KIT | KIT-Bibliothek | Impressum | Datenschutz

Generalised and automated method for surface analysis of roughness and subsurface porosity using micro-computed tomography

Englert, Lukas ORCID iD icon 1; Schulze, Volker 1; Dietrich, Stefan ORCID iD icon 1
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract:

As additive manufacturing enables the production of intricate, high-value parts with functional integration, inspection is gaining importance to ensure safety for use. Since the surface quality of laser beam powder bed fusion parts has proven to be inherently inhomogeneous, the measured values are dependent on the measurement spot, making surface quality difficult to characterise using conventional methods. Combined with the fact that the complex shape of the parts potentially complicates measurements further, a new surface characterisation method is required to adequately capture the quality of additively manufactured parts on the entire surface. In this work, a novel method is proposed that is both capable of meeting the above requirements and additionally allows the correlation of the results with the process data and the evaluation of the near-surface porosity. At the same time, the local quality deviations can be visualised and roughness hotspots found and correlated with the process.


Verlagsausgabe §
DOI: 10.5445/IR/1000172541
Veröffentlicht am 16.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 0963-8695
KITopen-ID: 1000172541
Erschienen in NDT & E International
Verlag Elsevier
Band 146
Seiten Art.-Nr.: 103166
Vorab online veröffentlicht am 22.06.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page