AARC

OAuth 2.0 Proxied Token Introspection

Publication Date [2023-11-13]
Authors: Dominik FrantiSek Bucik, Marcus Hardt, Jens Jensen, lvan Kanakarakis, Christos
Kanellopoulos, Nicolas Liampotis (ed.), Mischa Sallé

Document Code: AARC-G052

DOI: 10.5281/zenodo.10205863
Community: Architecture Area
Abstract

This specification extends the OAuth 2.0 Token Introspection (RFC7662) method to allow conveying
meta-information about a token from an Authorization Server (AS) to the protected resource even when there is
no direct trust relationship between the protected resource and the token issuer. The method defined in this
specification, termed "proxied" token introspection, requires access tokens to be presented in JWT format
containing the iss claim for identifying the issuer of the token. Proxied token introspection assumes that the AS
which is trusted by the protected resource has established a trust relationship with the AS which has issued the
token that needs to be validated.

(0 @

This document is licensed under a Creative Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

AARC

Table of Contents

1 Introduction 2
1.1 Notational Conventions 3
1.2 Terminology 3
2 Proxied Token Introspection Request and Response 4
2.1 Token Validation by Resource Server 5
2.2 Token Validation by AS Proxy 7
2.3 Token Introspection Response by AS 8
2.4 Proxied Token Introspection Response by AS Proxy 8
3 Implementation Considerations 9
4 Security Considerations 10
5 Privacy Considerations 1"
References 1"
Annex A 13
A.1 Token Originating from Domain A 13
A.1.1 Offline token validation performed by RS 13
A.2 Token Originating from Domain B 14
A.2.1 Token introspection invoked by RS, with proxied token introspection performed
by AS 14
A.2.2 Token introspection (RFC7662) invoked by RS, with offline token validation
performed by AS 15
A.3 Summary 16

AARC

1. Introduction

This specification builds on the OAuth 2.0" Token Introspection [REC7662] method to allow a
resource server to query an authorization server (AS) it trusts for determining the set of
metadata for a token regardless of whether or not that token has been issued by the given
authorization server. The token metadata can include but are not limited to the following:

e whether or not the token is currently active (or if it has expired or otherwise become
invalid),

e what access rights the token carries; rights are typically conveyed through OAuth 2.0
scopes or other authorization claims including resource owner memberships in roles
and groups that are relevant to the resource being accessed, or through entitlements
assigned to the resource owner for the targeted resource that the authorization
server knows about (see also [REC9068]),

e the authorization context in which the token was granted, including information such
as the subject of the token and the client that the token was issued to.

The method defined in this specification termed "proxied" token introspection does not
require protected resources in one organisation to trust the authorization servers of every
other organisation eligible for issuing tokens. However, the specification requires the
presence of an AS Proxy, providing an introspection endpoint for the protected resource.
The AS Proxy is trusted by the protected resource and has established a trust relationship
with the AS which issued the token that needs to be validated. Similar to [REC7662], proxied
token introspection allows a protected resource to query the token metadata regardless of
whether or not this information is carried in the token itself.

It should be emphasised that this specification does not preclude offline validation (e.g. by
the RS or the AS proxy) of access tokens.

The remote validation approach allows for the following:

e resource servers are not required to establish direct trust relationships with all the AS
that issue tokens,

e tokens are not required to include all the metadata within the token itself (which in
some cases may include sensitive information such as the resource owner
memberships in groups),

e support for tokens with minimal JWT structure; the only requirement is to include
information for determining the token issuer,

e support for revocation of access tokens (without token introspection, there is no way
to invalidate a token until it expires),

e low complexity for protected resources since the token validation process is
delegated to their AS.

' The upcoming OAuth 2.1 specification includes a reference to Token Introspection (RFC7662) so
this specification should be compatible with OAuth 2.1.

https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc9068
https://www.rfc-editor.org/rfc/rfc7662
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/

AARC

1.1 Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD',
'SHOULD NOT', 'RECOMMENDED’, 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in
this document are to be interpreted as described in [REC2119].

