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Chapter 1

Introduction

What do Galileo’s discovery of Jupiter’s moons, Darwin’s theory of natural
selection, and Newton’s demonstration of dispersion have in common?

They were all achieved through in-situ observations. In-situ observation, which in-
volves examining phenomena in their natural or original context, enables the study
of systems without altering their original state. Galileo’s telescopic observations
reshaped our understanding of space. Darwin’s meticulous observations aboard
the HMS Beagle provided critical evidence for natural selection, revolutionizing
biology. Similarly, Newton’s prism experiments deepened our comprehension
of light and color, laying the foundational principles of optics. These milestones
highlight how in-situ observation and exploration can advance knowledge and
challenge existing ideas.

Today, traditional in-situ observations have evolved into advanced digital in-situ
imaging and reconstruction techniques, providing valuable information across
numerous fields. In medicine, sophisticated imaging techniques such as magnetic
resonance imaging (MRI) and X-ray computed tomography scans offer detailed
visualizations of internal structures, significantly enhancing diagnosis and treat-
ment [1–4]. Environmental science uses sensors and drones to gather real-time
data on air and water quality, wildlife, and vegetation, which is crucial for under-
standing ecosystems and addressing climate change [5–8]. Similarly, in computer
science, techniques such as machine vision and image recognition are key for
advancements in fields like autonomous vehicles and robotics, enabling machines
to interpret and respond to visual data on the fly [9, 10].

In-situ imaging and reconstruction play a crucial role in additive manufacturing
[11]. Accessing the morphology and properties of the fabricated structure online,
during the fabrication process, or immediately after, enables much faster optimiza-
tion of the specimen’s shape and significantly facilitates the entire manufacturing
process. For example, NASA engineers routinely use thermal nondestructive
evaluation during a deposition for in-situ characterization of fabricated parts for
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1 introduction

aerospace applications [12]. In biofabrication, particularly in tissue engineering,
in-situ imaging and reconstruction are essential for monitoring the growth and de-
velopment of engineered tissues. By employing different microscopic techniques,
researchers can observe cellular behavior and tissue formation in real time [13,
14].

This thesis explores possibilities of the implementation of in-situ imaging tech-
niques specifically in 3D laser microprinting. Since its development in the 1990s,
laser printing has become a leading technique in 3D micro- and nanofabrication
[15]. However, printing results are typically characterized in an ex-situ manner,
meaning the sample has to be removed from the printing device, developed, and
inspected using a separate imaging instrument. The lack of in-situ imaging, which
could allow users to access printed parts during or immediately after printing,
makes the printing process virtually blind. Ex-situ imaging of printed specimens
significantly slows the further advancement of 3D laser printing technology and
hinders industrial adoption due to the need for quality control at all stages.

Along these lines, I present three developed methods for in-situ monitoring during
and immediately after 3D laser microprinting:

• Optical coherence tomography (OCT) for in-situ detection of back-scattering
properties of 3D-printed specimens.

• Quantitative phase imaging (QPI) for measuring in-situ topography maps of
printed micro-optics and 2.5D structures.

• End-to-end deep learning approach for in-situ optical reconstruction of
3D-printed samples.

Both OCT and QPI are well-known imaging techniques that are widely used,
especially in bioimaging applications [16, 17]. These methods were adapted for
in-situ imaging and reconstruction of laser-printed specimens. Particularly, the
OCT experimental setup, mimicking in-situ imaging conditions was designed and
assembled from scratch. The QPI method was directly integrated into a 3D laser
printer enabling rapid in-situ phase retrieval of printed specimens. The proposed
deep learning reconstruction approach is uniquely developed to solve the specific
inverse scattering problem arising in in-situ microscopic imaging.

Outline of this thesis

In chapter 2, I will describe the essential aspects of 3D laser microprinting neces-
sary for understanding this work. This includes the main principles and workflow
of the printing process as well as threshold and accumulation models for explain-
ing the photochemistry of photoresists. I will also discuss the primary printing
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strategies and the experimental printing setup used throughout this work.

chapter 3 describes typical ex-situ characterization methods for 3D-printed speci-
mens and introduces the definitions and main criteria for in-situ imaging in 3D
laser microprinting. I will then discuss the theory behind the main methods
developed in this work and those realized by other authors. For each method, I
will provide information on its applicability to in-situ imaging

chapter 4 presents the concept and experimental realization of in-situ optical coher-
ence tomography. I will begin by describing the experimental setup that simulates
in-situ imaging conditions for measuring 3D-printed laser specimens. I will then
present the experimental results, which include inspecting photoresist inhomo-
geneity before printing, determining refractive index and shrinkage dependencies
on writing parameters, exploring the scattering properties of printed specimens,
and reconstructing 3D-printed samples based on their scattering imperfections.

chapter 5 details the integration of in-situ quantitative phase imaging into a
commercial laser printer. This integration will be achieved using the well-known
transport-of-intensity equation, which retrieves the phase information of printed
structures from their in-situ defocused optical microscopy images. Through in-situ
phase imaging, accurate topography maps of printed micro-optical elements will
be obtained and analyzed.

In chapter 6, I will describe the combination of bright-field optical microscopy with
advanced deep learning techniques to solve the inverse scattering problem and
reconstruct the binarized refractive index of 3D-printed samples. The experimental
validation of the developed 3D reconstruction approach and its robustness and
stability will be discussed at the end of this chapter.

Finally, I will summarize the results of this thesis and give an outlook on future
developments in chapter 7.
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2
Chapter 2

Fundamentals of 3D Laser

Microprinting

In this chapter, I will explain the principles of 3D laser microprinting. I will present the
threshold and accumulation models that are typically used to understand the photopoly-
merization processes occurring in 3D laser microprinting. Subsequently, I will detail the
important properties of the applied photoresists and the resulting polymer structures. At
the end of the chapter, the typical printing strategies and experimental printing setup will
be described.
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2 fundamentals of 3d laser microprinting

2.1 Concept of 3D laser Microprinting

3D laser microprinting is the primary optical technology capable of fabricating
three-dimensional micro- and submicron-structures down to the 100 nm scale [18].
Emerging in the 1990s [19, 20], this technology has advanced significantly, evolving
into a versatile high-resolution 3D fabrication tool for a wide range of applications
across various fields. Among its numerous applications are free-form designed
micro-lenses [21–23] and diffractive optical elements [24–26] for any kind of beam
shaping, micro-robots capable of controlled swimming and cargo transport [27,
28], 3D interconnections that function as photonic wires and couplers [29, 30], and
microstructures that control and guide cellular systems [31, 32].

In the following, important aspects of 3D laser microprinting necessary for the
scope of this work, will be discussed. These include the main principle, minimum
feature size and resolution, the photochemistry of photoresists as well as the
properties of photoresists and polymerized structures.

2.1.1 Principle

3D laser microprinting operates on the principles of multi-photon polymerization,
where focused, typically femtosecond-pulsed, laser radiation induces localized
polymerization reactions in photosensitive resins, known as photoresists [15].
The necessity of using multi-photon processes is crucial for high-resolution 3D
printing and will be further discussed from the accumulation model perspective
in subsection 2.1.3.

The principle of 3D laser microprinting is depicted in Figure 2.1. Laser radiation
is focused through a high-numerical-aperture objective lens into a photoresist
volume, a droplet of which was previously deposited on the substrate. In the
vicinity of the laser focus, a photochemical reaction of polymerization is initiated,
producing a confined polymer volumetric element in the shape of an ellipsoid,
typically referred to as the printing voxel. By steering the laser beam, more voxels
at different positions are introduced, and polymerized lines are fabricated. If a
user moves the laser beam in the axial direction by, e.g., adjusting a motorized
z-stage, complex 3D trajectories can be produced. Typically, 3D structures are
printed in a slice-by-slice manner, where a specimen is fabricated starting from
the substrate-photoresist interface. After the structure is printed, the liquid
photoresist is washed away during the development process using, for example,
acetone, leaving only the solid polymerized parts.
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2 .1 concept of 3d laser microprinting

Developed structure
Photoresist

Printing Final structure

Substrate

Figure 2.1: 3D laser microprinting principle. A droplet of a photoresist is applied to
the substrate. Subsequently, the printing process starts from the substrate-photoresist
interface. Printing proceeds in a slice-by-slice manner until the final 3D structure is
fabricated. The liquid photoresist is washed out during development and the solid
polymer structure is produced. Adapted from [33].

2.1.2 Feature Size

The resolution of laser printing is not defined in the same manner as it usually
is in microscopy and is not constrained by the diffraction limit. and is not
constrained by the diffraction limit. Moreover, the two terms "minimum feature
size" and "printing resolution" are often confused or not clearly distinguished. To
understand the main difference between these values, one should consider the
laser printing concept from two perspectives.

The first perspective involves the focusing of the laser beam by an objective lens
with a numerical aperture (NA). The focused laser beam, with the wavelength λ,
produces a diffraction-limited spot, defined by Abbe’s resolution limit as

axy ⩾
λ

2NA
. (2.1)

This well-known formula was derived from Fraunhofer diffraction, considering the
imaging case as the transmission type of grating. In the same manner, considering
multiple laser beams generating a 3D interference pattern, the minimum axial
grating period can be estimated as [34]

az ⩾
λ

n−
√

n2 −NA2
. (2.2)

Equation 2.1 and Equation 2.2 are considered appropriate approximations for
determining the minimum feature size in routine printing procedures. When
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2 fundamentals of 3d laser microprinting

calculating the feature size, for example, with n = 1.5, λ = 780 nm, and NA =
1.4, parameters that are similar to real conditions, the resulting voxel size will be
approximately 280 nm in the lateral direction and 800 nm in the axial direction.
These estimations indicate that the voxel indeed has an ellipsoidal shape and is
axially elongated, with typical ratios ranging from 2.5 to 7, mainly depending on
the objective’s NA.

2.1.3 Threshold and Accumulation Models

However, another perspective that should also be considered is the photochemistry
of photoresists. Generally, accurately describing all the processes that occur in pho-
toresists after photoinitiation is a complex task that requires solving corresponding
differential equations. Nevertheless, proper estimations and phenomenological
understanding can be provided by two simple models: threshold and accumula-
tion.

In the threshold model [35], a photoresist molecule can be polymerized only if
a certain energy dose, Dth, transferred to the molecule by optical absorption, is
exceeded. In other words, the experimentally transferred energy dose from the
laser radiation should be larger than the certain threshold dose of the photoresist
or D > Dth. In volume elements, where D < Dth, the photoresist remains
liquid, and the potentially introduced cross-linking is not strong enough to later
withstand the development process. The deposited energy dose for the exposure
time texp is described as the photochemical response of the photoresist as

D(r) ∝ texp I(r)N, (2.3)

where I ∝ P is the optical intensity, proportional to the laser power P, and N is
the non-linearity factor, which scales with the underlying photochemical process.
Thus, one-photon absorption (N = 1) affects the dose linearly, whereas most
processes in 3D laser microprinting follow two-photon polymerization, which is a
quadratic process (N = 2). Two- and one-photon dose distributions, calculated
from a Gaussian beam with a beam waist of w0 = λ/2 are presented in Figure 2.2a
and b. These distributions demonstrate how voxel sizes vary depending on
the ratio of the exposure dose D to the threshold dose Dth. For instance, if the
deposited dose exceeds the threshold dose by three times, the resulting voxel size
in the z-direction will be approximately four times larger than at the threshold
dose. Moreover, it is evident that the non-linearity of this process plays a crucial
role in restricting the voxel size, particularly when the deposited dose significantly
exceeds the threshold value.
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2 .1 concept of 3d laser microprinting

c d

a b

Δx

1

1.5

2

2.5

-1 0 1

-2

-1

0

1

2

x / λ

z 
/ 
λ

-1 0 1

-2

-1

0

1

2

1

1.5

2

2.5

x / λ

z 
/ 
λ

-1 0 1

-2

-1

0

1

2

x / λ

z 
/ 
λ

D
/D

th
D

ac
c/
D

th

D
/D

th

-1 0 1

-2

-1

0

1

2

x / λ

z 
/ 
λ

N = 2 N = 1

D
ac

c/
D

th

1

1.5

2

2.5

1

1.5

2

2.5

Figure 2.2: Dose simulations of the Gaussian beam with a waist of w0 = λ/2 and
refractive index n = 1.5. a Demonstration of the threshold model for the two-photon
dose, calculated as the squared intensity of the Gaussian beam. The closer the
deposited dose is to the threshold dose Dth, the smaller the resulting voxel. b The
same calculations applied to the one-photon dose, calculated as the intensity of the
Gaussian beam. c Demonstration of the accumulation model for the two-photon
dose. Two doses were deposited with a spacing of ∆x = 0.4λ. The minimum spacing
corresponds to the resolution limit, which is calculated using Sparrow’s criterion
(Equation 2.6 and Equation 2.7). d The same demonstration for two one-photon doses
deposited with the same spacing of ∆x = 0.4λ, showing a huge dose accumulation
effect.
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2 fundamentals of 3d laser microprinting

Theoretically, it is possible to deposit a dose infinitely close to the threshold
value, thereby producing arbitrarily small structures and thus producing features
smaller than the minimum feature size described by Equation 2.1 and Equation 2.2.
Using this strategy, structures as small as 10 nm have been previously produced
[36]. However, this represents an extreme case that is unsuitable for reproducible
results.

To further understand how polymerization facilitates the printing of lines and
how the resolution limit can be defined, the accumulation model is introduced.
This model assumes that the photoresist remembers all spatially and temporally
transferred doses. The final dose is then obtained by linearly adding the doses
from all exposures [35]. This principle can be expressed in the form of equation

Dacc(r) ∝
T

∑
i=1

texpi
I(r, t)N, (2.4)

where T is the total number of all exposures.

To illustrate the accumulation effect, simulations were performed on the same
two- and one-photon dose distributions from Figure 2.2a and b. The doses
were deposited twice with the spacing of 0.4λ in the x-direction. The resulting
accumulated doses for both cases, calculated as the sum of the two spatially
separated doses, are depicted in Figure 2.2c and d. Based on this example, several
important observations can be made.

First, there is a critical dose value above which two deposited doses become
indistinguishable and merge into a single polymerized part. In Figure 2.2c, for
values Dacc > 1.1Dth, two separate voxels combine into one. By continuously
repeating the voxel deposition in one direction with the focus speed of v ∝ 1

texp
,

it is possible to print a single homogeneous line. In this regime, the dose also
becomes inversely proportional to the focusing speed, i.e.,

Dline ∝
IN

v
. (2.5)

Therefore, to achieve high printing speeds while maintaining the same dose value,
one must also increase the intensity and, hence, the printing laser power. Modern
laser printers can reach printing speeds of up to meters per second, enabling meso-
and even macro-scale fabrication [37].

Second, at lower doses near the threshold, one can determine the minimum
spacing between two voxels or neighboring lines that remain separated by only a
shallow minimum. Further reducing the distance between the voxels will lead to
them becoming indistinguishable, and thus, unresolved. This minimal spacing
defines the resolution limit in 3D laser printing. In Figure 2.2c, this distance in the
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2 .1 concept of 3d laser microprinting

x-direction is highlighted and denoted as ∆x. For a diffraction-limited focused
beam, ∆x is the resolution limit in the x-direction. Its value can be estimated using
Sparrow’s criterion. According to this criterion, the minimum lateral and axial
distances can be approximated by two specific equations [34]

∆x =
λ

2
√

N ·NA
, (2.6)

∆z = AR · ∆x, (2.7)

where AR denotes the aspect ratio between axial and lateral voxel size. Thus,
the resolution of canonical two-photon polymerization is approximately 1.4 times
smaller than the typical feature size derived from Abbe’s resolution limit.

Finally, if the experimental dose significantly exceeds the threshold value or if
voxels are deposited in very close proximity, a substantial dose accumulation
can occur, leading to the growth of polymerized structures. This phenomenon
is commonly referred to in the literature as the "proximity effect" [35]. Notably,
the proximity effect is particularly evident in the one-photon process, as depicted
in Figure 2.2d. In this case, two voxels cannot be resolved at the simulation
spacing distance, and the accumulated voxel is more than twice as large as that
in two-photon polymerization. This observation underscores the necessity of
non-linearity for achieving the precision required to print arbitrarily small 3D
structures. It is worth mentioning that the proximity effect can sometimes be
intentionally applied for smoothing printed shapes, especially in micro-optics
applications [38].

2.1.4 Important Properties of Photoresists and Polymers

3D laser microprinting relies on multi-photon polymerization, which requires that
photoresists have sufficient multi-photon absorption cross-sections to initiate the
polymerization reaction. Furthermore, the photoresists need to be transparent to
the laser emission wavelength. The absence of linear absorption around the laser
wavelength is crucial to ensure effective printing while preventing the photoresist
from heating and undergoing uncontrolled one-photon excitation. Thus, photore-
sists are typically considered transparent at wavelengths far from the one-photon
absorption peak, generally in the range from 550 nm to 1100 nm, until vibrational
overtones occur [39].

After photoinitiation, a molecule of liquid photoresist solidifies through the poly-
merization reaction, causing the refractive index of the photoresist to increase to
a higher value. Typically, photoresists have a refractive index similar to that of
fused silica glass, approximately 1.5. In this work, two commercial photoresists
will be used:

13



2 fundamentals of 3d laser microprinting

1. Nanoscribe IP-S (hereafter referred to as IP-S) with a refractive index of
nIP−S = 1.483 and a refractive index change after polymerization of ∆nIP−S ≈
0.026 [39, 40].

2. Nanoscribe IP-Dip (hereafter referred to as IP-Dip) with a refractive index
of nIP−Dip = 1.518 and a refractive index change after polymerization of
∆nIP−Dip ≈ 0.030 [39, 41]. All refractive index values are provided for a
wavelength of 630 nm. Refractive index differences are provided for UV-
polymerized volumes.

However, the refractive index of printed material depends on the degree of cross-
linking and reaches its maximum for fully polymerized volumes, for example,
after UV-polymerization [42]. Therefore, although maximum refractive index
differences are given, the intermediate values for 3D printed parts often remain
undetermined due to variations in the degree of cross-linking, which is influ-
enced by the energy dose deposited into the photoresist [43]. The relationship
between the refractive index and the writing parameters will be further explored
in subsequent chapters.

Lastly, it is important to address the polymer shrinkage that occurs after both po-
lymerization and development. During polymerization, the polymerized material
becomes denser at the molecular level than the unpolymerized liquid volume. As a
result, this increased density at the macroscopic level leads to slight shrinkage and
deformations of the polymerized parts [44]. However, the most significant effect
of polymer shrinkage happens during the development of the printed parts, when
unpolymerized oligomers and unreacted initiators are washed out [45, 46]. If the
values of a sample’s height before development hbefore and after development hafter
are known, the resulting axial post-development shrinkage S can be calculated as

S = 1− hafter/hbefore (×100%). (2.8)

Typical post-development shrinkage values range from 5 to 30%, also depending
on the cross-linking degree and, consequently, on the printing parameters [47].
The deduced dependencies of shrinkage on the laser power will be studied in
section 5.2.

2.2 Printing Strategies

To print a 3D micro-structure, one should implement controllable two-photon
polymerization in three dimensions, both on the software and hardware sides.
Modern 3D laser printers provide software where users can upload the intended
3D model, typically in a triangulated stereolithography (STL) file. In this software,
the model is recalculated to the printer coordinates, sliced in the z-direction with a
slicing distance between adjacent layers of ∆z, and hatched (divided into lines for
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Figure 2.3: Illustration of printing strategies. Structures are printed in a slice-by-slice
manner with a slicing distance of ∆z and a hatching distance of ∆x, starting from the
substrate-photoresist interface. a A structure printed with uni-directional hatching,
where every slicing layer is printed in the same direction (marked by black arrows)
b A structure printed with cross-directional hatching, where the hatching direction
changes by 90 degrees with each slice.

each z-plane) with a hatching distance of ∆x (∆y) in the xy-direction. Additionally,
users might choose certain advanced printing strategies, such as printing contours
or changing the slicing direction with each slice. The latest concept will be used
in section 4.4. Figure 2.3 illustrates the structure printed using uni- and cross-
directional hatching strategies. Panel a showcases uni-directional hatching, where
each slice is printed in the same direction, as depicted by the black arrow. Panel
b depicts cross-directional hatching, where the hatching direction changes by 90

degrees with each slice.

After preparing the set of coordinates, the laser printer hardware uses them to
print along pre-programmed trajectories. This usually involves galvo-mirrors or
piezo stages for controlling the xy-direction and motorized (often microscopic
or piezo) stages for controllable z-positioning. Two-photon polymerization is
achieved through femtosecond-pulsed laser radiation, which is focused by a high-
NA objective lens. Notably, recent research has demonstrated that an alternative
two-step absorption process, utilizing a single continuous-wave laser diode and
a specialized photoresist system, can yield results comparable to those achieved
with two-photon absorption [48].

