
1 

 

Multi-Objective Mathematical Optimization  

in Assisted Production Planning 

 

 

Louis Schäfer (louis.schaefer@kit.edu) 

wbk Institute of Production Science 

Karlsruhe Institute of Technology KIT, Germany 

 

Stefan Tse 

wbk Institute of Production Science 

Karlsruhe Institute of Technology KIT, Germany 

 

Marvin Carl May 

wbk Institute of Production Science 

Karlsruhe Institute of Technology KIT, Germany 

 

Gisela Lanza 

wbk Institute of Production Science 

Karlsruhe Institute of Technology KIT, Germany 

 

 

Abstract 
In today's fast-paced technological landscape, products are constantly evolving, and mass 

customization is providing customers with personalized goods. However, despite these 

advancements, production planning processes in manufacturing companies are still 

predominantly manual and time-consuming. The need for increased efficiency in planning 

becomes crucial as the frequency of production planning activities rises due to shorter time-

to-market and higher product variance. Addressing the complex challenge of line balancing, 

the article highlights the limitations of manual planning in Excel and advocates for the 

application of Operations Research (OR) methods through a novel research approach. The 

proposed methodology aims to use multi-objective mathematical optimization to 

systematically find solutions for Assembly Line Design (ALD), providing a more efficient 

alternative to traditional manual planning with the ability to quantitatively compare various 

optimization criteria. This work thus provides an essential basis for the optimization of a 

complex closed-loop factory, as planning in remanufacturing considers uncertainties with 

constant reconfiguration. 

 

Keywords: Assisted Production Planning, Operational Excellence, Mathematical 

Optimization, Circular Factory, Remanufacturing 

 

Introduction & Purpose 

In an era dominated by rapid technological advancements, developed products are 

improving and mass customization offers customer individual goods. On the other hand, 

technological developments in production planning remain slow. In most manufacturing 

companies, labor-intensive and time-consuming manual planning processes are still prevalent 

today. With a shorter time-to-market and higher product variance, the frequency of production 

planning activities increases which calls for more efficiency in planning processes. One 

crucial part of production system planning is line balancing, which addresses the problem of 

assigning process steps (i.e. tasks) to machines (i.e. stations) while optimizing one or multiple 
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target values such as costs, quality, flexibility or else. Here, manual planning in Excel reaches 

its limits and the potential to solve the problem explicitly by means of mathematical 

optimization using Operations Research (OR) methods becomes apparent.  

Therefore, this article proposes a novel research approach to develop, initialize, implement 

and apply an OR model to solve the Assembly Line Design (ALD) in order to assist humans in 

production system planning. The purpose of this research is to use multi-objective 

mathematical optimization to systematically identify an optimal solution instead of time-

consuming, manual line balancing, which ultimately does not allow any quantitative 

comparison of alternative solutions with regards to multiple optimization criteria. The 

developed research methodology is applied to a real-world example from the industry and the 

research design is described in the following section.  

 

Methodological Approach 

The chosen methodological approach (Fig. 1) provides for a combination of analysis, 

description and prescription and is based on the phases of the Design Research Methodology 

(DRM) according to BLESSING AND CHAKRABARTI (2009). After analyzing the relevant fields 

of research in a literature study and deriving the research questions (I), the problem is defined 

(II) in order to develop concepts and to implement (III) and evaluate (IV) them. How the 

methodology was adapted and applied is described below. 

 

 
 Figure 1 – Methodology 

 

I. Fields of Action 

Firstly, on the basis of a comprehensive literature analysis, the object of research and the 

current state of the art in resource allocation problems were identified. 

Resource allocation is an essential part of production system planning. Methods of OR can 

assist planners in finding an optimal resource allocation and consider explicitly additional 

aspects (e.g. flexibility, energy) beyond the conventional approach. Due to their complexity, 

resource allocation problems are classified as NP-hard by ÁLVAREZ-MIRANDA & PEREIRA 

(2019), and as such, a solution can not be generated in polynomial time. Therefore, various 

solution algorithms exist, which can be categorized into optimal algorithms and heuristics. 

The following provides an explanation of Job Shop Scheduling (JSS), Assembly Line 

Balancing (ALB) and ALD, along with an overview of the current literature. 

