. B.1. TSEB model was applied and the result

simulating foot-print mismatch between the radiometer (Fv,rad) and the eddy covariance
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tower (Fv,ec) in shown in Fig. 3.3 b,c,d. Fluxes were simulated under two conditions,

(a) no footprint mismatch, meaning that both the radiometer and the EC system see

the same vegetated fractions (Fv,rad = Fv,ec), Fig.3.3b), and (b) maximum mismatch the

radiometer sees only vegetation (Fv,rad=1), while the EC footprint contains only 50%

vegetation (Fv,ec = 0.5). In case of no mismatch, a negative intercept is seen with a

magnitude equal to 10% of maximum H (Htot), whereas, for maximum mismatch, the

value of c is almost 50% of the maximun H, indicating the impact of footprint mismatch.

In Fig. 3.3d, an attempt was made to reduce the intercept resulting from the maximum

mismatch simulation by optimising emissivity. The intercept value reduced from from

231 to 104 W m−2 for an emissivity value of 0.79. This adjustment improved the R2

and RMSE without signi�cantly altering the slope, as shown by comparing Fig. 3.3b and

3.3c.

(a) (b)

(c) (d)

Figure 3.3: Comparison of H vs. ∆T plot using observed values and the TSEB model for 2017/01
at AS. (a) Observed values of H, where Ta is used and Ts is estimated using observed Rlup and
ϵopt (the value is shown in the plot title); (b) Simulated H vs. ∆T assuming no mismatch
(Fv,rad = Fv,ec); (c) Simulated H vs. ∆T for maximum mismatch (Fv,ec = 0.5, Fv,rad = 1)
using average emissivity; and (d) Simulated H vs. ∆T for maximum mismatch using optimized
emissivity (ϵopt = 0.794). For all simulations, Fv,ec = 0.5, where Htot refers to the sum of Hveg

+ Hgr, while Ts,avg was calculated based on the sum of simulated upwelling longwave radiation
from the vegetation and the ground hypothetically detected by the radiometer based on Fv,rad.
The color bar represents the energy imbalance of each data point.
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3.3.3 TSEB: correcting consequence of footprint mismatch by

correcting Rlup

To correct the intercept in H vs. ∆T resulting from maximum mismatch, a correction

was applied to upwelling longwave �ux (Rlup) and it was found that by applying a 10%

correction to Rlup, the intercept reduced from 231 to 2.34 W m−2 (99% reduction in

intercept),correction in Rlup reduces the slope by 22% and R2 by 2.1% (Fig. 3.4a) in

comparison to Fig. 3.3c. The slope of energy imbalance improved from 0.842 (Energy

imbalance regression for Fig. 3.3c (shown in SI) to 0.87, as shown in the Fig. 3.4b.

(a) (b)

(c)

Figure 3.4: Comparison of H vs. Ts−Ta plot using observed values and TSEB model for 2017/01
at AS (a) observed value of H, Ta is used and Ts is estimated using observed Rlup and ϵopt the
value is shown in the plot title; (b) H in the y-axis is the Htot simulated from the TSEB model,
Ta is the observed air temperature and Ts is estimated using Rlout,tot and ϵopt for no mismatch
condition (Fv,ec = Fv,rad); (c) reproduction of (b) and the Bowen ratio closure has been applied.

3.3.4 Comparison of average surface (ground and vegetation)

temperatures using TSEB

In the previous section, it was demonstrated that correcting Rlup, rather than optimiz-

ing emissivity, is a more e�ective method for removing the positive intercept caused

by footprint mismatch. Here we investigate which approach (optimizing emissivity or

Rlup correction) is best to improve the e�ects of footprint mismatch for representing

realistic surface to air temperature di�erence. The average surface temperature of the
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vegetation-ground surface (Ts,v) with the compared with the Ts,avg, estimated using the

model-simulated Rlup,tot and ϵavg. As shown in Fig. 3.5a the R2 is low between the average

temperature (TSEB) of the surface and the radiative temperature (TSEB) . The R2 im-

proves slightly in Fig. 3.5b by optimising emissivity (ϵopt) and by correcting Rlup by 55%

as shown in Fig. 3.5c, R2 increases to 0.25 and this also improves the energy balance clo-

sure, as detailed in the supplementary information (see Fig. SI).These results underscore

the importance of addressing footprint mismatch through Rlup correction rather than

emissivity optimization, thereby ensuring more accurate surface temperature estimations

and better energy balance closure.

(a) (b)

(c) (d)

Figure 3.5: Comparison of ecosystem-scale surface-to-air temperature di�erence estimated using
di�erent TSEB model for 2017/01 at AS,Ts,v is obtained by averaging the soil and vegetation
temperature obtained using the two source model (Tsoil(1 − Fv,rad) + Tveg(Fv,rad) and Ts,avg is
obtained using ϵ values and Rlup,totas shown in Eq. (3.22) (a)using ϵavg = 0.95 for mimimum-
mismatch (b)using ϵavg = 0.97 for max-mismatch (c) using ϵopt = 0.786 for max-mismatch, (b)
using ϵavg = 0.97 for max-mismatch and correcting Rlup by 10% of of its value which lead to
minimum +ve intercept in Fig. 3.4a.

3.4 Discussion

The analysis of the monthly intercepts of the H vs. ∆T plot across the study sites, in

conjunction with the energy imbalance slope and intercept, reveals no consistent pattern.
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The high positive intercept values observed at HS and LF suggest the radiometer under-

estimates the upwelling longwave radiation (Rlup) at these sites. This could be the case

if the radiometer predominantly captures the cooler vegetation surface, while the eddy

covariance tower's footprint observes the warmer ground surface. To investigate this

scenario in the �eld, the TSEB model was employed to simulate conditions where the

radiometer views only vegetation (Fv,rad = 1), resulting in Rlup contributions primarily

from the vegetation. Conversely, with 50% vegetation present within the ECS footprint

(Fv,ec = 0.5), H from TSEB combines 50% vegetation and 50% soil. This simulation

resulted in an intercept value of approximately 50% of the maximum H measured by

TSEB, indicating clearly that when the radiometer sees more vegetation than the EC

tower, a positive value of intercept is seen. The H vs ∆T intercept value for one year

of measurement (2017) is shown in SI, emphasizing the importance of acknowledging

footprint mismatch before combining the radiometric and aerodynamic measurement.

The intercept value decreases when optimizing emissivity; however, the optimized

emissivity is signi�cantly lower (0.786) than the emissivity used (0.97) for parameterizing

the vegetation surface in TSEB. This discrepancy indicates that optimizing emissivity

alone cannot accurately retrieve the accurate surface emissivity, showing its ine�ectiveness

in obtaining a consistent H vs ∆T relationship in cases of footprint mismatch. The

model simulation also indicates that footprint mismatch results in an energy imbalance,

evidenced by a slope smaller than one and a positive intercept value in the energy balance

(Htot + LEtot = Rnet −G) regression. To achieve a consistent H vs ∆T plot by removing

the intercept resulting from the footprint mismatch, an absolute correction in Rlup, was

applied in Chapter 2 (Thakur et al. 2022). In this chapter we found that applying a

relative correction in Rlup reduced the intercept close to zero for H vs ∆T and improved

the slope (mimb) of the energy imbalance curve by 2.5%, though the intercept increased by

1.6%. We also saw that for maximum footprint mismatch we got an energy imbalance of

16% in TSEB (m of energy balance changes from 1 for no mismatch to 0.84 for maximum

mismatch) and approximately 10% correction in Rlup partially corrected the resulting

energy imbalance, improving the slope by 2.5% and increasing the intercept from 2.4%

to 4%. To get a clear picture about the impact of Rlup correction on energy imbalance,

the average imbalance was estimated for the whole month and it was found that with

correction the average imbalance decreases from 72 to 47 Wm2. Relative correction in

Rlup also improved the correspondance between the temperature of the soil-vegetation

surface with the Rlup,tot derived temperature (compare Fig. 3.5c,d).

Surface heterogeneity has been recognized as a potential cause for the lack of energy

balance closure (Wohlfahrt, Klumpp, and Soussana 2011) and it has been suggested

that a footprint mismatch could result in a positive intercept of H vs ∆T (Thakur et al.

2022). Quantifying the impact of surface heterogeneity using measurements is challenging

due to the complex interactions between spatial heterogeneity and other processes (e.g.,
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advection, atmospheric stability) (Masseroni, Corbari, and Mancini 2014). The role of

radiometric measurements in energy imbalance is not explored most of the time and

energy imbalance is mostly associated with the underestimation of H and LE (eddies

not reaching ECS) and therefore, Bowen ratio closure is applied, which corrects H and

LE to close the resulting energy imbalance. One study by Kidston et.al (Kidston et

al. 2010) discusses the overestimation of net radiation (Rlup underestimation can be one

reason) due to systematic heterogeneity between radiometric measurements and the eddy

covariance measurements footprint. In this study the mismatch in footprint was caused

by the inclusion of the tower with low emissivity material (e.g., aluminium) resulting

in overestimation of Rnet measurements at a pine forest. Using TSEB simulations, our

work shows that footprint mismatch creates a bias in the Rlup representation (so bias in

Rlup), resulting in an inconsistent H vs ∆T relationship. In the literature, an intercept

in energy balance was supposed to be related to systematic errors due to the di�erent

source location of Rnet vs H and LE (Wilson et al. 2002),(Kidston et al. 2010) and it does

not give a clear picture of the result of footprint mismatch on energy balance closure.

Energy imbalance persists at real sites across all seasons and hours. The regression

slope is typically closer to one during the warm season due to enhanced exchange. A

strong correlation is found between the closure and friction velocity (U∗), atmospheric

stability, and time of day (Barr et al. 2006). The solar angle changes throughout the day,

thus a�ecting the radiometric footprint and the correspondence between the aerodynamic

and radiometric footprints depending on the site characteristics, instrumentation, and

tower geometry (Kidston et al. 2010). The presence of a positive intercept in the H vs

∆T plot could indicate footprint mismatch between the radiometric and aerodynamic

footprints (Thakur et al. 2022) however, sensor calibration issues leading leading to an

underestimation. Minimizing intercept by correcting for Rlup accounts for the bias due to

footprint mismatch.However, this correction only slightly improves the energy imbalance.

Therefore, applying the Bowen ratio closure in addition to the Rlup correction is necessary

to achieve a closed energy balance.

3.5 Conclusions

When plot-scale emissivity estimation by combining radiometric and aerodynamic mea-

surements fails due to a footprint mismatch between the radiometer and the eddy covari-

ance tower, compensating for the bias in re�ected longwave radiation (Rlup) can help cor-

recting retrievals of aurface temperature. In such cases, the Bowen ratio closure method,

combined with a three-step process we propose, is practical and e�ective:

1. In the absence of plot-scale emissivity data for �ux-tower sites, use MODIS emis-

sivity (ϵMOD) to generate H vs. ∆T plots.
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2. In presence of a positive intercept in the H vs ∆T plot, correct the upwelling

longwave radiation (Rlup) by applying a relative percentage adjustment to eliminate

intercept (close to zero).

3. Once the footprint mismatch is resolved and we have consistent H vs ∆T plots ,

apply the Bowen ratio closure method to close the energy imbalance (due to H and

LE underestimation).