2.3 Experimental Printing Setup

Commercial laser printer Nanoscribe Photonic Professional GT (PPGT) was used
for 3D laser printing of microstructures throughout this work. The scheme of
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Figure 2.4: Scheme of the commercial laser printer (Nanoscribe PPGT) used
throughout this work. The printing system consists of two parts. The laser part
consists of a femtosecond laser, acousto-optic modulator (AOM), and galvo mirrors.
The microscope part comprises an objective lens that focuses the laser radiation onto
the substrate within the volume of the photoresist, xy-stage, light-emitting diode
(LED) for illumination, and camera for recording wide-field images. Reworked figure
from [33, 49].

the device is presented in Figure 2.4. The printing system consists of two parts.
The first part comprises laser printing components such as an erbium fiber laser
with a pulse width below 100 fs, a repetition rate of 80 MHz and an emission
wavelength centered at 780 nm; acousto-optic modulator (AOM) for adjusting
the laser power; and galvo mirrors to scan the laser radiation in the xy-direction.
The second part, responsible for focusing and imaging, comprises a modified
Zeiss Axio Observer microscope with an immersion objective lens and xy-stage
for positioning the sample. A light-emitting diode (LED, Thorlabs M625L4) with
a central illumination wavelength of 630 nm and a nominal bandwidth of 17 nm
is used together with a 12-bit Zeiss Axiocam MRm camera for wide-field imaging
purposes.

Notably, the used printing setup has a slight shift of −24 µm in the axial direction
between the printing plane and the imaging focal plane, also referred to as the
in-focus plane. This shift implies that if printing occurs directly on the substrate,
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Figure 2.5: In-focus imaging plane
shift. z-shift of the printing setup
that additionally defocuses in-situ mi-
croscope images by -24 µm towards the
substrate. All structures were printed in
the dip-in mode.

the printed layer will be out-of-focus for wide-field microscope imaging, and the
actual imaging focal point will be shifted by zshift = −24 µm (Figure 2.5). The
minus denotes shifting towards the substrate. The nature of this shift is due to the
misalignment of optical components within the microscope setup. Although this
shift does not affect the performance of a wide-field microscope during routine
in-situ observation, it becomes crucial to account for when simulating realistic
images, as outlined in chapter 6.

All microstructures in this work were printed using the "dip-in" mode, where the
photoresist is used directly as immersion liquid between the objective lens and the
substrate. Transparent ITO-coated and fused silica glasses were used as substrates.
Throughout this work, two printing regimes were used:

1. High-resolution regime with a Zeiss Plan-Apochromat 63× NA = 1.4 (here-
after referred to as 63×/NA1.4) objective lens and the Nanoscribe IP-Dip
photoresist. The resulting voxel size is estimated as the FWHM of the
squared focus intensity profile to be 250 nm in the lateral direction and 600

nm in the axial direction. The corresponding imaging pixel size for this
configuration is 160 nm.

2. Mesoscale regime with a Zeiss LCI Plan-Neofluar 25× NA = 0.8 (hereafter
referred to as 25×/NA0.8) objective lens and the Nanoscribe IP-S photoresist.
The voxel size is estimated as 400 nm in the lateral direction and 2300 in the
axial direction. The corresponding imaging pixel size for this configuration
is 400 nm.
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3
Chapter 3

In-situ Imaging Methods for

3D Laser Microprinting

This chapter is dedicated to the concept of in-situ imaging for monitoring during 3D laser
microprinting. First, I will explore the discrepancies between intended 3D models and
actual printed structures, highlighting the importance of in-situ imaging for 3D laser
microprinting. Subsequently, I will present the main definition and criteria of in-situ
imaging for 3D laser microprinting. Following this, both potential and realized methods
will be discussed. The theory and derivation of the equations behind the two main methods
discussed in this work – optical coherence tomography and quantitative phase imaging –
will also be provided.
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3.1 Typical Characterization of Printed Samples

Despite the versatility and high resolution offered by 3D laser microprinting
technology, printed samples can still exhibit defects and issues that arise during
the printing process and subsequent development. These problems often result in
deviations between the printed structures and the original 3D models uploaded
into the printer software. Issues such as the proximity effect, which leads to
unintended polymerization due to dose accumulation, and polymer shrinkage
occurring both after printing and development, have already been discussed in
the previous chapter. Other common challenges include mechanical instability of
the printed specimens [50], overexposure [51], and printing beneath the substrate.

As an example, a 3D buckyball was printed using the 25×/NA0.8 objective and
the IP-S photoresist. After printing, the structure was developed and imaged
using scanning electron microscopy (SEM). The comparison between the original
3D model and the resulting SEM image, as shown in Figure 3.1, reveals noticeable
differences. The printed buckyball is missing a portion of its bottom due to
unintentional printing below the substrate. Additionally, the rods significantly
deformed due to shrinkage and deformations that occurred during the printing
process.

Thus, shape deviations commonly occur during the printing process. These

10 µm10 µm

3D Model SEM photo

Figure 3.1: Comparison between a 3D buckyball model and the resulting printed
structure. 3D stereolithography (STL) model uploaded into laser printer software
for further printing (on the left) and the SEM photo of the printed and developed
structure showing evident differences (on the right). The presented structure will
be further used for in-situ reconstruction using a deep learning approach in subsec-
tion 6.5.3.
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deviations are particularly problematic in micro-optics, where even minor shape
changes can drastically impact optical performance. Consequently, the 3D printing
process often requires iterative optimization to accurately reproduce the targeted
shape with the necessary quality and precision. To date, this optimization process
has primarily utilized imaging techniques, including the previously mentioned
SEM, as well as holographic tomography [52], X-ray tomography [53], confocal
fluorescence microscopy [54], confocal laser profilometry [55], optical coherence
microscopy [56], and atomic force microscopy [57].

All of these methods are performed on the finished and developed 3D-printed
parts using separate imaging instruments. Because the structure must be removed
from the laser printer and developed before analysis, these techniques are typically
referred to as ex-situ methods. Such methods are time-consuming and unsuitable
for rapid optimization procedures, as they do not provide real-time feedback.

In contrast, in-situ imaging offers substantial advantages for optimizing 3D print-
ing processes in real time. An in-situ imaging modality can provide an online
assessment of the quality and properties of 3D-printed microstructures without
the need for additional steps in between.

3.2 In-situ Imaging and Possible Solutions

The in-situ imaging method implies assessing the polymer structure properties
and shape in the volume of liquid and photosensitive resist during or immediately
after laser printing. In this regard, three simultaneous demands should be met.
The proper in-situ imaging modality should

• be fast with respect to the printing process

• have µm-resolution

• not influence the printing process, i.e., not introduce any polymerization or
other unwanted chemical modifications to the photoresist.

The third demand significantly lowers the range of possible in-situ methods, ex-
cluding all UV- and X-ray-based tomographic approaches, as they would result in
the polymerization of a photoresist volume. This leaves only optical tomographic
reconstruction methods for consideration. It is also worth mentioning that 3D
confocal microscopy, which reconstructs fluorescence 3D maps and is often used
for characterizing printed samples ex situ, is unsuitable for in-situ imaging. This
limitation arises because the common photoresists used in the printing process
exhibit a significant amount of fluorescence, which cannot be distinguished from
the fluorescence of the printed parts [39].

In the following sections, both potential and already implemented in-situ character-
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ization methods applicable to 3D laser microprinting will be discussed. Included
among these methods are interferometric techniques such as optical coherence
tomography and digital holographic microscopy, as well as non-interferometric
bright-field optical microscopy techniques that can be modified to capture the
phase of printed samples.

3.3 Optical Coherence Tomography

This section discusses the use of optical coherence tomography (OCT) as a method
for in-situ imaging in 3D laser microprinting. It describes the applicability of this
technology to laser printing, its operating principles, and the theory behind OCT
interference signals. The OCT setup developed for mimicking in-situ imaging of
laser-printed specimens and in-situ OCT experimental findings will be presented
in chapter 4.

3.3.1 Applicability

OCT is an imaging technique widely used in medicine [58, 59], particularly in
ophthalmology [60–62], which non-invasively detects the back-scattered light
by interferometric principle. In the context of 3D printing, the refractive index
difference between polymer and photoresist is on the scale of ∆n ≈ 10−2 and its
absolute value is npr ≈ 1.5 [39]. These values can be recalculated to the Fresnel
reflection coefficient R expressed in decibels using the formula

R(dB) ≈ 20 · log

(
∆n

2npr

)
≈ −50dB. (3.1)

Despite the low level of back-reflection on the order of -50 dB, modern OCT
systems, with sensitivities exceeding 100 dB [63], can effectively detect it. This
capability makes OCT a valuable method for the 3D reconstruction of printed
samples based on their back-scattering. Notably, the value of -50 dB was calculated
for the specular Fresnel back-reflection. Diffuse scattering may result in even lower
values.

Within the broader scope of 3D printing technologies, in-situ OCT has proven
effective in various applications. For example, OCT has been demonstrated in
combination with extrusion-based bioprinting [64, 65]. In metal additive manu-
facturing, several studies have employed OCT to monitor surface defects, layer
roughness, and the time-dependent thickness of sintered metals [66–68]. Further-
more, OCT has been used to visualize the curing process in semi-transparent
polymer droplets [69].
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3 .3 optical coherence tomography

3.3.2 Principle

Experimentally, OCT is based on the Michelson interferometer configuration
and utilizes broad bandwidth light sources. The latest provides the important
advantage of OCT – low coherence length and hence high axial resolution, which
is defined as [70]

∆z =
2 ln 2
πn

λ2
0

∆λ
, (3.2)

where λ0 denotes the central wavelength of the illumination source, n is the
refractive index of immersion, and ∆λ is the full width at half maximum (FWHM)
of the source’s emission spectrum.

The lateral OCT resolution is defined in the same manner as for confocal mi-
croscopy with the objective’s numerical aperture NA [71]

∆x =
λ0

2NA
. (3.3)

In contrast to confocal microscopy, OCT typically does not utilize optical sectioning
and employs low-NA objective lenses. Therefore, a single OCT scan (A-scan)
captures all the back-scattering information in the axial direction, constrained only
by the optical resolution of the spectrometer and the NA of the objective used. The
estimation of the axial field of view (also known as "confocal gating") for an OCT
system can be described similarly to the axial response in confocal microscopy as

FOVaxial ≈
2nλ0

NA2 . (3.4)

Thus, OCT systems utilize low-NA objective lenses to increase the axial field of
view up to millimeters of depth. Notably, OCT can also be operated using high-
NA lenses that provide the same "confocal gate" regime as confocal microscopy
and detect only small axial back-scattering portions of samples. This regime is
called optical coherence microscopy [72] and will not be discussed in the scope of
this work since it is much slower than common OCT and hence not suitable for
fast 3D reconstructions.

Modern OCT systems are divided according to the operational principles into
two types: Swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT)
[70]. SS-OCT is based on a tunable swept laser that sweeps across a broad range
of wavelengths, typically between 1060 and 1310 nm, as a function of time. In
contrast, SD-OCT utilizes superluminescent diodes (SLDs) centered around 800-
900 nm, along with a spectrometer that captures the spectral interference signal
simultaneously across the entire wavelength range. It has been shown that the
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main characteristics of both OCT types are similar, and the main difference lies
in the central wavelength [73]. Thus, SD-OCT typically shows better resolution.
Moreover, SLD sources are completely safe for photosensitive resins since they are
operated in a continuous-wave regime with milliwatts of power. Therefore, SD-
OCT is more suitable for use as an in-situ imaging tool in 3D laser microprinting.

The principal scheme of an SD-OCT system is shown in Figure 3.2. The SLD
illumination is divided by a beam splitter into two paths: the sample path,
directed toward the sample, and the reference path, directed toward a reference
mirror. When back-scattering from both paths recombines, interference occurs.
The spectral interference is further detected by a spectrometer and recorded by a
CMOS sensor. If one additionally scans the sample in the xy-direction by using,
for example, a scanning mirror, the whole back-scattering volume of the sample
can be eventually reconstructed.

SLD

Mirror

SM

CMOS
Spectrometer

Illumination

Back-sca�ering

Sample

z

BS

Figure 3.2: Spectral-domain OCT scheme. The light from a superluminescent diode
(SLD) is emitted and split into the reference and sample paths by a beam splitter (BS).
The sample in this example has two reflective surfaces. The back-scattered light from
both paths is recombined at the spectrometer position and the interference signal is
captured by a CMOS camera. The sample path can be additionally equipped with
a scanning mirror (SM) to enable fast scanning of the whole sample volume. The
illumination is marked by light red arrows, whereas back-scattered light is marked
by dark red arrows.
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3.3.3 Interference Signal

This subsection describes the formation of the interference OCT signal detected
by a CMOS sensor. All derivations with little author corrections are taken from
[70], Chapter 2.

To calculate the signal registered by a detector, one should consider electric fields
on both paths of the interferometer. First, the incident electric field EI emitted
from the SLD can be defined as a polychromatic plane wave

EI = ∑
l

Sl exp (i[klz−ωlt]), (3.5)

where Sl is the complex amplitude of the monochromatic component at frequency
ωl and kl = 2π/λl is the free-space wavenumber. For the sake of simplicity, all
wavenumbers and frequencies are considered in free space and should be rescaled
using refractive index n to the real-space distances.

Next, considering a 50:50 beam splitter, the reference electric field ER after re-
flecting on the reference mirror and propagating back to the beam splitter can be
written as

ER =
EI√

2
rR exp (ik2zR), (3.6)

where rR denotes the reflectivity of the reference mirror, zR denotes the optical
path length of the reference beam. The factor of two in the exponential function
accounts for the light traveling both forward and backward through the beam
splitter. In other words, if the reference mirror position is shifted by ∆z, the
resulting optical path length will change to 2∆z.

In the same manner, one can write the electric field on the detector after back-
scattering introduced by the sample’s reflectivity rS(z)

ES =
EI√

2
[rS(z)∗ exp (ik2zS)]. (3.7)

Here, ∗ denotes the convolution operation between the sample’s reflectivity rS(z)
and the exponential factor. Generally, the sample’s reflectivity can be assumed as
a finite sum of N single reflectors, then the respective electric field is expressed as

ES =
EI√

2

N

∑
m=1

rSm exp (ik2zSm). (3.8)

The photocurrent I, which is registered by the detector, is proportional to the
intensity of interference and can be expressed as

I(k) =
ρ

2

〈
|ER + ES|2

〉
=

ρ

2

〈
(ER + ES)(ER + ES)

∗
〉

, (3.9)
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where ρ is the responsivity of the detector or the coefficient between intensity and
current (units amperes/watt), and the angular brackets show integration over the
response time of the detector. The factor of two appears due to the second pass of
each field through the beam splitter.

Since any detector response time would be much longer than the angular frequency
oscillations, the temporal terms related to ω will be eliminated after integration.
The resulting formula for the interference intensity after averaging over time is
written as

I(k) =
ρ

4
S(k)

∣∣∣∣∣rR exp [ik2zR] +
N

∑
m=1

rSm exp [ik2zS]

∣∣∣∣∣
2

, (3.10)

where S(k) =< |∑
l

Sl exp (−iωlt)|2 > is the power spectral dependence of the

SLD. During the derivation of Equation 3.10, zero z-position was set at the detector
location. This formula can be decomposed into three terms

I(k) =
ρ

4
(IDC + Icc + Iac), (3.11)

where IDC is the digital current (DC) term, Icc is the cross-correlation term, and
Iac is the auto-correlation term. These terms are calculated as

IDC(k) = S(k) · (RR + RS1 + RS2 + ... + RSN), (3.12)

Icc(k) = S(k)
N

∑
m=1

√
RRRSm

(
exp[2ik(zR − zSm)] + exp[−2ik(zR − zSm)]

)
, (3.13)

Iac(k) = S(k)
N

∑
m ̸=l=1

√
RSm RSl

(
exp[2ik(zSm − zSl)] + exp[−2ik(zSm − zSl)]

)
,

(3.14)

where R = |r2| is the power reflectivity value.

These terms are expressed in the frequency domain and can be rewritten to real
space by applying the inverse Fourier transform to equations Equation 3.12 – Equa-
tion 3.14. As a result, multiplications will be replaced by convolution operations,
and exponential functions will be substituted with Dirac delta functions. After
applying the sifting property of the Dirac delta function, f (z)∗δ(z + a) = f (z + a),
the resulting formulas for terms in real space will take the following forms

iDC(z) = γ(z) · (RR + RS1 + RS2 + ... + RSN), (3.15)
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icc(z) = 2
N

∑
m=1

√
RRRSm

(
2γ(z + (zR − zSm)) + 2γ(z− (zR − zSm))

)
, (3.16)

iac(z) = 2
N

∑
m ̸=l=1

√
RSm RSl

(
2γ(z + (zSm − zSl)) + 2γ(z− (zSm − zSl))

)
, (3.17)

where γ(z) is the Gaussian function, which describes the axial point spread
function of the OCT system and can be expressed as

γ(z) ∝ exp(− z2

∆z2 ). (3.18)

Here, ∆z is calculated using Equation 3.2.

Each of the three derived terms has its own physical meaning:

1. The DC term iDC represents detector current and is independent on the path
length. Thus, the DC term is the large artifactual signal centered at zero path
length difference.

2. The cross-correlation terms icc represent actual interference signals between
the reference mirror and sample’s reflectors and depend on the optical path
length difference. Identifying these terms is the main goal of OCT imaging.
It is worth mentioning that these terms are proportional to the sample’s
reflectance. This fact will be further used for the refractive index derivation
in section 4.3.

3. The autocorrelation terms iac describe interference that occurs between
reflectors of the sample and are typically considered as small noise artifacts
located around the DC-term.

An SD-OCT system captures all spectral components of I(k) simultaneously and
retrieves the sample reflectivity profiles RS(zs) in real space by applying the
inverse Fourier transform. An example of an A-scan in real space, which includes
all three terms and features two discrete sample reflectors, is shown in Figure 3.3.
As observed from the figure, the cross-correlation terms also have twin complex
conjugate artifacts, which are always present in OCT scans.

To account for the sample’s refractive index n and remove the scaling factor of
two, the optical path length is usually recalculated into new coordinates ẑ = z/2n.
In these recalibrated coordinates, the center-to-center distance between cross-
correlation terms accurately corresponds to the actual distances between reflectors
within the sample.
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Figure 3.3: Typical OCT A-scan from two discrete sample reflectors. A-scan rep-
resents the inverse Fourier transform of the detected interference signal i(z) and
showcases all three types of terms, calculated using Equation 3.15 – Equation 3.17.
Notably, the cross-correlation terms have mirror images or complex conjugate arti-
facts, located symmetrically opposite the zero path length position (the midpoint in
the graph).

3.4 Bright-field Optical Microscopy

As depicted in Figure 2.4, the laser printing setup partially consists of an optical
microscope. Thus, bright-field optical microscopy is the only in-situ inspection
method routinely used in 3D laser microprinting.

Since photoresists exhibit almost zero absorption at the illumination wavelengths
(as explained in subsection 2.1.4), the printed specimens also lack absorption and
can be considered pure-phase objects, characterized by a complex transmission
function T ∝ ei∆ϕ. Here, ∆ϕ is a phase shift (or optical path difference), which is
related to the product of the sample’s refractive index contrast ∆n(r) and height
h(r) as

∆ϕ(r) =
2π∆n(r)h(r)

λ
, (3.19)

where r = (x, y) and λ is the wavelength of the illumination source. Given an
incident plane wave illumination and an ideal imaging system, the sample field is
replicated at the image plane with the image field amplitude Ai. The resulting
microscopic intensity of the pure-phase object located in the in-focus plane will be
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3 .4 bright-field optical microscopy

then expressed as [74]

I(r) = |Aiei∆ϕ(r)| = A2
i . (3.20)

Thus, a focused image of a thin printed object will typically show constant intensity
in the x- and y- directions, making the object invisible under an optical microscope
in the laser printer. However, if the object is defocused, meaning the in-focus
plane (or image plane) is shifted, the intensity will no longer be described by
Equation 3.20. To calculate defocused intensities, it is necessary to compute field
propagation in the axial direction using either the Rayleigh-Sommerfeld diffraction
theory or the angular propagation method [75]. More detailed information on
optical field propagation will be provided in chapter 6.

The resulting defocused image will display diffraction patterns caused by scat-
tering due to the refractive index differences between the polymerized and un-
polymerized parts. Therefore, slight defocus is essential to visualize 3D-printed
specimens. An experimental demonstration of this effect is shown in Figure 3.4.
Here, a half-sphere with a radius of 15 µm was printed using the 25×/NA0.8
objective lens and IP-S photoresist. The left image shows an in-focus in-situ micro-
scopic image with almost constant intensity contrast. However, when the sample
is defocused by 50 µm in the z-direction, diffraction patterns become visible.

Typically, such microscopic images acquired during printing are utilized for defin-
ing the polymerization/overexposure thresholds for unknown photoresists [76]
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Figure 3.4: In-situ microscopic intensity images of a printed half-sphere. The
in-focus image of a half-sphere with a radius of 15 µm on the left shows almost
no intensity contrast. Slight visible patterns appear mainly due to the imperfection
of the imaging system. When the sample is defocused, the out-of-focus image on
the right reveals diffraction patterns. The intensities were normalized to the mean
background level.
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or for the detection of obvious deformations that may occur during the printing
process [77]. However, beyond these specific applications, interpreting diffraction
patterns to derive meaningful conclusions from such images is extremely challeng-
ing. Therefore, bright-field in-situ imaging alone cannot reconstruct or characterize
printed specimens without supplementary methods. One such method, which
involves extracting quantitative phase information about the sample, will be dis-
cussed in the next section. Another method involves solving the inverse scattering
problem for intensity images taken during laser printing. The implementation of
3D refractive index reconstruction, using a deep learning approach to solve the
inverse optical problem, will be detailed in chapter 6.