Unless otherwise noted, all the protocol parameter names and values are case sensitive.

1.2 Terminology

This section defines the terminology used by this specification. This section is a normative
portion of this specification, imposing requirements upon implementations.

This specification uses the terms "access token", "authorization endpoint”, "authorization
grant", "authorization server" ("AS"), "client", "client identifier", "protected resource", "refresh
token", "resource owner", "resource server" ("RS"), and "token endpoint" defined by OAuth
2.0 [REC6E749], the terms "claim names" and "claim values" defined by JSON Web Token
(JWT) [REC7519], and the terms "token introspection" and “introspection endpoint” defined

by OAuth 2.0 Token Introspection [REC7662].
This specification defines the following terms:

AS Proxy
The entity implementing Proxied Token Introspection; it is trusted by the resource
server inquiring about the current state of an OAuth 2.0 token. The AS Proxy may be
the same entity as the Authorization Server or a separate entity.

Offline validation of JWT access tokens
The act of validating access tokens by validating the signature of the token as defined
in [REC7519]. Section 7.2 and parsing the claims within the structured token itself.

Proxied Token Introspection
The act of inquiring about the current state of an OAuth 2.0 token through use of the
network protocol defined in this document.

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/rfc/rfc7519#section-7.2

AARC

2. Proxied Token Introspection Request and
Response

The abstract flow illustrated in Figure 1 describes the interactions among the entities
involved in proxied token introspection. In Step 1, the OAuth client requests an access token
by authenticating with the AS and presenting the authorization grant. The AS authenticates
the client and validates the authorization grant, and if valid, issues an access token.

AS Proxy

OAuth Client " “trusts AS”

AuthZ Server (AS Proxy)

L

1: Requests JWT access token

2: Presents JWT access token
to request protected resource

[Offline validation of access token]

2.1: Processes
token

Validation fails because the token B‘

[
|
[
|
|
[
>|—% |
|
|
I
|
|

issuer is not trusted by the RS

3: Token introspection |

request
>
-
4; Processes token
introspection request
Alternative)

[Offline|validation of access token]

5: Validates token

L

[Proxiel introspection of access token] I

6.2:[Processes token
intrgspection request

6.1: Token introspection request

\

6.3: Token introspection response

6.4: Processes token
introspection response

7: Token introspection
response

8: Protected resource ‘

AARC

2.1 Token Validation by Resource Server

The OAuth client uses the access token to request the protected resource from the resource
server (RS) (see Step 2 in Fig. 1). The RS MAY attempt to perform offline token validation
(see optional Step 2.1 in Fig. 1). If the RS cannot determine? the issuer of the token or
determines that the token has not been issued by a trusted issuer (which is the case
illustrated in Fig 1) then the RS MUST treat the token as an opaque token and call the
introspection endpoint of the AS Proxy. In Fig 1 we assume that the RS trusts a single AS.
Refer to Section 3 for other deployment scenarios

The RS calls the introspection endpoint of the AS Proxy using an HTTP request as defined
in OAuth 2.0 Token Introspection [REC7662], Section 2.1 (see Step 3 in Fig. 1). Access to
the introspection endpoint MUST require some form of authorization as described in OAuth
2.0 Token Introspection [REC7662], Section 2.1.