By following the proposed three-step process, a consistent H vs ∆T plot is obtained

with closed energy imbalance. These results can then be used to validate �uxes from

land-surface models, potentially giving a fresh perspective to understand and interpret

the �ux tower measurements. The proposed methodology represents a novel approach

to testing the hypothesis regarding the impact of footprint mismatch on H vs ∆T plots

and energy imbalance. It o�ers a practical solution for correcting footprint mismatch

leading to bias in surface temperature which additionally improves the energy balance

closure. By adopting this procedure, researchers can enhance the consistency of results

by accurately combining �uxes. This represents a signi�cant step forward in understand-

ing the consequences of footprint mismatch and correcting �uxes to accommodate this

discrepancy.

3.6 Code and data availability

The data and code used for this study is freely available from zenodo.org (https://

zenodo.org/records/8015542)

https://zenodo.org/records/8015542
https://zenodo.org/records/8015542


Chapter 4

Ecosystem resistance to energy & water

exchange: quanti�cation & prediction

An edited version of this paper will be submitted to Biogeosciences as:

Thakur, G., Schymanski, S.J., Mallick, K. et al. "Bridging the gap between the leaf

surface and the canopy air space: Leaf size matters for heat transfer resistance at

canopy-scale".
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4.1 Introduction

Vegetation-atmosphere energy exchange originates predominantly at the leaf-surface where

the net available solar energy (Rnet) is partitioned into sensible (H) and latent heat (LE)

�ux. Here we refer to this energy partitioning as the surface energy balance (SEB). In

analogy to Ohm's law (Boulet et al. 1999), SEB components can be expressed mathemat-

ically using a �ux gradient relationship. Leaf-scale H is driven by the leaf-to-air temper-

ature di�erence and is controlled by the leaf boundary layer resistance to heat exchange

(rlh), which can be parameterized using a �at-plate analogy (for heat exchange) by com-

bining leaf width (Ll) with wind speed (Uz) and other atmospheric properties (Schuepp

1993; Schymanski and Or 2017; Incropera et al. 1996). Similarly, transpiration, which

drives the LE �ux, is driven by the leaf-to-air water vapor gradient and is controlled by

stomatal resistance (biological control) and rlh (McNaughton and Jarvis 1983). The eval-

uation of leaf-scale exchanges is important at the ecosystem-scale (canopy-scale) for both

meteorological forecasting of the atmospheric boundary layer (Raupach and Finnigan

1995; Mauder, Foken, and Cuxart 2020) and water resource management (computation

of evapo-transpiration). The most common approaches to compute evapo-transpiration

at the canopy-scale are based on the Penman-Monteith equation (PM) (Monteith 1965),

which combines the SEB with the �ux gradient approach. Schymanski and Or showed

that the PM equation does not work at the leaf-scale (Schymanski and Or 2017). How-

ever, the model is used widely at the canopy-scale by introducing simpli�cations such as

Rnet dependency on the surface temperature (Ts) (Liu et al. 2020; Mallick et al. 2013).

Commonly, the surface is hereby represented by a 'big-leaf' with appropriate prop-

erties, where a canopy resistance, the equivalent to stomatal resistance at the leaf-scale,

is added to the aerodynamic resistance to water vapor transfer (Sprintsin et al. 2012;

Cuxart and Boone 2020; Bonan et al. 2021). Enormous attention has been devoted to

parametrizing stomatal resistance, which is particularly important when aerodynamic re-

sistance is low (Raupach and Finnigan 1988). Estimates of stomatal resistance used for

parametrization are commonly obtained by inverting the PM equation using measured

evapo-transpiration and presumably known aerodynamic resistance (Raupach and Finni-

gan 1988; Maes et al. 2019). Therefore, errors in quantifying aerodynamic resistance

will propagate into errors in estimated stomatal resistance and associated parameteriza-

tions. As opposed to stomatal resistance, which a�ects water vapor exchange but not

the exchange of sensible heat (Schymanski and Or 2017), the aerodynamic resistance to

water vapor exchange is directly coupled with the resistance to sensible heat (Trebs et al.

2021b). This enables direct estimation of aerodynamic resistance from observed sensible

heat �ux and surface-air temperature di�erences.



4.1. Introduction 53

The measurements of ecosystem-scale exchange by the eddy covariance (EC) towers

in the surface layer give us a unique opportunity to extensively investigate water and

energy exchange controls and their parameterization using �rst principles (�ux gradient

relationship). In the current work, we primarily focus on canopy-atmosphere heat ex-

change and the convective component of the canopy-scale resistance.The �uxes observed

by the EC tower in the surface layer correspond to the surface value (Baldocchi, Law,

and Anthoni 2000). The observed energy �ux (H) is commonly expressed as a function

of canopy surface-to-air temperature di�erence and heat exchange resistance (rah) as in

Eq. (4.1).

H =
ρCp
rah

(Ts − Ta) (4.1)

Here, Cp (J kg−1 K−1) is the speci�c heat capacity of the air, ρ (kg m−3) is the air

density, Ta (K) is the temperature of the air measured at a reference height above the

surface, Ts (K) is the surface temperature of the vegetation canopy obtained using MODIS

(Abdelghani et al. 2008) or by inverting tower-observed longwave radiation (Thakur et

al. 2022) and, rah (m s−1) is the canopy-scale e�ective resistance to the heat exchange.

Commonly, rah is estimated as a function of observed shear velocity (U∗), horizontal wind

speed (Uz), and the roughness lengths obtained using a roughness length parameterization

(RLP) (Cowan 1968; Lettau 1969; Voogt and Oke 1997; Mahrt 1996). The RLP is

used to characterize the drag or resistance to air�ow caused by the roughness of the

surface over which the wind is moving and was initially established for the exchange of

momentum. The bulk formulation for resistance to momentum exchange between surface

and atmosphere is derived using the eddy di�usivity theory. Eddy di�usivity is a measure

of how e�ectively turbulent eddies can transport heat (Kh) or momentum (Km) in the

air column. The theory's mathematical form represents the momentum exchange rate as

a product of Km and the vertical gradient of the wind speed. Following the logarithmic

wind pro�le above a surface, the wind speed at any reference height Z is parameterized

using U∗ and roughness length of momentum (Zom). The logarithmic boundary layer

over a surface with uniformly distributed roughness height,Zh, is displaced by 60-70% of

Zh. This height is called displacement height (d), and the modi�ed roughness length is

Zom + d. The bulk formulation for momentum resistance is estimated by integrating the

resistivity pro�le (raz) between d+Zom and the measurement height Zm as shown in Fig.

4.1. The resistivity to momentum exchange (raz) is the reciprocal of Km estimated using

U∗ and d (Cowan 1968).

The eddy di�usivity theory is extended for the heat exchange by assuming similarity

between resistivity for momentum and heat exchange (Km=Kh) under neutral conditions,

and H is represented as a function of the air temperature gradient and raz is as in Eq.

(4.2).

H =
ρCp
raz(Z)

(−∂T
∂Z

) (4.2)
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(a) (b)

Figure 4.1: Representation of canopy-scale parameterization for heat exchange resistance and
logarithmic wind pro�le (a) representation of vertical and conceptual levels within a vegetation
canopy equipped with an EC tower and radiometer for measuring surface-atmosphere exchange
in the surface layer, Zm is the measurement height, Zh is the canopy height, d is the displacement
height, Zom is the roughness length for momentum exchange, Zoh is the roughness length for
heat exchange, Zohr is the radiometric roughness length of heat transport based on Ts (Voogt
and Grimmond 2000), ram is the resistance to momentum exchange, ra0 is the resistance to
heat exchange using T0, rah is the resistance when Ts is used for the estimation of H, rb is
the di�erence between ra0 and ram, rr is the di�erence between ra0 and rah. For homogeneous
canopy, using rule of thumb, d is ≈ 60− 70% of Zh and Zom is ≈ 10− 13% of Zh and Zoh is ≈
10 − 13% of Zom (using constant KB−1 of 2.3). (b) The mid-day pro�le for Uz using log-law
and raz is shown by blue cross and orange dots, respectively. ram is de�ned as the integral raz
curve between d+ Zom and Zm (Trou�eau et al. 1997), ra0 is the integral between d+ Zoh and
Zm and rah is the curve area d+ Zohr and Zm .

Here, raz(Z) (s m−2) is the resistivity to sensible heat �ux at a given height, Z, see Eq.

(4.29), the bulk formulation for heat exchange resistance is derived by integrating the

raz between heat exchange roughness length (Zoh) (blue dotted lines in Fig. 4.1a) to Zm
(black dotted lines in Fig. 4.1a), and the bulk heat transfer is represented as in Eq. (4.3).

H =
ρCp
ra0

(T0 − Ta) (4.3)

Comparing Eq. (4.3) with Eq. (4.2), we can interpret ra0 as the integral of raz between

measurement height (Ta is measured) and d + Zoh (T0 is measured) (area of the curve

shown by orange dots in Fig. 4.1 between blue and black line), Ta is the air temperature at

Zm, and T0 is the aerodynamic temperature. T0 is assumed as the average air temperature

near the vegetation elements within the canopy, representing the air temperature at a

height d + Zoh above the ground. From various experimental studies it was found that

Zoh ≈ 10 to 13% of Zom. Since the logarithmic wind pro�le only begins at d + Zom, the
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resistance between d+Zom and d+Zoh is given by rb (Fig. 4.1) and the bulk formulation

for ra0 is expressed as a sum of ram and rb (Owen and Thomson 1963; Chamberlain

1968; Thom 1972). rb is parameterized using the observed U∗ and the logarithmic ratio

of Zom and Zoh, often expressed as a dimensionless term KB−1 (Landsberg and Thom

1971; Shaw and Pereira 1982). Note that T0 is not measured, and is usually inverted

from H by satisfying the SEB (Boulet et al. 2012). Thus, T0 and observed Ts are not

similar or equal and the di�erence between them depends mainly on the canopy structure

and vegetation type (Colaizzi et al. 2004). For the direct estimation of ecosystem-scale

H using Eq. (4.1), Ts is required, which is observed widely using remote sensing at

the regional-scale (Norman, Kustas, and Humes 1995). To accommodate the di�erence

between T0 and Ts, an additional resistance rr is added to ra0 to represent rah (Fig.

4.1a). The roughness length is conceptually extended further below d + Zoh upto the

height of the leaves surfaces, contributing to most of the emitting longwave radiation

measured by the radiometers (estimation of Ts). The relevant roughness length is called

radiometric roughness length (Zohr) and rr is de�ned using the logarithmic ratio of Zom
and Zohr (Lhomme, Katerji, and Bertolini 1992; Cahill, Parlange, and Albertson 1997;

Voogt and Grimmond 2000). Note that there are studies which consider T0 is equal to

Ts by modifying KB−1 and for these studies rr = 0, (Zohr = Zoh) (Verma 1989; Rigden,

Li, and Salvucci 2018a).