3.5 Quantitative Phase Imaging

As shown in the previous section, the printed objects introduce phase shifts de-
scribed by Equation 3.19. These phase shifts encode valuable information about
the refractive index difference and the height of the printed specimen. The set
of techniques that measure sample’s phase shifts is known as quantitative phase
imaging (QPI). This section will present the two most common QPI techniques:
interferometric digital holographic microscopy and non-interferometric phase
measurement using the transport-of-intensity equation. Both methods will be
discussed in the context of in-situ imaging for laser printing. Additionally, opti-
cal diffraction tomography which reconstructs refractive index differences from
multiple-angle QPI measurements will be detailed at the end of this section.

3.5.1 Phase Imaging

Historically, the era of phase imaging began with Frits Zernike’s invention of
phase contrast microscopy. Zernike found that phase shifts in the light that occur
from optical path difference as light propagates through a sample in bright-field
microscopy ∆ϕ could be converted into visible intensity contrast [78]. Phase-
contrast microscopy employs phase plates that shift the unscattered light by
π/2, creating constructive interference between the scattered and phase-shifted
background light. The intensity of the resulting microscopic image then becomes
proportional to ∆ϕ. However, quantitative phase extraction remained a challenge,
as phase shifts are nonlinearly coupled with intensity, and cannot be directly
determined numerically without additional manipulations.

Further exploration of phase role in imaging was advanced by Dennis Gabor
with the invention of holography [79]. Holographic methods provided tools
for recording both amplitude and phase information simultaneously. The in-
line scheme of writing and reading holograms, originally proposed by Gabor, is
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Figure 3.5: Principle of in-line holography. a The writing scheme involves a plane
wave illuminating the sample (S), with its diffraction patterns recorded onto a
photosensitive film. b. The reading scheme uses the same plane wave to illuminate
the recorded film, reconstructing the image of the sample at the same Fresnel distance
zF used for recording.

presented in Figure 3.5. The writing of the hologram (panel a) involves recording
Fresnel diffraction patterns of the imaging sample onto a photosensitive film
located at the distance zF. The reading procedure (panel b) is the reverse process
by which the hologram is illuminated with a plane wave, and the resulting image
is observed from the same Fresnel distance zF.

Both the inventions of phase microscopy by Zernike and holography by Gabor sig-
nificantly pushed forward the field of light microscopy and laid the groundwork
for the development of quantitative phase imaging and optical tomography meth-
ods. For their groundbreaking contributions, Zernike and Gabor were awarded
Nobel Prizes in Physics in 1953 and 1971, respectively [78, 79].

3.5.2 Digital Holographic Microscopy

It is essential to note that the in-line scheme proposed by Gabor had a significant
drawback: it produced a complex-conjugate virtual image at a distance of −zF. To
address this issue, Emmett Leith and Juris Upatnieks proposed the off-axis holog-
raphy method [80]. The off-axis scheme, based on the Mach-Zender interferometer,
became a universal tool for holographic imaging and, with the advancement of
digital algorithms and sensitive CCD cameras, evolved into widely used digital
holography and digital holographic microscopy [74, 81].

The scheme of off-axis digital holographic microscopy is presented in Figure 3.6.
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z

Figure 3.6: Principle of digital holographic microscopy. A coherent and monochro-
matic beam with a wavevector k0 is transmitted through the sample (S) and focused
by a microscope objective lens (MO). Additionally, an off-axis reference beam with a
wavevector kr is used to produce interference, which is registered by a camera (Cam).
The phase of the sample is then reconstructed from the interference patterns in the
frequency domain.

In this setup, off-axis interferometry occurs between the electric field transmitted
through the sample (S) and microscope objective (MO), E f , and angularly shifted
reference field, Er.

The resulting hologram, registered by a camera (Cam) is then written as [74]

Ih(r) = |E f (r) + Er|2 =

= |E f (r)|2 + |Er|2 + E f (r) · |Er|e−krxx + E∗f (r) · |Er|ekrxx,
(3.21)

where r is the 2D spatial vector, krx = kr · sin θ, and θ is the off-axis angle of the
reference field. The digital reconstruction is further performed in the frequency
domain. After the Fourier transform, the hologram can be written in three terms

ih(k) = i0(k) + i−1(k) + i+1(k), (3.22)

where k = (kx, ky). Three terms correspond to the zeroth order and two diffraction
orders of interest. After measuring one of the first-order terms, for example i+1,
which is expressed as

i+1(k) = |Er| · Ê f (kx − krx, ky), (3.23)

one can determine the field E f . By further applying the deconvolution operation
to propagate the field back to the sample, it is possible to derive the complex
sample field Es and hence the sample’s phase shift ∆ϕ.
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In the context of 3D printing, digital holography has been applied to extract the
phase information of printed 2.5D gratings and calculate their refractive index [82].
Particularly, the authors skipped the development step and measured holographies
of printed samples in the same photoresist volume that was used for printing.
Although the authors did not use the term "in situ" directly, their approach can be
considered as in-situ digital holographic microscopy.

Despite digital holography being the primary method for QPI, other interfero-
metric techniques – such as phase shifting microscopy [83], optical quadrature
microscopy [84], and Fourier phase microscopy [85] – can also be utilized for
quantitative phase extraction.

3.5.3 Transport-of-intensity Equation

In in-situ imaging for 3D laser microprinting, non-interferometric methods are
particularly noteworthy because they eliminate the need for highly complex optical
setups. For instance, the basic non-interferometric QPI method via the transport-
of-intensity equation (TIE) requires merely an optical microscope and a stage for
movement in the z-direction [86].

The TIE for QPI was first introduced by Teague under the paraxial approximation
in 1982 [87]. The derivation starts from the Helmholtz equation

(∇2 + k2)U(r3D) = 0, (3.24)

where r3D = (x, y, z) and k = 2πn/λ is the wavenumber in the medium with
the refractive index n. Considering a paraxial monochromatic coherent beam
propagating along the z-direction, its complex amplitude is written as

U(r3D) ≈ U(r, z) exp(ikz). (3.25)

After substituting Equation 3.25 into Equation 3.24, one receives

∇2U(r, z) + 2ik
∂U(r, z)

∂z
= 0. (3.26)

The equation Equation 3.26 describes the propagation law along the z-direction un-
der the paraxial approximation. The phase representation of the beam propagating
along the z-direction can be written as

U(r, z) =
√

I(r) exp(iϕ(r)), (3.27)

where ϕ(r) is the phase of the beam. After substituting Equation 3.27 into Equa-
tion 3.26 and separating the real part, one can deduce the TIE [88, 89]

−k
∂I(r)

∂z
= ∇[I(r)∇(ϕ(r)]. (3.28)
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The TIE describes the relationship between the axial intensity derivative and the
phase of a coherent paraxial beam propagating along the z-axis. If the imaging
object has no absorption and consists of a pure phase, such as laser-printed
specimens, then Equation 3.28 can be rewritten as a standard Poisson equation
[86]

− k
I0(r)

∂I(r)
∂z

= ∇2ϕ(r), (3.29)

where I0(r) is the in-focus background intensity. This Poisson equation can be
solved in the frequency space by applying the Fourier transform F to both parts
of Equation 3.29

F
[
− k

I0(r)
∂I(r)

∂z

]
= C(u) = −4π2|u|2F[ϕ(r)], (3.30)

where u = (ux, uy) is the spatial frequency vector. Finally, the formula for the
phase is obtained by applying the inverse Fourier transform F−1

ϕ(r) = F−1

[
− C(u)

4π2|u|2

]
. (3.31)

The singularity at (ux, uy) = (0, 0) can be avoided, for example, by predefining
the Fourier transform of the phase at the frequency center F [ϕ(0, 0)] = (0, 0).
Equation 3.31 is typically solved computationally by applying the fast Fourier
transform (FFT) [90].

From the experimental point of view, defining the phase of the object requires only
the measurement of the axial intensity derivative ∂I(r)

∂z . Thus, using a conventional
optical microscope equipped with a motorized z-stage is sufficient. The principal
scheme of TIE-QPI is shown in Figure 3.7. The sample is usually illuminated by
a plane wave and registered by a microscope camera. By moving the sample in
the z-direction and capturing images at the in-focus plane, denoted as z0, as well
as both above (z+) and below (z−) this plane, one could accurately calculate the
intensity derivative.

The lateral resolution of the measured phase is defined by the microscope objective
lens NA and the illumination wavelength as indicated in Equation 3.3. The phase
sensitivity of this method, which correlates with the minimum resolvable feature
at a fixed refractive index, can vary based on the numerical algorithms used, the
contrast in the refractive index, and the details of the imaging setups. Generally,
it is accepted that TIE-QPI is a high-sensitive technique with a phase sensitivity
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Figure 3.7: Experimental configuration of TIE-QPI. A coherent beam is transmitted
through the sample (S), focused by a microscope objective (MO), and the resulting
intensity image is recorded by a camera (Cam). The in-focus position of the sample
is marked as z0. By recording intensity images at different z-positions of the sample
(z− denotes positions below the in-focus plane and z+ denotes positions above the
in-focus plane), one can extract the sample’s phase from the TIE (Equation 3.28).

of up to 0.01 radians [91], which corresponds to the in-situ detection of printed
features with a height of less than 100 nm.

By utilizing the simplicity of optical setup and high sensitivity, the TIE-QPI method
has been efficiently employed in bioimaging and optical metrology. This includes
measuring cellular dry mass [92], conducting dynamic cell imaging [93], and
characterizing of microlenses and optical fibers [94, 95]. Application of TIE-QPI to
phase extraction for 3D-laser printed specimens is discussed in chapter 5.

3.5.4 Optical Diffraction Tomography

Suppose an optical system capable of QPI, for example, a digital holographic
microscope, is equipped with an additional xy-scanner to change the illumination
direction as depicted in Figure 3.8. In that case, it can measure complex fields
scattered from an object under illumination from multiple angles. If the imaging
object is weakly scattering, i.e., ∆n << n, the measured interferograms can be
used to reconstruct the sample’s complex 3D refractive index [96]. This method is
typically called optical diffraction tomography (ODT). ODT utilizes first Born or
Rytov approximations and iterative optimization algorithms to solve the inverse
scattering problem and reconstruct the 3D refractive index [97, 98]. Nowadays,
ODT is an established label-free microscopic technique widely used for 3D imaging
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Figure 3.8: Principle of ODT. The
sample (S) is scanned from different
illumination directions. The detected
scattering patterns from different illu-
mination angles are further utilized
to reconstruct the 3D refractive index
of the sample by solving the inverse
scattering problem.

k0
x

z

S

of cells [99, 100].

In the context of 3D laser printing, ODT has been successfully applied for in-situ
imaging purposes. For example, authors from [101], integrated the ODT system
into the custom-made 3D laser printer for simultaneous imaging of 3D-printed
specimens. An example image of their reconstruction is reprinted with Elsevier’s
permission and presented in Figure 3.9.

As observed from ODT reconstructions, especially in panel f, the retrieved re-
fractive index suffers from artifacts. This issue is a recognized limitation of ODT,
which stems from the limited illumination angle range dictated by the numerical
aperture of the objective lens used. This problem, inherent to all tomographic
methods with limited angle coverage, is known as the "missing cone artifacts".
These artifacts lead to incomplete reconstruction due to missing information [102].
In other words, the underlying inverse problem is ill-posed and cannot be solved
without introducing additional artifacts. The ill-posedness of the inverse problem
scales with the height of the reconstructed samples. Therefore, attempts to recon-
struct even larger volumes than those depicted in Figure 3.9a will result in further
degraded reconstruction quality [103]. Specifically, the axial reconstruction error
could reach the scale of micrometers or tens of micrometers, which is inadequate
for precise in-situ imaging.

In another study focusing on the application of ODT for reconstructing 3D laser-
printed samples [104], the authors successfully demonstrated the reconstruction of
the refractive index under "quasi" in-situ conditions (using immersion oil instead
of photoresist). However, the maximum height achieved in the reconstructions was
10 µm, and even at this scale, the reconstructions were significantly compromised
by numerous artifacts.

Summarizing the described attempts, it is clear that in-situ ODT imaging is not
feasible for printed specimens larger than 10 µm. To overcome this limitation,
further advancements in numerical solvers are required. The application of deep
learning to solve the inverse tomographic problem, similar to that encountered in
ODT, but using only a single illumination direction, is discussed in chapter 6.
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Figure 3.9: In-situ ODT measurements of laser-printed cuboids, reprinted from
[101]. ODT experiments of 3D-printed cuboids from different photoresists. a Design
of the structures. b and c SEM ex-situ images. d Reconstructed 3D refractive index.
e and f different cross-sections of the retrieved refractive index showing artifacts of
reconstructions. Reprinted Figure 4 from [101] with permission from Elsevier, license
number 5765310917918.
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4
Chapter 4

In-situ Optical Coherence

Tomography (OCT)

In this chapter, I will present OCT technology for the in-situ detection of back-scattering of
printed samples based on their refractive index differences appearing after polymerization.
I will begin by describing the custom-made spectral-domain OCT setup, specifically
designed for high-resolution imaging of printed microstructures. This setup mimics in-
situ imaging conditions and can be used immediately after printing without requiring
sample development. The experimental results will be presented in increasing order of
sample complexity: starting with OCT imaging of photoresist volumes before printing,
followed by the study of simple geometries with planar surfaces, and concluding with the
reconstruction of complex 3D architectures.
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4 in-situ optical coherence tomography (oct)

4.1 Experimental Setup

The applicability and theory of OCT technology and its spectral-domain (SD)
configuration for in-situ imaging in 3D laser printing were discussed in section 3.3.
For efficient in-situ imaging and further reconstruction of printed microstructures,
the OCT setup must have the required parameters of resolution, speed, field of
view, etc. Therefore, it was essential to develop a custom-made OCT setup tailored
to the specific requirements and not rely on commercial OCT systems. This section
details the developed experimental SD-OCT setup, beginning with an overview of
its optical components, followed by the description of the algorithms employed,
and concluding with the experimental validation of its crucial parameters.

4.1.1 Design and Description

The scheme of the developed SD-OCT system is presented in Figure 4.1. The
illumination source is a superluminescent diode (SLD, Exalos EXC250002-00)
emitting low-coherence light with a central wavelength of λ0 = 845 nm and a
bandwidth, measured as a nominal FWHM, of ∆λ = 135 nm. The spectrum of
the SLD is shown in Figure 4.2a as the orange curve. The SLD bandwidth offers
sufficient axial resolution for in-situ imaging, which is approximately 1.6 µm in
the photoresist/immersion oil, as calculated using Equation 3.2. The light path is
then split into reference and sample arms using a 50:50 fiber coupler (FC). The
reference arm (bottom) consists of a fiber collimator (CL), an optical relay, and a
reference mirror (RM). To obtain the highest possible OCT dynamic range without
saturating the spectrometer detector, a neutral density filter (NDF) is used to
optimize the intensity of the reference arm with respect to that of the sample arm.
The sample arm comprises the same fiber collimator, two-axes scanning MEMS
mirror (Mirrorcle A5M24.2-2400AL), scanning optics (achromatic lenses L1 and
L2), and the focusing immersion lens (Plan Apochromat 40× NA1.4 DIC M27,
Carl Zeiss).

The OCT setup was designed for standalone in-situ imaging, mimicking the real
in-situ situation, with the possibility of potential integration into a laser printer.
Therefore, the sample arm was configured to replicate real 3D printer optics
and comprises the high-NA (NA = 1.4) objective lens, typically used in 3D laser
printing. However, larger values of NA lead to significantly lower axial field of
views down to a few micrometers, which can be estimated using Equation 3.4.
This limitation makes it challenging to image even small structures. One possible
solution is to decrease the effective NA by under-illuminating the back aperture
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Figure 4.1: Experimental spectral-domain OCT setup. The near-infrared light is
emitted from a superluminescent diode (SLD) and split into two arms by a 50:50 fiber
coupler (FC). The reference arm (bottom) consists of a fiber collimator (CL), telescope,
reference mirror (RM), and a neutral density filter (NDF) to equalize intensities
between arms. The beam in the sample arm is scanned by a MEMS mirror, magnified
by a telescope (lenses L1 and L2), and focused by a high-NA objective lens (OL) to
the printed sample. The objective is immersed in a photoresist. Back-scattering from
both arms is recombined and the resulting interference is analyzed and recorded by
a spectrometer. The sample is additionally illuminated by an LED and imaged by a
conventional microscope camera. Adapted from [105].

of the objective lens. The effective NA is defined as

NAeff =
dn
2 f

, (4.1)

where n ≈ 1.5 is the refractive index of a photoresist, f = 4.125 mm is the
objective focal length, and d is the beam diameter. On the other hand, decreasing
effective NA to very small numbers will cause pronounced deterioration in lateral
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resolution, estimated as Abbe’s diffraction limit (Equation 3.3). Thus, by adjusting
the beam diameter d, one can find a trade-off between the axial field of view and
lateral resolution. In this regard, the scanning optics (lenses L1 and L2) were
specifically selected to expand the beam diameter to 1.2 mm, which resulted in
NAeff = 0.22. This value provided an extended axial field of view up to 1 mm. As
a side effect, the theoretical lateral resolution was reduced to ≈ 1.9 µm.

Finally, the resulting interferogram is recorded using a fiber-coupled spectrometer
with a line-scan detector (Wasatch Photonics CS800-840/180) with an exposure
time of 40 µs for one A-scan. Typical spectrometer measurements based on the
reflection of a substrate-immersion oil interface are presented in Figure 4.2a as the
blue curve. The orange curve is given as a demonstration of the signal without
interference and consists only of back-reflection from the reference mirror. This
signal corresponds to the spectrum of the SLD. The recorded fringes are further
evaluated by applying inverse fast Fourier transform (FFT−1) and recalculating
wavelengths to z-coordinates by resampling and dividing by the refractive index
of immersion. The exemplary evaluated spectrum of the fused silica interface is
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Figure 4.2: Spectrometer measurements of a fused silica substrate interface. a The
spectrum of the SLD is represented by spectrometer measurements of the reference
arm (orange curve) when the sample path is blocked. Interference patterns from
the specular reflection coming from a substrate interface are shown in blue when
both paths are used to produce the interference. Curves are normalized with respect
to the maximum of the reference signal. b The resulting OCT signal, obtained as
the Fourier transform of blue fringes in panel a. The obtained signal is similar to
the description of Figure 3.3. The cross-correlation terms are broadened due to the
dispersion mismatch. Later, the OCT signal is corrected for the dispersion mismatch
using Equation 4.3.
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presented in Figure 4.2b. Notably, one can clearly see the same terms, which were
derived in subsection 3.3.3: DC-term in the middle, auto-correlation terms around
the DC-term, and mirrored cross-correlation terms on the edges.

4.1.2 Workflow

The whole step-by-step in-situ OCT workflow is illustrated in Figure 4.3. Initially,
samples were printed using the Nanoscribe PPGT with the IP-Dip photoresist and
the 63×/NA1.4 objective and then immediately transferred to the experimental
OCT setup. At this stage, the samples were scanned in the x- and y-directions
by the MEMS mirror. The measured 3D dataset was then processed according
to the standard spectral-domain OCT evaluation algorithm [70], which includes
resampling, windowing, dispersion correction, inverse Fourier transform, and
recalculation into 3D intensities expressed in decibels.

While most procedures are straightforward, two operations – Hann windowing
and dispersion correction – require further explanation.

Hann windowing [106] multiplies the interference spectra by a Hann window
function H(k) , expressed as

H(k) = 0.5(1− cos(2π
k
N
)), (4.2)

Record A-scans

Print sample

Subtract referenceResample to k-space

Hann windowingDispersion compensationZero padding

FFT-1 Calculate z-coordinates Calculate 3D intensities in dB

Figure 4.3: Workflow for in-situ OCT. 3D laser printing is performed by Nanoscribe
PPGT (yellow block) while OCT imaging (gray blocks) is performed in the "in-situ
mode" with a separate custom-made spectral-domain OCT system in the same
volume of photoresist used for laser printing. FFT denotes Fast Fourier Transform.
All processing operations are performed in a custom-built MATLAB software.
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where N is the total number of pixels and 0 ≤ k ≤ N + 1. This modification
results in effective sidelobe suppression as will be shown in the further subsection.

Dispersion compensation is required to computationally correct for the dispersion
mismatch between the two arms. This mismatch causes significant broadening
of cross-correlation terms and is necessary for proper OCT evaluation. The
dispersion compensation approach was implemented according to [107]. This
approach corrects the recorded interference spectra S(k) as Ŝ(k) = S(k)ei∆ϕ. Here,
∆ϕ is a dispersion correction term expressed as

∆ϕ = a3(k− k0)
3 + a2(k− k0)

2, (4.3)

where a3 and a2 are polynomial coefficients and k0 is the central wavenumber.
This polynomial form is chosen because the dispersion propagation constant can
be expanded as a Taylor series. Thus, the coefficients a3 and a2 are responsible
for third- and second-order dispersion mismatches, respectively. The values of
these coefficients should be determined empirically, and automatic detection and
correction for dispersion mismatch were implemented computationally.

It takes approximately 30 seconds for a regular computer to acquire (10 seconds)
and process (20 seconds) the entire volumetric data with a size of 500 × 500

A-scans. This volume translates to real coordinates as 400 µm × 400 µm × 2.6
mm. It is worth mentioning that the effective range of detection is smaller in the
z-direction since the axial field of view is still limited by being less than 1 mm for
the developed OCT system.

4.1.3 Validation

Understanding and effectively utilizing the OCT setup goes beyond mere the-
oretical estimations – it is crucial to also experimentally validate the setup’s
characteristics.