The following is a non-normative example request where, for the purpose of authorization,
the resource server uses a client identifier and client secret to authenticate itself to the
introspection endpoint:

POST /introspect HTTP/1.1
Host: as-proxy.example.org
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Basic cnM6Z3FWWFFUZmVMSHRTdnhzTg==

token=eyJ0eXAi0iJKV1QiLCIhbGci0iJIUzI1Ni1J9.eyJpc3MiOiJodHRwc
zovL2FzLmV4YW1lwbGUub3JInLyISINN1YiI6IjViYTUIMmQ2NyIsImF1ZCI6W
yJodHRwczovL3JzLmV4YW1lwbGUub3InLyIsImhOdHBzOi18vYXMtcHIveHkub
3JInLyJdLCI1eHAT0jE2Mzk1Mjg5MTIsImLhdCI6GMTYXODM1INDASMCwianRpI
joiZGIIMz1iZjNhM2IhNDIZOGEIMTNMNTFKNmUXNjkxYzQiLCJIjbGl1lbnRfa
WQi01JzNkJoZFJrcXQzIiwic2NvcGUi0iJvcGVuaWQgcHIvZmlsZSB1lbWFpb
CB1lbnRpdGx1bWVudHMifQ.qbB0qzZQlCVzJIvaF-j1Gr9oGV1l_VgOrSbmOKmx
P59ew

The token in the example includes the following claims:

{
"iss": "https://as.example.org/",
"sub": "5ba552d67",
"aud": ["https://rs.example.org/", "https://as-proxy.org/"],
"exp'": 1639528912,
"jat": 1618354090,
"jti" : "dbe39bf3a3ba4238a513f51d6el691c4",

2 For example, when the access tokens are encrypted and can only be decrypted by the AS Proxy.

https://www.rfc-editor.org/rfc/rfc7662#section-2.1
https://www.rfc-editor.org/rfc/rfc7662#section-2.1

AARC

"client_id": "s6BhdRkqt3",
"scope": "openid profile email entitlements"

2.2 Token Validation by AS Proxy

In processing the request (see Step 4 in Fig. 1), the AS Proxy MUST determine whether the
token has been locally issued. This specification requires access tokens to be presented in
JWT format containing the 1iss claim for identifying the issuer of the token, as defined in
JWT [REC7519]. Signing mechanisms (such as [REC7515]) are required to ensure that
access tokens get delivered without having been tampered with, as described in Section 4. If
access tokens are encrypted the AS Proxy MUST be able to decrypt them.

If the AS Proxy determines that the token has been locally issued then an introspection
response as defined in OAuth 2.0 Token Introspection [REC7662], Section 2.2, MUST be
returned.

If the token has not been locally issued then the AS Proxy can fulfil the token introspection
request using various methods. These methods may include calling the introspection
endpoint of the trusted issuer (provided the trusted issuer supports token introspection - see
Step 6.1 in Fig. 1) or using other means (e.g. offline validation of access token - see Step 5
in Fig. 1). The implementer has the discretion to select and use one or more of these
methods, and the specific order in which they are invoked by the AS Proxy to fulfil the token
introspection request is an implementation decision.

The means by which the AS Proxy discovers the location of the introspection endpoint are
outside the scope of this specification; for instance, the AS Proxy may use the OAuth 2.0
Authorization Server Metadata [REC8414], Section 2 to discover the location of the
introspection endpoint. The AS Proxy calls the introspection endpoint of the trusted issuer
using an HTTP request as defined in OAuth 2.0 Token Introspection [REC7662]. Section 2.1.
The introspection endpoint of the trusted issuer MUST support client authentication as
described in OAuth 2.0 [RFC6749] to authorise introspection requests from AS Proxy
entities. The means by which the AS Proxy discovers the client authentication methods
supported by the introspection endpoint of the trusted issuer (AS) are outside the scope of
this specification; for instance, the AS Proxy may use the OAuth 2.0 Authorization Server
Metadata [RFC8414], Section 2 to discover the supported client authentication methods.