From the above explanation, it is clear that the existing bulk formulations for heat

exchange resistance, rah is an approximation of the heat exchange process by implying

similarity between eddy di�usivity of momentum and heat (Km = Kh). However, heat

and momentum transfer mechanisms within the vegetation canopy di�er as the leaf- sur-

face's absorption and emission of solar radiation creates a temperature gradient (depend-

ing of the leaves contributing actively to the energy exchange). This makes the extension

of the Ta pro�le within the canopy up to d+Zoh using the similarity theory an unrealistic

assumption for H estimation. Fundamentally H is heat energy transferred between the

surface and air when there is a temperature di�erence (Ts − Ta) and controlled by rah
(Trou�eau et al. 1997); thus, the rah parameterization plays a pivotal role in the modeling

of H and LE. Due to the lack of leaf-surface representation in the existing (big-leaf, rah)

formulation, empirical parameters, e.g., rb and rr are introduced, which also makes the

direct use of �eld measurement di�cult for rah estimation. As the value for rb and rr

depends on Zoh and Zohr, which changes with the land cover characteristics, including

canopy height (Chu et al. 2018), leaf area index (Lu et al. 2009; Yang and Friedl 2003;

Raupach 1994), stem density (Young et al. 2021) and atmospheric stability (Banerjee,

De Roo, and Mauder 2017) and accounting for all these factors, in reality, is challenging.

Previous studies have linked the model de�ciencies in estimating SEB to the inadequate

representation of surface roughness (Meier et al. 2022; Subin, Riley, and Mironov 2012)

as Zoh and Zohr are purely conceptual parameters, and estimating their optimum value
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for a vegetation canopy is di�cult. Studies exist where rb parameterizations were derived

and validated using eddy covariance observation (Knauer et al. 2018; Rigden, Li, and

Salvucci 2018b; Trou�eau et al. 1997). Due to the empirical nature of the parameteriza-

tion, the validity of the formulation is limited only to the speci�c sites. To tackle this,

a non-parametric estimate of rah is desirable that can provide insights for developing a

robust resistance model for canopy-scale heat exchange.

In this chapter, we hypothesize that by coupling eddy di�usivity theory with the

leaf-boundary layer resistance, we can formulate a robust model for canopy-scale heat

exchange.

The objectives of the study are:

1. Infer total canopy-scale heat and momentum transport resistance from eddy covari-

ance measurements.

2. Compare total canopy-scale resistance with existing formulations of ram, ra0, and

rah.

3. Formulate a heat exchange resistance model by coupling vegetation sub-canopy

using leaf-boundary layer resistance to the overhead canopy using eddy di�usivity.

The chapter is arranged as follows: In the section 4.2, we describe the details of

the study sites and the methodology adopted for inferring rah and ram using EC mea-

surements. We also propose a new model of canopy-scale resistance, combining eddy

di�usivity theory with leaf-boundary layer resistance. In Section 4.3, we present the

site-speci�c variation in inferred rah and ram. We also compared inferred resistance with

resistance estimated using established parameterizations from the literature. The insights

gained from the results are discussed inlight of previous �ndings in Section 4.4, and the

conclusions are presented in Section 4.5

4.2 Methods

In this section, we describe in detail the methodology to (i) infer canopy-scale e�ective

resistance to heat and momentum exchange using �ux gradient relationship, (ii) estimate

big-leaf resistance using status quo formulations, (iii) formulate self-consistent canopy-

scale resistance formulations by explicitly considering leaf-canopy boundary layer. Three

years of level-3 half-hourly data with quality �ag zero were downloaded from terrestrial

ecosystem research network (TERN) (Australia's land ecosystem observatory) and inte-

grated carbon observation system (ICOS) for eleven EC sites with good data records,

as shown in Table 4.1. The daytime observation of momentum �ux (M), sensible heat

�ux (H), air temperature (Ta), shear wind velocity (U∗), wind speed (Ws), net radiation
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(Rnet), upwelling longwave (Rlup), downwelling longwave (Rldwn) were used for the anal-

ysis. The criteria used to �lter data for the analysis were Rnet > 25 W m−2, Ws > 2 m

s−1, U∗ > 0.1 m s−1, H > 0 W m−2.

Table 4.1: Description of study sites
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4.2.1 Resistance estimation using �ux-tower observations

Resistance to heat exchange (rah,slope)

For the estimation of rah,slope, in the �rst step, the radiometric surface temperature Ts
is estimated by using Eq. (4.4) with measured longwave radiation (Rlup, Rldwn) and

plot-scale emissivity (ϵ) (Thakur et al. 2022).

Ts =
4

√
Rldwn

σ
− Rldwn

ϵσ
+
Rlup

ϵσ
(4.4)

In Eq. (4.4), ϵ is the e�ective emissivity of the canopy footprint seen by the radiometer

and σ is the Stefan-Boltzmann constant. In the second step, a robust linear regression

model (scipy.stats.linegress version 1.7.0) was applied to the monthly observation of H

and estimated Ts − Ta as in Eq. (4.5) (Thakur et al. 2022).

H = m(Ts − Ta)± c (4.5)

In Eq. (4.5), H is the sensible heat �ux observed by EC tower, m is the monthly slope

between H and ∆T, and depends on the surface characteristics and micro-meteorology

(Lhomme et al. 1988) and, c is the intercept of the linear regression (interpreted as the

H from EC tower footprint which is not seen by the radiometer) (Thakur et al. 2022).

The functional relationship between H vs ∆T was optimized by choosing ϵ such that the

root mean square error (RMSE) between H vs ∆T is minimum by optimizing Ts. The ϵ

iteration starts with the maximum possible value for a grey body, 0.99, and progressively

reduced with a step size of 0.002 until we reach a minimum RMSE for monthly Zh vs

∆T regression. By comparing Eq. (4.5) with Eq. (4.1), the slope m is inverted as in Eq.

(4.6) to estimate the total e�ective resistance between the heating surface contributing

to longwave radiation (Ts) and measurement height (Zm).

rah =
Cpρa
m

(4.6)

Here, rah (s m−1) is the total estimated resistance to H from the longwave emitting

surface seen by the radiometer to the EC measurement height (Zm).

Total resistance to momentum transfer (ram,est)

The total resistance to momentum transfer is given by ram; it represents the resistance

between d+Zom to Zm as shown in Fig. 4.1. The log-law simpli�es the impact of drag by

considering only vegetation height Zh and the wind speed at d+Zom is approximated by

zero and is used widely for modeling purposes in the absence of the measured momentum

�ux. For direct estimation of ram using �ux tower measurements, we can use observed
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momentum �ux (M), measured wind speed (UZm), and wind speed at d+ Zom in Eq.

(4.7).

ram,est =
ρa (UZm − Ud+Zom)

M
(4.7)

To estimate the wind speed at d+Zom, we used the equations proposed by Cowan et al.

(Cowan 1968), which considers the momentum transfer by the boundary layer above the

plant into the air occupied by the leaves. The momentum below the canopy is dissipated

with the drag force sustained by the plant surfaces (mainly leaves); thus, canopy top drag

is related to the drag below canopy using an extinction factor β. To estimate top canopy

wind, momentum measured above the canopy is directly proportional to the wind speed

gradient as in Eq. (4.8).

M =
∂Uz

∂Z
Kmρa (4.8)

Here, Km (s m−2) is called as the eddy di�usivity for momentum �ux, and ρa = 1.276 (kg

m−3). Under the neutral atmospheric condition, the Km immediately above the stand is

related to the friction velocity by using Eq. (4.9) (Cowan 1968).

Km = kU∗ (Z − d) (4.9)

Here, k is the Von Kármán constant. Substituting Eq. (4.9) in Eq. (4.8), and by

substituting M = 0.5ρa ∗U∗2 with U∗ constant above the stand, leads to the well-known

logarithmic wind pro�le as in Eq. (4.10).

Uzh =
U∗

k
log

Zh − d

Zom
(4.10)

Uzh (m s−1) is the horizontal wind speed at the canopy top estimated using log-law

as a function of U∗ and RLP (d, Zom). The wind speed at d + zom (Ud+zom) decreases

exponentially and is expressed as a function of canopy top wind speed as in Eq. (4.11)

(Cowan 1968).

Ud+Zom = Uzhe
−

Zh

(
− Z

Zh
+1

)
(−d+Zh) log

(
−d+Zh
Zom

)
(4.11)

Here, UZh
is the canopy top wind speed, estimated using Eq. (4.10), the log-law estimation

is considered reasonable at Zh (Verma 1989). Ud+Zom is estimated using Eq. (4.11) with

measured U∗, Zh and RLP (Zom, and d) estimated using the rule of thumb given by:

d = (2/3)Zh, Zom = 0.123 ∗Zh. Eq. (4.7) is substituted by observed M and wind speeds

to estimate ram,est for each half-hourly data point. The monthly value is the median of

half-hourly estimated ram,est.
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4.2.2 Comparison of estimated resistance with existing aerody-

namic resistance models

To compare the estimated resistance (using �ux tower observations), we have chosen four

widely used aerodynamic resistance models for heat exchange under both neutral and

non-neutral conditions (rah, ra0): (Allen et al. 1998; Verma 1989; Owen and Thomson

1963; Choudhury, Reginato, and Idso 1986a). Monthly segregated observations of U , U∗,

and Ta are used to estimate half-hourly values of resistance using the following equations:

Eq. (4.12), Eq. (4.14), Eq. (4.19), and Eq. (4.21).

4.2.3 Aerodynamic resistance formulation for neutral atmospheric

condition

Aerodynamic resistance formulation by Allen et al.

This empirical formulation (Eq. (4.12)) was originally proposed to estimate the exchange

of heat and water between the crop canopies and the atmosphere (Allen et al. 1998). It

was used by the Food and Agriculture Organization (FAO) later; it was also used for the

natural vegetation canopies (Liu, Mao, and Lu 2006; Trebs et al. 2021b).

ra0,Allen =
log

(
Zm−d
Zom

)
log

(
Zm−d
Zoh

)
k2Uz

(4.12)

The input variables for rah,Allen are: Uz, Zm, Zh, d, Zom estimated using the rule of thumb

d = 0.67Zh, Zom = 0.123Zh, Zoh = 0.1Zom.

Aerodynamic resistance formulation by Verma et al.

One of the most widely used bulk formulation for ram is shown in Eq. (4.13) (Penman

and Long 1960; Verma 1989) using observed half-hourly Uz and U∗ at Zm.

ram,V erma =
Uz
U∗2 (4.13)

The ram formulation is extended to ra0 as by assuming similarity between Km and Kh

under neutral conditions and Zoh is de�ned below Zom as shown in Fig. 4.1. Since the

heat exchange from a vegetated surface encounters greater aerodynamic resistance than

the momentum exchange thus, an "excess resistance" called quasi-laminar boundary layer

(QBL) resistance rb, is added to ram (Verma 1989) as in Eq. (4.14).

ra0,V erma =
Uz
U∗2 +

log
(
Zom

Zoh

)
kU∗ (4.14)
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In Eq. (4.14) Zoh is estimated as 10% of Zom and KB−1 is given by log(Zom/Zoh).

4.2.4 Aerodynamic resistance formulation for non-neutral condi-

tions

As the logarithmic wind pro�le is not valid Eq. (4.14) is modi�ed for the non-neutral

atmospheric conditions (atmospheric stability). A correction is applied to the formulation

derived for the neutral conditions, which is characterized mainly by Obukhov length (L)

(Owen and Thomson 1963). L is calculated by using daytime observation of canopy

height (Zh), measured air temperature(Ta), measured shear wind velocity (U∗) as in Eq.