First, the axial resolution of the setup was experimentally measured by using
a single reflector in the sample path and measuring a FWHM of the resulting
reflection peak. For this experiment, a single fused silica substrate interface in
immersion oil was used as the reflecting surface. The interference spectrum
and the corresponding OCT signal from Figure 4.2 were obtained exactly from
this surface. The resulting reflection peak after the whole evaluation procedure,
including dispersion correction and Hann windowing operation, is illustrated in
Figure 4.4a as the orange curve. Additionally, the OCT signal, evaluated without
the window function, is plotted as the blue curve. The FWHM of this signal is
approximately 2.1 µm, closely matching the theoretical axial resolution. However,
introducing the window operation significantly suppresses sidelobes, which is
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Figure 4.4: Validation of axial resolution based on reflection from the oil-substrate
interface. a Evaluated OCT signal from the spectrum from Figure 4.2. The OCT
signal evaluated without windowing function (blue curve) has a FWHM of 2.1 µm,
which matches the theoretical approximation for the axial resolution. The signal
evaluated using the Hann window has fewer sidelobes but a larger FWHM of 2.7 µm.
b B-scan of the substrate-oil interface consisting of OCT intensity scanned through
y-direction. The scale bar is 20 µm. Adapted from [105].

crucial for imaging surfaces with low back-scattering properties. Therefore, it
was decided to sacrifice some axial resolution in favor of enhanced sensitivity.
Additionally, the B-scan, representing the OCT intensity scanned through the
y-direction of the studied substrate-oil interface, is depicted in Figure 4.4b.

Here and in the following results, the OCT signal denotes an absolute value of
the inverse Fourier transform, whereas OCT intensity denotes a squared OCT
signal. 0 dB corresponds to a 100% reflectivity for both the OCT signal and the
OCT intensity.

To measure the experimental lateral resolution of the OCT system, one could
use the standard USAF 1951 test target. An OCT en face image of the test chart
is depicted in Figure 4.5. The elements of the eighth group remain resolved, as
illustrated in the enlarged region, where the lowest element corresponds to a
center-to-center line spacing of 2.2 µm. Within the error bars, this measurement
aligns with the lateral resolution of 1.9 µm, derived from Abbe’s diffraction limit
with NAeff = 0.22.

The final characteristic required to validate the setup’s performance is its sensitivity.
The sensitivity of OCT systems is typically defined by the signal-to-noise ratio
(SNR), expressed in dB. A common method to assess SNR is by measuring the
OCT intensity I using a specular surface with a known reflectivity R [108]. The
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Figure 4.5: Validation of lateral reso-
lution based on imaging of the USAF
1951 test target. Overview scan and the
enlarged region of the target’s eighth
group. The center-to-center spacing of
the lines of the lowest element (group
8, element 6) is 2.2 µm, which matches
the theoretical lateral resolution of the
OCT system. Adapted from [105].

sensitivity is then calculated as

SNRmax(dB) = 20 log

(
I

σbg

)
− 10 log(R), (4.4)

where σbg is the standard deviation of the background intensity away from the
specular surface. The power reflection coefficient R of the interface between optical
media with refractive indices n1 and n2 with the normal incidence is defined by
the Fresnel equation as

R =

(
n1 − n2

n1 + n2

)2

. (4.5)

To evaluate sensitivity, the same fused silica substrate with a refractive index
of nsub = 1.453 [109] was immersed in immersion oil with nimm = 1.510. The
correspondent Fresnel reflectivity is Rsub = 3.7× 10−4. The measured average
sensitivity of the OCT setup was found to be 105 dB, which is sufficient to detect
tiny refractive index differences of less than 10−4.

4.2 Inspection of Plain Photoresist

Before examining 3D printed microstructures, OCT images of a droplet of the
IP-Dip photoresist on a planar substrate were captured. Figure 4.6 demonstrates
OCT reconstructions of volumes for both aged and fresh IP-Dip photoresists.
Surprisingly, the aged photoresist exhibits a high density of refractive-index
inhomogeneities compared to the fresh photoresist. These "blobs" are interpreted
as oligomer groups formed through thermal activation over time.

Although these inhomogeneities were shown to have little effect on laser focusing
during 3D laser printing [105], they are still undesirable for several reasons.
Firstly, such oligomer conglomerates might serve as seeds for micro-explosions
[110] with higher laser powers and potentially lower the over-exposure threshold.
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Figure 4.6: OCT reconstructions of plain photoresist volumes. a OCT reconstruction
of a 5-year-old IP-Dip photoresist. b OCT reconstruction of a fresh IP-DIP photoresist.
For both cases, the iso-surfaces of the OCT intensities are shown at -65 dB. The axis
arrow bars correspond to 50 µm. Adapted from [105].

Secondly, these "blobs" might introduce additional artifacts during in-situ imaging
and deteriorate the quality of in-situ reconstructions, potentially affecting other
imaging methods too, as will be demonstrated in the following chapters. Finally,
they might also introduce additional inhomogeneities into the cross-linking density
after printing and may even remain after development and change the final
properties of printed structures. Therefore, in-situ OCT can detect any undesirable
particles and photoresist inhomogeneities before printing, effectively assessing the
quality of the photoresist prior to the printing process.

4.3 Inspection of Planar Surfaces

Next, simple printed microstructures with only planar surfaces were investigated.
As a test sample, cubes with a side length of 30 µm were printed onto a fused silica
substrate. The scheme of the experiment is shown in Figure 4.7a. The example
of the OCT A-scan taken in the center of one of the printed cubes is presented
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Figure 4.7: Measurements of printed cubes. a Scheme of the experiment. A printed
polymer cube was immersed in a liquid photoresist and was located on a fused
silica substrate. b Example OCT A-scan at the center of the cube (marked as an
arrow on panel b). Two peaks correspond to two interfaces: substrate-polymer and
polymer-photoresist. Reworked figure from [105].

in Figure 4.7b. This A-scan exhibited two peaks corresponding to two interfaces:
substrate-polymer (the largest peak) and polymer-photoresist (the smaller peak).
Notably, scattering inside the cube is almost negligible and reaches only ≈ -80 dB.
The absence of sufficient internal scattering signal hinders the 3D reconstruction
of the cube. This problem will be further addressed in the next section.

Furthermore, a peculiarity in the temporal behavior of these two peaks was noted
and presented in Figure 4.8. The OCT intensity of the largest peak (panel a),
associated with the substrate-polymer interface, remains stable over hours of mea-
surements, with only minor fluctuations attributed to temperature perturbations.
In contrast, the OCT intensity of the lower peak (panel b), associated with the
polymer-photoresist interface, exhibits time instability. It begins at -76 dB, reaches
a local maximum of -70 dB after 5 hours, and then decreases again. Both interfaces
are examined in detail in the following subsections.

4.3.1 Polymer-substrate Interface

Given the stability of the OCT intensity of the polymer-substrate interface over
time, the reflectivity of this interface can be treated in terms of the standard Fresnel
reflection law with normal incidence (Equation 4.5).

As seen from Equation 3.16, OCT intensity I is linearly proportional to the power
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Figure 4.8: Temporal OCT measurements of cube interfaces. a Time-dependent OCT
intensity of the substrate-polymer interface and b the polymer-photoresist interface.
Adapted from [105].

reflection coefficient R, hence it can be written as

R · k = I, (4.6)

where k is a calibration coefficient that has to be calculated from any reference
intensity with known reflectivity. As a reference interface, one could simply use
the photoresist-substrate interface with measured OCT intensity Ipr−sub. Then the
coefficient can be found as

k = Ipr−sub

(
npr + nsub

npr − nsub

)2

, (4.7)

where npr = 1.510 and nsub = 1.453 are refractive indices of the photoresist and
substrate at λ0 = 845 nm respectively. Finally, knowing the calibration coefficient
and the OCT intensity of the polymer-substrate interface Ipol−sub, one could derive
from Equation 4.6 the refractive index of the polymer npol as

npol = nsub

1 +

√
Ipol−sub

k

1−
√

Ipol−sub

k

. (4.8)

The derived curve used for the direct translation from a measured OCT intensity
to the correspondent polymer refractive index is illustrated in Figure 4.9.

This approach could be utilized to calculate the polymer refractive index for cubes
printed with different printing parameters, such as laser power and scanning
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Figure 4.9: Translation from OCT inten-
sity to polymer refractive index npol. The
calibration curve is derived from Equa-
tion 4.7 and Equation 4.8. Adapted from
[105]. -33
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velocity. Altering the printing parameters results in changes to the exposure dose,
subsequently affecting the cross-linking density and polymer refractive index.
The resulting polymer refractive index distribution over writing laser power and
scanning velocity is presented in Figure 4.10. Each experimental value of the
refractive index is obtained by measuring the OCT intensity of five identically
printed cubes, calculating the refractive index using the calibration curve shown
in Figure 4.9, and then averaging the results. Writing laser powers vary from the
polymerization to the overexposure threshold for each scanning velocity.

As demonstrated in ex-situ studies of Nanoscribe photoresists [39], the polymer
refractive index reaches its plateau at a certain value of exposure dose. This effect
is associated with the saturation of the polymerization degree, resulting in the
formation of a (nearly) fully polymerized structure. The deduced IP-Dip refractive
index dependencies are consistent with this theory, showing the saturation value
of nsat = 1.545. The saturation value is also consistent with the previous ex-situ
studies of the IP-Dip photoresist [42].

4.3.2 Polymer-photoresist Interface

Although OCT provides a fast method of measuring polymer refractive index, this
approach still relies on the Fresnel equations, which assume a sharp refractive
index transition between two optical media. However, if the refractive index
transition is not sharp but is represented as a smooth function, this violates the
conditions necessary for the Fresnel reflection equation. This violation explains
the unstable temporal behavior of the polymer-photoresist interface shown in
Figure 4.8b. To further explore this effect, additional temporal experiments with
cubes printed with different laser powers and a scanning velocity of 30 mm/s
were carried out. In addition, the time-dependent OCT intensity behavior was
also studied for cubes that were developed and re-immersed in the same IP-Dip
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Figure 4.10: Deduced IP-Dip refractive index of cubes for different writing pa-
rameters. Refractive index values of cubes printed with different laser powers and
scanning velocities. Calculations based on measurements of OCT intensities of the
polymer-substrate interface (depicted on the orange vertical scale on the left) and the
calibration curve from Figure 4.9. Adapted from [105].

photoresist. The resulting plots are presented in Figure 4.11.

Here, the first column corresponds to the in-situ OCT measurements of printed
cubes. Subsequently, printed samples were developed in acetone (second column)
or PGMEA (propylene glycol methyl ether acetate, third column), re-immersed
back in IP-Dip and immediately measured in the OCT setup again. The rows
correspond to the samples printed with different laser powers. Together with the
polymer-photoresist interface (blue curves), stable polymer-substrate interfaces
(orange dashed lines) were measured as well.

Surprisingly, the temporal behavior of the polymer-photoresist interface curves
varies depending on several factors such as laser power, re-immersion, and the
type of developer used. However, several trends can be observed. For instance, the
behavior of acetone-developed and re-immersed samples resembles an exponential
decay function, while the OCT intensity curves for PGMEA-developed and re-
immersed cubes exhibit oscillations with shifting local minima as the laser power
increases.
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This effect is associated with the non-sharp refractive index transition, charac-
terized by a varying transition width between the photoresist and polymer. To
quantitatively estimate the transition width and transition function, one could
use the transfer matrix approach to calculate reflection from a smooth refractive
index transition [111]. The transfer matrix method assumes that the transition
medium between the photoresist and polymer can be represented as a stack of thin
homogeneous films. It calculates reflection coefficients based on the characteristic
matrix of this stratified medium. The principal scheme is illustrated in Figure 4.12.
The wave in this scheme propagates from the photoresist medium with a refractive
index of npr and passes through thin layers of the transition medium, each with
a refractive index that depends on the z-position and is defined by a transition
function as ntr(z). The final layer corresponds to the polymer medium with the
constant refractive index of npol.

The characteristic matrix for normal incidence of non-magnetic loss-free thin film
with a thickness d and refractive index ntr(z) is expressed as [111]

M(z) =

 cos(k0ntr(z)d) − i
ntr(z)

sin(k0ntr(z)d)

−intr(z)sin(k0ntr(z)d) cos(k0ntr(z)d)

 , (4.9)
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Figure 4.11: Temporal measurements of OCT intensity. Time-dependent OCT
intensity measurements arranged in a 3×3 matrix. The columns of the matrix
correspond to the printed cubes measured under three different conditions: printed
and undeveloped samples (first column), cubes developed in acetone and then re-
immersed (second column), and cubes developed in PGMEA and then re-immersed
(third column). Changing-in-time measurements of the polymer-photoresist interface
(blue curves) are plotted with the stable polymer-substrate interface (orange curves).
Adapted from [105].
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Figure 4.12: Scheme of the layered transition
medium. The light passes through stratified
transition medium, characterized by ntr(z),
and is reflected at each interface within the
medium. Boundary conditions are plane
waves in the photoresist (npr) and in the poly-
mer (npol).

where k0 =
2π

λ
is the free-space wavevector. The matrix for the stratified medium

which is approximated as a pile of N = w/d thin homogeneous films is then
written as

N

∏
j=1

Mj(z) =

[
m11 m12
m21 m22

]
. (4.10)

The final formula for the accumulated reflection after passing the stratified transi-
tion medium is written as

R =

(
(m11 + m12npol)npr − (m21 + m22npol)

(m11 + m12npol)npr + (m21 + m22npol)

)2

. (4.11)

Computationally, a MATLAB algorithm for reflection calculations [112] was used.
Using the transfer matrix method, one could calculate reflection coefficients
for different transition parameters and compare theoretic calculations with the
experimental curves in Figure 4.11. For this purpose, the transition function that
describes the dependency of ntr on z was defined as

ntr(z) =



npr for z < z0 − w
2

npr +
npol−npr

2 ×
∣∣∣ z−(z0−w/2)

w/2

∣∣∣e for z0 − w
2 < z < z0

npol −
npol−npr

2 ×
∣∣∣ z−(z0+w/2)

w/2

∣∣∣e for z0 < z < z0 +
w
2

npol for z > z0 +
w
2

, (4.12)

where e is the transition exponent and z0 is the central z-position of the transition.

An example of transition refractive index curves generated by Equation 4.12 is
presented in Figure 4.13a. Here and in the following calculations, z ranges from
0 to 5 µm with z0 = 2.5 µm. The transition exponent e is used to smooth out the
transition profile proportional to ±ze. For example, e = 1 corresponds to a linear
transition.
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Figure 4.13: Transfer-matrix-based reflectivity calculations of the polymer-
photoresist transition. a Example transition functions for refractive index calculated
from Equation 4.12. b Computed distribution of reflectivity R depending on tran-
sition exponent e and transition width w. c Assumed time-dependent exponential
behavior of transition width with different time constants. d Temporal reflectivity
curves calculated from the transition width depicted on panel c and the exponent of
e = 1.5 depicted as a red dashed line on panel b. The curves resemble experimental
time-dependent behavior from Figure 4.11. Adapted from [105].

To properly compare the simulated results with the experiments, one should
calculate the reflection coefficient R over different wavelengths since the used
illumination source is far from monochromatic. Therefore, values of R were
calculated for the SLD wavelengths λ ∈ (845− 135/2 nm, 845 + 135/2 nm) with
a step of 5 nm, and the final value was obtained by averaging. The obtained
reflection distribution over different values of e and w is depicted in Figure 4.13b.
Significantly, the distribution is non-uniform, displaying oscillating reflection as
the transition width increases.

To further investigate this oscillatory behavior and compare it with experiments,
time-dependent curves for transition width were simulated (Figure 4.13c). These
curves were obtained by assuming the exponential increase from 0.4 to 1 µm
with different exponential coefficients as depicted in Figure 4.13c. Finally, time-
dependent reflection behavior was calculated from transition curves in panel c
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and transition exponent e = 1.5 marked in panel b. The obtained reflection curves
in Figure 4.13d resemble the oscillatory behavior of experimental OCT intensity in
Figure 4.11.

Thus, by applying the transfer matrix method, it is possible to estimate the
transition width, which appears to be in the range of 1 µm. A possible explanation
of this effect is the diffusion of monomer molecules into the formed polymer
matrix after printing. The rate of this diffusion changes depending on the used
solvent after re-immersion into the photoresist, which explains different time-
dependent behavior in Figure 4.11. Further investigation of this effect is impossible
since the precise transition function remains unknown and must be assumed.

4.3.3 In-situ Thickness Calculation

Despite the time-dependent variations in OCT intensity, the polymer-photoresist
interface for the IP-Dip photoresist remains consistently detectable by OCT, even at
the lowest intensity values. Thereby, this interface can always be measured, allow-
ing for the deduction of the thickness of planar surfaces in printed microstructures
in situ. For this purpose, a set of plates with different thicknesses ranging from 2

µm to 16 µm, but a fixed side length of 30 µm was printed. The plates were printed
together with supporting pillars with a height of 80 µm ensuring the OCT signal
comes only from the polymer-photoresist interface and not from the substrate.
The four of such printed plates are depicted in Figure 4.14a. The example A-Scan
taken from the center of the third plate (blue dot and gray line in Figure 4.14a) is
depicted in Figure 4.14b as blue dots. Here, two peaks correspond to the top and
bottom interfaces respectively. The absolute values of the peaks are not identical
due to the smearing-out effect described in the previous subsection.
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Figure 4.14: Printed plates for thickness evaluation. a Example transition functions
for refractive index calculated from Equation 4.12. b Computed distribution of
reflectivity R depending on transition exponent e and transition width w. Adapted
from [105].
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Figure 4.15: Plate thickness measure-
ments. Ex-situ SEM measurements of
the developed plates are represented by
the red line, while deviations of in-situ
OCT measurements from these values
are indicated by blue dots. Error bars
are calculated as mean squared error
(MSE) from the measurement area for
each plate. Adapted from [105].
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To measure the thickness of the plate, one should calculate the distance between
the maxima of two peaks. This was accomplished by fitting the peaks with two
Gaussians (red curve) and extracting the distance between them. To translate
the optical path distance to real z-coordinate, the refractive index of polymerized
IP-Dip, npol = 1.545, was used.

By employing the fitting procedure, all printed plates were measured, and their
thicknesses were obtained by averaging over 600 A-scans for each plate. The
comparison between in-situ thickness measurements obtained by OCT and ex-situ
measurements from scanning electron microscope (SEM) data is presented in
Figure 4.15. The minimum resolved plate has a thickness of 3.1 µm, which is
close to the system’s axial resolution of 2.7 µm. Thinner plates were impossible to
measure due to additional deviations of OCT signal arising from plate bending.

4.3.4 Shrinkage measurements

In addition to serving as an accurate in-situ thickness measurement tool, OCT can
be utilized for assessing polymer shrinkage after development. For this purpose,
large cuboids with a designed height of 120 µm and a side length of 50 µm were
printed. To explore the influence of printing parameters, cuboids were printed
with different laser powers ranging from 17.5 to 28 mW with a step of 3.5 mW and
various slicing distances of 200, 300, and 400 nm. After evaluating the in-situ OCT
height using the same procedure described in the previous subsection, the cubes
were developed in acetone, and their ex-situ height was measured in air. Due
to the requirement of immersion for the objective lens used, immersion oil was
applied between the objective lens and the bottom part of the substrate, while the
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Figure 4.16: Shrinkage measurements of printed cuboids. Based on in-situ OCT
measurements, all cuboids have approximately the same height of 119 µm within the
gray error bar before development. After development cuboids were measured in air.
Their height deviates due to shrinkage which depends on laser power and slicing.
The shrinkage was calculated using Equation 2.8.

sample was positioned at the top of the substrate in air. The resulting shrinkage is
measured according to Equation 2.8, and shrinkage measurements are presented
in Figure 4.16. As observed from the plot, both writing parameters influence
shrinkage values, reaching a minimum of 2% shrinkage. This effect is well-known
for acrylate photoresists, because a higher polymerization degree, related to higher
laser powers and smaller slicing distances, leads to smaller shrinkage [47]. This
approach was also applied for estimating the shrinkage of unknown photoresists.
Notably, OCT shrinkage measurements should be regarded as estimations rather
than precise measurements, as the axial resolution of OCT is approximately 3

µm. Additionally, if the surface is no longer planar, the OCT signal drastically
diminishes.

4.4 Inspection of 3D-printed Geometries

In-situ OCT provides valuable insights into printed microstructures based on
planar interfaces. As demonstrated, it allows for measuring the polymer refractive
index, assessing the diffusion of monomer into the polymer matrix, measuring
thicknesses with accuracy comparable to SEM, and estimating shrinkage. However,
the most crucial aspect of the in-situ tool lies in its capability for reconstructing 3D-
printed geometries, extending beyond cuboids and plates with planar interfaces.
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Figure 4.17: Imaging of a printed half-sphere. a SEM image of the half-sphere. b
Maximum OCT intensity projection xy-map. The central yellow signal is associated
with specular reflection coming from NAeff = 0.22. The corresponding calculated
area is shown in solid red. The dashed red area is a sphere perimeter. Since the
structure lacks internal scattering, the area between the two circles exhibits minimal
or no OCT intensity. Adapted from [105].

To validate this capability of in-situ OCT, a half-sphere with a radius of 50 µm
was printed and imaged. The inspection of the printed half-sphere is depicted
in Figure 4.17. As observed from the maximum intensity projection, the in-situ
OCT intensity of the half sphere, the area of which is marked as a dashed red line,
is almost undetectable (light blue area) with the only significant signal (yellow
area) present in the center. This signal corresponds to the specular reflection out
of the effective NA of the setup NAeff = 0.22 marked as a solid red line. This
observation suggests the absence of internal non-planar scattering from printed
samples.

