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A B S T R A C T

The objective of this work is to develop and investigate interpolation methods for fourth-order
fiber orientation tensors. The developed methods aim to minimize information loss during
mapping in the virtual manufacturing process for fiber-reinforced composites. The strategy
of decomposing features that describe tensor shape and orientation, followed by separate
interpolation, has been found to be a suitable approach for interpolating second-order fiber
orientation tensors. Thus, in this work, decomposition-based approaches are also applied to
fourth-order fiber orientation tensors. The decomposition of orthotropic fourth-order tensors
into shape- and orientation-describing features with respect to three-dimensional space is
presented. Various proposals for shape interpolation are described and evaluated. The developed
interpolation methods are then applied to the numerical solution of a continuous problem
from fluid mechanics. The continuous solution is used to generate data for the associated
discrete problem and to evaluate the interpolation results of the different methods. The
evaluation results demonstrate that the proposed interpolation methods are clearly superior to
the conventional interpolation methods. Separating shape- and orientation-describing features
with respect to three-dimensional space also proves to be useful for fourth-order tensors. The
developed methods can significantly reduce the loss of information during mapping in virtual
manufacturing process chains.

1. Notation

Arbitrary sized numerical arrays, such as components in a specific coordinate system, are denoted by indices (e.g., 𝑎𝑖, 𝐴𝑖𝑗 , 𝐴𝑖𝑗𝑘𝑙)
where the range of index values corresponds to their dimensionality. Spatial components in the three-dimensional space are
denoted by Latin lower case letters 𝑖, 𝑗,… ∈ {1; 2; 3}. Iterators in a set of discrete values are denoted by upper case Latin letters,
e.g. 𝐼, 𝐽 ,… ∈ {1; 2; 3; ...}. Unless otherwise indicated, Einstein’s convention for summation holds. This means that indices appearing
twice in a single expression imply summation. The transition from symbolic to index notation is represented by the operator =̂ under
the assumption of orthogonal basis vectors.

Symbolic tensor notation is preferred throughout this work. Scalars are denoted by standard Latin and Greek letters, e.g. 𝑎, 𝜆, 𝐹 .
First-order tensors are represented by bold lower case letters, e.g. 𝒑, 𝜸, whereas upper case Greek or Latin letters are used for
second-order tensors such as 𝑨,𝜦. Fourth-order tensors are denoted by C, S. Tensors of higher-order than four are denoted using
superscript indices, e.g. C⟨𝑛⟩, where 𝑛 represents the order of the tensor. The composition of two equal-order tensors is denoted
without special operator symbols, e.g. 𝑨𝑩 =̂ 𝐴𝑖𝑘𝐵𝑘𝑗 ,AB =̂ 𝐴𝑖𝑗𝑚𝑛𝐵𝑚𝑛𝑘𝑙. The composition of two tensors of different order is
denoted by a circle, e.g. 𝑨◦B =̂ 𝐴𝑖𝑚𝐵𝑚𝑗𝑘𝑙 ,A◦𝑩 =̂ 𝐴𝑖𝑗𝑘𝑚𝐵𝑚𝑙. All contractions of higher-order tensors by a lower-order tensor,
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Fig. 1. Mapping of simulation data from source mesh to target mesh. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

e.g. C[𝑬] =̂ 𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙 ,A⟨5⟩[𝒗] =̂ 𝐴𝑖𝑗𝑘𝑙𝑚𝑣𝑚, are denoted by square brackets. The linear mapping of a first-order tensor by a corresponding
second-order tensor, e.g. 𝑨𝒆 =̂ 𝐴𝑖𝑗𝑒𝑗 , is denoted without using brackets. Scalar products between two tensors of the same order are
marked by a dot, e.g. 𝒂 ⋅ 𝒃,𝑨 ⋅ 𝑩,A ⋅ B. The dyadic outer product yields tensors of order 𝑚 + 𝑛 from the multiplication of an 𝑚- by
an 𝑛-order tensor, e.g. 𝒂⊗ 𝑨 =̂ 𝑎𝑖𝐴𝑗𝑘. The product C = 𝑨□𝑩 is defined 𝑨□𝑩 [𝑪] = 𝑨𝑪𝑩 and reads C = (𝑨□𝑩) =̂ 𝐶𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵𝑙𝑗 .
Referring to an orthonormal basis system, the transposition of a second-order tensor reads 𝑨𝖳 =̂ 𝐴𝖳

𝑖𝑗 = 𝐴𝑗𝑖. For fourth-order tensors
the major transposition is defined A𝖳𝖧 =̂ 𝐴𝖳𝖧

𝑖𝑗𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 . Analogously, the minor transpositions are defined A𝖳𝖱 =̂ 𝐴𝖳𝖱
𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘 and

A𝖳𝖫 =̂ 𝐴𝖳𝖫
𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙. The Frobenius Norm

√

𝑨 ⋅𝑨 or
√

A ⋅ A is abbreviated through ‖𝑨‖ and ‖A‖. The trace of a tensor of arbitrary
order is defined as the projection of the tensor on its according unit tensor (tr(𝑨) = 𝑨 ⋅𝑰 and tr(A) = A ⋅ I). The identity of symmetric
second-order tensors is referred to as IS. The rotation of second- or fourth-order tensors is denoted using the Rayleigh Product 𝑹⋆𝑨
and 𝑹 ⋆A, where the second-order tensor 𝑹 is an element of the orthogonal group 𝑂𝑟𝑡ℎ⟨3⟩. Components of second- or fourth-order
tensors that are displayed in Mandel notation [1] are denoted using a hat and Greek letters as indices, e.g. 𝐴̂𝜉 , 𝐶̂𝜉𝜂 . For Mandel
notation, Einstein’s convention for summation is applied for all indices appearing twice with 𝜉, 𝜂,… ∈ {1;… ; 6}. All conventions
concerning the Mandel notation refer to Bauer and Böhlke [2].