The following is a non-normative example request where the AS Proxy uses a client
identifier and client secret to authenticate itself to the introspection endpoint of the
token-issuing AS:

POST /introspect HTTP/1.1
Host: as.example.org
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Basic YXMtcHJveHk6QWRaaGVLcTQ3S20ycmJaTA==

https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/rfc/rfc8414#section-2
https://www.rfc-editor.org/rfc/rfc7662#section-2.1

AARC

token=eyJ0eXAi0iJKV1QiLCIhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwc
zovL2FzLmV4YW1wbGUub3JInLyIsInNN1YiI6IjViYTULIMMQ2NyIsImF1ZCIeW
yJodHRwczovL33IzLmV4YW1lwbGUub3JInLyIsImhOdHBz01i8vYXMtcHIveHkub
3InLyJdLCI1eHAT0jE2Mzk1Mjg5MTIsImlhdCI6GMTYXODM1INDASMCwianRpI
joiZGIIMz1iZjNhM2IhNDIZOGEIMTNMNTFKNmUxNjkxYzQiLCJIjbGllbnRfa
WQi01JzNkJoZFJrcXQzIiwic2NvcGUi0iJvcGVuaWQgcHIvZmlsZSB1lbWFpb
CBlbnRpdGx1bWVudHM1i fQ.qbB0qzZQ1lCVzJIvaF-j1Gr9oGV1_VgOrSbmOKmx
P59%ew

2.3 Token Introspection Response by AS

The token-issuing AS responds to the AS Proxy (see Step 6.3 in Fig. 1) with a JSON object
[REC7159] in "application/json" format with the top-level members defined in OAuth 2.0
Token Introspection [REC7662], Section 2.2.

2.4 Proxied Token Introspection Response by AS Proxy

The AS Proxy responds to the resource server (Step 7 in Fig. 1) with a JSON object
[REC7159] in "application/json" format with the top-level members defined in OAuth 2.0
Token Introspection [REC7662], Section 2.2. The response SHOULD include the claim
values included in the response from the token-issuing AS (or parsed during the offline
validation of the token). The AS Proxy MAY adjust the claims and/or claim values included in
the response considering the requirements of the resource server which made the original
request (see Step 6.4 in Fig. 1).

The following is a non-normative example of a response for an active token:

HTTP/1.1 200 OK
Content-Type: application/json

{

"active": true,

"iss": "https://as.example.org/",

"sub": "5ba552d67",

"client_id": "s6BhdRkqt3",

"scope": "openid profile email entitlements",

"aud": "https://rs.example.org/",

"exp": 1639528912,

"jat": 1618354090,

"entitlements": [
"e9e30dba-f08f-4109-8486-d5c6a331660a",
"entitlement2"

}

The AS Proxy MUST return an introspection response with the "active" field set to "false" if
the introspection call is properly authorised but any of the following conditions apply:

https://www.rfc-editor.org/rfc/rfc7159
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7662#section-2.2

AARC

e this particular token is not valid for use by the RS making the request?; for instance if
the AS Proxy determines that the token is not locally issued and is of an OAuth 2.0
token type [OAuth-TT] which cannot be used as an OAuth 2.0 bearer token, such as
a refresh token

e the AS Proxy can not validate the token through any of the supported methods (refer
to Section 2.2).

The following is a non-normative example response for a token that has been revoked or is
otherwise invalid:

HTTP/1.1 200 OK
Content-Type: application/json

"active": false

% The details of how the AS Proxy makes such a decision are outside the scope of this specification.

https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml#token-type-hint

AARC

3. Implementation Considerations

The “AS proxy” is an entity that implements proxied token introspection and is trusted by the
RS. It may not be an AS, it may be a system acting as a frontend for one or more ASs, or it
may be one of the set of AS(s) trusted by the RS. The means by which the RS chooses
which entity to invoke are outside the scope for this specification. Note that this is analogous
to the discovery of the token introspection defined in OAuth 2.0 Token Introspection
[REC7662]. Section 2.

When forming its proxied token introspection response, the AS Proxy MUST NOT change
the iss claim value of the response®, but it MAY modify other claims or their values.
Furthermore, the AS Proxy MAY respond differently to different resource servers making the
same request, as described in OAuth 2.0 Token Introspection [REC7662], Section 2.2. For
instance, the AS Proxy MAY limit which scopes (from a given token) are returned to each
resource server. In other cases, the AS Proxy MAY limit, extend or modify the entitlements
[REC9068] from a given token depending on the protected resource making the request. The
AS Proxy MAY change the string identifier(s) representing the intended audience for the
token (see example response in Section 2.4). The AS Proxy SHOULD NOT expect to
identify itself as the intended audience for the token.

