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Abstract. For the green energy transition, the transport of large amounts of electrical energy
is needed both in densely populated areas and over long distances. Superconducting power cables
represent one possible solution, requiring energy-efficient liquid nitrogen re-cooling stations for
an economical operation at cable lengths longer than about 1 km to 2 km.

In this contribution, a model for simulating cryogenic mixed-refrigerant cycles (CMRC)
based on the Joule-Thomson effect and an associated optimization algorithm are presented.
The distinctive feature of CMRC is the combination of good scalability of the cooling capacity,
adaptability of the mixture to the specific application and an inexpensive process design. While
the process is relatively simple, the identification of ideal operating conditions and mixture
compositions requires complex modelling. In order to optimize these characteristics for CMRC
processes, the Differential Evolution algorithm is adapted to a model built in Mathematica.
Thermodynamic property data is calculated with the Peng-Robinson Equation of State as
part of CoolProp, an open-source thermophysical property library. First simulation results
are presented and further improvements are being discussed.

1. Introduction
To achieve the climate goals set by the Paris Agreement [1], whole sectors of the existing industry
need to switch from fossil fuels to renewable energy. A much higher electrical energy demand
is hence expected. Both the transmission performance needed and the age of current cables
indicate the need for upgrading the existing power grid. Kottonau et al. [2] show the advantages
of utilizing high temperature superconductor (HTS) cables in the power grid, yielding higher
transmission performance with lower electric losses, no electromagnetic losses, no joule heating
and a lower space demand. Especially the latter makes HTS cables an interesting candidate for
updating the power grid in densely populated areas such as urban centers. This is the goal of
the SuperLink project, to prove the feasibility of introducing a 110 kV, 500MVA connection in
the city of Munich, Germany [3]. The SuperLink cable will be 12 to 15 km long, making it the
longest HTS cable within a power grid.

To enable operation of this technology within the energy sector, HTS cables need to be cooled
permanently. As in most HTS applications, the SuperLink cable uses liquid nitrogen (LN2) as
coolant. Due to pressure losses and heat inleak, multiple cooling stations along the length of the
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cable are needed, where the pressure drop is compensated by pumping and the LN2 is sub-cooled
again to the entry temperature.

Different technologies are available to provide the cooling power. The concept applied in the
AmpaCity project [4] uses vacuum pumps to sub-cool the LN2 in an open circuit, requiring a
steady LN2 supply. In the considerably longer SuperLink cable, however, an open process is
not foreseen by the grid operator. A theoretical alternative is the use of regenerative cooling
processes, such as Stirling coolers, but their cooling power limitation does not fit well to the
required 30 kW at 70K. Technically and economically interesting alternatives are found in
the group of recuperative cooling cycles. One option is the (reverse) Brayton cycle, which is
highly efficient due to the use of cold turbo-expanders. Another option is the cryogenic mixed-
refrigerant cycle (CMRC) based on the Linde-Hampson (LH) process, using wide-boiling fluid
mixtures with compositions adapted to the application. In comparison to the Brayton cycle,
CMRCs bear the potential of being less expensive (no cold turbo-machinery) and more compact
(higher power density due to the phase change of higher boiling components). A competitive
efficiency, however, needs to be demonstrated in view of energy consumption and operating cost.

To reach the needed temperature level of around 70K for cooling HTS power cables, it is
advisable to use a multi-stage process in form of a CMRC cascade. Single-stage processes become
inefficient at such low temperatures, since the percentage of high-boiling mixture components
needs to be reduced to prevent freeze-out [5]. In this contribution, we focus on the development
of a simulation model of the CMRC and an algorithm to optimize the refrigerant mixture for
a specific use case. The aim is to build a model for a CMRC cascade, but as a first step, a
single-stage simulation and optimization is presented.

2. Process modeling
Figure 1 shows a single-stage CMRC, signifying the simplest possible process design to reach
low temperatures. The performance is predominantly defined by the properties of the working
fluid. Compared to pure refrigerants such as nitrogen, neon or helium, the use of wide-
boiling mixtures considerably widens the parameter space for optimization (number and kind
of components, concentrations), beyond the operating temperatures, pressures, flow rates and
capacities. Therefore, a model is being developed that can be executed on a high-performance
computing (HPC) cluster using Mathematica [6], to find the theoretically ideal mixture for an
application. As the modeling of mixture properties implies large uncertainties, the pre-selection
must be validated experimentally at a later stage. As equation of state (EoS), the Peng-Robinson
EoS is chosen, representing mixture behavior better than other EoSs [7]. The Twu α function
[8] is used with values from Bell, Satyro and Lemmon [9]. Binary interaction parameters are
taken from Aspen Plus [10]. For thermodynamic property calculations, the open-source library
CoolProp [11] is used1.