VAN LAARHOVEN ET AL (1992) describes JSS as the allocation of processes to several 

machines from jobs with different process sequences. ALKHATEEB ET AL (2022) present an 

algorithm that combines the optimization operators of Cuckoo Search algorithm (CS) and the 

Simulated Annealing Algorithm (SAA) to solve JSS. Based on the original version of CS 

according to YANG & DEB (2009), this algorithm relies on the parasitic reproductive 

behaviour of cuckoo birds, where they lay their eggs in other bird´s nests. The original SAA 

by KIRKPATRICK ET AL (1983) models the cooling process of metals, where a balance between 

heating and cooling the metal is established to shape the metal into the desired shape. Another 
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approach is the enhanced equilibrium optimizer algorithm by SUN ET AL (2023), which 

improves the Equilibrium Optimizer algorithm (EO) of FARAMARZI ET AL (2020) with three 

additional communication strategies between particles. According to FARAMARZI ET AL 

(2020), EO is inspired by the principle of thermodynamics and pursues a state of equilibrium 

seen in physical systems. One solution algorithm for a multi-objective optimization problem 

is the hybrid adaptive differential evolution algorithm by WANG ET AL (2022), which 

randomly creates a population and improves it using a reverse learning strategy. 

Subsequently, mutations and crossovers are applied to create new individuals, followed by a 

selection process until the termination condition is satisfied.  

The first investigations of assembly systems take place in the 1980s by GHOSH & GAGNON 

(1989). Generally, ALB und ALD primarily concentrate on the allocation of tasks to 

production stations in assembly lines (see MICHALOS ET AL 2015). As an extension of ALB, 

the ALD considers additional aspects of planning and layout from assembly lines. Typical 

assumptions for ALB are characterized by BOYSEN ET AL. (2007) and CHUTIMA (2022). For 

example, while the tasks in BOYSEN ET AL. (2007) only can be conducted in a specific way 

and the allocation of these tasks is only limited by the precedence matrix, every station has the 

same equipment and there are no parallel elements in assembly line. Regarding to Robotic 

Assembly Line Balancing, a specific form of ALB with focus of Robots in assembly line, 

CHUTIMA (2022) defines assumptions that each station has only one robot, unproductive times 

for e.g. positioning as well as time spent on loading, deloading and transporting parts and the 

costs of robots are negligible. This approach does not make all of these simplifying 

assumptions, but aims to model the real problem more realistically. Here, to date, no known 

approach deals with the non-discrete assignment of tasks to stations. With regards to the 

criteria of the objective function, most approaches optimize either the number of stations (e.g. 

DIDDEN ET AL (2023), LI ET AL (2023)) or the resulting production costs (e.g. FURUGI (2022), 

GUO ET AL (2022)). A dominat area of current research addresses the solving of multi-

objective optimization problems (e.g. DIDDEN ET AL (2023), KANG & LEE (2023), CHEN ET AL 

(2023)). A frequently used solution approach for solving these optimization problems is the 

genetic algorithm. On the whole, the genetic algorithm comprises the following steps 

according to SRINIVAS & PATNAIK (1994): initialization and evaluation of an initial 

population, selection of a new generation, adding new solutions to the new generation by 

creation solutions through crossover and mutations, evaluation of the new generation, and 

repetition until the termination condition is met. Taking a closer look reveals individual 

differences. The algorithm of DIDDEN ET AL (2023) contains decoding at the end of the 

algorithm, which is responsible for the assignment of jobs and converts the created individual 

into an assembly line. KANG AND LEE (2023) applies the weighting method to transform 

multiple objective functions into one large objective function by generating weight with fuzzy 

analytic hierarchy process and extent analysis method, assigning a weight to each objective 

function and combining all objective functions into one objective function. Another 

adaptation of the genetic algorithm is the use of various initial methods to generate the initial 

population in LI ET AL (2023). CHEN AND JIA (2022) characterizes the genetic algorithm by 

randomly selecting change operator and an optional repair strategy. One algorithm for solving 

a combined problem of ALB and part feeding is the Nested Bi-Level Multi-Objective Genetic 

Algorithm (NSGA) in CHEN ET AL (2023), that integrates two genetic algorithms on different 

levels to optimize the ALB on the upper level and serves as the starting point for the part 

feeding on the lower level. Next, GUO ET AL (2022) integrates the variable neighborhood 

search method with NSGA-II to ensure the diversity of population. Moreover, a combination 

of NSGA-II with reinforcement learning is possible in ZHANG ET AL (2023), incorporation a 