A properly formed and authorised query for an inactive or otherwise invalid token is not
considered an error response by this specification. Instead, the AS Proxy MUST respond
with an introspection response with the "active" field setto "false". That response
SHOULD NOT include any additional information about an inactive token, including why the
token is inactive, as described in OAuth 2.0 Token Introspection [REC7662]. Section 2.2.

If the introspection call is not authorised then the AS Proxy MUST respond with an HTTP
401 code as described in OAuth 2.0 Token Introspection [REC7662], Section 2.3.

As described in OAuth 2.0 Token Introspection [REC7662], Section 4, the response MAY be

cached by the resource server and/or the AS Proxy to improve performance and reduce load
on the introspection endpoint of the AS Proxy and/or the token-issuing AS, but at the cost of
freshness of the information used by the protected resource to make authorization decisions.

When the token-issuing AS is informed® of the resource server that will process the access
token, it MAY also include the AS Proxy in the intended audience values for that token (in
addition to the resource server).

The token issuing AS MAY respond differently depending on the identity of the entity
performing the token introspection request, as described in OAuth 2.0 Token Introspection
[RFC7662], Section 2.2. In addition, some implementations enforce audience restrictions on

* For use cases where the 1iss claim needs to be modified, a method based on Token Exchange
[REC8693] would be more appropriate. This is out of the scope of this specification.

® The token-issuing AS may be informed of the resource service that will process the access token
based on the request parameter defined in Resource Indicators for OAuth 2.0 [REC8707] or the
audience parameter defined in OAuth 2.0 Token Exchange [REC8693].

10

https://www.rfc-editor.org/rfc/rfc7662#section-2
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/rfc/rfc7662#section-2.2
https://www.rfc-editor.org/rfc/rfc7662#section-2.3
https://www.rfc-editor.org/rfc/rfc7662#section-4
https://www.rfc-editor.org/rfc/rfc8707
https://www.rfc-editor.org/rfc/rfc8693.html
https://www.rfc-editor.org/rfc/rfc8693.html

AARC

the requestor by requiring that the requestor is included in the audience for the token.
However, such mechanisms are out of scope of both RFC7662 and this specification.

11

AARC

4. Security Considerations

The security considerations discussed in OAuth 2.0 Token Introspection [REC7662], Section
4 also apply to this specification. In addition to these considerations, this specification
requires mechanisms (such as [REC7515]) to ensure that access tokens presented in JWT
format get delivered without having been tampered with. Although any algorithm can be
used for signing JWT access tokens in the case of [REC7515], use of asymmetric
cryptography is RECOMMENDED as it simplifies the process of acquiring validation
information. As per [REC9068]. Section 2.1, signed JWT access tokens MUST NOT use
"none" as the signing algorithm. Furthermore, authorization servers conforming to this
specification MUST include RS256 (as defined in [REC7518]. Section 3.1]) among their
supported signature algorithms.

As per REC7519, each principal intended to process the JWT MUST identify itself with a
value in the audience claim. How the client or the AS issuing the token is able to specify the
correct audience(s) is out of scope of this specification. As described in Section 3, the AS
Proxy MAY adjust the introspection response contents based on the resource server making
the request.

For cross-infrastructure use of access tokens, the protected resource treats the access
token as opaque and hence there is no risk of Cross-JWT Confusion ([REC8725]. Section
2.8).

The following mechanisms can prevent token scanning attacks and overloading of the token
introspection endpoint:

e the AS Proxy MUST require some form of authorization to the introspection endpoint,
as described in OAuth 2.0 Token Introspection [RFC7662], Section 2.1,

e the AS Proxy SHOULD employ rate-limiting mechanisms, based on the identity of the
RS performing the token introspection request®

e the RS and/or the AS Proxy MAY cache responses, as described in OAuth 2.0 Token
Introspection [REC7662], Section 2.2.