Throughout this work various sets of tensors are utilized. All considered first-order tensors are part of the three-dimensional
vector space  . The set of all symmetric second-order tensors is called 𝑆𝑦𝑚. If a second-order tensors 𝑹 satisfies the condition
𝑹𝑹𝖳 = 𝑰 , it is called orthogonal and is an element of the orthogonal group 𝑂𝑟𝑡ℎ⟨3⟩. A fourth-order tensor that possesses both the
major symmetry (A = A𝖳𝖧 ) and minor symmetries (A = A𝖳𝖱 = A𝖳𝖫 ) is called Hooke’s tensor. The set of all Hooke’s tensors is referred
to as . The set of all fourth-order tensors that provide full index symmetry (𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑗𝑘𝑖𝑙 = 𝐴𝑗𝑘𝑙𝑖 = … ) is referred to as
𝑆𝑦𝑚⟨4⟩. Fourth-order tensor R that satisfy the condition RR𝖳𝖧 = IS are called orthotropic.

2. Introduction

2.1. Motivation

This work addresses a methodological problem that is relevant, but not limited to, the holistic modeling of discontinuous fiber
reinforced polymers (DiCoFRP). Numerous contributions have documented the crucial influence of process-induced fiber orientation
on mechanical properties [3–5]. To this end, component design is usually accompanied by a CAE-chain interlinking process
simulation and structural simulation. Deviating numerical challenges and requirements necessitate different spatial discretizations
in the individual simulation modules (cf. Fig. 1 left). Especially if the results are transferred from a coarser source mesh onto a
higher-resolution target mesh, as indicated by blue respectively green colors in Fig. 1, interpolation schemes have to be applied
to sustain smoothness. In nearly all available macroscopic process simulation approaches, the spatio-temporal evolution of fiber
orientations is modeled via direction-dependent second-order fiber orientation tensors following the fundamental work of Advani
and Tucker [6] and Kanatani [7]. In contrast to scalar fields, their interpolation harbors additional challenges. Treating tensor
components as independent scalar fields leads to systematic overestimation of isotropy and more sophisticated decomposition-based
schemes are favorable [8–10].

Within the interface between process simulation and structural simulation, the fiber orientation tensors are used to determine
effective macroscopic properties via an orientation average. For elastic properties, the knowledge of the second-order fiber
orientation tensor field is not sufficient [5]. Instead, a fourth-order fiber orientation tensor field has to be estimated algebraically by
means of a closure operation. Taking only the second-order fiber orientation tensor into account, most closure approaches preserve
the material symmetry of its argument. Therefore, the weakest material symmetry a closed fourth-order fiber orientation tensor
2
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can possess is orthotropy [2]. Closure approaches have been and continue to be subject of research, cf. [11] for a comprehensive
overview.

Recently, Kraußet al. [12] gave strong reasoning that the closure of averaged second-order fiber orientation tensor may yield
nvalid results and, instead, the closed fourth-order fiber orientation tensor should be averaged. The study in Kraußet al. [12] was
onducted under the assumption of a continuous, piecewise constant fiber orientation tensor field, i.e. for any spatial point the
pecific value of the fiber orientation tensor is known. Yet, in various numerical schemes the spatial domain is discretized and
n approximated solution is only available at specific coordinates with a finite resolution. If source and target locations mismatch,
nterpolation techniques become necessary. Ultimately, this leads to the questions, for which this work seeks to give answer to: How
hould fourth-order interpolation techniques be constructed to preserve meaningful physical quantities, and how do they perform in
ualitative and quantitative comparison with a naive interpolation of tensor components? All fourth-order fiber orientation tensors
cting as basic values in the interpolation are assumed to be result of a valid closure scheme. Therefore, this work is limited to
rthotropic fiber orientation tensors.

.2. Related work

.2.1. Interpolation of second-order tensors
The largest application area for tensor interpolation is medicine. Here, it is mainly used for diffusion-weighted magnetic

esonance imaging (DW-MRI). DW-MRI was first mentioned by Le Bihan et al. [13] and is a noninvasive diagnostic imaging technique
hat can map the diffusive motion of water molecules in the brain. The local diffusivity is thereby mapped by a diffusion tensor
DW [14]. By evaluating the diffusion movements, physicians can draw conclusions about diseases of the central nervous system

15–17]. Using DW-MRI, the diffusion tensor 𝑫DW is only evaluated at specific spatial points in the brain. However, the physician
equires high resolution information on the orientation and shape of 𝑫DW. Thus, the diffusion tensors must be interpolated between

these low resolution points to draw accurate diagnoses [8].
In the mechanical context, tensor interpolation has been considered less frequently. In context of CAE chains, it is needed to

transfer tensor-valued information from a source mesh to a target mesh [18,19]. To minimize information loss during transfer, Krauß
and Kärger [9] examined various interpolation techniques for symmetric second-order tensors. In industry, commercial software is
commonly used for these tasks. Examples include Converse from PART Engineering GmbH, MpCCI MAPPER from Fraunhofer SCAI,
nd Digimat-MAP from MSC Software GmbH.