(4.15) (Thom 1972; Owen and Thomson 1963).

L = −TaCpρaU
∗3

Hgk
(4.15)

Here, g is the acceleration due to gravity (m s−2). Half-hourly estimate of L using Eq.

(4.15) is divided by measurement height (Zm) and the ratio is represented as ξ as in Eq.

(4.16).

ξ =
Zm
L

(4.16)

The range of ξ varies from -1 to 1, and its value is used to de�ne atmospheric stability into

stable, unstable, and neutral. Under stable conditions, the pro�le functions are linear

functions of the stability parameters, and the exact solutions for aerodynamic resistance

can be easily obtained. Under unstable conditions, on the contrary, the pro�les are

highly non-linear equations of the stability parameters, and an iterative technique (Busch,

Chang, and Anthes 1976) is used to obtain the solutions. Depending on the ξ value, the

correction term (ψh) is estimated for neutral, stable and unstable conditions as in Eq.

(4.17)

ψh =


2 log

(
(1−16ξ)0.5

2
+ 1

2

)
for ξ < 0

−5ξ for ξ ≤ 1

−5 log (ξ)− 5 otherwise

(4.17)

Verma corrected for atmospheric stability

For non neutral conditions Eq. (4.14) is corrected using ψh as in Eq. (4.18)

ra0V er,cor =
−ψh + log

(
Zm

Zom

)
kU∗ +

log
(
Zom

Zh

)
kU∗ (4.18)
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Formulation by Thomson et al.

Another formulation for non-neutral condition uses ψh to estimate ra0,Thom by using Eq.

(4.19). This formulation gives the resistance between Zom to Zm, which is corrected for

the atmospheric stability using ψh.

ra0,Thom =
log

(
Zm−d
Zom

)
+ Zomψh

L
− ψh(Zm−d)

L

kU∗ (4.19)

In Eq. (4.19), the RLP (d, Zom, Zoh) are estimated using the rule of thumb as mentioned

above. The monthly median of half-hourly estimates rah,Thom is compared with rah,slope.

Aerodynamic resistance formulation by Choudhury et al.

The atmospheric corrected rah formulation is given by using Choudhury et al. (Choud-

hury, Reginato, and Idso 1986b) that uses the Richardson number (RiB) to characterize

the stability. It is estimated using Eq. (4.20) (Lhomme, Katerji, and Bertolini 1992).

Half-hourly observation of Ta, Uz and estimated Ts are used as input dataset along with

Zm and d. Ts is estimated using Eq. (4.4) monthly optimum ϵ and observed longwave

radiation (Rldwn, Rlup) (Thakur et al. 2022)

RiB =
g (Ta − Ts) (Zm − d)

TaU2
z

(4.20)

The estimated RiB is used to correct the rah formulation as in Eq. (4.21):

rah,Chou =
log

(
Zm−d
Zh

)
log

(
Zm−d
Zom

)
k2Uz (−βRiB + 1)0.75

(4.21)

In Eq. (4.21), Zm is the measurement height, d is the displacement height, β is an

empirical constant which accounts for the di�erence between T0 and Ts and for constant

variation between Zoh and Zohr , β = 5 is used, d = 0.56Zh, Zom = 0.3(h−d), Zoh = Zom/7.

The monthly median of half-hourly estimates rah,Chou is compared with rah,slope.

4.2.5 Leaf-canopy-air resistance model (rlca)

For the realistic representation of leaf-canopy-air exchange, we proposed a novel resis-

tance model named the leaf-canopy-air resistance model (rlca) by diving the resistance

component in leaf-canopy (rlc) and canopy-air resistance (rca) as shown in Fig. 4.2. Com-

paring the proposed resistance components to a big-leaf model, we can express H as in

Eq. (4.22).

H =
Cpρa (T0 − Ta)

rca
+
Cpρa (Ts − T0)

rlc
(4.22)
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(a) (b)

Figure 4.2: Schematic representation of proposed leaf-canopy-air resistance model and wind
variation within canopy using log-law and exponential function. (a) The canopy-air resistance
(rca), which is equal to the integral of raz between source height (Zh or Zom or Zoh) and Zm.
rlc is the leaf boundary layer resistance at source height obtained using Ll, LAI and Uz, rlca is
the total resistance to heat exchange obtained by adding rlc to rca and will represent the rah
as shown in Fig. 4.1. (b) Uz (blue stars) estimated using Eq. (C.2) and raz (orange stars)
considering logarithmic variation in the wind speed (Chamberlain 1968). raz and Uz pro�le
(blue cross) estimated using Eq. (C.1) raz (orange dots) using exponential decay within canopy
assuming constant LAI (Cowan 1968). The mid day data used for the plot is from a pine forest
site in Germany, Tharandt( 2017/06)

As turbulent eddies mainly drive the momentum exchange within and above the canopy,

the transfer of heat within the canopy is also a�ected by both turbulent and radiative

processes. Thus, using similarity (Km = Kh), we only extended Ta pro�le up to the

canopy top (Zh) starting from the measurement height Zm. Note that in big-leaf models

the Ta pro�le in extended upto d+ Zoh (T0, shown by blue dotted line Fig. 4.1a).

Canopy-air resistance (rca)

The wind speed in the lower atmosphere is expressed in two ways: (i) using log-law, which

assumes that the wind speed varies logarithmically with height above the ground; as we

go higher, the wind speed increases at a decreasing rate (Penman and Long 1960; Thom

1972) and (ii) the exponential pro�le which assumes the vegetation structure acts as a

drag on the wind, and the wind speed decreases rapidly as it moves through the canopy

(Inoue 1963; Cowan 1968). By assuming a logarithmic wind pro�le above the canopy and

exponential wind below the canopy, the piecewise equation for Uz is de�ned as shown in
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Fig.4.2.

Uz =


U∗e

−
h(−Z

h
+1)

(−d+h) log (−d+h
Zo ) log

(
−d+h
Zo

)
k

for Z ≤ h ∧ Z > 0

U∗ log
(

Z−d
Zo

)
k

for Z > h

(4.23)

Following an approximate similarity between (Km/Uz) ratio below and above canopy and

we express the below canopy wind speed as a function of above canopy wind as shown

in Eq. (4.11) and using Eq. (4.8) we obtain the KM pro�le and by inverting the KM

equation we obtain the momentum resistivity (raz) as in Eq. (4.24).

raz(z) =


e

h(−Z
h

+1)
(−d+h) log (−d+h

Zo )
kU∗(Z−d) for Z ≤ h ∧ Z > 0

1
kU∗(Z−d) for Z > h

(4.24)

An exemplary raz pro�le for one of the study sites (TH) is shown in Fig. 4.2b. The

integral of the raz between two vertical levels give us the rca value as in Eq. (4.25).

rca =

∫ Zm

Z1

raz dz (4.25)

We estimated rca by using Z1 = Zh or Zom in Eq. (4.25).

Leaf-canopy resistance

Surface resistance close to the heat-exchanging leaves is represented using leaf-boundary

layer resistance (rlc). By considering heat exchange from both sides of the leaf and

considering all leaf's resistance are in parallel contributing to the within canopy exchange,

the rl formulations proposed by Schymanski et al. (Schymanski and Or 2017) is divided

by twice the average LAI at the study sites (see Table 2.1 for LAI values).

rlc =
LlCpρa

2LaiNNuLka
(4.26)

Ll is estimated by calculating the weightage percentage contribution of leaf sizes at the

study site. The yearly average LAI values at the study sites are used to estimate rlc
(Table. 2.1). For the estimation of critical reynolds number (Rec), Uz at Zh is used,

which is estimated using Eq. (4.11). For the estimation of NNuL measured Ta is used.

Note that the di�erence between rlc estimated using canopy top Ta,h (using Eq. (4.3))

and measured Ta was negligible (as shown in Fig. C.11), so for the ease of calculation we

used observed Ta. Estimated rlc at two heights (canopy top (Zh, aerodynamic height of
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heat exchange (Zd+oh) and rca for each time-stamp is added using Eq. (4.27).

rlca =
LlCpρa

2LaiNNuLka
+

∫ Zm

Zh

raz dz (4.27)

The monthly median of modeled rlca is compared to the monthly median of rah,slope by

using a scipy linear regression model. To quantify the the range of variation in rlca with

varying Ll and Zh we plotted a contour plot for rlca by using measured data at AR and

varying Zh between (1 to 16.4 m) and Ll in the range of 0.0025 m to 0.005 m (Fig.C.10b)

4.2.6 Modeling diurnal H using rlca

Keeping SEB modeling perspective in mind, we attempted to test our resistance model

(rlca) for daily prediction of H at the study sites using Eq. (4.28). Note that to use Eq.

(4.22) we require Ta,h (which can be obtained using Eq. (4.2) and H). To simplify the

calculations (without iterations), Eq. (4.22) is simpli�ed to Eq. (4.28) as shown below:

Hmod =
Cpρa (Ts − Ta)

rlc + rca
(4.28)

In Eq. (4.28), rlc is estimated using Eq. (4.26) with observed U∗, Uz, Ta and rca is

estimated by integrating Eq. (4.29) from Zh to Zm. In the absence of U∗, the observed

wind speed at the meteorological station can be used to estimate the U∗ roughly, as shown

by Kent et al. (Kent et al. 2018).

raz =
1

kU∗ (Z − d)
(4.29)

rlc is estimated using Eq. (4.26). The diurnal value of rlca (rlc+rca) with estimated Ts−Ta
is used in Eq. (4.28) to obtain Hmod. The median value of hourly Hmod is compared with

the measured H at the study sites to evaluate the performance of rlca.

4.3 Results

4.3.1 Inferred canopy-scale resistance (rah,slope and ram,est)

The slope of monthly H vs ∆T estimates the ecosystem-scale e�ective resistance to day-

time heat exchange represented by rah,slope. The inferred resistance using three years of

daytime measurements decreases exponentially with increasing Zm at the study sites as

shown in Fig. 4.3a. An exponential curve was �tted through the median values of the

rah,slope (Fig. 4.3b). Note that the measurement height depends on the canopy height,

land-cover type, and wind speed. We calculated the resistance to momentum exchange
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(a) (b)

Figure 4.3: Variation in rah,slope with the measurement height across the study sites. (a) total
resistance to heat exchange for three years with the measurement height (Zm) at the study sites.
The plot legend (in bracket) shows the average canopy height at the study sites. Monthly rah
is estimated by inverting the slope (m) of monthly H vs ∆T plot as shown in Eq. (4.6). Lower
and upper box boundaries represent the 25th and 75th percentiles, respectively; line inside the
box median; lower and upper error lines 10th and 90th percentiles, respectively, �lled circles
data falling outside the 10th and 90th percentiles. (b) Exponential function (ae−bx + c) �tted
through the median of rah,slope using optimize curve �t from SciPy().

(ram,est) using observed M , Uz, and estimated wind speed at Zom + d, and found an

approximate exponential decrease in the values of ram,est with increase in Zm as shown in

Fig. C.2c. TUM was an outlier as the measurement height was 30 m above the canopy

top wind speed at the height is very high resulting in exceptionally low resistance. The

inferred momentum resistance (ram,est) was lower than heat exchange resistance rah,slope
at all the study sites (see Fig. C.2b and Fig. C.2c).