¢ Otherwise the AS Proxy is at risk of being rate-limited by the token issuing AS.
12

https://www.rfc-editor.org/rfc/rfc7662#section-4
https://www.rfc-editor.org/rfc/rfc7662#section-4
https://www.rfc-editor.org/rfc/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/rfc/rfc9068#section-2.1
https://www.rfc-editor.org/rfc/rfc7518#section-3.1
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/rfc/rfc8725.html#name-cross-jwt-confusion
https://www.rfc-editor.org/rfc/rfc8725.html#name-cross-jwt-confusion
https://www.rfc-editor.org/rfc/rfc7662#section-2.1
https://www.rfc-editor.org/rfc/rfc7662#section-2.2

AARC

5. Privacy Considerations

The content of the JWT access token will be accessible to the resource server and
eventually to the AS Proxy. Therefore, measures MUST be taken to prevent disclosure of
personal data in the JWT claims to unintended parties. Similar considerations apply to the
claims included in the token introspection response, as discussed in OAuth 2.0 Token

Introspection [REC7662], Section 5.

13

https://www.rfc-editor.org/rfc/rfc7662#section-5

AARC

6. References

[AARC-G045] AARC Blueprint Architecture (AARC-G045);
<https://aarc-community.org/quidelines/aarc-g045>
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI
10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012,
<http://www.rfc-editor.org/info/rfc6749>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
2014, <https://www.rfc-editor.org/info/rfc7159>.

[RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature
(JWS)", RFC 7515, DOI 10.17487/RFC7515, May 2015,
<https://www.rfc-editor.org/info/rfc7515>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, “JSON Web Token (JWT)’,
RFC 7519, DOI 10.17487/RFC7519, May 2015,
<https://www.rfc-editor.org/rfc/rfc7519>.

[RFC7662] Richer, J., “OAuth 2.0 Token Introspection”, RFC 7662,

DOI 10.17487/RFC7662, October 2015,
<https://www.rfc-editor.org/rfc/rfc7662>.

[RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0 Authorization
Server Metadata", RFC 8414, DOI 10.17487/RFC8414, June 2018,
<https://www.rfc-editor.org/info/rfc8414>.

[RFC8693] Jones, M., Nadalin, A., Campbell, B., Ed., Bradley, J., and C.
Mortimore, "OAuth 2.0 Token Exchange", RFC 8693, DOI
10.17487/RFC8693, January 2020,
<https://www.rfc-editor.org/info/rfc8693>.

[RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource Indicators for
OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707, February 2020,
<https://www.rfc-editor.org/info/rfc8707>.

[RFC8725] Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best Current
Practices", BCP 225, RFC 8725, DOI 10.17487/RFC8725, February
2020, <https://www.rfc-editor.org/info/rfc8725>.

[RFC9068] Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0 Access
Tokens", RFC 9068, DOI 10.17487/RFC9068, October 2021,
<https://www.rfc-editor.org/info/rfc9068>.

14

https://aarc-community.org/guidelines/aarc-g045
https://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7662
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8693
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc9068

AARC

Annex A

This section focuses on achieving interoperability between two domains that use different
methods for token validation and introspection:

e Domain A relies on proxied token introspection as defined in AARC-G052

e Domain B uses offline token validation.

Additionally, there is a third domain, namely Domain C, which plays a crucial role in the
interoperability flows. Domain C represents the Community AAlI (AARC-G045) that enables
the user to obtain a token based on their community-managed information. This information
encompasses information such as groups and roles, which are commonly employed for
authorisation purposes. Lastly, Domain D includes the user's Authenticating Identity
Provider, enabling user authentication through their Community AAI.