In the current paper the considered second-order tensors are second-order fiber orientation tensors 𝑨. They were first introduced
y Kanatani [7] and are a statistical measure to describe the orientation distribution of fibers at a central moment. Second-order
iber orientation tensors 𝑨 are the second moment of the orientation distribution function 𝛹 (𝒑)

𝑨 = ∫2
𝛹 (𝒑) 𝒑⊗ 𝒑 d𝐴, 2 ∶= {𝒑 ∈  ∶ ‖𝒑‖ = 1}. (1)

ere, 𝒑 is a unit vector that characterizes the orientation of a specific fiber. Since 𝛹 (𝒑) is a probability density function, it is
ormalized over all possible orientation states. Thus, the trace of the second-order fiber orientation tensor is normalized tr(𝑨) = 1.
lso, 𝛹 (𝒑) is always non-negative. This means that all eigenvalues of 𝑨 must be non-negative; respectively, 𝑨 is positive-semidefinite,
o the condition 𝒙 ⋅𝑨𝒙 ≥ 0 holds for all 𝒙 ≠ 𝒐. Note that the unit vectors 𝒑 can be permutated arbitrarily in Eq. (1). Hence, 𝑨 must be
ymmetric. If 𝑁 fibers with known orientation 𝒑 are weighted equally by means of the distribution function 𝛹 (𝒑), the second-order
rientation tensor 𝑨 can be calculated empirically

𝑨 = 1
𝑁

𝑁
∑

𝑖=1
𝒑𝑖 ⊗ 𝒑𝑖. (2)

Interpolation methods for tensors are divided into global and decomposition-based interpolation techniques. The simplest global
interpolation technique is the Euclidean interpolation (EU). The result of the EU is the weighted arithmetic averaging of the
individual tensor components in the global coordinate system

𝐴̄EU
𝑖𝑗 =

𝑁
∑

𝐼=1
𝑤𝐼𝐴𝐼,𝑖𝑗 . (3)

Here, the tensor components 𝐴𝐼,𝑖𝑗 are considered as independent scalar fields of the 𝑁 tensors. The factors 𝑤𝐼 are the weights of the
supporting points. The interpolation is called Euclidean because 𝐴̄EU

𝑖𝑗 minimizes the Euclidean distance with respect to the Frobenius
norm [9]. An alternative global interpolation technique is the log-Euclidean interpolation, which was introduced by Arsigny et al.
[20]. Here, the averaged tensor is computed by

𝑨̄LOG = exp

( 𝑁
∑

𝐼=1
𝑤𝐼 ln

(

𝑨𝐼
)

)

. (4)

Log-Euclidean interpolation is a generalization of the geometric mean for scalars. This interpolation method is only valid for positive
definite second-order tensors [21].

In contrast to global interpolation techniques, decomposition-based interpolation techniques separate the tensor orientation
from the tensor shape. Afterwards, orientation-describing and shape-describing features are interpolated separately and finally
3

reassembled into the final interpolation result. The shape-describing features must be tensor invariants. This means that they
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are invariant with respect to all orthogonal transformations 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩. The best known example for tensor invariants are the
eigenvalues 𝜆⟨𝑨⟩

𝛼 , which result from the eigenvalue problem for second-order tensors (Section 3.1). Krauß and Kärger [9] showed
that the use of orthogonal invariants, introduced by Ennis and Kindlmann [22], are useful to average the shape-describing features.
In this context, the invariants 𝐼𝑖 were selected to fulfill the orthogonality condition [23]

𝜕𝐼𝑖
𝜕𝑨

⋅
𝜕𝐼𝑗
𝜕𝑨

= 0 ∀𝑖 ≠ 𝑗. (5)

fter the linear interpolation of the chosen invariants, the interpolated tensor invariants can be used to infer the eigenvalues 𝜆̄⟨𝑨⟩

𝛼
f the associated tensor. The calculation rules needed for this can be found in Gahm et al. [8] and Gahm et al. [24]. The averaged
hape is described by the diagonal tensor 𝜦̄. Shape averaging using the orthogonal invariants leads to a monotonic change of the
ensor shape between the grid points, which cannot be achieved with the global interpolation techniques [9].