Q-learning based strategy for selecting the best operator in each iteration. In addition of 

heuristic genetic algorithm, solving optimization problems with Bender´s decomposition 

method, proposed by BENDERS (1962), is an alternative that splits the original problem into a 
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master problem and a slave problem, facilitating the iterative process of finding an optimal 

solution. Solving the master problem first to get a preliminary assignment of the processes 

serves to limit and further decompose the sequencing problems on the individual production 

cells of the slave problems in FURUGI (2022). Another approach of implementation according 

to HUANG ET AL (2022) is to modify Benders cuts by developing a sequence-based 

enumerative search method to compute effective combinatorial Bender cuts. Moreover, the 

branch and bound method according to NICKEL ET AL (2023) is a further optimal algorithm 

and branches the original problem into some simpler-to-calculate subproblems. HAGEMANN 

(2022) uses branch and bound method to solve ALD. Similarly, the ϵ-constraint-algorithm 

according to ABDOUS ET AL (2022) divides the original multi-objective problem into several 

subproblems with one objective function and treats the remaining goals as constraints. 

Defining different bounds for certain target functions, so called ϵ-values, for each subproblem 

causes different trade-offs between the objectives. Typical use-cases are found in the 

automotive industry, such as the final assembly of cars in DIDDEN ET AL (2023) and KANG & 

LEE (2023), as well as the assembly of car bodies in HAGEMANN (2022) and in the aerospace 

industry, examples include the assembly of aircraft in MAS ET AL (2016) and the assembly of 

aircraft wheel in MURA & DINI (2022). 

To sum up, on the basis of a comprehensive literature analysis, the object of research and 

the current state of the art in ALD were identified. The resulting research gap raises the 

following three research questions, which will be answered in the subsequent phases of the 

DRM and are summarized below: 

II. How can the problem of assigning tasks to stations be modeled realistically in the 

context of production system planning? 

III. How can the mathematical model be set up and initialized and how can a solution 

algorithm be implemented? 

IV. How can the approach be evaluated through an application with a real example from 

industry? 

 

II. Modelling 

In order to obtain a detailed understanding of the problem at hand, expert interviews were 

conducted and the current state of the art in terms of production system planning with Excel at 

the application company was analyzed. The general problem can be categorized according to 

BOYSEN ET AL (2007) as the assignment of tasks to stations for a given cycle time with the aim 

of minimizing the number of stations. However, in order to cover several optimization goals 

as well as all manufacturing and assembly processes and thus a divisibility of the tasks (as is 

usual for e.g. joining), the complex problem was presented in SCHAEFER ET AL (2023b). 

Generally, the common assumptions articulated by BOYSEN ET AL. (2007) and CHUTIMA 

(2022) are applicable in this context, albeit with some notable distinctions. Unlike traditional 

approaches, our model incorporates crucial factors such as loading and unloading durations 

for parts, alongside accounting for unproductive periods like positioning. Furthermore, we 

integrate the expenses linked to the utilization of robots into our modeling framework. 

Notably, our model offers a novel perspective by introducing the concept of task divisibility. 

To highlight only some aspekts of the model, the following provides a brief overview by first 

introducing relevant (decision) variables and parameters that will be utilized. 

 
Table 1 – Model variables and parameters 

(decision) variables: Parameters 
𝑎𝑛𝑧𝑅,𝑗: number of handling robots on station j 

𝑐𝐼,𝑗 : other variable costs 

𝑐𝑗: variable costs 

𝑐𝑀,𝑗: labour costs 

𝐴𝐵𝑅: area of a processing robot 

𝐴𝑔𝑒𝑠: available area 

𝐴𝑀: area of a worker 

𝐴𝑂𝐶/𝐴𝑇𝐶: area of an orbit cell / a turntable cell 

𝐶𝐻𝑅/𝐶𝑅: fixed costs of a handling/processing robots 
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𝑐𝑆,𝑗: electricity costs 