A.1 Token Originating from Domain A

A.1.1 Offline token validation performed by RS

An OAuth client in Domain A requests a JWT access token for a resource in Domain B from
its Authentication Server (AS), which is also in Domain A. The user selects their Community
AAl in Domain C, which further authenticates the user through their Authentication Identity
Provider (AuthN IdP) in Domain D. After successful authentication, a JWT access token is
issued and returned to the client. The client then presents this Domain A token to a
Resource Server (RS) in Domain B, which performs offline validation and grants access to
the protected resource. The diagram illustrates the message flow and trust relationships
among the participants in this cross-domain token validation scenario.

15

https://aarc-community.org/guidelines/aarc-g045

AARC

: AS Proxy AS .
OAuth Client RS Community AAT AuthN IdP
(Domain A) (Domain B) {Bg&g:ﬁ% {Bg;z:’r?)% (Domain C) (Domain D)

Cross-domain trust relationship
(bidirectional)

Cross-domain trust relationship
(bidirectional)

Cross-domain trust relationship

1: Requests JWT
access token (resource=B)

»
User selects
Community AAI
2: Authenticates
|
User selects
Authenticating IdP
3: Authenticates
4: AuthN Response T
5: AuthN Response
N
6: Returns JWT
access token (aud=B)
@ mmmmmemmemmeemaeeaan
7: Presents JWT
access token
8: Offline validation
9: Protected resource
; AS Proxy AS ;
OAuth Client RS Community AAT AuthN IdP
(Domain A) (Domain B) {Bg;g{:% (Iggrar\z{r?)l(a}; (Domain C) (Domain D)

Workflow A.1.1: Offline token validation performed by RS (Domain B). Infra Proxy in
Domain A can act as an AS Proxy, however this capability is not relevant in this flow.

Prerequisites:
1. Community AAl in Domain C trusts the user’s Authenticating Identity Provider (AuthN
IdP) (bidirectional trust relationship)
2. AS in Domain A trusts the Community AAl in Domain C (bidirectional trust
relationship)
3. RS in Domain B trusts the AS in Domain A
RS in Domain B can interpret the contents of tokens originating from Domain A
5. Tokens originating from Domain A contain the authorisation claims

s

A.2 Token Originating from Domain B

A.2.1 Token introspection invoked by RS, with proxied token
introspection performed by AS

An OAuth client in Domain B requests a JWT access token for a resource in Domain A from
its Authorization Server (AS), which is also in Domain B. The user selects their Community
AAl in Domain C, which subsequently authenticates the user through their Authenticating
Identity Provider (AuthN IdP) in Domain D. After successful authentication, a JWT access
token is issued and returned to the client. The client then presents this Domain B token to a
Resource Server (RS) in Domain A. Before granting access to the protected resource, the

16

AARC

RS introspects the token through its AS, which is also in Domain A. The AS in Domain A
identifies the AS in Domain B as the token issuer and is then able to proxy the introspection
request as per AARC-G052. The diagram illustrates the message flow and trust relationships
among these participants in this cross-domain token validation scenario.

AS Proxy AS
OAuth Client RS,
¥ . Infra Prox: Infra Prox
(Domain B) (Domain A) (Domain A)S (Domain B)

Community AAT AuthN IdP
(Domain C) (Domain D)

Cross-domain trust relationship
(bidirectional)

Cross-domain trust relationship
(bidirectional)

Cross-domain trust relationship
(bidirectional)

1: Requests JWT
access token (resource=A)

>

User selects
Community AAT
2: Authenticates
>
User selects
Authenticating IdP
3: Authenticates
4: AuthN Response ﬂ
eme e
5: AuthN Response
6: Returns JWT
access token (aud=A)
7: Presents JWT
access token
8: Introspects JWT
access token
_
9: Introspects JWT
access token
10: Introspection Response —‘
11: Introspection Response
12: Protected resource
azlilens] i Community AAT AuthN IdP

OAuth Client RS Infra Proxy Infra Prox

(Domain B) (Domain A) (Domain A) (Domain B% (Domain C) (Domain D)