For orientation averaging of second-order tensors, the orthogonal tensor 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ obtained from the spectral decomposition
Section 3.1) can be used. Here, 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ describes the orientation of the eigensystem of 𝑨 relative to the considered global
oordinate system. The orientation information contained in 𝑹 can be interpolated. To this end, Gahm and Ennis [25] suggest
wo options. The first one is orientation averaging using quaternions. Quaternions provide the possibility to distinctly describe
otations using a tuple of four real numbers. An iterative algorithm for averaging quaternions is described by Krauß and Kärger
9]. An alternative procedure for averaging tensor orientations is based on the eigenprojector representation of second-order
ensors [e.g. 26]. The projectors of the orthogonal tensors are arithmetically averaged at the supporting points. Using the polar
ecomposition [e.g. 27], the rotational part can be filtered. For extended information on orientation averaging using eigenprojectors,
ee Gahm and Ennis [25]. The averaged orientation is described by the rotation 𝑹̄ ∈ 𝑂𝑟𝑡ℎ⟨3⟩. Krauß and Kärger [9] reassemble the
veraged orientation 𝑹̄ and the averaged shape 𝜦̄ to the final interpolation result using

𝑨̄ = 𝑹̄𝜦̄𝑹̄𝖳. (6)

ote that Eq. (6) corresponds to the inverse spectral decomposition for second-order tensors. The main result of the investigations
y Krauß and Kärger [9] was that a separation of shape- and orientation-describing features is a suitable approach to interpolate
ensor-valued properties. Moreover, the averaging of orthogonal invariants provides a monotonic change of the tensor shape, which
annot be achieved using simple arithmetic averaging of tensor components (e.g. Eq. (3)).

The decomposition-based approach was used by Blarr et al. [10,28] to generate high resolution orientation tensor fields from
carce input data. The input data was determined from microscopic X-ray computed tomography scans. The main result was
hat the implemented methods provide good macroscopic interpolation results without using high amounts of resource-consuming
icro-computed tomography (𝜇CT) scans. However, it is assumed that the decomposition-based method provides poorer results for

xtrapolation tasks.

.2.2. Interpolation of fourth-order tensors
Evaluation of DW-MRI in complex brain structures often leads to inadequate results [14]. Complex brain structures include

iber bundles, fiber crossings, and branched fibers [29]. At these locations, more information on local diffusivity is needed than is
ontained in the second-order diffusion tensor 𝑫DW. Methods are needed to interpolate this additional information. In the field of
W-MRI, there is little knowledge on how to meaningfully interpolate fourth-order tensors. Currently, research is still focusing on

he description of complex diffusion states. The problem of describing complex diffusion states was first addressed by Tuch [30].
iffusion states are described using a fiber orientation distribution function, which describes the local orientation state of brain

ibers [31,32]. The method is called ‘‘high angular resolution diffusion tensor imaging’’ (HARDI) and is the topic of various recent
ublications [e.g. 33,34].

In context of HARDI, an 𝑛-th-degree tensor describes a homogeneous 𝑛th degree polynomial whose coefficients approximate the
iber orientation function 𝛹 (𝒑). Therefore, in context of HARDI, the probability density function 𝛹 (𝒑) should not be interpreted as a
ourier series (as by Advani and Tucker [6]). It rather corresponds to a truncated Taylor series, which depends on the coordinates
f the longitudinal fiber axis 𝒑.

Most publications on spatial tensor interpolation are limited to second-order tensors (Section 2.2.1). Interpolation methods
pplicable to higher-order tensors have been considered rarely. Two decomposition-based interpolation techniques, that use the
ucker decomposition and the canonical decomposition, are considered by Cardona et al. [35] and Vargas-Cardona et al. [36] in
he context of DW-MRI. The tensors from those decompositions are high-dimensional feature-tensors. Data from the decompositions
re used as training data for a Markov chain Monte Carlo procedure. The canonical decomposition corresponds to an eigenprojector
ecomposition for fourth-order tensors and is superior to the Tucker decomposition in terms of interpolation results. To evaluate the
esults, the two decomposition-based interpolation techniques were compared to the Euclidean averaging of the tensor components
see Eq. (3))

𝐴̄EU
𝑖𝑗𝑘𝑙 =

𝑁
∑

𝐼=1
𝑤𝐼𝐴𝐼,𝑖𝑗𝑘𝑙 . (7)

he Frobenius norm was used as the error metric. The main result of Cardona et al. [35] and Vargas-Cardona et al. [36] was that
oth decomposition-based interpolation techniques are superior to the linear interpolation of tensor coefficients (Eq. (7)). Bauer
t al. [37] recently investigated the interpolation of fourth-order fiber orientation tensors. They proposed an interpolation method
4

hat separates the information of the tensors’s shape and the orientation by means of a parametrization that is based on tensor
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components and a unique eigenvalue system. They also discussed a convention for defining a unique eigensystem in the absence of
material symmetries.

In this paper the considered fourth-order tensors are the fourth-order fiber orientation tensors A. Similarly to the second-order
fiber orientation tensors 𝑨 (Eq. (1)), they were first introduced by Kanatani [7]. They are a statistical measure to describe the
orientation distribution of fibers at a central moment. Fourth-order fiber orientation tensors A are the fourth moment of the
orientation distribution function 𝛹 (𝒑)

A = ∫2
𝛹 (𝒑) 𝒑⊗ 𝒑⊗ 𝒑⊗ 𝒑 d𝐴, 2 ∶= {𝒑 ∈  ∶ ‖𝒑‖ = 1}. (8)

The function 𝛹 (𝒑) is always non-negative. Thus, the tensor A is positive-semidefinite and the condition 𝑩 ⋅ A[𝑩] ≥ 0 holds for all
≠ 𝟎. Note that the unit vectors 𝒑 can be permutated arbitrarily in Eq. (8). Hence, A must be fully symmetric. If 𝑁 fibers with

known orientation 𝒑 are weighted equally by means of the distribution function 𝛹 (𝒑), the fourth-order orientation tensor A can be
calculated empirically

A = 1
𝑁

𝑁
∑

𝑖=1
𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖. (9)

igher-order fiber orientation tensors are linked with lower-order fiber orientation tensors by

A⟨2𝑛⟩ = A⟨2(𝑛+1)⟩[𝑰] ∀𝑛 ≥ 1. (10)

onsequently, all information of a lower-order orientation tensor can be derived from the higher-order orientation tensors which
escribe the same orientation state.