However, during printing and in-situ imaging of other geometries and using other
printing strategies, it was observed that certain 3D structures could be detected.
For example, all sidewalls were successfully reconstructed when imaging a cube
printed with cross-directional hatching, with both slicing and hatching distances
equal to 200 nm. In contrast, completely the same cube but printed with uni-
directional hatching only shows the planar polymer-photoresist interface visible.
Both reconstructions as well as ex-situ SEM images of both cubes are depicted
in Figure 4.18. A detailed explanation of differences between cross- and uni-
directional hatching strategies is given in section 2.2.
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50 µm

y x

zba

Figure 4.18: Imaging of printed cubes. a SEM image of two identical cubes. The
only difference is cross-directional hatching for the top cube and uni-directional
hatching for the bottom cube. b In-situ OCT reconstructions (iso-surfaces at -73 dB
OCT intensity) of the two cubes showing drastic differences in OCT contrast. Axis
arrows correspond to 25 µm in all directions. Adapted from [105].

Although there are no apparent differences between the two cubes in the SEM
image, they exhibit completely different OCT intensities. The reason for this
drastic change in 3D OCT reconstructions between two hatching directions is the
additional internal scattering that occurs only in the cross-directional case. This
scattering stems from inhomogeneities in the polymer refractive index between
slices of printed objects. The nature of this scattering is very similar to the Bragg
scattering appearing from constructive interference on periodic structures [111].
The maximum Bragg intensity is defined as the first diffraction order within the
polymer with refractive index npol

λ0 = 2npold. (4.13)

Here, d denotes the "grating period" or in the case of 3D-printed microstructures
– the slicing distance. Thus, after calculating, d ≈ 280 nm should be the slicing
distance corresponding to the maximum Bragg intensity.

To further investigate the effect of Bragg scattering and OCT capability of recon-
structing non-planar surfaces, the set of prisms with different slicing distances and
cross-directional hatching was printed. The geometry of a prism is chosen because
none of the surfaces of a prism leads to specular reflection along the optical axis.
Therefore, the OCT signals of such structures are exclusively due to light scattering.
Prism slicing distances were varied from 140 to 300 nm with a step of 20 nm,
hatching distance was set to 200 nm for all structures. Additionally, the printing
laser power was varied from 18 to 28 mW with a step of 1 mW. The resulting
OCT reconstructions as well as SEM ex-situ images are illustrated in Figure 4.19.
As predicted from Equation 4.13, the best reconstruction quality is observed for
prisms printed with 280 nm slicing distance. However, interestingly, prisms with
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Figure 4.19: Imaging of printed prisms. a SEM image of the printed prism array.
Slicing distances increase from left to right from 140 to 300 nm with a step of 20 nm.
Printing laser power increases from bottom to top starting from 18 mW with a step
of 1 mW. b In-situ OCT reconstruction (iso-surfaces at -64 dB OCT intensity) of the
same prism array showing the difference in OCT reconstruction quality depending
on the slicing distance used. Axis arrows correspond to 100 µm in all directions. The
red arrow highlights the prism column with 280 nm slicing distance, which has the
best reconstruction quality and related to the central Bragg wavelength as calculated
from Equation 4.13. Adapted from [105].

slicing distances of 140, 200, and 260 nm are also partially reconstructed. The laser
power has no apparent influence on 3D reconstructions.

The scattering signal originating from prisms printed with slicing distances other
than the first-order Bragg scattering slicing distance can be attributed to two
reasons. First, the Equation 4.13 considers only the central wavelength of the SLD
λ0. However, in reality, the SLD has a bandwidth of 135 nm, which broadens the
range of slicing distances d for maximum intensity. Second, the slicing distance
may not be the sole factor describing the periodicity of refractive index in the
z-direction. Additional refractive index inhomogeneities, such as the proximity
effect, voxel size, and printing deviations of any kind, also affect the distribution
of refractive index in the z-direction.

To estimate the range of these inhomogeneities, the modulated refractive index
nmod was simulated for further calculating the reflectivity using the transfer matrix
approach. Refractive index modulations were simulated as a sum of two sine
functions as

nmod = 1.545 + 5 · 10−4
(

sin(2πz/d) +
1
3

sin(πz/d)
)

, z ∈ [0 µm, 5 µm]. (4.14)

Here, the first sine function with the period of d and an amplitude of 5× 10−4

corresponds to the periodic refractive index in the z-direction and the second sine
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function generates additional inhomogeneities with an amplitude on the order of
10−5. The refractive index plots of a single sinusoid with a period of d = 500 nm
(black curve) and the sum of two sinusoids with the same period (red curve) are
presented in Figure 4.20.

The reflectivities of periodic refractive indices for both cases (single sinusoid and
additional modulation) were calculated using a transfer matrix approach for each
value of slicing distance/period from 100 nm to 700 nm with a step of 10 nm and
wavelength from 780 to 910 nm with a step of 10 nm. The resulting reflectivity
distributions are presented in Figure 4.21.

It is clearly seen that both cases exhibit a strong reflectivity peak at approximately
280 nm of the slicing distance/sine period. After averaging reflectivity over all
wavelengths, the single sinusoid case (Figure 4.21b) has a reflectivity peak with
a width of approximately 40 nm centered around 270 nm. This result explains
the good reconstruction quality of prisms with a slicing distance of 260 nm. After
adding modulations to the periodic refractive index, the second reflectivity peak at
approximately 140 nm appears (Figure 4.21d). The secondary peak also explains
the capability of OCT reconstruction for the prisms printed with a 140 nm of
slicing distance.

Thus, the modulated refractive index in the z-direction is the prime reason for
Bragg scattering, leading to good reconstruction quality for some of the prisms
with certain slicing distances. Therefore, one could infer that any OCT signal
observed might only originate from planar surfaces. The fact that one sees
other surfaces indicates optical imperfections in the printed specimens. These
imperfections may deteriorate the performance of the printed device, depending
on the application. Hence, for printing 3D architectures with high quality, ideally,
no internal OCT signal should be detected at all.
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Figure 4.21: Transfer matrix calculations of Bragg scattering signal. a Reflec-
tivity distribution over SLD wavelengths and slicing distance/sine period d after
transfer-matrix calculations. These calculations utilize only the first sine function in
Equation 4.14 for the refractive index function. b Wavelength-averaged reflectivity
from panel a. c and d The same as for panels a and b but calculated for the whole
refractive index function in Equation 4.14. Adapted from [105].

Finally, utilizing the effect of Bragg scattering, the 3D structures of a buckyball
and benchy boat [113] with slicing of 280 nm and cross-directional hatching of
200 nm were printed and in-situ imaged using OCT. The OCT reconstructions
together with ex-situ SEM images are presented in Figure 4.22. Notably, the OCT
contrast appears due to periodic refractive index arising from cross-directional
hatching and not from internal diffuse scattering of structures.

4.5 Conclusion

This chapter discussed using OCT as an in-situ characterization tool for 3D-printed
microstructures. The custom-built OCT setup has the following parameters: an
axial resolution of 2.7 µm and lateral resolution of 1.9 µm, 40 µs acquisition time
for one A-scan (equivalent to a frame rate of 25 kHz), and 105 dB sensitivity or
signal-to-noise ratio for a single experiment. The developed OCT system utilizes
the typical objective lens used for 3D printing and can be directly integrated into
the printing setup along the same optical axis.
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Figure 4.22: OCT reconstructions of complex geometries based on Bragg scattering.
a and b Ex-situ SEM images of a printed buckyball and benchy boat. c and d In-situ
OCT reconstructions of printed structures (iso-surfaces at -71 dB and -53 dB OCT
intensity, respectively). Axis arrows correspond to 50 µm for each direction. Adapted
from [105].

Among the shown applications of in-situ OCT are homogeneity inspection of the
photoresist volume, polymer refractive index estimation, qualitative demonstration
of monomer diffusion into the polymer matrix, thickness measurement of planar
surfaces, shrinkage estimation, and detecting inhomogeneities in the structure’s
refractive index. These applications make OCT an attractive in-situ characteriza-
tion tool. However, for the primary purpose of in-situ imaging tools, specifically
the general imaging of 3D-printed microstructures, OCT proves inadequate. This
is because the internal scattering of the printed structures is insufficient for proper
reconstruction, unless they exhibit Bragg scattering, which is associated with
structural imperfections. Therefore, alternative methods of in-situ diagnostics had
to be developed, as will be presented in the following chapters.
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5
Chapter 5

In-situ Quantitative Phase

Imaging (QPI)

This chapter presents a quantitative phase imaging apparatus integrated into a commercial
laser printer. I will explain the main principle for calculating the optical path length of
printed specimens using in-situ microscopic defocused images captured immediately after
printing. Consequently, the refractive index and shrinkage of the printed structures will
be derived, and the topography of various printed micro-optical elements will be measured
and presented.
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5.1 QPI Integration Principle

5.1.1 Introduction

Phase shifts that light acquires after transmission through the printed specimen
carry important information about the sample’s refractive index and height. These
phase shifts are associated with the sample’s optical path length and are expressed
as

∆ϕin-situ(r) =
2π∆nh(r)

λ0
, (5.1)

where r = (x, y), ∆n is the refractive index difference between polymer and
photoresist, h(r) is the height distribution of the printed sample, and λ0 is the
central wavelength of the illumination source. For the sake of simplicity, the
dependence of the refractive index on the spatial coordinates in Equation 5.1 was
omitted, since it is assumed that the refractive index of the polymer within a
printed structure is constant.

As outlined in section 3.5, these phase shifts or phase differences can be obtained
by different interferometric and non-interferometric means. Particularly, one can
collect focused and defocused microscopic intensity images and reconstruct the
phase by solving the transport-of-intensity equation (TIE), which is written for
zero-absorption samples as [86]

− k
I0(r)

∂I(r)
∂z

= ∇2 (∆ϕ(r)
)

, (5.2)

where k = 2πnpr/λ, npr denotes the refractive index of photoresist, and I0(r)
denotes the in-focus intensity. From the experimental perspective, solving the
TIE requires only the recording of intensity images at different z-positions to
calculate the axial intensity derivative ∂I(r)

∂z . Consequently, a laser printer, which
includes an optical microscope with an equipped motorized z-stage and a camera
for recording bright-field intensity images (Figure 2.4), can be adapted for both
printing the sample and simultaneously performing in-situ reconstruction of its
phase difference, with only minor modifications to the illumination path.

5.1.2 QPI Modification of the Laser Printer

During the derivation of the TIE (Equation 3.24–Equation 3.29), it was assumed
that the illumination source should be monochromatic and spatially coherent.
However, in practice with optical microscopes, the requirements for both spa-
tial and temporal coherence are not stringent. In the QPI community, a quasi-
monochromatic source is considered adequate for accurate phase extraction using
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Objective lens
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Photoresist
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Condenser
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z

Figure 5.1: Modified illumination
path for in-situ QPI. The Nanoscribe
PPGT illumination path was modi-
fied with a collimator lens and an
aperture to provide the spatial coher-
ence required for proper phase imag-
ing. The z-stage with the attached
objective lens was moved to obtain
defocused images.

TIE [86]. Consequently, the standard LED illumination of a laser printer (central
wavelength λ0 = 630 nm, bandwidth ∆λ = 17 nm) meets this condition. Fur-
thermore, it has been established that partial spatial coherence is also acceptable
for TIE, without degrading the quality of phase retrieval [114]. To achieve a
sufficient degree of spatial coherence, an additional circular aperture (Thorlabs
P900K) with a diameter of 900 µm was placed directly onto the sample holder.
Additionally, to guarantee beam parallelism, the LED light was collimated using
an aspheric condenser lens. It was also found that using the condenser lens is
optional, and the same illumination conditions can be achieved without using it by
elevating the LED by 10-15 cm from the sample holder. The modified illumination
path of the Nanoscribe PPGT printing setup, used for both printing and in-situ
QPI, is depicted in Figure 5.1. The photograph of the optical microscope of the
Nanoscribe PPGT printing setup, featuring the modified illumination path and
the inserted aperture, is presented in Figure 5.2.

5.1.3 Phase Retrieval Algorithm

To solve the TIE and reconstruct the 2D phase difference of the printed sample,
one needs to take a certain amount of defocused images, estimate the axial
intensity derivative, and solve the Poisson equation in the frequency domain
(Equation 3.31).

Generally, only two defocused images captured around the in-focus plane are
sufficient to calculate the intensity derivative using the symmetric derivative
approximation [115]

∂I(r)
∂z
≈ I+∆z(r)− I−∆z(r)

2∆z
, (5.3)

where I−∆z(r) and I+∆z(r) are 2D intensities of images captured below and above
the in-focus plane respectively. This approximation is mathematically valid in
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a b

Figure 5.2: Modified illumination of the Nanoscribe PPGT. a The optical microscope
of the printing setup. The white arrow highlights illumination modification shown
in Figure 5.1. b The circular aperture was inserted directly onto a sample holder. The
photograph is taken at the position of the white arrow in panel a.

the limit of small defocus distances ∆z. However, experimentally, the derivative
evaluation becomes unstable when the defocus distance is too small. This instabil-
ity arises due to the low-frequency noise and quantitation errors in the imaging
process. On the other hand, increasing the defocus distance provides a better
signal-to-noise ratio, but introduces non-linearities due to the breakdown of the
linear approximation.

Alternatively, one can use multiple equally spaced defocused planes to estimate
the derivative more accurately. The intensity derivative can then be represented
by the linear combination as [116]

∂I(r)
∂z
≈

k

∑
j=−k

aj Ij∆z(r)
∆z

, (5.4)

where j = −k, ...0, ...k is an image number with minus (plus) denoting images
below (above) the in-focus plane, and 0 corresponds to the in-focus plane. Here,
coefficients aj can be defined differently depending on the numerical algorithm
for derivative estimation. For example, Soto and Acosta [117] defined the "noise-
reduction finite difference" formula with coefficients

aj =
3j

k(k + 1)(2k + 1)
. (5.5)

Eventually, this approach was unified by Zuo et al. [118], who demonstrated that
Equation 5.4 can be interpreted through the perspective of digital filtering using
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Savitzky-Golay differentiation filters (SGDFs) of varying degrees. In other words,
the intensity derivative can be estimated using Equation 5.4, where coefficients aj
are SGDF polynomials with different degrees. Generally, SGDF is "an equivalent
convolution solution for differentiation estimation by least-squares polynomial
fitting" [118]. The phase reconstruction by using adaptive-degree SGDF is called
optimal frequency selection and is implemented in three steps as described and
implemented in [118]:

1. Intensity derivatives ∂I(r)
∂z are estimated using Equation 5.4, where aj are

SGDFs with different degrees.

2. The sample phase is reconstructed for every estimated intensity derivative
by solving TIE (Equation 3.31).

3. The final phase is recombined from optimal frequency components of calcu-
lated phase distributions using band-pass filters for each degree.

5.1.4 Workflow

The workflow of in-situ QPI is depicted in Figure 5.3. First, the sample, for
example, a half-sphere, was printed using the Nanoscribe PPGT. After that, the
z-stage was moved to the in-focus plane, where the intensity contrast between the
printed structure and the photoresist was minimal. The distance by which the
z-stage was moved to reach the in-focus plane was equal to half the height of the
printed structure plus the shift between the printing plane and the in-focus plane.
Consequently, the z-stage was moved by -60 µm, and total N = 61 images were
taken at equidistant intervals with a step size of ∆z = 2 µm. Thus, 30 images were
taken below and 30 above the in-focus plane, plus one image that corresponds to
the in-focus plane itself. The exposure time of a single frame was 1.4 ms for the
25×/NA0.8 objective and 8 ms for the 63×/NA1.4 objective lens.

As a next step, the obtained image stack was used to calculate the axial intensity
derivative and solve the TIE by applying the optimal frequency selection principle
using MATLAB code similar to that implemented in [118]. The calculation of the
final phase difference by this method takes approximately 5-30 seconds depending
on the image size in the xy-direction. The entire experimental procedure requires
approximately 20 seconds, with its duration constrained by the NanoWrite soft-
ware, which controls both the printing and recording processes. However, faster
data acquisition potentially reducing the time to less than 1 second seems feasible,
assuming direct access to the printer hardware is available.

The lateral resolution of the final phase is defined by Abbe’s resolution limit (or
imaging pixel size), which is 225 nm for the 63×/NA1.4 objective and 400 nm for
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Retrieve in-situ phase difference

Δz 

Move to in-focus plane
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Figure 5.3: Workflow for in-situ QPI. Stages performed for in-situ QPI experiments
based on the example of a printed half-sphere. The Nanoscribe PPGT setup is used
for both printing and in-situ imaging.

the 25×/NA0.8 objective. The axial resolution of the method is defined by the
phase sensitivity [86] and reaches less than 100 nm for the printed specimens.

5.2 Refractive Index and Shrinkage Determination

By recovering the phase difference, one calculates the product of the refractive
index difference and the topography of a printed structure. There are two main
ways of applying QPI to extract important information about printed samples.
The first approach is to calculate 2.5D structure topography h(r) using the known
refractive index difference. The second approach is to determine the refractive
index difference when the structure topography is already known. The latest
approach is particularly important in cases where the polymer refractive index is
not known and varies with writing parameters. Therefore, one should first extract
information about polymer refractive index and then apply this knowledge to
measure the topography.
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Re-immersed QPIIn-situ QPIPrint sample SDCM

h2Δφin-situ ~ Δn1h1  Δφre-im ~ Δn3h3

Figure 5.4: Refractive index determination procedure for printed specimens. The
scheme depicts various measurement steps along with the corresponding measured
quantities for each experiment. Spinning disk confocal microscope (SDCM) measure-
ments were performed in ambient air after the development step, and re-immersion
was done in the same photoresist. Yellow blocks correspond to operations performed
using the Nanoscribe PPGT.

5.2.1 Determination Procedure

To define the refractive index, additional measurements had to be performed. The
measurement flowchart is shown in Figure 5.4. Initially, samples were printed
and their in-situ phase differences ∆ϕin-situ were measured using the procedure
depicted in Figure 5.3. Afterward, the samples were developed in PGMEA for
15 minutes followed by a rinse in isopropyl alcohol for 5 minutes. After the
development procedure, their ex-situ height profiles h2 were measured in ambient
air using a spinning disk confocal microscope (SDCM, MarSurf CM expert). Finally,
the samples were re-immersed in the same photoresist, and their re-immersed
phase differences ∆ϕre-im were measured following the same methodology as for
the in-situ phase.

The printed samples have different properties at various stages: a refractive index
difference of ∆n1 and height h1 after printing and during in-situ imaging, ∆n2
and h2 after development and during ex-situ height measurements, and ∆n3 and
h3 following re-immersion. In order to derive the refractive index difference from
the optical path difference certain assumptions are required. The first assumption
is the absence of changes in the refractive index difference throughout all mea-
surements, meaning ∆n1 = ∆n2 = ∆n3 = ∆n. This assumption is reasonable for
the acrylate photoresists used in this study and is supported by the consistency
between in-situ and ex-situ measured refractive indices, as detailed in section 4.3.
The second assumption is that the height of the developed structure remains
unchanged after re-immersion, meaning h2(r) = h3(r).

Taking these two assumptions into account, one can finally derive the formula for
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the refractive index difference

∆n =
∆ϕre-im(r)λ0

2πh2(r)
. (5.6)

Furthermore, the relative polymer shrinkage occurring after development can be
calculated as a simple relation between in-situ and re-immersed phases

S = 1− h2/h1 = 1− ∆ϕre-im/∆ϕin-situ. (5.7)

5.2.2 Cuboid Array

Experimentally, the easiest way of applying the refractive index determination
approach is to print and inspect specimens that have planar surfaces, for example,
cuboids. Figure 5.5 demonstrates reconstructed in-situ and re-immersed phase
maps as well as ex-situ SDCM measurements of a small cuboid (block) array
consisting of six cuboids printed with a different laser power each. The laser
power varied from 10 to 22.5 mW in steps of 2.5 mW, covering a laser power range
from polymerization to overexposure thresholds. The array was printed using the
Nanoscribe IP-S photoresist and the 25×/NA0.8 objective lens. The designed size
of each cuboid was 40× 10× 3 µm3. The array was printed with a focus scanning
speed of 2.5 cm/s.

In-situ QPI

50 µm

0.2 0.4 0.6 0.8 1 1.2
 

Re-immersed QPI

50 µm

0.2 0.4 0.6 0.8 1 1.2
 

SDCM

50 µm

0 1 2 3 4 5
 

Laser power

y

x

Phase difference Δφin-situ (rad) Phase difference Δφre-im (rad) Height h2 (µm)

Figure 5.5: Measurements of IP-S cuboids printed with different laser powers.
First two panels showcase phase differences measured in situ (left panel) and after
development, followed by re-immersion in the same photoresist (middle panel).
The last panel demonstrates ex-situ height topography measured by SDCM after
development in air. Adapted from [119].
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Figure 5.6: Phase difference profiles from Figure 5.5. Phase difference profiles taken
along the middle of the cuboid array for in-situ QPI (brown curve) and QPI after
development and re-immersion in the same photoresist (orange curve). The repro-
ducibility test consisting of ten independent in-situ phase difference measurements
of the third cuboid shown on the right. Adapted from [119].

As observed in Figure 5.5, lower laser powers result in smaller heights because
the accumulation dose effect is less pronounced, which consequently reduces the
phase differences. Notably, this reduction in phase differences is also associated
with a decrease in the refractive index of the printed structures.