2.1. Assumptions and boundary conditions
The model presented in this work is designed as a framework for mixture optimization, using
several simplifications. This includes a constant compressor efficiency, the pre-definition of
minimum temperature differences and pressure losses, and the ideal thermal insulation of
components. The goal of the cycle calculation is to find the energy demand of a given
process, requiring the thermodynamic state before and after each component. Known or given
temperatures are defined at the outlet of the ambient aftercooler (AC) TAC,out, and at the inlet
and the outlet of the cooler (Tcooler,in, Tcooler,out).

1 To facilitate the use of CoolProp, several contributions were made to the open-source project https://github.
com/CoolProp/CoolProp, and the Mathematica wrapper was expanded to include more functionality.
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Figure 1. Single-stage cryogenic
mixed-refrigerant cycle.

2.2. Process parameter calculation
In a simulation, all pressure values are set first, defining high and low pressure levels (pHP, pLP)
and the pressure drops ∆pi in the components. Next, the temperatures are defined for the AC
outlet, the cooler inlet and outlet, and the corresponding porperty calculations are performed.
With the AC outlet enthalpy, the entry state of the HP passage of the inner heat exchanger is
calculated. The expansion inlet and the HP outlet of the inner heat exchanger are derived from
the cooler inlet enthalpy, assuming isenthalpic expansion. The LP inlet enthalpy to the inner
heat exchanger corresponds to the cooler outlet enthalpy. With an energy balance around the
inner heat exchanger, the outlet of the LP passage and the remaining states (compressor inlet
and outlet as well as the AC inlet) are calculated.

To ensure the refrigerant flow not entering the compressor in a two-phase state, the entry
is checked to be at least ∆Tsuperheat above the dew temperature of the refrigerant mixture. If
this is not the case, heat is added with a heater, whose energy demand is added to the energy
demand of the process.

Further, it is possible to enable the lowering of Tcooler,out to include mixtures that would
have a pinch point at either end of the inner heat exchanger with the original values. The
lowest Tcooler,out can be set is Tcooler,in, which would result in hcooler,out = hcooler,in and thus no
transferred heat. Due to the refrigerant being a mixture, it is highly unlikely there would be
a constant temperature phase change. If the lowest Tcooler,out still results in a pinch point, the
original value is reinstated and a penalty is calculated as explained below.

2.3. Heat exchanger modeling and pinch point detection
One objective of CMRC optimization is the matching of heat capacity flow rates within the
hot and cold passage of the inner heat exchanger, yielding smaller temperature differences and
lowering the energy demand of the overall system. At the same time, this also poses the threat
of pinch points inside the heat exchanger, which can lead to temperature profiles intersecting
each other in the simulation. To prevent this unphysical behavior from producing wrong results,
pinch points and temperature intersections are recognized and quantified. For this purpose, the
temperature profiles are calculated at discrete points along the heat exchanger. For each passage,
the transferred heat is calculated when reaching a certain temperature, which is increased by a
given step size. If a step were to overstep a phase transition, the step is shortened to include
the bubble/dew point. Since this model does not include dimensioning of heat exchangers, the
pressure drop is assumed with a simple estimate, which could be subject to change in future
versions. For single-phase flow, the pressure drop is evenly spread over the temperature change.
Within the two-phase region, the pressure drop is evenly spread over the vapor quality change.

Kochenburger [7] developed an algorithm for the successive elimination of temperature
intersections, which includes a quantification of the unphysical behavior according to eq. 1.
It calculates the surface area A between the temperature profiles in the region, where the
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temperature difference is negative or lower than a given ∆Tmin,HX

A =

∫ |Q̇total,HP|

0
max {0,∆Tmin,HX − (THP − TLP)} d|Q̇HP| (1)

with HP and LP representing the high- and low-pressure stream, respectively. The calculated
value is used in the optimization as parameter for a penalty function (cf. section 3.2, eq. 3) to
punish unphysical results.

3. Mixture optimization
As the thermodynamic property data calculated in the process simulation is imported from an
external library and the relations within the system cannot be represented by a set of equations,
it is not possible to calculate gradients with the model. Thus, when selecting an optimization
algorithm, one must ensure that derivatives are not needed. Furthermore, the algorithm should
find a global optimum independently of initial values. These features are provided by the
“Differential Evolution” (DE) algorithm from the group of genetic algorithms, which was first
proposed by Storn and Price [12].

3.1. Differential Evolution algorithm
Instead of a single starting value, DE has a fixed-size population of Np candidates, which are
mutated and combined in individual generations to form new candidates that are compared with
the previous ones. The population remains the same size during the whole algorithm, initially
exploring the parameter space through a broad distribution of initial values and later converging
closer and closer towards the optimum.