.3. Scope of this work

This paper focuses on interpolation techniques for fourth-order fully symmetric tensor fields, such as fiber orientation tensors.
he techniques presented were developed in context of virtual manufacturing workflows for composites, but they are not limited
o this domain. Note that the interpolation schemes presented are limited to orthogonal material symmetries. This is due to the fact
hat most fiber orientation tensors related to the virtual manufacturing process are at least orthotropic. Injection molding simulation
sually exclusively provides second-order fiber orientation tensors. Hence, the associated fourth-order fiber orientation tensors are
onstructed using closure approximations which only provide orthotropic material symmetry.

The aim of this work is to minimize systematical errors when transferring direction-dependent field data between deviating
iscretizations while also maintaining various mathematical and physical conditions. The developed interpolation schemes must
atisfy the following conditions:

• the full index symmetry is preserved;
• the trace conditions tr(𝑨) = 1 and tr(A) = 1 are preserved;
• the interpolation of two supporting points that only differ in orientation-describing features must preserve the tensor shape;
• the interpolation of two supporting points that share material symmetry must preserve the material symmetry.

This paper is structured as follows: Section 3 focuses on orthogonal decompositions for fourth-order tensors that are utilized
o develop decomposition-based interpolation techniques. The underlying mathematics and simplifications for fiber orientation
ensors are briefly described and applied. Section 4 focuses on the development of decomposition-based interpolation techniques for
rthotropic fourth-order fiber orientation tensors. For this, the extraction of orientation- and shape-describing features of orthotropic
ourth-order fiber orientation tensors is described. Afterwards, multiple interpolation schemes to interpolate the shape-describing
eatures are presented, while the interpolation schemes for orientation-describing features can be adopted from Krauß and Kärger
9]. In Section 5, a continuous solution for a theoretical example from fluid dynamics is derived. This continuous solution is used
o generate data for the associated discrete problem on which the developed interpolation techniques are applied. Finally, the
erformances of the interpolation techniques are compared using various error metrics.

. Orthogonal decompositions for fourth-order orientation tensors

.1. Spectral decomposition

For symmetric second-order tensors 𝑨 ∈ 𝑆𝑦𝑚 the spectral decomposition is a well-known orthogonal decomposition. The spectral
ecomposition for second-order tensors is based on the solution of the eigenvalue problem. The eigenvalue problem for symmetric
econd-order tensors 𝑨 reads (no summation over 𝛼 = 1, 2, 3)

𝑨𝒑𝛼 = 𝜆⟨𝑨⟩

𝛼 𝒑𝛼 ⇔
(

𝑨 − 𝜆⟨𝑨⟩

𝛼 𝑰
)

𝒑𝛼 = 𝒐, 𝒑𝛼 ∈  ∶ 𝒑𝛼 ≠ 𝒐. (11)

ere, 𝒐 denotes the zero vector. The vectors 𝒑𝛼 are called eigenvectors of 𝑨 [26]. The scalars 𝜆⟨𝑨⟩

𝛼 are called eigenvalues and are the
oots of the characteristic polynomial 𝑝(𝑨) = det(𝑨 − 𝜆⟨𝑨⟩

𝛼 𝑰). The eigenvalues 𝜆⟨𝑨⟩

𝛼 of symmetric second-order tensors are always real
umbers. If all eigenvalues 𝜆⟨𝑨⟩ are unique, the associated normalized eigenvectors 𝒑 are distinct and form an orthogonal basis.
5

𝛼 𝛼
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If 𝑨 is displayed in the basis system which is constructed by its eigenvectors 𝒑𝛼 , the eigenvalues 𝜆⟨𝑨⟩

𝛼 are on the diagonal of the
ssociated component matrix

𝑨 =

⎡

⎢

⎢

⎢

⎣

𝜆⟨𝑨⟩

1 0 0
0 𝜆⟨𝑨⟩

2 0
0 0 𝜆⟨𝑨⟩

3

⎤

⎥

⎥

⎥

⎦

𝒑𝑖 ⊗ 𝒑𝑗 . (12)

he representation in Eq. (12) is called spectral decomposition and can be denoted in an alternative way by

𝑨 = 𝑹𝜦𝑹𝖳. (13)

here 𝜦 is a diagonal second-order tensor

𝜦 =

⎡

⎢

⎢

⎢

⎣

𝜆⟨𝑨⟩

1 0 0
0 𝜆⟨𝑨⟩

2 0
0 0 𝜆⟨𝑨⟩

3

⎤

⎥

⎥

⎥

⎦

𝒆𝑖 ⊗ 𝒆𝑗 . (14)