4.3.2 Comparison between inferred resistance value with existing

resistance formulations

Five widely used big-leaf resistance formulations (ra0, rah) from the literature and ram,est
are used with EC measurements to estimate hourly values at the study sites. A linear

regression model (SciPy linregress()) was used to compare the monthly median of inferred

resistance, rah,slope, with the estimated resistances. The comparison was made using

Pearson coe�cient (ρ), slope (m), and RMSEs (one for linear regression and the other

for 1:1 line) as shown in Table 4.2. An exemplary comparison plot between rah,slope and

ra0,V erma is shown in Fig. 4.4, and a comparison plot for other formulations is shown

in the Fig. C.4. An exponential curve was �tted to the median values of the ra0,V erma
at the study sites, and AS and TT was placed outside the exponential curve as shown

in Fig. 4.4b, exponential curve �tting with the other formulations are shown in Fig.

C.2. The highest ρ was estimated for ra0,V erma followed by ra0,V er,corr and ram,est. The



4.3. Results 67

resistance formulations corrected for atmospheric stability (Thom 1972; Choudhury and

Monteith 1988; Verma 1989) have lower m, and high RMSE. The ρ is lower for rah,Chou
and ra0,Thom and highest for ra0,V er,Cor. The lowest value of RMSE (1:1) was for ra0,Allen
followed by ra0,V erma and ram,est. The regression slope < 1, indicates, on average, an

underestimation of rah by existing formulations. All rah estimated for neutral condition

shows an underestimation for the inferred resistance (benchmark resistance) rah,slope and

the stability corrected formulations shows a di�erent seasonality (exemplary plot for DU

is shown in Fig. C.8).

(a) (b)

Figure 4.4: Median values of ra0,V erma estimated using three years of eddy covariance data using
Eq. (4.14) at the study sites (a) Comparison between the median values of inferred resistance
(rah,slope) in the x-axis and ra0,V erma in the y-axis using linear regression model (SciPy) (b)
exponential curve (ae−bx + c) �tted to the ra0,V erma using optimize from SciPy curve �t().

Table 4.2: Comparison table for rah,slope with status quo bulk resistance model using half hourly
eddy covariance data for three years by combining measurements from all sites. The Pearson
coe�cient (ρ) RMSE (1:1) is estimated for a 1:1 line, and the other regression parameters, slope
(m) and RMSE are estimated using SciPy().

4.3.3 Proposed leaf-canopy-air resistance model for heat exchange

The proposed leaf-canopy resistance (rlca) model calculates total resistance by coupling

canopy-air resistance (rca) with leaf-canopy resistance (rlc). rca is estimated as the area
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of the raz curve, integrated between heat source height (Zh or Zom) and the measurement

height (Zm). The aggregated resistance of all the leaf surfaces participating in the surface-

energy partioning (rlc) is estimated as explained in section 4.2.5. Site-speci�c rlca is

represented as the monthly median of daytime rca + rlc and is compared to the rah,slope
as shown in Fig. 4.5. The comparison of rah,slope with rlca resulted in ρ (0.725) and m

(1.14) as shown in Fig. 4.5a. Comparing Fig. 4.5a and Fig. 4.5b we see that to reproduce

rah,slope the source height at TUM, TH, LF should be located at Zh as shown in Fig. C.6a,

whereas the source height at Zom for other sites resulted in Fig. C.6b. The estimated

rca for SP is resulting in a very high value (due to lower vegetation height meaning

0.5 meters) which is also reducing ρ=0.70 (Fig. 4.4), by eliminating SP from the plot

considering the non-realibality of eddy di�usivity theory near ground (used to estimate

rca) we get ρ=0.945. The underestimation of rlca at savanna sites can be attributed to the

patchy distribution of trees and grasses, making the source height location site-speci�c

(meaning it can be Zh, Zom or other heights). Also, the adequate leaf size at AR is half

the e�ective Ll at other Savana sites. Additionally, the Zm for HS and LF is 2 m higher

than for DU and AR; however, the average Zh at DU and AR is 0.4 m higher than LF

and HS a�ecting the estimate of rca (Fig. C.3). The contour plot (Fig. C.10b) for rlca
with varying average Zh and Ll shows that with vegetation canopy of eight meters or

above both Ll and Zh have a similar e�ect on the magnitude of rlca considering Zm and

LAI are constant. All the existing parameterizations underestimate resistance compared

(a) (b)

Figure 4.5: Comparison plot between median values of rlca and rah,slope at study-sites having
LAI > 1.(a) rca estimated by integrating raz between Zh to Zm added to and rlc is estimated
using Eq. (4.26) to represent rlca (b) rca is estimated by integrating raz between Zom to Zm and
rlc is estimated using Eq. (4.26) and is added to represent rlca.

to rah,slope as shown in Table. 4.2 we added rlc to check if the RMSE (1:1) decreases as

shown in Table. 4.3. We found for all the formulations; the RMSE (1:1) decreased. The

maximum ρ is obtained by adding ra0,V erma to rlc followed by ra0,V erma (Fig. C.5) and rac
(Fig. 4.5a,b). For sites with LAI > 1 we found adding rlc to existing formulation results

in an increase in the ρ and m.
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Table 4.3: Comparison table between rah,slope and rac + rlc. rlc is estimated using Eq. (4.26)
with wind speed at Zh and the rac value is replaced by the existing bulk formulations. The
Pearson coe�cient (ρ) is estimated for a 1:1 line, and the other regression parameters, slope (m)
and RMSE, and correlation coe�cient (R2) are estimated using SciPy linregress().

As shown in Table 4.2 existing formulations underestimate the resistance value at

most of the study sites in comparison to the rah,slope and resulted in the high value of

RMSE (1:1). To check the applicability of the proposed rlc for the existing model, we

added rlc to ra0,V erma formulations and compared it with inferred resistance as shown in

Fig. B.6a. To understand the component-wise di�erence between the surface resistance

to the canopy-air resistance, we compared proposed rlc with rb estimated and rca with

ram estimated using Verma et al. (Verma 1989) as shown in Fig. B.6b,c. Comparison

of estimated rca (by using raz integral between Zom to Zm) with ram,V erma results into

a lower value than the rac as shown in Fig. B.6c). It is because ram,V erma is derived

using log-law, which is valid above d + Zom so the area of raz curve is smaller (orange

stars in Fig. 4.2b) compared to raz pro�le using exponential pro�le for sub-canopy wind

variation (orange dots in Fig. 4.2b). Comparison of ra0,V erma with rlca (rca between Zh
and Zm) results into higher ρ overall, overestimation at pine forest by ra0,V erma and an

underestimation at HS and GB (Fig. B.6d).

4.3.4 Modeling sensible heat (Hmod) using rlca

Hourly estimates of Ts−Ta and rlca are used to model hourly H as shown in Fig. 4.7. We

have chosen four sites to compare the hourly variation in modeled sensible heat (Hmod)

with measured sensible heat (Hmeas) and Hrah,slope using rah,slope with estimated Ts− Ta.

The di�erence between Hmod and Hrah,slope was inversely proportional to the di�erence

between rlca and rah,slope and directly proportional to the di�erence between Ta,h and Ta
as we have simpli�ed Eq. (4.22) by using Eq. (4.28). The di�erence between Ta,h and

Ta is higher for YF (see Fig. C.1b), and the magnitude of rlca (Eq. (4.28)) is smaller

resulting into an overestimation of Hmod. At GB with a high value of rah,slope, the Hmod

is closer to Hmeas as higher rlca counterbalance the e�ect Ta (Fig. 4.7d). The di�erence

between Hmod and Hrah,slope will depend on the sign and value of intercept (Thakur et al.
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(a) (b)

(c) (d)

Figure 4.6: Comparison of the resistance formulations (a) rah,slope in the x-axis by combining
rlc+ ra0,V erma in the y-axis.(b) near-surface resistance to heat exchange rlc in x-axis with rb in
y-axis estimated using Eq. (C.12) (c) canopy-air resistance (rca between Zd+Zom to Zm) with
ram estimated using Eq. (4.13) (d) estimated rlca (by combining rlc with estimated rca between
Zh and Zm in the x-axis with ra0,V erma in y-axis.

2022). For instance, at YF and TUM, the intercept (c) for H vs. ∆T is negative, which

means the sensor sees more soil than trees leading to a higher value of average Ts. The

combined e�ect of lower rah values and overestimation of Ts − Ta (we assume Ta,h = Ta)

lead to an overestimation at YF and TUM. (Fig. 4.7).

4.4 Discussion

Our results show that the monthly slope of daytime H vs ∆T regression can, on aver-

age, represent the site-speci�c variation in the total e�ective resistance to heat exchange

(rah,slope) at the ecosystem-scale. We found an exponential decrease in the heat exchange

resistances with increasing Zm (see in Fig. 4.3b). This trend can be attributed mainly

to two concepts used to derive these formulations: (i) the wind speed increases at a

decreasing rate as Zm increases (log-law), (ii) parameterization of resistance near the

heat-exchanging surfaces (QBL resistance). The logarithmic increases in the wind speed

result in an exponential decay of air resistance due to enhanced mixing. All the aerody-

namic resistance formulations follow the exponential pattern on average, as shown in Fig.
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(a) (b)

(c) (d)

Figure 4.7: Comparison plot for hourly median values using three years of observed H, Hmod

generated using estimated Ts − Ta and rlca. Hrah,slope is estimated using rah,slope and Ts − Ta
for (a) TUM, (b) GB, (c) TH, and (d) YF.

C.2. However, the outliers to the exponential rah,slope curve (lower value at YF, TH and

higher value at AR see Fig. 4.3b) are not captured by any of the bulk formulations. It

is because these formulations use KB−1 instead of the surface characteristic length and

within canopy microclimate for parameterizing near-surface resistance (rb, rr). Our pro-

posed parameterization for QBL resistance is rlc, which uses the sub-canopy wind speed,

characteristic leaf length, and LAI to capture near-surface resistance at the study sites

adequately. The proposed canopy-air resistance (rca) accounts for the canopy structure by

using di�erent integral length-scale (Zh, d+Zom) to represent the position of heat source

height at the EC sites. Therefore, our proposed resistance model rlca best reproduces

rah,slope across most of the land cover types in comparison to previous bulk formulations

(compare Table 4.3 to Table 4.2). The rca estimate at the SP results in a signi�cantly

higher value, which can be explained by the assumption of eddy di�usivity, which states

turbulent eddies exist at all scales and can be modeled using an eddy di�usivity coe�-

cient. However, in small canopies, the size of the canopy elements (e.g., individual leaves,

canopy arrangement) becomes comparable to the size of the turbulent eddies, leading to

a breakdown of the assumption of constant �ux, as the interaction between the canopy

elements and the turbulence becomes more signi�cant and local (Denmead and Bradley

1985). The physically based representation of rlca explains the site-speci�c resistance

values using canopy structural characteristics (heterogeneity due to trees, grasses, leaf

shapes, sizes, and densities). Thus, the smaller rlca at patchy study sites can be ex-
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plained by the non-representativeness of source height using a single value, as tall trees

are sparsely distributed with grass cover in between. The di�erence in the observed H

and Hmod modeled (using rlca and estimated Ts − Ta) across study sites was consistently

explainable by the di�erence of rlca and rah,slope. However, the adequacy of rah,slope to

represent observed H depends on the intercept, which accounts for the footprint mismatch

between estimated Ts and observed H and Ta (Thakur et al. 2022). These results show

that the proposed rlca represents the complex coupling of leaf-canopy-air resistance in a

physically consistent manner.