Workflow A.2.1: Token introspection (RFC7662) invoked by RS (Domain A), with
proxied token introspection (AARC-G052) performed by AS (Domain A)

Prerequisites:
1. Community AAl in Domain C trusts the user’s Authenticating Identity Provider (AuthN

IdP) (bidirectional trust relationship)
2. AS in Domain B trusts the Community AAl in Domain C (bidirectional trust

relationship)
3. AS in Domain A trusts the AS in Domain B (bidirectional trust relationship)
4. AS in Domain A can interpret the contents of the token introspection response from

Domain B

A.2.2 Token introspection (RFC7662) invoked by RS, with offline token
validation performed by AS

An OAuth client in Domain B requests a JWT access token for a resource in Domain A from
its Authorization Server (AS) in Domain B. The user selects their Community AAl in Domain
C, which subsequently authenticates the user through their Authenticating Identity Provider

17

AARC

(AuthN IdP) in Domain D. After successful authentication, a JWT access token is issued and
returned to the client. The client then presents this Domain B token to the Resource Server
(RS) in Domain A. The RS submits an introspection request to its AS in Domain A, which in
turn uses offline validation to serve the request. The diagram illustrates the message flow
and trust relationships among the participants in this cross-domain token validation scenario.

OAuth Client

RS
(Domain B) (Domain A)

AS Proxy
Infra Proxy
(Domain A)

Community AAI
(Domain C)

AuthN IdP
(Domain D)

Cross-domain trust relationship

(bidirectional)

Cross-domain trust relationship

(bidirectional)

Cross-domain trust relationship

Requests JWT

access token (resource=A)

Returns JWT
access token (aud=A)

Authenticates

User selects
Authenticating IdP

Authenticates

AuthN Response

AuthN Response

Presents JWT
access token

Protected resource

OAuth Client

RS
(Domain B) (Domain A)

Introspects JWT
access token

—

AS Proxy
Infra Proxy
(Domain A)

Community AAT
(Domain C)

AuthN IdP
(Domain D)

Workflow A2.2: Token introspection (RFC7662) invoked by RS (Domain A), with offline

token validation performed by AS (Domain A)

Prerequisites:

1. Community AAl in Domain C trusts the user’s Authenticating Identity Provider (AuthN

IdP) (bidirectional trust relationship)
2. AS in Domain B trusts the Community AAl in Domain C (bidirectional trust

relationship)

3. AS Proxy in Domain A trusts the AS in Domain B
4. AS Proxy in Domain A can interpret the contents of tokens originating from Domain B
5. Tokens originating from Domain B contain the authorisation claims

A.3 Summary

The table below provides an overview of the different token validation approaches: offline
token validation, token introspection with proxied introspection, and token introspection with
offline validation. These approaches differ in terms of trust scalability, support for token

18

AARC

revocation, callout requirements, and necessary modifications to OAuth client and AS

libraries.
Approach Advantages Disadvantages
Does not require callout to Trust scalability: Each RS
. token issuer needs to trust all token
Offline token : . .
N Works with standard client issuers
validation

performed by
RS (see A.1.1)

and AS libraries

Tokens MUST contain the
authorisation claims
Does not support token
revocation

Token
introspection
(RFC7662)
invoked by
RS, with
proxied token
introspection
performed by
AS (see A.2.1)

Trust scalability: Only the
AS Proxy needs to trust
tokens issuers

Supports token revocation

Requires callout from RS to
AS Proxy and from AS
Proxy to token issuer
Requires modifications to
AS libraries

Token
introspection
(RFC7662)
invoked by
RS, with offline
token
validation
performed by
AS (see A2.2)

Trust scalability: Only the
AS Proxy needs to trust
tokens issuers

Requires callout from RS to
AS Proxy

Tokens MUST contain the
authorisation claims

Does not support token
revocation

Requires modifications to
AS libraries

19