𝑑𝑗: allocate turntable to station j 

𝑓𝑗: fixed costs 

𝑛𝑅,𝑗: number of processing robots on station j 

𝑡𝑏,𝑗: processing time of station j 

𝑡ℎ,𝑗: handling time of station j 

𝑡𝑧,𝑗: cycle time of station j 

𝑥𝑖𝑗: allocate parts of process i to station j 

𝑦𝑗𝑘: allocate station type k to station j 

𝐶𝑜𝑐/𝐶𝑇𝐶: fixed costs of an orbit cell / a turntable cell 

𝐹𝑖𝑘: process task i with station type k 

𝐹𝑄: factor 

I: set of tasks 

J: set of stations 

𝑀(𝑛, 𝑚): precedence graph  

𝑁: demand of product 

𝑂: OEE 

𝑃𝑖𝑢: task i needs part u 

𝑄𝑢: parts u with high dimensional accuracy 

𝑇𝐷: turning time of turntable 

U: set of parts 

𝑋𝑚𝑖𝑛,𝑘: minimum processing of tasks of type K 

 

One of the two objective functions (1) minimizes the costs and comprises (2) fixed costs, 

(3) variable costs and a penalty term for quality. Each station item (robots, worktable) causes 

fixed costs, while variable costs reflect the labour pay, electricity costs and other variable 

costs, such as maintenance, influenced by (4) the cycle time of each station. The other 

objective function (5) focuses on flexibility by minimizing the utilized area of all items 

(worktable, robots, workers) from the stations.  

 

𝑚𝑖𝑛 ∑ 𝑓𝑗

𝑗∈𝐽

+ ∑ 𝑐𝑗

𝑗∈𝐽

+ ∑ ∑ ∑(

𝑢∈𝑈

(|𝐽| − 𝑗)2 ∗ (𝑥𝑖𝑗 ∗ 𝑃𝑖𝑢 ∗ 𝑄𝑢)

𝑗∈𝐽𝑖∈𝐼

) ∗ 𝐹𝑄 (1) 

𝑓𝑗 = 𝑎𝑛𝑧𝑅,𝑗 ∗ 𝐶𝐻𝑅  +  𝑛𝑅,𝑗 ∗ 𝐶𝑅 +  𝑑𝑗 ∗ 𝐶𝑇𝐶 + (1 − 𝑑𝑗) ∗ 𝐶𝑜𝑐 (2) 

𝑐𝑗 = (𝑐𝑀,𝑗 + 𝑐𝑆,𝑗 + 𝑐𝐼,𝑗 ) ∗ 𝑁 ∗
1

𝑂
(𝑖𝑛 €) (3) 

𝑡𝑧,𝑗 =  𝑑𝑗 ∗ (𝑚𝑎𝑥(𝑡𝑏,𝑗, 𝑡ℎ,𝑗) + 𝑇𝐷) + (1 − 𝑑𝑗) ∗ (𝑡𝑏,𝑗 + 𝑡ℎ,𝑗) ∀𝑗 ∈ 𝐽 (4) 

𝑚𝑖𝑛 ∑ 𝑑𝑗 ∗ 𝐴𝑇𝐶 + (1 − 𝑑𝑗) ∗ 𝐴𝑂𝐶 + (𝑛𝑅,𝑗 − 1) ∗ 𝐴𝐵𝑅 + 𝑎𝑛𝑧𝐻𝑅,𝑗 ∗ 𝐴𝐻𝑅 + 𝑎𝑛𝑧𝑀,𝑗 ∗ 𝐴𝑀

𝑗∈𝐽

 (5) 

 

In addition to the multi-criterial objective function, the constraints include. (6) allocation 

only one type for each station, (7) completing the processing of tasks over all stations, (8) 

considering the capabilities of stations for processing tasks, (9) adhering to a precedence 

graph, (10) complying with a minimum processing share for a process assignment depending 

on process type and (11) ensuring that the available space is not exceeded with allocated items 

over all stations. 

 

∑ 𝑦𝑗𝑘 ≤ 1 ∀𝑗 ∈ 𝐽

𝑘∈𝐾

 (6) 

∑ 𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐼

𝑗∈𝐽

 (7) 

(1 − 𝑦𝑗𝑘) ∗ 𝑥𝑖𝑗 + 𝐹𝑖𝑘 ∗ (𝑦𝑗𝑘)𝑇 ≥  𝑥𝑖𝑗  ∀𝑗 ∈ 𝐽 ∀𝑖 ∈ 𝐼 ∀𝑘 ∈ 𝐾 (8) 

0 = ∑ 𝑥𝑚𝑗 ∗ (1 − ∑ 𝑥𝑛𝑗) ∗ 𝑀(𝑛, 𝑚) ∀𝑖 = 𝑛, 𝑚 ∈ 𝐼 ∀𝑟 ∈ 𝐽

𝑟

𝑗=0

𝑟

𝑗=0

 
(9) 