Initialization The candidates for the initial population are either randomly generated or created
using a grid pattern for all input parameters, and the target value is calculated for the whole
population. A big population with a broad distribution over the parameter space should prevent
the algorithm from converging on a local optimum.

Generation The initialization is followed by the optimization, which is performed in the form of
generations. For each candidate of the current population, all the subsequent steps of mutation,
recombination and selection are carried out, before the next generation starts, enabling parallel
computation. In the following, a generation for a single candidate xi from the population
{x1, x2, ..., xNp} is described. All candidates x are to be understood as vectors, whose individual
elements determine the parameters of the respective calculation.

• Mutation First, three candidates different from xi (xr0, xr1 and xr2, r0 ̸= r1 ̸= r2) are
selected and combined by eq. 2 to form mutant vi

vi = xr0 + F · (xr1 − xr2) (2)

where F is the scale factor that determines how far vi deviates from xr0.

• Recombination Next, the mutant vi is recombined with the current candidate xi to form
ui, individual parameters of the respective vectors are randomly selected as illustrated in
figure 2. The crossover probability cr controls how likely a parameter is taken from either
vi or xi. By randomly selecting one of the parameters beforehand, for which the mutant
value must be taken, it is guaranteed that ui will be different from xi.
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Figure 2. Schematic depiction of
recombination step.

• Selection Before the target value is calculated, it must first be verified that ui satisfies
given boundary conditions. If this is not the case, the candidate is adjusted accordingly.
Subsequently, the calculation is performed and possible penalty functions are applied. After
comparing the results of the new and the old candidate, the better candidate remains in
the population.

Abort criteria When all candidates have either remained in the population or have been
replaced by new ones, termination criteria are checked at the end of a generation. If one of
these criteria is fulfilled, the algorithm ends and – in case of convergence – the optimum is
found.

3.2. Application of DE on CMRC simulation
For now, the goal of the optimization is to find the optimum mixture composition in
combination with the pressures (pHP, pLP); all other operating parameters could also be subject
to optimization. To apply the DE algorithm on the CMRC model in section 2, the algorithm is
adapted as follows:

Initialization For the initial population, Np composition and pressure vectors are created. The
pressures are random values in between given pressure boundaries for each pHP and pLP.

The molar composition can be created by generating m random numbers between 0 and 1,
m being the number of components in the mixture. As the total of this composition is most
likely not equal to 1, the composition is normalized. This, however, is prone to producing few
candidates with extreme compositions like 0.1 of one component, 0.9 of another component
and (almost) nothing of the remaining components. This can be mitigated by generating the
population on a grid, where all candidates are binary mixtures of all possible combinations,
ranging from one extreme (0:1) to another (1:0). The step width depends on the number of
candidates Np needed. After generating the initial candidates, boundary checks are performed
for the candidates single component compositions. If one or more components of a candidate
are out of bounds, the components’ fraction is set to the violated boundary and the remaining
fractions are normalized to reach a total of 1.

Next, all candidates are passed in parallel computation to the simulation, where the power
input (compressor and heater) is calculated for all candidates. For each candidate xi the
temperature profiles are generated and the inner heat exchanger is checked for pinch points
(see eq. 1). If the calculated area A is larger than 0, the following penalty function is applied to
the calculated power input lt

l̃t = lt · eψ·A (3)

where ψ is the penalty value. If a candidate’s simulation did not terminate without error, this
candidate xi,failed needs to be replaced by a new one. A new random candidate xi,random is
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generated and eq. 4 is used to create the new candidate xi,new

xi,new = 0.8 · xi,failed + 0.2 · xi,random. (4)

This ensures the new candidate is related to the original failed candidate, which keeps a broad
initial distribution.

The calculation, penalization and regeneration of initial candidates is repeated until either
the needed number Np of candidates was successfully initialized, or a maximum number of
repetitions was performed. In the latter case, the algorithm will abort and no optimization is
run.

Mutation and recombination The mutation and recombination steps are performed as described
in subsection 3.1.

Selection Before simulating the new candidate vi, it must be checked whether it is within the
boundaries given to the algorithm, and whether the component concentrations sum up to 1.

• To abide to the given boundaries, but prevent the algorithm from driving the optimization
towards these boundaries, Price, Storn and Lampinen [13] recommend setting the violating
entries to the midpoint between the base candidate (xr0 during mutation, see eq. 2) and
the boundary.

• After “fixing” the entries with violations, the remaining component concentrations are
normalized to a total of 1.

• If no boundaries are violated in the first place, the composition is normalized.

• Should, in either case, normalization violate the boundaries for another component, the
algorithm is run (again).