A further detailed comparison between in-situ and re-immersed reconstructed
phase profiles taken along the middle of the cuboid array is presented in Figure 5.6.
These profiles illustrate the differences in the phase before development (repre-
sented by the brown curve) and after development, followed by re-immersion
(represented by the orange curve). The differences between the two curves are
more pronounced for lower laser powers and stem from the height change due to
polymer shrinkage, as derived in Equation 5.7. Additionally, the stability of the
phase reconstruction was verified by measuring the phase profile of one of the
blocks ten times, resulting in a relative standard deviation of less than 1%.

Finally, the refractive index of the polymer and the relative shrinkage of each
cuboid can be calculated using the measured phase and height values, as detailed
in Equation 5.6 and Equation 5.7. To additionally inspect the other photoresist, the
same cuboids were printed from Nanoscribe IP-Dip and the 63×/NA1.4 objective
lens. The printing laser power for this case varied from 12.5 to 20 mW with a
step of 1.5 mW. The IP-Dip array was measured using the same procedure as the
IP-S array. The calculated data for both photoresists are presented in Figure 5.7.
To determine the polymer refractive index, the refractive index values of liquid
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IP-S and IP-Dip, which are equal to nIP−S = 1.483 [40] and nIP−Dip = 1.518 [41] at
λ0 = 630 nm were used for calculations. The errors were determined as the MSE
of the measured values across each cuboid.

The obtained refractive index values were compared with known ex-situ data
from the literature. Since no data have been published on the dependency of the
IP-S polymer refractive index on printing laser power, only the known value for
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Figure 5.7: Polymer refractive index and shrinkage as functions of writing laser
power for IP-Dip and IP-S. a Polymer refractive index (RI) calculated from Equa-
tion 5.6 for the IP-S cuboids from Figure 5.5 and the reference value for the fully
polymerized volume taken from [39]. b Calculated polymer RI values for the IP-Dip
cuboids and reference values taken from [42]. c Relative shrinkage calculated using
Equation 5.7 for the IP-S cuboids from Figure 5.5. d Relative shrinkage for the IP-Dip
cuboids. Error bars calculated from MSE for each cuboid. Adapted from [119].
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fully polymerized IP-S, nfull
IP−S = 1.509, taken from [39] is plotted as an orange line

in Figure 5.7a. As observed, the measured refractive index for this photoresist
approaches the fully polymerized value but does not completely reach it due to
overexposure at higher laser powers. For the IP-Dip data, such dependency was
measured ex situ by Dottermusch et al. [42]. Their measurements were taken
using a wavelength of 637 nm, which closely matches the wavelength of λ0 = 630
nm used in this work. Therefore, the IP-Dip values measured through the QPI
approach can be directly compared with the ex-situ values from the literature. The
ex-situ measured IP-Dip refractive indices from [42] are represented by orange
points in Figure 5.7b. It is evident that these values are in good agreement with
those measured by QPI (blue points), showing an almost linear increase with
increasing laser powers.

The calculated shrinkage values for both photoresists are shown in Figure 5.7c
and d and are consistent with the previously reported shrinkage of Nanoscribe
photoresists [47]. The QPI method of shrinkage measurement was also effectively
applied for unknown photoresists [120]. In addition, shrinkage values for IP-DIP
closely match the in-situ OCT shrinkage estimations for much larger cuboids
(Figure 4.16). However, the QPI method for calculating shrinkage is both faster
and more accurate than OCT. This is because OCT is highly sensitive to the
planarity of the surfaces being measured and can fall short in accuracy when this
condition is not strictly met.

5.3 Topography of Printed Micro-optics

After the determination of the refractive index difference, one can print many
different 2.5D micro-optical structures to measure their topography/height dis-
tribution using Equation 5.1. In the following, different micro-lenses, diffractive
optical elements (DOEs), and phase plates are analyzed using the in-situ QPI
approach.

5.3.1 Micro-lens

A micro-lens featuring an aspheric design was printed using the IP-S photoresist
and a 25×/NA0.8 objective lens. The lens had a radius of curvature of 1.03 mm, a
conic constant of -2.30, and dimensions of 75× 100× 3.9 µm3. For the printing
process, a 20 mW laser power was used, along with a focus scanning velocity
of 4 cm/s, a slicing distance of 50 nm, and a hatching distance of 100 nm. QPI
measurements of the lens were conducted both in situ and after development
and re-immersion, in addition to ex-situ height measurements. These results are
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Figure 5.8: Printed micro-lens measurements. At the top: topography maps of
the printed micro-lens measured in three configurations: in-situ QPI, re-immersed
QPI, and SDCM direct height measurements. QPI topography maps are obtained
by recalculating measured phase difference (optical path length) using the refractive
index difference of ∆n = 0.025. At the bottom: phase/height profiles taken along
the red line. In-situ QPI (orange curve), re-immersed QPI (orange dashed curve),
and SDCM (blue curve) measurements are plotted using two y-axes with one axis
representing height and the other representing phase difference. Adapted from [119].

presented in Figure 5.8 and depicted as height maps using a unified color bar at
the top of the figure. Phase measurements were recalculated into height using the
average refractive index difference for IP-S of ∆nIP−S = 0.025, which were defined
from Figure 5.7.

The bottom half of Figure 5.8 shows the height/phase profiles taken in the middle
of the lens, indicated by a red line. These profiles are plotted using two y-axes:
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the left axis, colored blue, corresponds to the measured (and recalculated) height,
while the right axis, colored orange, corresponds to the measured phase differ-
ences. Analyzing the measured data, it is possible to deduce a lens shrinkage of
approximately 7% by comparing the in-situ and re-immersed phase differences. It
is also evident that the QPI-calculated height profile of the re-immersed sample
(dashed orange curve) aligns well with the height measurements obtained by
SDCM (blue curve), further confirming the validity of the imaging method. Addi-
tionally, the measured data reveal deviations between the intended and obtained
shapes. This discrepancy arises because the designed height does not account for
the voxel size and the proximity effect. This discrepancy can be further measured
and pre-compensated in situ in the same manner as it is performed with ex-situ
height measurements [55]. Another method of improving the quality of printed
structures is utilizing multi-photon grayscale lithography, which adjusts the voxel
height to achieve more precise printing [38].

5.3.2 Diffractive Optical Elements

In-situ QPI is also suitable for shape measurements of printed diffractive optical
elements (DOEs). These 2.5D DOEs, fabricated by laser microprinting, can feature
various designs for manipulating and splitting laser beams, tailored to specific
applications and operating across different wavelengths. In the following, two
DOEs that have been previously used to separate multiple focus arrays for next-
generation laser printers were examined.

The first DOE was designed by Pascal Kiefer for 7 × 7 foci laser printing at high
scanning speeds [121]. The single unit cell of this DOE was printed using the IP-S
photoresist and the 25×/NA0.8 objective lens. The sample was printed with the
following parameters: 15 mW laser power, 4 cm/s focus scanning velocity, 85 nm
slicing distance, and 100 nm hatching distance. The DOE was designed to have a
smooth shape, avoiding sharp height jumps between adjacent pixels within the
DOE. The imaging of the unit cell was performed following the same procedure
as for the micro-lens in the previous subsection and presented in the same manner
in Figure 5.9.

Analyzing the obtained phase/height maps and profiles, one could observe
that there are almost no differences between in-situ QPI, re-immersed QPI, and
SDCM measurements. The shrinkage deduced by comparing in-situ and re-
immersed phase differences is less than 5%. Similar to the microlens case, the
actual measured height of this DOE deviates from its designed value. This
discrepancy is attributed to the height of the voxel and the pronounced proximity
effect of the IP-S photoresist.
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Figure 5.9: Printed IP-S DOE measurements, design from [121]. In-situ QPI, re-
immersed QPI, and SDCM measurements of the IP-S DOE. Measurements follow the
same interpretation as for Figure 5.8. Adapted from [119].

The second DOE was designed by Vincent Hahn and employed for splitting the
laser beam into 3 × 3 beamlets [122]. Several DOE units were fabricated using the
IP-Dip photoresist and the 63×/NA1.4 objective lens. The sample was printed
using the following parameters: 30 mW laser power, 5 cm/s focus scanning
speed, and 145 nm hatching distance. This DOE consisted of only eight different
height levels and hence did not have a specific slicing distance. The measured
phase/height maps and profiles of the IP-Dip DOE are depicted in Figure 5.10.
The phase difference was recalculated into height using the same refractive index
difference ∆nIP−Dip = 0.025, as used for the IP-S photoresist.

For the IP-Dip DOE, the difference between in-situ and re-immersed phase differ-
ences was also minimal as for the IP-S DOE. The relative shrinkage was less than
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Figure 5.10: Printed IP-Dip DOE measurements, design from [122]. In-situ QPI,
re-immersed QPI, and SDCM measurements of the IP-Dip DOE. Measurements
follow the same interpretation as for Figure 5.8. Adapted from [119].

5% as well. Notably, the second DOE was specifically designed and optimized for
printing with the Nanoscribe PPGT. Therefore, the designed shape was much more
similar to the measured height values compared to the previously imaged struc-
tures. The observed discrepancies between the designed and measured heights
are primarily due to printing imperfections, which can be further optimized for a
better match.

5.3.3 Phase Plate

Another potential application of in-situ QPI is the phase examination of printed
phase plates. These plates are particularly useful in applications such as X-ray
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5 in-situ quantitative phase imaging (qpi)

Figure 5.11: Printed phase plate measurements. a SEM image of the printed phase
plate on the top of a lens array for X-ray multi-beam imaging. b In-situ QPI measure-
ments of the separately printed phase plate. Adapted from [125].

multi-beam imaging, where they decode additional phase information in each
beam [123, 124]. This helps to prevent the overlapping of signals from multiple
beams at the detector, enhancing clarity and resolution in the imaging process.

An example of a printed phase plate, designed by Tang Li for 3× 4 beam pty-
chography for 13 keV photon energy [125], is showcased in Figure 5.11a. This
sample was printed using the IP-S photoresist and a 25×/NA0.8 objective lens.
The following parameters were used for printing: 25 mW laser power, 7.5 cm/s
focus scanning speed, a slicing distance of 300 nm, and a hatching distance of
200 nm. The in-situ QPI characterization of the separately printed phase plate
is presented in Figure 5.11b. The QPI measurements provide valuable insights
into the accumulated optical path lengths of each phase element, enabling clear
distinction between all phase elements.

5.4 Conclusion

This chapter explored the application of the QPI technique, commonly used in
biophotonics, for in-situ imaging of laser microprinting. This technique is fast and
accurate, enabling the effective in-situ acquisition of printed shapes within seconds.
However, the most significant advantage of this approach is its independence from
additional setups. Obtaining the phase difference or optical path length of the
printed sample by solving the TIE requires only the capture of defocused images,
which can be performed by any laser printer equipped with imaging capabilities.
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5 .4 conclusion

The proposed in-situ QPI is robust and was validated by ex-situ height measure-
ments. The axial resolution of this method is less than 100 nm, which makes
in-situ QPI an attractive tool for the in-situ correction of printed micro-optics.
Additionally, one can deduce polymer refractive index and shrinkage values,
provided that further ex-situ measurements are carried out. However, several
limitations of this method should be noted:

1. TIE derivation (Equation 3.24-Equation 3.28) relies on the paraxial or slowly-
varying phase approximation. Therefore, additional artifacts might appear if
an imaged specimen has abrupt height steps or tall walls.

2. In Equation 5.1, it is assumed that the refractive index does not depend
on the spatial coordinates, which can be violated for some samples. For
example, the small discrepancy between the in-situ measured shape of the
IP-Dip DOE and its ex-situ SDCM height (Figure 5.10) might stem from this
effect.

3. TIE is solved computationally using the fast Fourier transform, as described
in Equation 3.31. However, applying FFT implies the use of periodic bound-
ary conditions, which can lead to artifacts at the boundaries if the sample is
larger than the camera’s field of view. To prevent this, several methods can
be employed, including the use of different computational algorithms that
better handle boundary conditions [126] or placing a small aperture in the
microscope image plane to minimize edge effects [127].

4. When taking intensity images in situ, some deviations might occur due
to variations in the medium. For instance, as detailed in Figure 4.6, small
refractive index "blobs" can appear within the volume of a photoresist. These
blobs introduce additional artifacts which can be observed in the in-situ
phase reconstruction, such as in the printed micro-lens depicted in Figure 5.8.
These artifacts must be considered when analyzing the quality and accuracy
of phase reconstructions.

Finally, a significant limitation of QPI in general is its restriction to imaging
only 2.5D, holeless structures. Expanding this technology to encompass full 3D
imaging involves solving a complex inverse problem, which requires additional
computational efforts and measurement procedures. This expansion and its
challenges will be discussed in detail in the next chapter.
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Chapter 6

In-situ Tomographic

Reconstruction via Deep

Learning

Typical tomographic reconstruction approaches require some form of scanning, either
by varying the illumination direction or by rotating/moving the sample. In contrast,
the tomographic reconstruction method presented in this chapter does not require any
additional scanning or measurements. All images are captured during the printing process
with only minimal delays for exposure time. The resulting stack of microscopic images
is then processed by a specially designed and trained 3D neural network to produce a
binarized refractive index reconstruction. The chapter begins with a description of the
inverse optical problem, followed by a solution utilizing the deep learning approach. The
core of the chapter is the presentation of experimental in-situ 3D reconstructions and their
comparisons with ex-situ SEM images. It concludes with an analysis of the robustness of
the proposed approach.
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6 in-situ tomographic reconstruction via deep learning

6.1 Inverse Problem for In-situ Imaging

To expand QPI for 3D tomographic reconstruction, it is necessary to additionally
scan the imaged specimen from multiple directions and address the inverse tomo-
graphic problem. A common method for this is optical diffraction tomography
(ODT), which involves acquiring images over different illumination directions and
reconstructing the 3D refractive index of the sample under the first Born or Rytov
approximations in an iterative manner. The principle of ODT and its application to
the imaging of 3D-printed specimens was described in subsection 3.5.4. However,
a major challenge with this approach is missing cone artifacts that significantly
deteriorate the reconstruction quality of large samples.

In contrast to biophotonics, where QPI and ODT are the main tools for label-
free non-invasive imaging, in-situ imaging during laser microprinting offers
a significant advantage. It allows access to unfinished samples, providing a
greater degree of freedom in acquiring as many intermediate images as needed
throughout the printing process. Moreover, bright-field intensity images are
routinely captured during printing to monitor any deformations that may occur in
the sample. However, to perform any 3D shape reconstruction from these images,
it is necessary to solve the inverse scattering problem and obtain the refractive
index distribution from the intensity image stack obtained during printing.

Assuming that intensity images are acquired for each printed slice, the resulting
image stack will consist of intensities influenced by two optical effects: transmis-
sion through the accumulated phase and optical defocusing. The electric field can
be modeled using the well-known beam propagation method [75], which relies on
small refractive index differences between a specimen and a surrounding medium,
∆n << n, an approximation that is justified for in-situ imaging of printed struc-
tures. For the kth printed slice, the electric field can be expressed through the
following recursive formula [128]

Ek(r) = Tk · P∆z(Ek−1(r)), (6.1)

where r = (x, y), Tk denotes the complex transmittance of the printed slice, and
P∆z(Ek−1(r)) is the field propagation operator that propagates the field from
the accumulated transmission of all previous k− 1 slices to the slicing distance
∆z. This propagation can be computed using either the Rayleigh-Sommerfeld
diffraction integral or the angular propagation method [75], as will be detailed in
subsection 6.3.3. The transmittance Tk is related to the optical thickness or phase
change ∆ϕk of the printed slice and hence to the product of the refractive index
difference ∆nk and the voxel height ∆h as

Tk ∝ ei∆ϕk ∝ ei∆nk·∆h. (6.2)

84



6 .2 end-to-end deep learning approach
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Figure 6.1: Illustration of the wave-
front change during 3D laser print-
ing. If the sample is illuminated with
the plane wave with the electric field
E0, the resulting electric field after the
printing of kth slice will be influenced
by transmission through phase dif-
ference ∆ϕk of the printed slice and
an additional optical defocus in the
z-direction. The electric field at each
slice can be calculated using Equa-
tion 6.1.

The resulting intensity of the current slice Ik is then calculated as the squared
absolute value of the electric field

Ik = |Ek|2. (6.3)

The change in the wavefront after passing through the first three printed slices is
schematically depicted in Figure 6.1.

Thus, the inverse problem requires determining the refractive index difference
for each slice based solely on the intensities recorded during the printing process.
Notably, reconstructing binarized values of refractive index distribution, where
ones represent polymer and zeros represent monomer is already enough for
obtaining the shape and geometry of the printed structure.

6.2 End-to-end Deep Learning Approach

The formulated inverse problem, due to its inherent complexity, demands ad-
vanced computational methods for solving. Specifically, the use of absolute values
to obtain intensities in Equation 6.3 eliminates the essential complex information
about the electric fields needed for defining optimization problems. Alternatively,
an end-to-end deep learning (DL) approach can be implemented. This method
includes training a deep neural network on a dataset of intensity stacks to predict
the 3D (binarized) refractive index difference distribution as the output. The
network should interpret complex intensity patterns for each printed slice and
effectively transform them into (binarized) refractive index distributions. In stan-
dard 3D recognition tasks, U-Nets with three-dimensional convolutional layers
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Figure 6.2: Deep learning tomographic reconstruction pipeline. A 3D stereolithog-
raphy (STL) model is uploaded into the printer software, where it is transformed to
coordinates for further laser printing. During printing, bright-field intensity images
are taken with each slice of printed object. The obtained image stack is then used
as input for deep learning end-to-end reconstruction on the example of a printed
buckyball. Adapted from [136].

(3D U-Nets) [129, 130] are known for their proficiency in processing and analyzing
3D data across a variety of applications, from medical imaging [131] to materials
science [132]. The architecture of a 3D U-Net features a series of convolutional
layers that contract in the encoder to learn feature representations and generalize
better, followed by an expansion in the decoder, which enables the network to
capture essential global and local spatial information necessary for comprehensive
3D reconstruction. 3D U-Nets have been succefully implemented for end-to-end
reconstruction in computer tomography [133], X-ray diffraction imaging [134],
and optoacoustic tomography [135].

From the user’s perspective, the end-to-end DL reconstruction approach should
predict the printed 3D shape and identify any appearing deviations from the
intended stereolithography (STL) model uploaded into the printer software. The
DL reconstruction pipeline is illustrated in Figure 6.2. After uploading an STL
model, the user prints the 3D sample while simultaneously capturing bright-field
intensity images of each printing slice. These images are then compiled into a
stack and used as input for the trained 3D U-Net, which reconstructs the printed
sample.

From the experimental point of view, it is enough to have the defined illumination
that produces a quasi-monochromatic coherent plane wave. Therefore, the same
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6 .3 ground truth simulations

illumination configuration, presented in Figure 5.1, as used for in-situ QPI, can be
utilized for image acquisition.

To effectively train a 3D U-Net for reconstructions, a substantial number of ground
truth pairs are required. These pairs should consist of in-situ intensity stacks
from various printed objects along with their corresponding 3D refractive index
data. Experimentally obtaining these ground truth datasets is not feasible due to
the lack of a robust 3D in-situ reconstruction tool. Instead, a simulation-based
learning approach can be employed, where the required intensity datasets are
simulated from refractive index distributions using a forward propagation model.
Using this approach, one can simulate as many 3D objects as needed for effective
training of the 3D U-Net. However, the primary drawback of this method is its
dependency on the realism of the simulated ground truth datasets, which must
closely resemble experimental conditions. The next section will elaborate on the
entire process of generating realistic and comprehensive ground truth datasets,
which are then utilized for training and subsequent experimental validation.

6.3 Ground Truth Simulations

The process of synthesizing realistic 3D ground truth dataset pairs was split into
several steps:

1. 3D object generation.

2. Refractive index assignment.

3. Intensity simulations.

4. Additional post-processing.

All datasets were designed for the Nanoscribe PPGT system with the IP-S photore-
sist and the 25×/NA0.8 objective lens. The imaging pixel size of this configuration
corresponds to ∆x = 0.4 µm and the standard slicing distance is ∆z = 0.3 µm. In
the following, each step of the generation procedure is described in detail.

6.3.1 3D Object Generation

Ground truth datasets must include diverse 3D printing models to account for a
broad range of geometrical features and complexities found in actual printing sce-
narios. To address this need, the large 3D model database from Princeton, known
as ModelNet40 [137], was utilized to generate different 3D objects. ModelNet40

includes 10,000 3D models divided into 40 different classes. From these, 30 classes
were allocated for generating training datasets, while the remaining 10 were used
for testing purposes. Originally intended for 3D recognition tasks, this database
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Transformed modelsModel database

Transform,
voxelize

Figure 6.3: Object generation stage. Complimentary model database consisted of
3D models from ModelNet40 and additionally generated terfoil knots. Additionally,
structures underwent random transformations such as rotation, rescaling, cropping,
and placement on a random pedestal. Transformed models were also voxelized to
128× 128× 128 volumes during this operation. Adapted from [136].

also serves as a comprehensive resource for generating 3D models for training in
applications such as 3D shape reconstruction. Additionally, a trefoil knot model
was added to the 3D model database. The trefoil knot model was defined by a
parametric formula

x = sin(t) + 2 sin(2t); y = cos(t)− 2 cos(2t); z = − sin(3t); t ∈ [0, 2π]. (6.4)

To generate the final 3D model for further intensity simulations, a random sample
from the complementary 3D model database was chosen (for example, trefoil knot
as depicted in Figure 6.3) and randomly transformed. Random transformations
included rotation, rescaling, cropping, and placement on a random pedestal. With
this procedure, it was guaranteed that the generated sample was unique, and
used only once for training. The number of generated samples for training will be
discussed below in section 6.4. The code for random object generation was written
by Tim Alletzhäusser and its pseudo-code version is presented in section A.1.