𝑥𝑖𝑗 ≥ 𝑦𝑗𝑘 ∗ 𝑋𝑚𝑖𝑛,𝑘 ∗ ⌈𝑥𝑖𝑗⌉ ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾 (10) 

∑ 𝑑𝑗 ∗ 𝐴𝑇𝐶 + (1 − 𝑑𝑗) ∗ 𝐴𝑂𝐶 + 𝑛𝑅,𝑗 ∗ 𝐴𝐵𝑅 + 𝑎𝑛𝑧𝐻𝑅,𝑗 ∗ 𝐴𝐻𝑅 + 𝑎𝑛𝑧𝑀,𝑗 ∗ 𝐴𝑀 ≤ 𝐴𝑔𝑒𝑠

𝑗∈𝐽

 (11) 

 

III. Implementation 

This paper considers the heuristic solution of a simplified problem as a preliminary study: 

For this, an example from industry was used to demonstrate the applicability of the approach. 



6 

 

The manufacturing company at hand is a Tier-1 automotive supplier that has to plan various 

customer variant-specific production lines in a short space of time under high cost pressure in 

order to manufacture and assemble components for many years at a high production volume. 

The product under consideration is a so-called rear twist beam, i.e. a rear axle that is welded 

together from several sheet metal parts. An initial cost estimate for the customer is currently 

being carried out manually in Excel. The planning process and the product are introduced in 

more detail by SCHAEFER ET AL (2022) respectively (2023a). The initialization of the OR-

model and the solution space using the product and production system specifications is 

summarized in the following section. 

The numerical initalization of a product containing 17 parts, 27 tasks, a given precedence 

graph, handling times, costs, weights etc. shows which information is coded and how. The 

time required to handle small and light parts is less for humans than for robots, while handling 

larger and heavier parts takes longer. In contrast, the situation is exactly the opposite with 

handling robots. Depending of the task type, a different level of minimum processing is set to 

avoid an unrealistic fragmentation of tasks. If a task is divided on two or more stations, then 

the processing time of the task increases by a value each time it is split up, as additional effort 

arises, for example due to an overlap of weld seams. Each station is a combination of 

handling robots, processing robots, workers, turntable and worktable according to a system 

construction kit. These items cause fix costs because of its purchase and installation and 

variable costs include electricity, worker´s pay, maintenance of robots and further factors. 

Therefore, they determine the first objective function, that minimizes the total costs of all 

stations. In context of the multi-objective optimization problem, they also affect the area and 

thus the second objective function, which minimizes the claimed area of all stations.  

The NSGA-II algorithm is implemented using the Python library Distributed Evolutionary 

Algorithms in Python (DEAP) according to FORTIN ET AL (2012). Additional functions such as 

mutations (influencing decision variables such as number of stations, process allocation, 

handling options etc.) and repair mechanisms (ensuring constraints such as time, space, 

human ability etc.) have been added to the initial algorithm (grant permissible solutions, 

ensure constraints) according to Algorithm 1.  

 

 
Algorithm 1 – Initial algorithm 

 

The program flow is as follows: It starts by randomly generating an initial population using 

algorithm I and then evaluating the generated individuals using the objective functions. In 

each subsequent generation, the population is first modified using ten different mutations. 

When a modified individual violates a constraint, a repair mechnism corrects it. This is 

followed by an assessment of the individuals in the modified population. The original 

population and the modified population are combined to form a new population. Selection 

operators of NSGA-II, which implements DEAP, select the individuals of the new generation, 

which forms the basis for the next generation. 
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IV. Findings 

After generating different solutions with the initial algorithm for the first generation, the 

best solution of each generation is improved (by mutation/repair) until convergence, as seen 

in Fig. 2-l. Refer to Fig. 2-r for the Pareto front, the solutions of which are described below. 

 

 
Figure 2 – Results of genetic algorithm 

 

Fig. 3-a shows the characteristics of the best permissible solution according to the first 

objective function (minimizing cost) in the first generation, that is generated by the initial 

algorithm. It illustrates task allocation to the stations and their resulting handling times. 

However, there are options to minimize costs and achieve a better result, for example, by 

reducing the number of stations and using stations more efficiently. As a result of the 

algorithm, Fig. 3-b depicts the best solution according to the first objective function in the last 

generation (solution I in Fig. 2-r), where the costs of stations have been reduced.  