Next, the simulation is run, the power input (compressor and heater) is calculated for vi and
temperature profiles are generated. In case of pinch points, the penalty function (cf. eq. 3) is
applied. The (penalized) power value l̃t for ui is compared to the value for xi and the better
candidate remains in the population. Should an error occur during any of the calculation steps
(numerical error in Mathematica or an error from CoolProp) xi automatically remains in the
population.

Abort criteria After each generation the following abort criteria are checked:

• convergence (difference between all candidates and best candidate smaller than ε)

• maximum number of generations

• abort time (for optimizations run on HPC hardware)

If a criterion is met, the initialization values, the current values and all generations in between
are saved for analysis. The model also saves these values in case of a user-triggered abort. If no
abort criterion is met, the next generation is run.

4. Results and discussion
In order to demonstrate the capabilities of the current model, an optimization with a small
parameter set is carried out on bwUniCluster 2.0 [14] for a single-stage CMRC. To see the
difference in optimum composition for different cooling temperatures, Tcooler,in is varied between
90 to 150K in increments of 1K. Component concentrations of propane, ethane, methane
and nitrogen are subject to the optimization algorithm, while pressures and other operating
conditions are held constant. The process simulation parameters are listed in table 1, and the
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Table 1. Boundary conditions and assumptions for single-stage CMRC optimization.

Boundary condition Symbol Range/Value

high pressure (HP) pHP 16 bar
low pressure (LP) pLP 4 bar
ambient temperature Tambient 293.15K
minimum temperature approach in aftercooler (AC) ∆Tmin,AC 5K
cooler inlet temperature Tcooler,in 90–150K
cooler outlet temperature Tcooler,out Tcooler,in + 5K
minimum temperature approach in inner heat exchanger ∆Tmin,HX 2K
minimum super heated temperature at compressor inlet ∆Tsuperheat 2K
isentropic compressor efficiency ηis 0.7
pressure drop for component/pipe i ∆pi 1000Pa
molar composition of refrigerant mixture xi 0–1

nitrogen

propane

ethane

methane

Figure 3. Change in optimum composition
over different Tcooler,in.

Table 2. Optimization parameters.

Optimization parameter Symbol Value

number of candidates Np 70
convergence criterion ε 0.00001
scale factor F 0.5
crossover probability cr 0.5
penalty factor ψ 100

optimization parameters in table 2. The initialization is run with the population on a grid for all
possible binary combinations. The cooler outlet temperature Tcooler,out is not varied to mitigate
pinch points; it is kept at Tcooler,in + 5K.

Figure 3 shows the change in the optimum composition for different Tcooler,in. Below 104K
left to the vertical line in Fig. 3, the algorithm does not find compositions without intersection
of the temperature profiles in the inner heat exchanger. This is caused by the relatively low
pressure ratio, leading to a lack of cooling power provided by the Joule-Thomson effect. The
existence of temperature intersections and pinch points explains the very different compositions
for the cooler inlet temperature range of 90 to 103K.

For the physically possible optima right to the vertical line in Fig. 3, the amount of methane
reaches a maximum at Tcooler,in ≈ 130K . Ethane is forced out of all optima, except for
Tcooler,in = 104K, while propane is the main component in all optimum mixtures. The nitrogen
concentration is about 25% at the lowest possible temperature, being steadily replaced by
propane at higher temperatures.

5. Conclusions and outlook
A tool for the mixture optimization in cryogenic mixed-refrigerant cycles (CMRCs) is presented.
The principle of the applied Differential Evolution (DE) optimizer is explained and the results
of example calculations are shown for a single-stage CMRC process. The simulation model and
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the optimization algorithm are implemented in Mathematica, and thermodynamic property data
are calculated with the Peng-Robinson EoS available in CoolProp. The example optimizations
illustrate the functionality of the developed algorithm for a reduced parameter set.

The optimization parameters need further investigations to make the calculations more
efficient. Besides the number of candidates, convergence criteria, scale factor and the crossover
probability, especially the penalty function needs a closer inspection. Another aspect that will
be investigated is the selection step. While here the candidate ui is directly compared with the
old candidate xi (One-to-One Survivor Selection), other selection schemes are available, where
e.g. the worse candidate can remain in the population with a certain probability (to escape local
optima), or all candidates, old and new, are ranked together and only the Np best remain in the
population [13].

Beyond the single-stage Linde-Hampson (LH) process presented in this paper, the model
is being further developed for CMRCs with phase separators (auto-cascades) and for CMRC
cascades. A more advanced single- and multi-stage compressor model will also be implemented.
The tool will then be applied to identify an optimum CMRC design for the cooling stations
in the SuperLink project. Following a detailed component design for the optimized process
parameters, the potential of the CMRC technology will be assessed in comparison to reverse
Brayton coolers.
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