The inferred resistance to heat exchange (rah,slope) at YF is smaller than the other

broad-leaf forest sites with a similar range of canopy height as shown in Fig. 4.3. The

observed smaller value of rah at YF has been referred to as the canopy convector e�ect

(CCE) by stating that the rah is inversely proportional to the plant area index (PAI),

which includes the area of all heat exchanging surfaces, including stems, branches, and

total needle surface (Rotenberg and Yakir 2010; Sellers et al. 1996). The open canopy

structure and low tree density at YF increases the PAI, which e�ciently reduces the

resistance to heat exchange, making YF relatively cooler (Ts − Ta < 5K) than the sur-

rounding Negev desert (25K < Ts−Ta < 35K) and the shrublands (Rotenberg and Yakir

2011). Since raz is parameterized using U∗ and d (see Eq. (4.24)) without considering the

shape of the leaves, thus, none of the bulk formulations could capture the di�erences in

resistance at YF compared to broad-leaf forests (shown in Fig. C.4). In the introduction,

we explained how the bulk parameterizations account for the surface resistance (QBL

resistance) by extending the raz curve below d + Zom to d + Zoh without accounting for

the distributed heat emitting sources (leaves). As shown in Fig. C.1, the raz increases

drastically within the canopy, and the area of the curve between d + Zom to d + Zoh

will depend on the interactions between the �ow of air and the complex structure of the

canopy. Theoretically speaking, the curve should be di�erent for heat and momentum

exchange within the canopy as the driving force for the momentum exchange is friction;

on the other hand, heat exchange is governed by the di�erence in temperature between

the surface and the air (which varies within canopy), thermal conductivity and speci�c

heat capacity. The canopy structure and the geometry of the heat-contributing surfaces

(leaves) can a�ect the heat exchange largely in comparison to the momentum exchange

(see Fig. C.2a,c). Therefore, the needle-shaped leaf at YF and TH interferes with the

QBL by forming more eddies (increasing mixing). In contrast, the patchy land cover

consisting of grass and trees at AR will reduce the e�ective surface roughness, leading to

increased resistance (see contour plot of rlca, Fig. C.10b).

For most of the North Australian Transect (NATT) forest sites (LAI > 1), the rb
estimate is smaller than rlc (except for TUM), whereas, for the needle forests, the rb
estimate is signi�cantly greater than rlc as shown in Fig. B.6b. The di�erence in the

two QBL resistance values (rb and rlc) can be explained by the heterogeneous canopy
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structure at the NATT sites comprised of trees and long grasses, creating a larger surface

for heat exchange as shown by the higher value of rlc, whereas, needle-shaped leaves

at YF and TH decreases the total area of surfaces as shown in Fig. B.6b. For sites

with LAI values between 1 to 2.5, we found similarity in the seasonality of rb and rlc

(Fig. B.6b, c), however, the estimated rb is half the value of rlc. Previous studies have

discussed the underestimation of rb for forested and cropland sites inlight of the constant

KB−1, as with the increase in the LAI, the Zoh increases faster than Zom (see the second

term of Eq. (4.14) (Landsberg and Thom 1971). As shown in Fig. C.9b,c, estimated

rb value is almost constant across sites although, the canopy composition is di�erent

(Table 2.1). Practically, the magnitude of heat exchange surface resistance should depend

signi�cantly on: solar angle, solar radiation, and geometry of vegetation (leaves, stems,

branches, and their arrangement), and no existing rb framework can adequately model

all the factors, since the parameterization uses U∗ and Zh to parameterize source height

(d+Zoh). Looking at the canopy structure at TUM, we found that the canopy consists

of tall trees sparsely distributed with long bushes between, which means our assumption

of constant LAI is not valid. Our analysis showed that the source height depends on

the canopy type, as shown in Fig. 4.5 for closed canopies with high LAI, the source

height can be considered at Zh whereas, for open canopy and patchy canopy, we need to

consider source height within the canopy (d + Zom). We also found that the resistance

underestimation using rlca (in comparison to the inferred value) at patchy study sites (mix

vegetation type with di�erent average height) is due to the inadequate representation of

the source height (in reality, there will be two sets of RLP representing the trees and

grasses). As seen in Fig. C.10b, to reproduce the median of rah,slope at AR using rlca,

we can add the resistance o�ered by a tree (Zh = 16.4 m) having Ll =0.0025 m with

the resistance o�ered by grasses (Zh = 1.5 m) having Ll =0.0025 m. The Zm at HS and

LF is 2 m higher than the Zm at DU and AR. The average Zh at DU and AR is 0.5

m higher than LF and HS, resulting in di�erent values of rca. The rlc value at LF and

HS is similar, while, it is smaller at AR, due to smaller e�ective Ll (see Table 2.1). The

di�erence between rlca values at LF and HS is mainly due to the observed Uz and U∗.

All of the existing resistance formulations for neutral condition, underestimates of

rah resulting in an overestimated Ts the error in Ts is compensated by assigning KB−1

correction such that the observed H + LE is reproduced. The resistance to water vapor

exchange is represented as the sum of rah + rs. In inverse modeling where rs is deduced

from measured LE, rah underestimation lead to rs overestimation resulting in a biased

estimate of carbon exchange and underestimation of water use e�eciency, which a�ects

our understanding of land-cover response to changes in environmental conditions (changes

in temperature and precipitation).
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4.5 Conclusion

The proposed leaf-canopy-air resistance model (rlca) signi�cantly improved the reproduc-

tion of benchmark resistance to heat exchange between the canopy and the atmosphere.

This improvement is signi�cant as it enhances our ability to accurately predict and un-

derstand heat exchange processes in the canopy-atmosphere interface. The rlca model

consistently couples the leaf boundary layer with study-speci�c observations (�uxes, wind

speed, and air temperature) and outperforms all existing resistance models. Among the

existing parameterizations, the resistance formulation by Verma et al. (Verma 1989)

performed best. However, it overestimated surface resistance in needle forests and under-

estimated canopy-air resistance. Conversely, surface resistance was underestimated for

broad-leaf forests, and canopy-air resistance was overestimated. The proposed canopy-air

resistance model integrates resistivity between two heights, simplifying model parameter-

ization by considering the canopy structure. For a mixed canopy-like savanna consisting

of long bushes and trees, the lower integral is within the canopy more so than in a homo-

geneous forest, forming a smooth surface with lower resistance. Additionally, the lower

limit of the integral is closer to the canopy top. Proposed resistance model integrates

the canopy-air resistance (canopy microclimate, canopy height) with leaf-canopy resis-

tance (leaf length, leaf area index, air temperature, wind speed), making it robust for

understanding site-speci�c processes that determine vegetation-atmosphere interactions.

Physically-based description of the the complex interactions between leaf-surfaces and

eddies in the proposed model, with its straightforward nature user-friendly provides a

more accurate estimation of aerodynamic resistance compared to existing empirical mod-

els, making it a valuable tool for making informed decisions about the impact of land

cover types on microclimate and for estimating ecosystem-scale heat exchange.

4.6 Code and data availability

The data and code used for this study is freely available from zenodo.org (https://

zenodo.org/records/8015487)

https://zenodo.org/records/8015487
https://zenodo.org/records/8015487
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5.1 Summary

The main goal of the research was to:

1. Develop a method to estimate ecosystem-scale emissivity and surface temperature

using �ux tower measurements.

2. Quantify the impact of surface heterogeneity on footprint mismatch and its implication

for combining eddy-covariance and radiometric measurements.

3. Formulate a self-consistent model (considering leaf surface and canopy-air space) to

estimate ecosystem-scale physical resistance to energy and water exchange.

In Chapter 2, a novel method for simultaneous estimation of LST and emissivity at the

ecosystem-scale is developed by combining the observed longwave (emitted and re�ected)

components with H and Ta at �ux tower sites with di�erent land cover types. The conse-

quences of omitting downwelling longwave radiation, a common practice in the literature

for estimating LST and emissivity, are addressed in detail. Also, ecosystem-scale surface

temperature is compared with satellite-derived LST (MODIS product MOD11A1). It

was found that the LST values obtained using both upwelling and downwelling longwave

radiation components were 0.5�1.5 K lower than estimates using only upwelling longwave

radiation. Neglecting the re�ected downwelling component of the longwave balance for

75
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surface temperature (Ts) estimation leads to substantial bias in plot-scale LST estimation.

The equation ignoring re�ected longwave (used in literature) overestimates the sensitiv-

ity to emissivity meaning small error in emissivity can cause substantial discrepancies in

land surface temperature (LST) estimation. When the downwelling longwave component

is ignored, this can lead to signi�cant inaccuracies in LST values. Conversely, adjusting

the emissivity value slightly can arti�cially correct unrealistic LST measurements. The

reduced sensitivity of emissivity by considering re�ected longwave is advantageous for

ecosystem-scale LST estimation since ecosystem-scale emissivity is usually unknown and,

therefore, used as an approximate value. The correspondence between plot-scale LST

and landscape-scale LST obtained using MODIS depends on site-speci�c characteristics,

such as canopy density, sensor locations, and viewing angles. Ecosystem-scale LST re-

trieved using ϵMODIS values at sparse canopy shows a strong negative bias in comparison

to MODIS LST due to a sizeable o�-Nadir viewing angle, MODIS overpass would lead

to an elongated footprint resulting in a di�erent distribution of bare soil and vegetated

areas compared to the mostly Nadir viewing angle of the tower-mounted sensor (due to

their hemispherical footprint). The di�erence in footprint and viewing angles between the

tower-mounted pyrometers and MODIS radiometers could also be the reason for the bias

between the two LST estimates. The small-scale surface heterogeneity at the �ux tower

sites resulted in a footprint mismatch between the radiometer (measuring longwave) and

the EC measurement (measuring H and LE), resulting in a bias in the upwelling longwave

radiation. Due to this mismatch, the estimated surface temperature does not represent

the H. To make the surface temperature values consistent with the measured H and to

remove the intercept, the Ts − Ta values were optimized, which resulted in a low value

of ϵ to remove the low bias in LST. The intercept suggests a poor correspondence be-

tween observed H and estimated Ts due to footprint mismatch or the canopy's strati�ed

structure, meaning the radiometer does not see all the leaves contributing to the sensi-

ble heat and hypothesizing that the intercept results from a footprint mismatch between

the aerodynamic and radiometric measurements, minor correction in upwelling longwave

(6-9%) removed the intercept. It produced realistic emissivity values and self-consistent

monthly H vs ∆T plots.

Combining radiometric (longwave) and aerodynamic measurements (H) for estimating

ecosystem-scale emissivity and LST also provides a quality check on the correspondence

between observed �uxes and temperatures consistently at the ecosystem-scale. Thus

�tting a model with an intercept is the more robust approach, and a signi�cant intercept

should be used as a red �ag for the utility of the data for the estimation of plot-scale LST.