During the sample generation process, objects from the complementary model
database were voxelized and transformed from their original triangulated form,
consisting of vertices and faces, into a binary volume. This volume was constrained
to a size smaller than 128× 128× 128. Within this volume, the space occupied by
the actual model was assigned a value of one, indicating polymerized material,
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6 .3 ground truth simulations

while the remaining space extending to the boundaries of the 128× 128× 128
voxel cube was filled with zeros, indicating unpolymerized parts. Thus, the
obtained volume represented 128 slices of the generated structure. Since the pixel
for simulations equals 0.4 µm and the typical slicing distance used for printing is
0.3 µm, the resulting simulated volume corresponded to 128× 128× 128× (0.4×
0.4× 0.3 µm3), which equals to 51.2× 51.2× 38.4 µm3.

6.3.2 Refractive Index Assignment

To simulate light propagation through the generated slices, it is necessary first to
assign a refractive index difference between polymerized and unpolymerized parts.
For this purpose, the refractive index difference of ∆n = 0.026 that corresponds
to the fully polymerized IP-S photoresist [39] was chosen. As will be shown in
section 6.6, even though real samples may deviate from this specific value, the
deep learning-based 3D reconstruction process remains effective and reliable.
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Figure 6.4: Smearing out of the refractive index transition. Exemplary rectangular
xy-slice representing refractive index difference between polymer and photoresist ∆n.
The refractive index differences at the edges were smoothed, as depicted in the gray
inset, which shows the refractive index difference profile. The blue curve represents
a sharp, step-like transition between the polymer and photoresist. In contrast, the
orange curve depicts a Gaussian transition with a standard deviation of σ = 0.7
pixels. Adapted from [136].
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Figure 6.5: Assignment of the refractive index difference. The refractive index
difference of ∆n = 0.026 was assigned to the simulated 3D model using trefoil knots
as an example. Additionally, the refractive index transitions between polymerized
and unpolymerized parts were smoothed as shown in Figure 6.4. The scale bar
equals 10 µm. Adapted from [136].

However, as revealed by OCT measurements, the refractive index transition
between polymerized material and its surroundings is not abrupt but resembles a
smooth function, akin to the Gaussian error function. This transition has a width
on the order of 1 µm, as illustrated in Figure 4.13. This gradual change impacts
how light propagation is modeled in simulations and is crucial for simulating real
experimental settings. Therefore, a 2D Gaussian filter with a standard deviation
of 0.7 pixels was applied to each slice of the generated volume. This Gaussian
filter smoothes edges between polymer and monomer in the xy-direction. An
exemplary refractive index transition graph of one slice of a rectangular object
is presented in Figure 6.4. The refractive index difference slices of the generated
exemplary trefoil knot structure located on a cuboid pedestal are depicted in
Figure 6.5.

6.3.3 Intensity Simulations

Finally, the generated refractive index difference stack can be utilized for light
propagation simulations and the computation of intensity images. The process
of forward light propagation is described by the beam propagation method
in Equation 6.1 – Equation 6.3. This recursive propagation is identical to the
multi-slice beam propagation model (MSBPM) that is widely used in bioimaging

90



6 .3 ground truth simulations

[97, 138, 139]. MSBPM was originally developed to simulate light transmission
through biological specimens, approximated by thin slices with small differences
in refractive index. The final electric field is calculated via sequential layer-to-
layer propagation in the z-direction. Given that our simulated objects are already
segmented into slices, the MSBPM algorithm can be readily adapted to simulate
intensities for each slice of the object.

In MSBPM, the electric field at the kth slice Ek(r) is calculated using the recursive
formula

Ek(r) = Tk · P∆z(Ek−1(r)), (6.5)

where r = (x, y), k ranges from 1 to 128 for the simulated volumes, Tk denotes
the complex transmittance of the kth slice, and P∆z is the forward propagation
operator, which defocuses the previous electric field Ek−1 by the slicing distance
∆z. The complex transmittance is written as

Tk = exp

(
2πi∆z∆nk(r)

λ

)
, (6.6)

where λ = 0.63 µm is the free-space central LED wavelength and ∆nk(r) is the
simulated refractive index difference of the current slice. The standard for laser
printing slicing distance of ∆z = 0.3 µm is assumed for all simulations. The
propagation operator is calculated according to the angular spectrum method as

P∆z(x) = F−1

F (x) exp

2π j∆z

√(
npr

λ

)2

− u2


 , (6.7)

where F and F−1 are Fourier and inverse Fourier transforms, npr = 1.483 is the
refractive index of the IP-S photoresist, and u = (ux, uy) denotes spatial frequency
coordinates. Equation 6.5 is initialized with the plane wave boundary conditions,
meaning E0 = 1128×128.

Since the imaging plane is shifted by -24 µm from the printing plane (Figure 2.5),
one should account for the additional electric field defocus Pzshift(Ek(r)) that occurs
in the printing setup. Additionally, one should account for the low-pass circular
filtering C(u) = ◦(uλ/NA) that is introduced by the objective lens with NA = 0.8.
This filtering means that only frequencies that satisfy the equation

u2
x + u2

y < (
NA

λ
)2 (6.8)
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can be passed. Finally, intensities for each slice of the simulated volume were
computed as

Ik(r) = |F−1
(

C(u)F
(

Pzshift(Ek(r))
))
|2. (6.9)

Computed intensities of the exemplary trefoil knot model stack and scheme of the
computation are depicted in Figure 6.6.

Despite simulating realistic intensity images, the MSBPM algorithm lacks consid-
eration for one significant feature in practical applications. In Equation 6.6, the
thickness of single printed slice is the slicing distance ∆z = 0.3 µm. In other words,
MSBPM assumes that single simulated voxel has dimensions of ∆x × ∆y× ∆z,
which equals to 0.4× 0.4× 0.3 µm3. However, in reality, the use of the 25×/NA0.8
objective lens introduces an extended voxel height of approximately 2.3-2.7 µm
for each printed slice. This means that one real printed slice should correspond
to approximately 9 simulated slices. This discrepancy means that the forward
model used in simulations must be modified to incorporate the actual voxel height
introduced by the objective lens.

This modification cannot be achieved simply by substituting 9∆z for ∆z in all
equations, as the spacing between images (axial imaging resolution) remains equal

Δz
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Refractive index difference stack Intensity stack
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Δn127

Δn128
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Figure 6.6: Simulation of in-situ intensities using multi-slice beam propagation
model (MSBPM). Exemplary refractive index difference slices (from ∆n1 to ∆n128)
of simulated trefoil knots were used to simulate intensities using Equation 6.5 –
Equation 6.9. The boundary condition is the incident plane wave E0 as depicted by a
red arrow. The scale bar corresponds to 10 µm. Adapted from [136].
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to the slicing distance. Thus, a new algorithm had to be developed to account for
the voxel height while maintaining the same axial spacing of 0.3 µm. The modified
MSBPM (m-MSBPM) calculates field propagation using slice stacks composed of
9 slices, each with a voxel height of 2.7 µm. The m-MSBPM calculates intensities
for each slice of the simulated 3D object in three steps:

1. Calculate the slice stack for the current slice of the simulated model.

2. Propagate the field using MSBPM to the end of the slice stack.

3. Defocus the field to the center of the slice stack and calculate the intensity.

A more detailed m-MSBPM algorithm is provided in the pseudo-code format in
section A.2. The computation algorithm was implemented using the TensorFlow
library of Python [140]. It took approximately 0.5 s to calculate the whole intensity
stack from a 128× 128× 128 simulated refractive index difference volume. Exam-
ples of intensity simulations using both standard and modified MSBPM as well
as experimental intensities of the printed buckyball are shown in Figure 6.7. As
observed from the 128

th slice, the difference between the minimal and maximal
intensities of the buckyball rods is significantly smaller in the standard MSBPM
compared to both the m-MSBPM and the experimental intensities.

6.3.4 Post-processing

The experimental images exhibit shot noise as can be seen from the first column
of Figure 6.7. To simulate realistic intensities, Gaussian noise with a standard
deviation of σ = 0.03 of normalized intensities was added to the m-MSBPM
intensity simulations. This specific level of noise was measured during a 5 ms
exposure time on a plain photoresist volume without any printed structures in the
field of view, ensuring that the simulated images accurately represent the actual
experimental conditions. This noise level is already presented in the simulated
images in Figure 6.7. The images simulated by m-MSBPM with added noise were
used as inputs for the deep learning algorithm.

To simulate accurate ground truth outputs, two additional operations were per-
formed. First, the 3D refractive index distributions were binarized into zeros
and ones, representing photoresist/monomer and polymerized parts, respectively.
This step was carried out to facilitate the use of binary classification deep learning
algorithms, significantly simplifying the learning process. Secondly, the binarized
volumes were dilated (or axially extended) to account for the voxel height of 2.7
µm, meaning that each voxel of the simulated volume was extended from 1× 1× 1
to 1× 1× 9 or in the real space from 0.4× 0.4× 0.3 µm3 to 0.4× 0.4× 2.7 µm3.
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Figure 6.7: Experimental and simulated intensity images of a buckyball model.
Normalized intensities for experimental intensities taken during 3D laser micro-
printing (first column), simulated intensities using standard MSBPM (second column)
and MSBPM modified to the voxel height of 2.7 µm (m-MSBPM, third column). The
current number of printed/considered slices during printing/simulation is indicated
on the left. The discrepancies between m-MSBPM and the experimental images
mainly originate from the difference between the printed geometry and the STL
model used for simulations. The Gaussian noise was already added to the simulated
images. Adapted from [136].

6.4 3D U-Net Training and Testing

6.4.1 Training

The simulated 3D inputs and outputs can be readily used for end-to-end training
of the 3D U-Net. Given the need to simulate hundreds of thousands of 3D models
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for effective training, it is impractical to pre-simulate all the ground truth datasets
beforehand due to the substantial memory requirements. Therefore, a streamlined
or online training approach was utilized. In this approach, models are simulated
on the fly during the training process, which helps manage the computational and
storage demands. This method optimizes the learning process by continuously
providing fresh data, which is essential for preventing overfitting and enhancing
the generalization capabilities of the neural network. The same approach for an
infinite stream of training data for inverse tasks has also been utilized in the field
of X-ray diffraction [141].

Thus, batches of 10 ground truth pairs were continuously simulated using a CPU
(Intel Xeon Platinum 8260) and placed into a queue for subsequent training of
3D U-Net using a GPU (Nvidia RTX A6000, 48 GB of memory). For each step,
one generated batch was used for training and then deleted from the memory to
optimize resource utilization. A more detailed pseudo-code algorithm for batch
generation is presented in section A.1.

The 3D U-Net with 700,000 training parameters was programmed by Tim Al-
letzhäusser and its architecture is presented in section A.3. During training,
parameters were updated via the Adam optimizer [142] with an initial learning
rate of 5 · 10−4. The learning rate was further decreased by a third after every
thousand training steps. A weighted binary cross entropy (BCE) served as a
loss function. The weighted BCE for the input batch with 128× 128× 128× 10
dimensions was defined as

BCEweighted =
1

128
1

128
1

128
1

10

128

∑
i,j,k=1

10

∑
l=1

wk ·
(

Yijkl · log
(

P(Yijkl)
)
+

+(1−Yijkl) · log
(

1− P(Yijkl)
))

,

(6.10)

where i, j, k are the summation indices for x, y, z dimensions respectively, l is
the summation index for the batch dimension, Yijkl denotes the ground truth
value (zero or one) for the considered voxel, and P(Yijkl) denotes the predicted
probability of the voxel being classified as polymer (one). In this formula, wk
corresponds to the weight factor, which was defined for each z-slice as

wk = 1 + 2
k− 1
127

. (6.11)

The weight vector was designed to assign incrementally larger weights to the
furthest slices, with weights incrementally increasing from 1 for the first slice
to 3 for the 128

th slice. This approach prioritizes the later slices because each
subsequent slice, starting from the (k + 1)th slice, contains cumulative information

95



6 in-situ tomographic reconstruction via deep learning

BCE loss

Ground truth
Prediction/

reconstruction

...

Intensities stack3D U-Net

Figure 6.8: Training example of a trefoil knot structure. Computed by m-MSBPM
intensity stacks were used as 3D inputs for the 3D U-Net. Generated models were
binarized and dilated, and further used as ground truth training datasets. The
weights of the network were updated using weighted binary cross-entropy (BCE).
The final prediction/reconstruction of the exemplary trefoil knots model is shown
as output from the trained U-Net. The gray color corresponds to the reconstructed
polymerized parts (ones in prediction). Adapted from [136].

regarding light transmission through all preceding k slices. This weighting strategy
emphasizes the importance of the later slices over the initial ones.

The training example based on the reconstruction of the trefoil knot structure,
whose simulated intensity stack is shown in Figure 6.6, is depicted in Figure 6.8.

The 3D U-Net was trained over a total of 39,000 steps, during which 390,000

random 3D objects were generated and used for training. The entire training
process lasted approximately 21 hours. The resulting training graph as well as a
learning rate plot are presented in Figure 6.9. Notably, the training losses reached
the local minimum already after approximately 15,000 training steps.

6.4.2 Testing

The trained 3D U-Net was then tested to assess its generalization capabilities and
determine whether the neural network could effectively reconstruct completely
unseen 3D objects. To determine the prediction performance, estimation metrics
typically used for binary classification problems, such as "Precision," "Sensitivity,"
and "F1-score," were employed. These metrics are defined as

Precision =
TP

TP + FP
, (6.12)
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Figure 6.9: Training graph. The network was trained during 39,000 training steps
and approximately 21 hours. The training losses are represented in blue, while the
smoothed losses are depicted in orange. Below the main training graph, the graph
showing the gradually decreasing learning rate is illustrated. Adapted from [136].

Sensitivity =
TP

TP + FN
, (6.13)

F1-score = 2 · Precision · Sensitivity
Precision + Sensitivity

. (6.14)

Here, TP, FP, and FN denote true positives, false positives, and false negatives,
respectively. Precision measures the proportion of true positives among all pre-
dicted positives, while sensitivity measures the proportion of true positives among
all actual positives. These metrics help detect if the U-Net over- or underpredicts.
Overprediction results in low precision due to many FP, while underprediction
leads to low sensitivity due to many FN. The F1-score, the harmonic mean
of precision and sensitivity, combines these metrics into a single performance
measure.
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Figure 6.10: Testing graphs. a Evolution of Precision (blue curve), Sensitivity (orange
curve), and F1-score (green curve) metrics over training steps, for a testing dataset
of unseen models. b Evolution of F1-score for three types of testing datasets: seen
models generated with random unseen transformations (blue curve), unseen models
within seen classes of the ModelNet40 database (orange curve), and unseen models
from unseen classes (green curve). The enlarged plateau regions for both graphs
are shown in the red inset. c Reconstruction quality evolution of the example flower
model for certain steps, depicted in the panel b. Adapted from [136].
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A testing plot showing all metrics for a testing dataset consisting of unseen 3D
models within seen classes of the ModelNet40 database is presented in Figure 6.10a.
As observed from this graph, the metric values fluctuate until the local minimum
is reached. After this, both Precision and Sensitivity increase simultaneously with
training steps, leading to a gradual improvement in the F1-score.

Additionally, the F1-score evolution was tracked for different testing datasets
during training as presented in Figure 6.10b. The first training set comprised
randomly transformed 3D models that were used during training (blue curve).
The second training set consisted of unseen 3D models within seen classes of
the ModelNet40 database as they were originally distributed (orange curve). The
third testing set consisted of completely unseen models from unseen classes
(green curve). The reconstruction evolution based on the example flower model
is depicted in panel c. As clearly seen from the testing plot, the trained U-Net
generalizes well with only a small generalization gap in the F1-score of ≈ 0.02 for
unseen models between unseen and seen classes. The final values of the F1-score
reached for each of the three datasets are 0.98, 0.978, and 0.957 respectively. The
last value is particularly significant as it demonstrates that one can accurately
reconstruct a completely unseen object.

Once trained, the U-Net can perform the full reconstruction from an intensity
image stack in approximately 0.1 seconds on the used hardware. This rapid
processing speed makes the in-situ tomographic reconstruction method even
faster than in-situ QPI, where the final 2D phase computation typically takes
several seconds.

6.5 Experimental Validation

After the training using solely simulated intensity images, the 3D U-net was
validated with real in-situ microscope images taken during 3D laser microprinting.

6.5.1 Image Capture

The images were taken using the same configuration that was used for simulations:
the 25×/NA0.8 objective lens immersed in the IP-S photoresist, the Nanoscribe
PPGT camera with a pixel size of 0.4 µm, and slicing distance of 0.3 µm for printed
structures. All structures were also hatched with a 0.2 µm hatching distance,
which is less than a pixel size and therefore does not influence light propagation at
the scale of simulations. The structures were printed using a laser power of 20 mW
and a scanning speed of 4 cm/s. Images were captured for each slice immediately
after the printing of that particular slice was completed. The exposure time was
set to 5 ms. As a result, in-situ bright-field imaging was almost instantaneous,
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extending the overall printing time by only a fraction of seconds.

The process of capturing the image stack required for further reconstruction with
the trained U-Net can be divided into several steps:

1. Find a substrate-photoresist interface (done automatically in the Nanoscribe
PPGT).

2. Collect two background images before printing has started.

3. Print the sample, consisting of k < 128 slices, and capture one image with
each printed slice. The total number of images captured is k, and the spacing
between slices is ∆z = 0.3 µm.

4. Capture 128− k additional defocused images of the printed structure, captur-
ing one image for each ∆z = 0.3 µm increment. These images correspond to
the empty volume over the printed structure and technically do not provide
any new information about light scattering. However, they are necessary to
meet the input requirements of the designed network.

5. Capture additional 12 defocused images to account for any initial layers that
may have been printed within the substrate. During the image processing
procedure, the image stack is cropped to 128 images back again.

Thus, the obtained image stack comprised 140 intensity images. This total in-
cludes k images of printed slices and 140− k "empty" defocused images. Capturing
"empty" defocused images is necessary because the network requires input vol-
umes of 128 × 128 × 128. If the printed object contains fewer than 128 slices,
additional slices with empty volume are required to meet this input specification.

6.5.2 Image Processing

The obtained microscopy image stack is further processed in order to be used
with the trained 3D U-Net. This was also implemented in several steps:

1. The image stack was corrected for dark counts by subtracting the mean
intensity value of an image taken without illumination.

2. The image stack was then normalized by dividing each image in the stack
by the corresponding pixel values in the captured background image.

3. The stack was cropped in the xy-directions by applying the cross-correlation
algorithms so that the structure was properly centered.

4. The stack was cropped in the z-direction by removing the first images
without diffraction patterns, ensuring the first image starts with the first
visible printed slice. Additional images at the end of the stack were removed
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to ensure the final stack consisted of exactly 128 images.

Thus, the final image stack consisted of 128× 128× 128 volume and could be
readily used for the end-to-end reconstruction using deep learning.

6.5.3 Experimental Reconstructions

The trained 3D U-Net was experimentally tested with four different 3D-printed
samples. One of them, a trefoil knot sample, was directly used in the training
dataset. The other three samples: a dragon, an ear, and a buckyball, were
completely unseen by the network. Figure 6.11 represents a comparison table
between 3D STL models (first column), 3D reconstructions based on the purely
simulated data (second column), and 3D experimental reconstructions (third
column) from in-situ microscopic images taken during printing. Additionally,
printed structures were developed in PGMEA for 20 min and were characterized
ex situ by SEM (last column). It is worth mentioning that SEM images have much
higher resolution than reconstructions from optical images and hence appear more
detailed.

Analyzing the comparison table, all structures were reconstructed with high fi-
delity, showing only minimal artifacts on the scale of 1-2 pixels. This effect is
particularly visible in the roughness of the cuboid structure located beneath the
trefoil knots. Notably, the dragon and ear structures show almost no significant
differences between experimental reconstructions, reconstructions from simula-
tions, and SEM images. Several "island artifacts" observed in the experimental
reconstruction of the dragon can be attributed to refractive index inhomogeneities
within the photoresist volume, as was found by the OCT method and discussed
in section 4.2.