Note that the component matrices in Eq. (12) and Eq. (14) are identical while the basis systems differ. Hence, the tensor 𝑹
is an orthogonal second-order tensor which describes the rotation from the global basis system {𝒆1, 𝒆2, 𝒆3} to the (normalized)
eigenvector system {𝒑1,𝒑2,𝒑3}. However, the rotation tensor 𝑹 is not distinct if no convention for the sequence of the eigenvalues
𝜆⟨𝑨⟩

𝛼 is applied. Since the trace of a second-order orientation tensor 𝑨 is normalized, the sum of the eigenvalues always equals one
tr(𝑨) = 𝜆⟨𝑨⟩

1 + 𝜆⟨𝑨⟩

2 + 𝜆⟨𝑨⟩

3 = 1.
For fourth-order tensors A, the spectral decomposition is less well-known. It is defined for Hooke’s tensors A ∈  that are

positive-semidefinite (no summation over 𝛼 = 1…6) [38,39]

A
[

𝑽 𝛼
]

= 𝜆⟨A⟩𝛼 𝑽 𝛼 ⇔
(

A − 𝜆⟨A⟩𝛼 IS
)

[

𝑽 𝛼
]

= 𝟎, 𝑽 𝛼 ∈ 𝑆𝑦𝑚 ∶ 𝑽 𝛼 ≠ 𝟎. (15)

Here, 𝟎 denotes the second-order zero tensor. The characteristic polynomial for the eigenvalue problem in Eq. (15) is defined
𝑝(A) = det(A − 𝜆⟨A⟩𝛼 IS). In this work the determinant of a fourth-order tensor A ∈  is equal to the determinant of its six-by-six-

atrix in Mandel notation det(A) =̂ det(𝐴̂𝜉𝜁 ). Thus, the values 𝜆⟨A⟩𝛼 that solve the characteristic equation 𝑝(A) = 0 can be calculated in
andel notation [39] and are the eigenvalues of A. The values 𝜆⟨A⟩𝛼 are also referred to as Kelvin moduli. They were first described

y Thomson [40]. The symmetric second-order tensors 𝑽 𝛼 that are associated to the eigenvalues 𝜆⟨A⟩𝛼 are the eigentensors of A. In
he mechanical context the tensors 𝑽 𝛼 are also referred to as eigenstates [e.g. 41,42]. The eigentensors 𝑽 𝛼 are pairwise orthogonal
f all associated eigenvalues 𝜆⟨A⟩𝛼 are unique. For fourth-order tensors A ∈  the spectral decomposition can be defined analogously
o Eq. (12)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆⟨A⟩1 0 0 0 0 0
0 𝜆⟨A⟩2 0 0 0 0
0 0 𝜆⟨A⟩3 0 0 0
0 0 0 𝜆⟨A⟩4 0 0
0 0 0 0 𝜆⟨A⟩5 0
0 0 0 0 0 𝜆⟨A⟩6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑽 𝜉 ⊗ 𝑽 𝜁 . (16)

or the eigenvalues of an orientation tensor A the additional condition

tr(A) = 𝜆⟨A⟩1 + 𝜆⟨A⟩2 + 𝜆⟨A⟩3 + 𝜆⟨A⟩4 + 𝜆⟨A⟩5 + 𝜆⟨A⟩6 = 1 (17)

holds. The equation that is analogous to Eq. (13) can be formulated in Mandel notation

𝐴̂𝜉𝜁 = 𝑅̂𝜉𝜂𝛬̂𝜂𝜈𝑅̂
𝖳
𝜈𝜁 . (18)

The diagonal of the matrix 𝛬̂𝜂𝜈 is populated with the six eigenvalues of A. In the following the transformation of 𝑅̂𝜉𝜂 to tensor
notation is referred to as R⟨SP⟩ with

R⟨SP⟩ = 𝑅̂𝜉𝜁𝑩𝜉 ⊗ 𝑩𝜁 (19)

where 𝑩𝜉 are the basis vectors of the Mandel notation [e.g. 1,43,44]. R⟨SP⟩ is minor symmetric (R⟨SP⟩ =
(

R⟨SP⟩)𝖳𝖱 =
(

R⟨SP⟩)𝖳𝖫 )
because it is calculated in Mandel notation. Additionally, the orthogonality condition

R⟨SP⟩
(

R⟨SP⟩
)𝖳𝖧

= IS. (20)

demonstrates that R⟨SP⟩ is an orthogonal tensor.

3.2. Harmonic decomposition

The decomposition of symmetric second-order tensors 𝑨 ∈ 𝑆𝑦𝑚 in isotropic and symmetric deviatoric parts is well-known. Since
the trace of a second-order fiber orientation tensor 𝑨 is normalized, its isotropic part is constant 𝑨◦ = 1

3𝑰 . The symmetric deviatoric
art is traceless (tr(𝑨′) = 0) and reads 𝑨′ = 𝑨 −𝑨◦. Both parts are symmetric and orthogonal (𝑨◦ ⋅𝑨′ = 0).
6
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The decomposition of fourth-order tensors in its isotropic and its deviatoric parts is called harmonic decomposition. It is often
pplied for Hooke tensors A ∈  [e.g. 44–48]. The general form of the harmonic decomposition reads [47]