The intercept value can be used as a consistency criterion for observed data (radiometric

and aerodynamic measurements) before using them in combination, as a signi�cant value

of intercept indicates inconsistency between observed sensible heat �ux and surface-to-air

temperature di�erence. Therefore, the proposed method of �tting a linear relation with
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an intercept to H and Ts− Ta has the potential to provide more reliable benchmark data

sets for model evaluation and validation at the ecosystem-scale (plot-scale). The plot-

scale epsilon estimates could also be used to parameterize climate and weather prediction

models at the ecosystem-scale, but this was not tested in the present study.

In Chapter 3, a ground-vegetation (two-source) model is used to simulate the foot-

print mismatch by varying the soil and vegetation surface seen by the radiometer and

eddy-covariance tower. The model was used to investigate the impact of surface hetero-

geneity resulting in footprint mismatch and associated energy imbalance. The footprint

mismatch between the radiometer meter and the EC measurement system resulted in

a positive value of intercept. The underestimation of longwave measurements leads to

a positive intercept, and the overestimation of the longwave measurements leads to a

negative intercept. Surface heterogeneity has also been recognized as one of the potential

causes for the lack of energy balance closure; however, quantifying the impact of surface

heterogeneity is challenging due to the complex interactions between spatial heterogene-

ity and other processes (e.g., secondary eddies) at a �ux tower site. In the formulated

two-source model, the energy imbalance can only be introduced by implementing foot-

print mismatch, and we found that a small component of the resulting energy imbalance

can be improved by correcting the bias in the upwelling longwave. Optimizing the emis-

sivity in TSEB when simulating footprint mismatch conditions led to a lower emissivity

value. The plot-scale emissivity estimation by combining radiometric and aerodynamic

measurements fails when there is a footprint mismatch between the radiometer and the

EC tower as emissivity compensates for the bias in Rlup by varying both ϵopt and c, which

means one need to look for both quantify footprint mismatch. Hence, in the presence of

footprint mismatch, constant ϵ derived from MODIS can be used. In the case of positive

intercept (c), the value of c can be used to quantify the footprint mismatch and required

correction in Rlup is applied, which compensates for the mismatch. In the next step,

Bowen ratio closure can be applied to obtain a closed energy balance with a consistent

H vs ∆T plot.

Following consistent H vs ∆T , in Chapter 4, ecosystem-scale benchmark resistance

to heat and water exchange is estimated directly from the �ux tower observation using

the slope of H and Ts − Ta. The results showed that the monthly slope of daytime

H vs ∆T regression could, on average, represent the site-speci�c variations in the total

e�ective resistance to heat exchange. We found an exponential decrease in the heat ex-

change resistances with increasing measurement height. As the wind speed increases at

a decreasing rate (log-law) it results in an exponential decay of aerodynamic resistance

due to enhanced mixing. The estimated benchmark resistance was used to develop the

concept of canopy-scale aerodynamic resistances to investigate and evaluate the controls

of momentum, heat, and mass transfer from the leaf surface to the canopy air space

and the atmosphere. A comprehensive comparison of observations derived using total
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resistance with commonly used stability and roughness-based resistance formulations re-

vealed that total benchmark resistance deduced from observed �uxes and temperatures

was consistently better than the roughness length-based resistance parameterizations at

most study sites. The di�erence in the two resistance value was removed by combin-

ing the leaf boundary layer resistances and aerodynamic canopy-atmosphere resistance.

Based on these results, a canopy-scale aerodynamic resistance model was proposed by

dividing the canopy into two components: the leaf boundary layer resistance (leaves at

the canopy-top) and canopy-air-to-atmosphere resistance. By explicitly considering the

e�ect of dominant leaf sizes and assuming a uniform distribution of the leaf area index

within the canopy, the proposed leaf-canopy-air resistance model consistently captures

the variations in estimated benchmark resistance. Estimating the canopy-air resistance

by integrating the resistivity pro�le (derived from the eddy di�usivity theorem) enables

better integration of the site-speci�c measured values (e.g., measurement height, canopy

height). It allows for a more tailored estimation of the leaf-canopy resistance by integrat-

ing the site-speci�c data (air temperature, wind speed) and avoiding reliance solely on

roughness length parameter values (estimated using the rule of thumb). The proposed

ecosystem-scale aerodynamic resistance model enables a more consistent coupling between

aerodynamic and physiological leaf-scale processes, such as photosynthesis and stomatal

control, which depend on and interact with leaf temperature. All existing resistance

formulations for neutral conditions underestimate the aerodynamic resistance estimate

compared to the benchmark resistance, resulting in an overestimated Ts. The error in Ts
is compensated by adding an extra resistance or a correction term, KB−1, such that the

observed H+LE is reproduced. The proposed resistance accounted for the canopy struc-

ture using di�erent integral length scales to represent the position of the height of the heat

source within the canopy. In addition to this, a physically based representation of the

proposed resistance provides an opportunity to investigate site-speci�c resistance values

using canopy structural characteristics (heterogeneity due to trees, grasses, leaf shapes,

sizes, and densities). The di�erence in the observed H and modelled H using canopy-scale

aerodynamic resistance was consistently explainable by the di�erence in the benchmark

and canopy-scale aerodynamic resistance across the sites with low intercept values. The

intercept value shows the bias in estimated Ts−Ta, which also impacts the estimation of

modelled H. The results showed that the proposed canopy-scale aerodynamic resistance

represents the complex coupling of leaf-canopy-air resistance in a physically consistent

manner.

5.2 Conclusions

To summarize the work presented in the thesis:

1. Combining radiometric and aerodynamic measurements to estimate ecosystem-
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scale emissivity and surface temperature enables a comprehensive evaluation of the rep-

resentativeness of measured turbulent �uxes of heat and water vapor relative to observed

radiometric �uxes, which are also used to estimate surface temperature, as discussed

in Chapter 2. The intercept value between the sensible heat �ux (H) and the surface-

to-air temperature di�erence ∆T is a consistency criterion for the observed data from

radiometric and aerodynamic measurements before they are integrated. A signi�cant

intercept suggests a discrepancy in the representativeness between the radiometric and

eddy-covariance footprints. This method involves �tting a linear relationship with an

intercept to the observed H vs ∆T to estimate emissivity and surface temperature con-

sistent with the observed �uxes, providing all necessary data at the ecosystem-scale for

model validation.

2. A two-source surface energy balance model, which simulates vegetation and ground

surface and has a footprint mismatch between the radiometer and eddy covariance tower,

can lead to a positive intercept in H vs ∆T plots and energy imbalance, as shown in

Chapter 3. Combining radiometric and aerodynamic measurements to estimate plot-

scale emissivity in the presence of footprint mismatch is not ideal as in order to reduce

the intercept between H and ∆T, the method reduces emissivity unrealistically and

the resulting surface temperature is not representative of the average site temperature.

Instead, landscape emissivity, such as MODIS-derived emissivity, is preferable in cases

of a signi�cant positive intercept between monthly H vs ∆T using MODIS emissivity,

correcting the upwelling longwave radiation by a relative percentage to remove intercept

in the best approach. This correction removes the intercept and slightly improves the

energy balance closure. The energy imbalance due to surface heterogeneity cannot be

corrected using conventional energy balance closure schemes, such as the Bowen ratio

closure, but by correcting the radiometric measurements (net radiation).

3. The novel leaf-canopy-air resistance model proposed in Chapter 3 represents a sig-

ni�cant advancement in estimating resistance values derived from eddy-covariance (EC)

measurements. It signi�cantly enhances the reproduction of benchmark resistance to heat

exchange between the canopy and the atmosphere, thereby improving our understanding

and prediction of canopy-atmosphere heat exchange processes. The model (rlca) e�ec-

tively couples the leaf boundary layer with speci�c observations such as �uxes, wind speed,

and air temperature, consistently outperforming existing resistance models. Comparative

analysis among existing parameterizations highlights that the resistance formulation by

Verma et al. (Verma 1989) demonstrated superior performance overall. However, it over-

estimated surface resistance in needle forests while underestimating canopy-air resistance.

Conversely, it underestimated surface resistance in broad-leaf forests while overestimat-

ing canopy-air resistance. The proposed canopy-air resistance model integrates resistivity

between two heights, which enhances model parameterization by incorporating canopy

structure considerations. For mixed canopies like savannas composed of long bushes
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and trees, the lower integral lies predominantly within the canopy compared to homoge-

neous forests, resulting in a smoother surface with reduced resistance. Additionally, the

lower limit of the integral closely approximates the canopy top. This integrated resis-

tance model incorporates canopy-air interactions (canopy microclimate, canopy height)

and leaf-canopy interactions (leaf length, leaf area index, air temperature, wind speed),

enhancing its robustness in understanding site-speci�c processes governing vegetation-

atmosphere interactions. The physically-based description of complex interactions be-

tween leaf surfaces and eddies within the model provides a more accurate estimation of

aerodynamic resistance than existing empirical models. Its straightforward nature make

it a valuable tool for estimating ecosystem-scale heat exchange processes and informed

decision-making regarding the impact of land cover types on microclimate.

5.3 Future work

The methodology presented in this study demonstrates substantial potential for applica-

tion across diverse ecosystem types, providing valuable insights into the underlying mech-

anisms governing ecosystem-scale energy partitioning. By combining radiometric and

aerodynamic measurements (turbulent �uxes), the study enables precise quanti�cation

of surface emissivity, surface temperature, and surface energy balance. The integrated

approach of analyzing �ux tower measurements presented in this work advances the use

of ecosystem-scale observations for process-based understanding. Future work can in-

corporate eddy-covariance (EC) measurements alongside considerations of anthropogenic

heat contributions, allowing the methodology to be adapted for urban environments to

estimate the surface energy balance. The proposed resistance formulation can be inte-

grated with evapotranspiration models to assess whether improved parameterization of

canopy-scale resistance leads to improved evapotranspiration predictions. Nevertheless,

it is crucial to acknowledge that the aerodynamic theory, which forms the basis of the

proposed canopy-air resistance model have limitations (constant U∗), particularly for low

vegetation heights (croplands and grasslands). The �ux tower measurement height for

croplands and grasslands is approximately eight to ten times above the canopy height and

the U∗ measured at that height is not representative of the surface. Therefore, future

research e�orts should consider measurement of U∗ more closer to the the surface for

grasslands and croplands which can help in having a realistic resistivity pro�le and total

resistance to heat exchange can be estimated with more con�dence.



 

 

 

 

Vegetation is used as a carbon sink without thinking about its 

other link. 
Under limited groundwater resources, vegetation can still be 

heat relief sources. 
 

Vegetation is a potential solution to climate change, but its 

effective implementation needs more research exchange! 
To beat the heat: vegetation height got all the limelight, is that 

alright? 

 
What about the leaf size which we never hypothesize! 

Leaves clatter: their size matter! 
Devil is in the detail. Surface-to-air temperature difference can 

be the trail. 