Of the 8.22 million euros of the first objective function value in solution I, 1.64 million 

euros is attributable to fixed costs and 6.58 million euros to variable costs. Stations 1, 2, 4, 5 

and 6 are responsible for welding processes. The third station carries out laser cutting 

processes, while the last station is responsible for quality testing. One station uses two 

processing robots to halve the processing time because the variable costs decrease more than 

the fixed costs of an additional processing robot. As the number of processes and the 

processing time of a station increase, the likelihood of the algorithm assigning two processing 

robots to that station also increases. It should be noted that stations 1 and 3 each have only 

one processing robot. Even though turntables parallelize processing and handling actions to 

reduce the cycle time of a station and therefore the variable costs, no stations have a turntable 

because of the huge fixed costs of a turntable and the additional costs for use and maintenance 

are higher than the reduction of variable costs. In general, splitting a task leads to a longer 

processing time due to the additional effort and thus to higher variable costs, which is why 

this solution does not include split processes. Due to the weight of the individual parts, which 

already exceeds the maximum carrying weight of a person at the first station, it is not possible 

in the production system for a person to unload and transfer them to the next station. Loading 

the stations with individual parts by humans is theoretically possible, but due to the high 

variable labour costs, the algorithm decides that robots should load all stations. 

The same observation can be made for the best solution according to the second objective 

function i.e. minimizing area (solution IV in Fig. 2-r). Of the 64 square metres of the second 

objective function value in solution IV, 49 square metres is attributable to stations, three 

square metres to three additional processing robots and 12 square metres to six handling 

robots. Welding processes takes place in stations 1, 2, 4 and 5, while the third station is 

dedicated to laser cutting processes. The final station is responsible for conducting quality 

testing. As seen in Table 1, the number of stations is even fewer than with the solution of Fig. 

3-b because one task is divided and allocated to two stations, and the utilization of the other 

stations is higher because of an efficient allocation of the tasks. The turntable at the fourth 

station enhances processing efficiency within a customer cycle by parallelizing processing 
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and handling and helps to reduce the number of stations with rising costs. Although the 

algorithm can assign additional handling robots to a station in order to reduce the handling 

time and create capacities for further processes, the algorithm, similar to solution I, does not 

avoid the assignment to further handling robots at any station due to increasing costs and 

space requirements.  

 

  

 
Figure 3 – Assignment of tasks to stations 

 

All findings of each solution from Fig. 2-r are summarized in Table 2. Additionally, it 

includes the degree of objective achievement of the two other solutions (II & III) from Fig. 2-

r, which represent trade-offs between the objective functions. 

 
Table 2 – Summary of solutions 
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Even though the NSGA-II algorithm addresses the issue of the local optima with crowding 

distance, the repeatability of the solution is limited. A sensitivity analysis with the number of 

population and the number of generations shows that the algorithm achieves better solutions 

with an increasing number for one of these parameters, up to a certain point, as illustrated in 

figure 4. Even at the beginning, with low values for both hyperparameters, the algorithm 

achieves significant improvements with small increases. If the values for both 

hyperparameters are high, further improvement through increasing values cannot be achieved. 

A direct comparison of both hyperparameters shows that the number of generations improves 

the results of the algorithm more than the population size. This can be seen in figure 4, where 

the right side has a rapidly falling curve when compared to the higher values of the left side.  

 

 
Figure 4 – Sensitivity analysis of population size and number of generations 

 

Relevance & Contribution to Research and Practice 

The findings show the application of an OR model to a real-world example and indicate 

the benefits of assisted planning and comparability between different scenarios compared to 

manual planning with Excel. In age of Industry 4.0, the giving method can contribute to 

digitalize the planning process and accelerate the efficient allocation of ressources in 

assembly line planning. Explicitly considering various objectives in a more complex world 

offers additional benefits. The purpose of our approach is to support the production system 

planning by producing rough structures of the final design. Although the mathematic model 

underlies some assumptions and the algorithmus has some limitations, the model presented 

offers a more realistic representation of the problem by incorporating widely accepted 

assumptions. Looking at current research, modeling divisible tasks represents a novel aspect 

of the assembly line design problem. As seen in the findings, the divisibility of tasks is a 

useful extension of modeling. Finally, the work is a central basis for planning a circular 

factory. The assistance system and the use of genetic algorithms are advantageous here, as the 

optimization of the system is based on domain knowledge and constant reconfiguration. 
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