A = AIso + ADev2 + ADev4 (21)

where the three parts AIso, ADev2 and ADev4 are biorthogonal and distinct. Further decompositions of the general harmonic
decomposition are outlined by Rychlewski [47]. Since fiber orientation tensors are fully symmetric and the condition 𝑰 ⋅ A[𝑰] = 1
holds, the harmonic decomposition can be simplified. The general form of the harmonic decomposition for fourth-order fiber
orientation tensors A is given in irreducible form [2]

A = 7
35

sym (𝑰 ⊗ 𝑰)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

AIso

+ 6
7
sym

(

𝑨′ ⊗ 𝑰
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
ADev2

+ADev4 , ∀A ∈ 𝑆𝑦𝑚⟨4⟩ ∩ 𝑰 ⋅ A[𝑰] = 1. (22)

Eq. (22) shows that the harmonic decomposition of fourth-order fiber orientation tensors can be described with only one second-
order deviator 𝑨′ and one fourth-order deviator ADev4 . Additionally, the isotropic part AIso is constant for all fourth-order fiber
rientation tensors. Further decompositions addressing the harmonic decomposition for fiber orientation tensors are presented
y Bauer and Böhlke [2].

. Interpolation methods for orthotropic fourth-order orientation tensors

.1. Application of interpolation techniques for second-order tensors on fourth-order tensors using spectral decomposition

.1.1. Calculation rule
Krauß and Kärger [9] demonstrated the advantages of a decomposition-based interpolation method for second-order tensors. To

chieve this, they decomposed the tensors into orientation- and shape-describing features, interpolated the two features separately,
nd finally reassembled them. The averaged orientation is described by the orthogonal tensor 𝑹̄ ∈ 𝑂𝑟𝑡ℎ⟨3⟩. The averaged shape is
escribed by the diagonal tensor 𝜦̄, which contains the eigenvalues of the interpolated tensor. The averaged tensor is obtained by
eassembling using the inverse spectral decomposition (Eq. (6)).

In the following, a procedure is presented to directly extend the decomposition-based interpolation approach from second-order
ensors [9] to fourth-order tensors using Mandel notation. For the interpolation, each of the 𝑁 tensors at the supporting points is

decomposed using the spectral decomposition for fourth-order tensors (Eq. (18)). The coefficient matrices 𝛬̂𝐼,𝜂𝜈 are diagonal and are
ntended to describe the shape of the tensors A𝐼 in the six-dimensional Mandel space. They represent the extension of the diagonal
ensor 𝜦 from Eq. (13). On the diagonal of the matrix 𝛬̂𝐼,𝜂𝜈 are the Kelvin moduli of the according fourth-order tensor A𝐼 . The

transformation of the matrix 𝑅̂𝐼,𝜉𝜁 into tensor space is denoted by R⟨SP⟩
𝐼 . The matrices 𝑅̂𝐼,𝜉𝜁 are used in this interpolation method

s an extension of the rotation tensor 𝑹 from equation Eq. (13). The supporting points are weighted using the scalar weights 𝑤𝐼 .
The interpolation of the tensor shapes can be performed by the linear interpolation of the Kelvin moduli 𝛬̂𝐼,𝜂𝜈 . The averaged

ensor shape ̄̂𝛬𝜂𝜈 is calculated in Mandel notation

̄̂𝛬𝜂𝜈 =
𝑁
∑

𝐼=1
𝑤𝐼 𝛬̂𝐼,𝜂𝜈 . (23)

The matrices ̄̂𝛬𝜂𝜈 and 𝛬̂𝐼,𝜂𝜈 both are symmetric and positive-semidefinite for fiber orientation tensors A. The sum of the eigenvalues
(respectively the trace) of the interpolated shape ̄̂𝛬𝜂𝜈 is still normalized. However, since the matrices ̄̂𝛬𝜂𝜈 and 𝛬̂𝐼,𝜂𝜈 are diagonal,
their representation in tensor notation does not provide full index symmetry. Thus, ̄̂𝛬𝜂𝜈 and 𝛬̂𝐼,𝜂𝜈 do not represent fourth-order fiber
orientation tensors A in Mandel notation.

To perform the orientation interpolation, the dyadic orientation averaging for orthogonal second-order tensors 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ [25]
can be extended to the orthogonal matrices 𝑅̂𝐼,𝜉𝜁 in Mandel notation. The only difference to the method for 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ is that
all the tensor operations are performed in the six-dimensional space. The singular value decomposition that is used for the dyadic
orientation average can also be evaluated in the six-dimensional space. After the dyadic orientation averaging is performed, the
resulting interpolated orientation ̄̂𝑅𝜉𝜁 is given. Finally, the interpolated tensor can be obtained (similarly to Eq. (6)) by reassembling
the orientation average ̄̂𝑅𝜉𝜂 and the shape average ̄̂𝛬𝜂𝜈 in Mandel notation

̄̂𝐴𝜉𝜁 = ̄̂𝑅𝜉𝜂
̄̂𝛬𝜂𝜈

̄̂𝑅
𝖳

𝜈𝜁 . (24)

The matrix ̄̂𝐴𝜉𝜁 can be transformed to tensor notation ĀSP. Since this method mainly uses the spectral method for the shape
interpolation it is called "spectral-method" (SP) in the following. All results using the SP-method are denoted as ĀSP.