However, the trefoil knots appear generally thinner by 0.4-0.8 µm in the experi-
mental reconstruction and SEM data compared to the reconstruction based on
simulated data. This discrepancy is even more pronounced in the buckyball
structure, where the rods were initially designed to have a thickness of 2.0 µm.
In the in-situ experimental reconstruction, the measured rod thickness equals 1.2
µm and 1.3 µm in the SEM data. The effect of rod thinning is highlighted by red
arrows in Figure 6.11. This deviation likely stems from structural deformation
and polymer shrinkage during printing. The observation of this effect nicely
demonstrates the capability of the DL approach to accurately predict the in-situ
shape deviations that might arise during printing, opening further possibilities to
correct them within a single printing session.
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Figure 6.11: Deep learning reconstructions of the binarized refractive index of 3D
printed structures. Four models of trefoil knots, a dragon, an ear, and a buckyball
were investigated. Only the trefoil knots model was used for training, while the
other models were completely unseen. The results are arranged in a table, where the
first column describes the model name, the second column consists of 3D rendering
images from STL files that were used for 3D printing. The third column comprises
DL prediction results from only intensity data simulated based on the STL files. The
fourth column consists of DL reconstructions from in-situ microscopic images taken
during laser printing. The last column corresponds to the ex-situ SEM image of
developed structures. The experimental reconstructions are slightly cropped at the
bottom due to printing within the substrate. The reconstructions from simulated
data are cropped at the same locations to match the size of the experimental recon-
structions for better comparison visibility. Adapted from [136].
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6.6 Stability and Robustness

Despite obtaining accurate experimental results, the DL reconstruction approach
is highly dependent on the simulation parameters used for training. Improper
or inaccurate simulation parameters can degrade the quality of the final recon-
structions. Among these key parameters are the absolute value of the photoresist
refractive index npr and the refractive index difference between the polymerized
and unpolymerized parts ∆n.

The 3D U-Net was originally trained on datasets simulated using values of nIP−S =
1.483 and ∆nIP−S = 0.026. However, using another photoresist, for example, IP-Dip
with nIP−Dip = 1.518 will result in different intensities distribution and hence the
quality of reconstruction might deteriorate. Moreover, the ∆n values might vary
even within the single printing session as they depend on writing parameters, such
as laser power and scanning velocity. This effect and the range of ∆n variations
were discussed in the context of in-situ OCT and in-situ QPI in subsection 4.3.1
and section 5.2, respectively. To evaluate the robustness and reconstruction ability
of the trained 3D U-Net against the described variations, the network was tested
with specifically simulated samples with different values of npr and ∆n.

First, the trained 3D U-Net was tested against variations in npr. An exemplary
trefoil knot model was used to calculate intensities simulated with npr ∈ [nIP−S −
0.05, nIP−S + 0.05] = [1.433, 1.533]. This range covers almost all known commercial
photoresists commonly used for 3D laser microprinting, including IP-L, IP-Dip,
and Ormocomp [39]. The refractive index difference was fixed at ∆nIP−S in
simulations. The results, which display metric values versus the absolute refractive
index used for simulations, are shown in Figure 6.12a. In Figure 6.12b, several
reconstructions from different values of refractive index npr are depicted.

Analyzing this figure, one can observe that the F1-score remains nearly constant,
with only minor fluctuations on the scale of approximately 0.001. The reconstruc-
tions show barely noticeable differences across the various values of npr used for
simulations. Thus, it can be concluded that the trained 3D U-Net demonstrates
stability against these types of variations, and the absolute refractive index of the
photoresist plays no significant role in the quality of reconstructions.

Furthermore, the same trefoil knot structure was simulated with varying values of
∆n. The range of possible variations was estimated from the in-situ QPI refractive
index measurements (Figure 5.7). In these measurements, the refractive index
difference for the IP-S photoresist can vary from 0.024 to 0.026, and for the IP-Dip
photoresist, the range is even broader, from 0.018 for the lowest laser power to
0.030 for the fully polymerized value. Therefore, the refractive index difference
range for simulations was chosen to include all these values, ∆n ∈ [0.013, 0.040].
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Figure 6.12: Robustness against variations in the refractive index of photoresist.
a Metric values after reconstruction of an exemplary trefoil knot model simulated
with different parameters of npr. The red dashed line corresponds to the value of
npr = nIP−S = 1.483 that was used for training. In simulations, the refractive index
difference was fixed at ∆nIP−S = 0.026. b Example reconstruction results from certain
values of npr. The lowest reconstruction corresponds to the ground truth model,
where npr = nIP−S. Adapted from [136].

Notably, for these simulations, the absolute value of the photoresist refractive
index was fixed at nIP−S = 1.483. The reconstruction results of the simulated
structures with different values of ∆n are presented in Figure 6.13.
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Figure 6.13: Robustness against variations in the refractive index difference. a
Metric values after reconstruction of an exemplary trefoil knot model simulated
with different parameters of ∆n. The red dashed line corresponds to the value of
∆nIP−S = 0.026 that was used for training. In simulations, the photoresist refractive
index was fixed at nIP−S = 1.483. b Example reconstruction results from certain
values of ∆n. The lowest reconstruction corresponds to the ground truth model,
where ∆n = ∆nIP−S. Adapted from [136].

As seen from the metric plots, the resulting F1-score decreases more significantly,
reaching a value of 0.87 for the extreme values of ∆n. As indicated by the
Precision and Sensitivity metrics, the network tends to under-predict volumes
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if ∆n < ∆n− IPS and over-predict when ∆n > ∆nIPS . This effect of under- and
over-prediction can also be observed in the reconstruction examples (Figure 6.13b).
For instance, the reconstruction of structures with ∆n > ∆nIPS appears thinner
than the ground truth structure and, conversely, thicker for ∆n > ∆nIPS . Despite
this effect, the reconstruction results are still considered feasible, with only a minor
decrease in the F1-score for the standard range of commercial photoresists, where
0.02 ≲ ∆n ≲ 0.03.

Therefore, the DL method of in-situ reconstruction can be reliably applied to
almost any type of commercial photoresist without the need for additional re-
training. If a photoresist with significantly different values of npr is used, or if
structures are fabricated with larger (or smaller) ∆n, the network can be retrained
to accommodate these specific refractive index ranges. However, other simulation
parameters, such as the slicing distance, pixel size, voxel elongation, etc., cannot be
changed since the resulting electric field and diffraction patterns will significantly
differ from the simulated values. Therefore, if a different objective lens is used
or the slicing distance is altered, the network must be retrained with the new
values to ensure accurate reconstructions. Moreover, the z-shift related to optical
misalignment inside the microscope, which introduces additional defocusing, can
vary between printing setups. Accurately measuring this value and using it in the
simulations (in Equation 6.9) is crucial for achieving proper reconstructions.

6.7 Conclusion

This chapter discussed the novel tomographic approach that reconstructs the 3D
binarized refractive index from microscopic intensity images taken during 3D
fabrication. This method does not require any additional scanning and utilizes
only a single illumination direction. The experimental 3D reconstructions were
achieved using a trained 3D U-Net model in less than one second. The single
reconstruction voxel was 0.4× 0.4× 0.3 µm3. Consequently, the proposed in-situ
reconstruction approach can be directly applied for real-time high-resolution
monitoring of printed specimens.

The model was trained using hundreds of thousands of simulated 3D intensity
datasets paired with corresponding binarized refractive index distributions. For
accurate simulations, it is essential to replicate the exact printing settings and
imaging configuration used in the real system, including imaging noise and non-
sharp refractive index transition between polymerized and unpolymerized parts.
Notably, the network was trained using a total volume of 128× 128× 128 voxels.
Scaling the network to accommodate larger volumes is possible but results in
additional computational costs.

During the simulations, it was assumed that each printing voxel has a constant
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height of 2.7 µm, matching the standard extension for the utilized objective lens.
However, due to dose accumulation, some structures may experience a proximity
effect, potentially extending the size of the printing voxels. Therefore, developing
a more sophisticated forward model that includes the dose accumulation effect
is a promising direction for future research to enhance the predictive accuracy
of experimental results. Another potential advancement of this method involves
quantitatively predicting printed refractive index values, which could significantly
improve the fabrication of micro-optical elements and potentially implement the
prediction of the optical performance of printed 3D micro-optics.
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Chapter 7

Conclusions and Outlook

In the scope of this thesis, I developed and demonstrated methods for rapid
and cost-effective in-situ imaging, monitoring, and reconstruction for 3D laser
microprinting. Presented methods can effectively assess printed specimens during
or immediately after the printing process bypassing development or any steps in
between. All the methods were compared with established ex-situ imaging tech-
niques, such as scanning electron microscopy and confocal microscopy, to validate
the obtained in-situ imaging results. In the following, I provide a summary for
each chapter and summarize the characteristics and parameters of the developed
in-situ methods in one table.

In chapter 2, I provided essential knowledge about the printing process and intro-
duced threshold and accumulation models. I explained how dose accumulation
can affect the size of the printing voxel, potentially introducing deviations to
the final printed shape. I also discussed important properties of the photoresists
used, such as the refractive index and the differences between polymerized and
unpolymerized parts. Subsequently, I outlined the printing workflow and various
strategies typically employed in 3D laser printing. Towards the end of the chapter,
I presented the schematics of the printing setup that can also be utilized for in-situ
bright-field microscopic imaging during printing. Finally, I introduced a z-shift
that causes defocusing in all microscopic images taken, a factor that must be
considered in bright-field transmission imaging.

In chapter 3, I began by discussing common deviations between 3D models used
as templates for printing and the resultant 3D printed samples, and described
a typical method for addressing these: ex-situ shape optimization. I then intro-
duced the concept and definition of in-situ imaging within the context of 3D
laser microprinting, noting the requirement for non-invasive methods due to
the photosensitivity of the photoresists used. This requirement narrowed the
range of feasible imaging techniques. Subsequently, I explored possible solu-
tions and reviewed previous attempts at in-situ imaging and reconstruction of
3D-printed samples. Among the methods discussed were optical coherence to-
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mography (OCT), common bright-field microscopy, quantitative phase imaging
(QPI), and optical diffraction tomography (ODT). For each method, I provided
the fundamental theory and discussed its applicability to in-situ imaging and
reconstruction.

In the following three chapters, I discussed the methods developed for in-situ
imaging, monitoring, and reconstruction of 3D-printed samples. These methods
were applied to determine the properties of printed specimens and to obtain 3D
reconstructions.

In chapter 4, I detailed the OCT setup developed specifically to mimic in-situ imag-
ing configurations. The components of this setup can be seamlessly integrated
into any custom-made printer. The OCT method provided crucial information
about the quality of photoresists even before applying it to printed samples. For
instance, the aged photoresist was found to contain numerous small blob particles
associated with undissolved oligomers, whereas the fresh photoresist displayed
significantly fewer of these particles. By applying OCT technology to study the
planar surfaces of printed samples, I was able to measure the refractive index of
the polymer and estimate the transition width between polymerized and unpoly-
merized parts. This observation was later utilized for precise modeling of the
refractive index distribution in printed samples. Additionally, when exploring 3D
geometries, I discovered that changes in the printing strategy led to variations in
the 3D OCT signal. I attributed the variations in the 3D OCT signal to additional
refractive index inhomogeneities that emerged during the printing process. This
observation led to the conclusion that although OCT can detect these inhomo-
geneities, its effectiveness is limited. This indicates that OCT can only effectively
reconstruct samples with such imperfections.

In chapter 5, I presented the method of QPI that retrieves the in-situ optical
path length (or phase difference) of printed samples. In-situ QPI was directly
integrated into the Nanoscribe PPGT system. From the hardware perspective,
only minor modifications were made to the illumination path of the setup. On the
software side, a well-established algorithm that solves the transport-of-intensity
equation was employed. This algorithm relies on defocused intensity images
obtained during or after the 3D laser printing process. As a result, in-situ phase
profiles were accurately measured, and topographies of various micro-optical
elements were obtained. These in-situ topography maps were then compared
with ex-situ spinning-disk confocal microscopy measurements, fully validating the
developed in-situ QPI method. Moreover, the in-situ QPI method was employed
for precise calculations of the polymer refractive index and relative shrinkage
values. Dependencies of these values on printing laser power were defined for the
two most commonly used photoresists: IP-Dip and IP-S.

In chapter 6, I introduced a novel method for optical tomographic reconstruction
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from common microscopic images captured during printing, using a trained deep
learning network. This chapter began with an explanation of the inverse scattering
problem in the context of the in-situ imaging configuration during 3D printing.
Due to the complexity of this problem, it could only be effectively addressed using
advanced computational algorithms, such as training a 3D deep learning model
through an end-to-end approach. Given that this training required 3D ground
truth dataset pairs, a simulation-based strategy was adopted, where the network
was trained solely with simulated data. I detailed the full pipeline for generating
3D objects and creating realistic intensity datasets that were further used to train
the network. After training the 3D U-Net architecture solely on these realistically
simulated microscopic image datasets, the network was tested with experimental
images. The obtained in-situ 3D reconstructions closely matched ex-situ SEM
images and provided insights into the sample’s deviations immediately after
printing.

The main characteristics of the developed in-situ imaging methods are summarized
in Table 7.1.

OCT QPI DLOR

Acquisition time 10 s 20 s* < 1 s

Evaluation time 20 s 10 s < 1 s

Illumination
Mode Reflection Transmission Transmission

Lateral resolution 2.2 µm 0.4 µm 0.4 µm

Axial resolution 2.7 µm < 0.1 µm 0.3 µm

Additional setup + - -

Signal type 3D
back-scattering 2D phase 3D binarized

refractive index

What can be
reconstructed

Planar surfaces or
3D objects with
imperfections

2.5D samples All 3D-printed
objects

*Can be reduced to <1 s when using non-native software.

Table 7.1: Comparison of the developed in-situ imaging methods. OCT method was
described in chapter 4, in-situ QPI was introduced in chapter 5, and deep learning
optical reconstruction (DLOR) was presented in chapter 6.
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Outlook

Analyzing the developed in-situ imaging methods and the results obtained, I can
conclude that all methods are fast, with the total acquisition and evaluation time
being significantly less than the typical printing time. This opens up possibilities to
use the developed methods for rapid on-the-fly shape estimation and optimization,
potentially eliminating or significantly reducing the need for ex-situ methods in
the future. However, all three methods are conceptually different, and therefore
each could be suited for specific purposes and applications.

As demonstrated, in-situ OCT can accurately reconstruct 3D-printed objects with
refractive index imperfections but struggles with the reconstruction of normal
specimens that lack sufficient back-scattering properties. Therefore, this technol-
ogy could be used to estimate the amount of such imperfections and correct them,
aiming to minimize the OCT signal of the sample. Another potential application
of this method is its use with photoresists that have additional scattering particles
dissolved in them [143]. These additional scattering centers would significantly
enhance the OCT contrast of the printed specimens. Furthermore, OCT technol-
ogy could be effectively used to assess the purity of photoresists by evaluating
undissolved particles in the volume.

As for in-situ QPI, although this method is used primarily for measuring 2.5D
printed objects, it is fast, accurate, and can be easily integrated by anyone with a
3D laser printer simply by defining the illumination path. The axial resolution of
QPI allows for the assessment of tiny shape deviations, enabling effective on-the-
fly corrections. Additionally, performing QPI measurements after development
and re-immersion in the same photoresist can provide valuable information about
the shrinkage properties of various photoresists [120].

Perhaps the most promising in-situ imaging method is deep-learning optical
reconstruction. This method requires only a trained neural network to effectively
reconstruct any 3D-printed sample in situ. The primary obstacle to routine inspec-
tion using this method is the limited size of the possible reconstruction volume.
The presented network is currently able to reconstruct volumes of approximately
50× 50× 40 µm3, which is relatively small compared to typical sample sizes,
especially in the z-direction. Therefore, expanding the reconstruction volume,
either by scaling the network or implementing a stitching procedure, is the main
priority for future development. Another possible direction is the development
of a more accurate prediction model that can reconstruct the refractive index
quantitatively, rather than just providing binarized values. Additionally, recent
studies in diffraction tomography have shown that by accounting for polarization,
it is possible to reconstruct the 3D anisotropy distribution of birefringent spec-
imens [144]. The implementation of this polarization-sensitive approach to the
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developed reconstruction method is particularly attractive since printed samples
exhibit birefringence attributed to induced stresses after polymerization [145].

Conceptually, this method relies solely on the accurate forward prediction, making
it adaptable to other 3D printing modalities that involve fabrication from liquid
transparent photoresists [146–148]. Although the primary focus of this work is in-
situ imaging, I anticipate that the proposed tomographic approach could become
a key component of neural lithography [149]. This could eventually allow for the
prediction of ex-situ shapes by providing the neural network with knowledge
about shrinkage during development. Such advancements could lead to accurate
predictions of the final ex-situ shape and even the optical performance of printed
micro-optics.
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Appendix

A.1 Generation of a Batch Group Consisting of 8 Batches

1: i← 1
2: N ← 8
3: BatchGroupSize← 80
4: BatchGroupObjects← ZerosMatrix(BatchGroupSize, 128, 128, 128, 1)
5: BatchGroupIntensity← ZerosMatrix(BatchGroupSize, 128, 128, 128, 1)
6: Models← Load N random models from ModelNet40 training set
7: Models← RandomlyRotateAndScale(Models)
8: ModelNetObjects← Voxelize(Models)
9: for j← 1 to BatchGroupSize do

10: if U (0, 1) > 0.5 then
11: InputObject3D ← ModelNetObjects(i mod N + 1)
12: InputObject3D ← RandomlyResizeObject(InputObject3D)
13: i = i + 1
14: else
15: InputObject3D ← GenerateRandomTorusKnot
16: end if
17: if U (0, 1) > 0.5 then
18: InputObject3D ← RandomlyCropObject(InputObject3D)
19: end if
20: if U (0, 1) > 0.5 then
21: InputObject3D ← RandomPedestalUnderTheObject(InputObject3D)
22: end if
23: (IntensityStack, OuputObject3D)← ForwardModel(InputObject3D)
24: BatchGroupObjects(j)← OuputObject3D
25: BatchGroupIntensity(j)← IntensityStack + Noise
26: end for
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A.2 Simulation of Intensities Using Modified Multi-slice

Beam Propagation Model (m-MSBPM)

1: nz−voxels ← 9
2: InputObject3D ← binary object in 128x128x128 pixel matrix
3: InputObject3D ← AssignRe f ractiveIndexDi f f erence(InputObject3D)
4: InputObject3D ← Re f ractiveIndexSmearing(InputObject3D)
5: InputField2D ← 1128×128 ▷ Create the incident field
6: FieldStack← ZerosMatrix(128, 128, 128) ▷ z-, x- and y-direction
7: OutputObject3D ← ZerosMatrix(128 + nz−voxels−1

2 , 128, 128)
8: PreviousSliceStack← ZerosMatrix(nz−voxels, 128, 128)
9: for k← 1 to 128 do

10: Slice← InputObject3D(k)
11: CurrentSliceStack← Repeat Slice nz−voxels times in z-direction
12: DilatedSliceStack← CurrentSliceStack||PreviousSliceStack
13: InputField2D ← ForwardPropagation(InputField2D, DilatedSliceStack(1)
14: Field2D ← InputField2D
15: for j← 1 to nz−voxels do
16: Field2D ← ForwardPropagation(Field2D, DilatedSliceStack(j))
17: end for
18: Field2D ← De f ocus(Field2D, nz−voxels−1

2 )
19: FieldStack(k)← Field2D
20: OutputObject3D(k)← DilatedSliceStack(1)
21: PreviousSliceStack← DilatedSliceStack
22: PreviousSliceStack(nz−voxels)← 0128×128
23: end for
24: De f ocusedFieldStack← De f ocus(FieldStack, zshift)
25: FilteredFieldStack← NA f ilter(De f ocusedFieldStack)
26: IntensityStack← abs(FilteredFieldStack)2

27: OuputObject3D ← Remove the first nz−voxels−1
2 layers of OuputObject3D

28: Return (IntensityStack, OuputObject3D)

Both section A.1 and section A.2 algorithms adapted from [136].
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A.3 3D U-Net Architecture

Input
Shape: (:, 128, 128, 128, 1)

Residual Block

(:, 128, 128, 128, 2)

Downsampling Block 1

(:, 64, 64, 64, 4)

Downsampling Block 2

(:, 32, 32, 32, 8)

Downsampling Block 3

(:, 16, 16, 16, 16)

Downsampling Block 4

(:, 8, 8, 8, 32)

Downsampling Block 5

(:, 4, 4, 4, 64)

Upsampling Block 1

(:, 8, 8, 8, 32)

Upsampling Block 2

(:, 16, 16, 16, 16)

Upsampling Block 3

(:, 32, 32, 32, 8)

Upsampling Block 4

(:, 64, 64, 64, 4)

Upsampling Block 5

(:, 128, 128, 128, 2)

Transposed Residual Block

(:, 128, 128, 128, 2)

Transposed Convolutional Layer
Activation: Sigmoid
(:, 128, 128, 128, 1)

Batch normalization

Batch normalization

(Up-) Downsampling Block

(Transposed) 
Convolutional  Layer

Strides: (1, 1, 1)

(Transposed) 
Convolutional  Layer

Strides: (1, 1, 1)

Activation ReLU

Batch Normalization

Add

Activation ReLU

Activation ReLU

Activation ReLU

Batch normalization

(Transposed)
 Residual Block

(Transposed) 
Convolutional  Layer

Strides: (2, 2, 2)

(Transposed) 
Convolutional  Layer

Strides: (1, 1, 1)

Figure A.1: The network consists of 5 downsampling blocks in the encoder and the
same number of upsampling blocks in the decoder. Each downsampling block starts
with a convolution of stride 2 to halve the size of the feature maps while doubling
the number of filters. Each upsampling block starts with a transposed convolution
of stride 2 to double the size of the feature maps while halving the number of
filters. This is followed by batch normalization and activation, and then an additional
residual block is added. The dashed lines between the encoder and the decoder
represent skip connections. The feature maps from the encoder are concatenated
with those from the decoder. Before the concatenated feature blocks reach the next
decoder stage, they are passed through batch normalization and rectified linear unit
(ReLU) activation. To limit the number of parameters, there is no bridge in this
model. All convolutional layers have a kernel size of 3× 3× 3, except for the last
convolutional layer, which has a kernel size of 7× 7× 7. Adapted from [136].
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