 
Surface heterogeneity causes temperature ambiguity, due to 

which the climate models lack clarity. 
For the research to cohere, we need to connect all these here: 

Soil, vegetation, and the atmosphere. 
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Appendix A

Supplementary information for chapter

2

A.1 Comparison table of plot-scale LST with landscape

LST using landscape and plot-scale ϵ

Table A.1: Comparison of plot-scale LST with landscape-scale daytime LST (MODIS,
MODA001) at TERRA daily time of pass. Plot scale LST is obtained using landscape-scale
emissivity (MODIS ϵ) (left column) and plot-scale emissivity obtained considering no intercept
in H and ∆T (Optimum ϵ) at study sites. The reported plot-scale emissivity are median values
and landscape emissivity are using channel 31 and 32 of MODA001 dataset. Bias is de�ned as
mean of Ts − TMODIS , R

2 is coe�cient of determination between plot-scale LST in comparison
to landscape-scale LST. The site acronyms can be found in Table 2 of Chapter 2.
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A.2 Emissivity estimation at Howard Springs and neg-

ative Ts − Ta

(a) (b)

Figure A.1: Monthly daytime (Rn > 25 W m−2) H and ∆T regression plots at HS using short
(Eq. 2.7) and long equation. The value of optimised emissivity along with the year and month
are shown on top of the plot.

A.3 Ts sensitivity to emissivity at Alice Spring and

Tumbarumba

(a) (b)

Figure A.2: Timeseries of up-welling and down-welling longwave at sites having di�erent land
cover. (a) AS, a mulga site. (b) TUM, wet eucalypt forest
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A.4 Variation of RMSE for monthly of H(∆T ) plot with

surface emissivity

(a) (b)

Figure A.3: The RMSE and emissivity for H(∆T ) linear �t using long equation (a) AS (b) TUM

A.5 Sensitivity of short and long equation to surface

emissivity

(a) (b)

Figure A.4: Sensitivity of LST estimated using two equations to the range of Broadband emis-
sivity. The black dots and blue stars depicts LST using short (Eq. 2.7) and long (Eq. 12 of
Chapter 2). Midday longwave measurement for 15th June, 2016 at AS and TUM is used.
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A.6 Energy imbalance closure reduces the correction

in measured the up-welling longwave at Howard

Springs

(a) (b)

Figure A.5: (a) Sensible heat �ux as a function of surface-to-air temperature di�erence based
on Eq. 2.10 of Chapter 2. Same analysis and legends as in Fig 4c of main Chapter 2, but
after adding 35 (W m−2) to measured Rlup and closing the energy balance using a Bowen ratio
closure scheme. (b) Comparison of surface temperatures from (a) with landscape scale LST from
MODIS.

A.7 SOBOL based uncertainity in epsilon and LST us-

ing long equation with accepting intercept inH(∆T )

and without intercept in H(∆T )

(a) (b)

Figure A.6: (a) Uncertainty in plot-scale ϵ using the short equation and long equation (with and
without intercept in H and ∆T plots). (b) Uncertainty in hourly ∆T using long equation with
and without intercept for July 15.
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Supplementary information for chapter

3

B.1 Figure 2 replication with ϵrad

(a) (b)

Figure B.3: Two source model result for AS(2017/07)
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Figure B.1: Energy imbalance regression for AS 2017/01

Figure B.2: TSEB to simulated the value of maximun and minium intercept for each month at
AS for 2017
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B.2 Observed monthly intercept at study sites

(a) (b)

(c) (d)

Figure B.4: Observed intercept at HS and LF

Explaining footprint mismatch with ϵ and c

The monthly value of c (H vs. ∆T ) and estimated ϵopt is plotted for an year at AS using

observation and TSEB simulating maximum and minimum mismatch condition as shown

in Fig. B.5a,b.The monthly seasonality of c is also plotted using constant value of ϵ,

for obervation ϵMODIS is used and for the TSEB model we used ϵavg and ϵrad as shown

in Fig. B.5c,d. The value of ϵopt using observed data shown in green is closer to the

no-mismatch simulation of TSEB model from November to April and for May, June and

September, the estimate of ϵopt is closer to the max-mismatch. The ϵopt for max-mismatch

is as low as 0.7 for January and August. The c obtained using observations and ϵopt is

positive shown by the green line in Fig. 3.3b and is closer to the maximum mismatch

case shown by the red line for most of the months. For July and August the value of c

is similar for both no-mismatch and max-mismatch, but the value of intercept is much
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lower for max-mismatch case as shown in Fig. 3.3a. For maximum mismatch condition

there was an energy imbalance which was added to the Rlup and the ϵopt was estimated

which resulted in no intercept shown by the black line. The constant value of ϵMODIS

with the observed data and for TSEB model we used ϵavg and ϵrad to simulate the max

mismatch and no-mismatch the observed c shown by the green lies between the blue and

the black lines showing no-mismatch and maximum mismatch conditions respectively.

(a) (b)

(c) (d)

Figure B.5: Comparing seasonality in ϵopt and the intercept using observation and TSEB model
for 2017 at AS (a)monthly plot of ϵopt using observation is in green and by simulating no
mismatch and maximum mismatch using blue and black lines respectively; (b) the value of
monthly intercept using ϵopt as shown in Eq. (2.8); (c) reproduction of (b) using ϵrad for all
months instead of ϵopt (d) reproduction of (b) using ϵavg for all months instead of ϵopt.ϵrad =
Fv,rad ∗ ϵv + (1− Fv,rad) ∗ ϵs and ϵavg = Fv,ec ∗ ϵv + (1− Fv,ec) ∗ ϵs
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B.3 TSEB model comparison with observations

(a) (b)

(c) (d)

Figure B.6: Two source model result for AS(2017/07)
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B.4 Energy imbalance

(a) (b)

(c) (d)

Figure B.7: a, b (Aus feb and other July) is for summer, c,d is for winters (in AUS august, for
others 12)
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Figure B.8: C is the intercept obtained using monthly H vs ∆T plot using day time observation
at Yatir for south west, south east radiometer position
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Supplementary information for chapter

4

C.1 Equations

Uz =


U∗e

−
h

(
− Z

Zh
+1

)
(−d+Zh) log

(
−d+Zh
Zom

)
log

(
−d+Zh
Zom

)
k

for Z ≤ h ∧ Z > 0

U∗ log
(

Z−d
Zom

)
k

for Z > Zh

(C.1)

Uz =
U∗ log

(
Z−d
Zom

)
k

(C.2)

Uz =

U∗

(
ψm + log

(
Z−d
Zo

))
k

(C.3)

In Eq. C.3 is estimated using ψm is corrected using Eq. C.4

ψm =


4.7Z
L

for ξ > 0

−2 log
(
x
2
+ 1

2

)
− log

(
x2

2
+ 1

2

)
− 2 atan (x)− 1.5707963267949 for ξ < 0

(C.4)

K

U
= (

K

U
)Zh

(C.5)

We obtain the ratio of K/U at canopy top using Eq. C.1 and Eq. C.2 and by substituting

Z = h. All the steps and equation are mentioned in the appendix. In Eq. C.1 Uz is

the wind speed at any given height Z above the ground Cowan 1968, U∗ is the shear

wind velocity observed at the measurement height(Zm), Zh is the canopy height, d is the
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displacement height, Zom is the roughness length of momentum exchange.

u∗bc =

√√√√√ 1∫
0

αU2
∗ e

− 2h(1−ζ)

(−d+h) log (−d+h
Zo ) dζ (C.6)

u∗bc is below value of U*, ζ is ratio of Zh/Z, U∗ measured value at or above the canopy

top, α is the average leaf area index.

C.1.1 Ta and raz pro�le at the study sites

Above canopy the heat �ux is constant and is directly proportional to the temperature

gradient as in Eq. C.7 we consider similarity in the between eddy di�usivity of heat and

momentum.

H = −Cp
∂T

∂Z
kmρa (C.7)

km = kU∗ (Z − d) (C.8)

∂T

∂Z
= − H

CpkρaU∗ (Z − d)
(C.9)
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(a) (b)

(c) (d)

Figure C.1: raz and Ta pro�le obtained using Eq. (C.9) with measurement mid-day measure-
ments at the studysite: (a) TH on 2016/06, (b) YF 2017/06 (c) TUM on 2016/06 (d) GB on
2017/06

C.1.2 Resistance Pro�le

In this section we will formulate the three equations expressed by Grimmond and Voogt

(Voogt and Grimmond 2000):

ram =
log

(
Zm−d
Zom

)
kU∗

(C.10)

rr =
log

(
Zom

Zohr

)
kU∗

(C.11)

rb =
log

(
Zom

Zoh

)
kU∗

(C.12)
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C.2 Exponential curve �tting

(a) (b)

(c) (d)

Figure C.2: Exponential curve �tting using scipy optimize curve �t function to the median of
estimated resistance to heat exchange (a) Resistance inferred from observation rah,slope, (b) Re-
sistance estimated using ra0,Allen with measured wind speed and measurement, (c) By inverting
the momentum �ux at the study sites ram,est and, (d) using stability based formulation from
ra0,Thom
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C.3 Momentum resistivity (raz) pro�le at study sites

(a) (b)

(c) (d)

(e) (f)

Figure C.3: Resistivity pro�le within and above canopy (a) GB (b)AR (c) LF and (d) DU
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C.4 Estimated resistance and measurement height

(a) (b)

(c) (d)

Figure C.4: Resistance estimated using three years of EC measurement and the measurement
height
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C.5 Comparison of 1:1 plot by adding leaf resistance

to the existing formulations

(a) (b)

(c) (d)

Figure C.5: Comparison rah,slope by adding leaf boundary layer rlc resistance to the existing
formulations:(a) Choudhury et al. , (b) Thom et al., (c) Allen et al. (d) Estimated ram
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C.6 Comparing rca estimates at di�erent height with

the existing formulations rah,slope

(a) (b)

(c) (d)

Figure C.6: (a)Comparison between rca estimated integrating raz between Zom to Zm and
ram,est (b) Estimating rca for closed canopies(TUM, TH, GB) by integrating raz between Zh
to Zm and for sparse canopies(HS, LF, AR, DU, YF) by integrating raz between Zom to Zm.
(c) Comparison between rca estimated by integrating raz between Zh to Zm and rah,slope. (d)
Comparison between rca estimated by integrating raz between Zom to Zm and rah,slope
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Figure C.8: Three years of daytime measurement have been used for the plot

(a) (b)

Figure C.7: Comparison plot between inferred resistance rah,slope in x-axis and estimated rlca
in y-axis, rlc is estimated using Eq. 4.26 and rca is estimated (a) by integrating logarithmic raz
curve between Zom and Zm, (b) rca is estimated by integrating raz between Zh and Zm for TH,
TUM, GB and for others raz is integrated between Zom and Zm
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C.7 Monthly seasonality of di�erent resistance formu-

lation

C.8 rb and rlc seasonality

(a) (b)

(c) (d)

Figure C.9: Seasonality in monthly median of estimated rb Eq. 4.14 and rlc at (a)TUM (b) TH
(c) YF (d) HS
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C.9 Leaf resistance and LAI

(a) (b)

Figure C.10: (a)The variation in rlc with LAI, (b) Variation in the proposed canopy rlca median
with leaf size and canopy height

C.10 Leaf resistance using Ws, Ta at Zm and Zh

(a) (b)

Figure C.11: Monthly median of estimated rlc at the study sites using measured wind speed and
air temperature at Zm and estimated wind speed and air temperature canopy-top Zh at (a) HS
(b) AR. AR has many months of missing data
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