4.1.2. Results and discussion
In the following the described SP-method is used to average fourth-order fiber orientation tensors A. To visualize the tensors the

fiber alignment
7

𝜉4(𝒅) = A ⋅ (𝒅 ⊗ 𝒅 ⊗ 𝒅 ⊗ 𝒅), ∀𝒅 ∈  ∶ ‖𝒅‖ = 1 (25)
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Fig. 2. Visualization of the loss of symmetry when the SP-method is used to average two fourth-order fiber orientation tensors that share the tensor shape. The
orientations of the supporting points differ by 45◦ around the 𝒆3-axis. The weights are chosen to be 𝑤1 = 0.6 and 𝑤2 = 0.4. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

is used. The fiber alignment 𝜉4(𝒅) is plotted as a surface in the three-dimensional space (see Fig. 2). This graphical representation
is similar to that of the Youngs’s modulus from Böhlke and Brüggemann [48]. The coordinate axes 𝒆1 and 𝒆2 are marked using red
arrows.

Now a special case to apply the interpolation method is considered. Here only two fiber orientation tensors A1 and A2 are
averaged. Both tensors are orthotropic. Using Mandel notation, the first supporting point A1 is described by

A1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.410 0.118 0.081 0 0 0
0.118 0.078 0.036 0 0 0
0.081 0.036 0.042 0 0 0
0 0 0 0.071 0 0
0 0 0 0 0.162 0
0 0 0 0 0 0.236

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝜉 ⊗ 𝑩𝜁 . (26)

The visualization of A1 is shown in Fig. 2(a). The representation is projected into the
(

𝒆1, 𝒆2
)

-plane. The principal axes of A1 coincide
with the global basis system {𝒆1, 𝒆2, 𝒆3}. The orthotropic material symmetry is evident in the graphical representation, as both
the

(

𝒆1, 𝒆3
)

-plane and the
(

𝒆2, 𝒆3
)

-plane serve as planes of symmetry. Note that the first principal axis (in 𝒆1-direction) is a local
maximum of 𝜉4(𝒅) while the second principal axis (in 𝒆2-direction) is a local minimum of 𝜉4(𝒅). The second supporting point, A2
(not visualized), is obtained by rotating A1 by an angle of 45◦ around the 𝒆3-axis. Consequently, A1 and A2 share the same Kelvin
moduli and hence the same shape. They only differ in their relative orientation to the global basis system.

To interpolate the tensors, the SP-method is employed with weights 𝑤1 = 0.6 and 𝑤2 = 0.4. The resulting interpolated tensor,
denoted as ĀSP, shares the same Kelvin moduli as the two supporting points A1 and A2. The tensor ĀSP is positive-semidefinite and
the condition tr(ĀSP) = 1 holds. The visualization of ĀSP is shown in Fig. 2(b). The local maximum of 𝜉4 near the 𝒆1-direction is
marked as 𝒅max

1 . The local minimum of 𝜉4 near the 𝒆2-direction is marked as 𝒅min
2 and almost coincides with 𝒆2. It is important to

note that the two directions of the extrema (𝒅max
1 and 𝒅min

2 ) are no longer orthogonal, which results in the absence of symmetry
planes in Fig. 2(b). Furthermore, the interpolated fourth-order fiber orientation tensor ĀSP is no longer fully symmetric. Thus, ĀSP

is not an admissible fourth-order fiber orientation tensor.
In conclusion, the SP-method is not an appropriate interpolation method because the interpolation process loses the full

index symmetry of fiber orientation tensors. The interpolation procedure should result in admissible fourth-order fiber orientation
tensors. Furthermore, this indicates that the spectral decomposition is not a suitable method for decomposing orientation- and
shape-describing features for fourth-order fiber orientation tensors in three-dimensional space. Therefore, to separately describe
the orientation- and shape-defining features of fourth-order fiber orientation tensors in three-dimensional space, alternative
8

decompositions based on the harmonic decomposition (cf. Section 3.2) are pursued.
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4.2. Framework for the new decomposition-based interpolation

4.2.1. Shape-describing features of orthotropic fourth-order fiber orientation tensors
Krauß and Kärger [9] demonstrated that the decomposition of orientation- and shape-describing features, followed by their

eparate interpolation, is a suitable technique for interpolating symmetric second-order tensors. The direct application of methods
or second-order tensors was rejected (see Section 4.1) because the SP-method did not allow for a complete separation of shape
nd orientation describing features in three-dimensional space. Thus, this section defines the features that describe the shape and
rientation of orthotropic fourth-order fiber orientation tensors.

To describe an arbitrary fourth-order fiber orientation tensor A, 15 independent coefficients are required e.g. [2]. The orientation
of the considered orthotropic tensor is described using a rotation tensor 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩. To describe the tensor’s orientation in three-
dimensional space, three of the 15 coefficients are needed [49]. The remaining 12 coefficients, which describe the tensor’s shape,
can be expressed using 12 invariants [50,51]. If the considered fourth-order fiber orientation tensor A exhibits material symmetries,
fewer scalar values are required to fully describe its tensor shape. An orthotropic fourth-order fiber orientation tensor, AOrth, can
be displayed in Mandel notation [2]

AOrth =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴̃1111 𝐴̃1122 𝐴̃1133 0 0 0
𝐴̃1122 𝐴̃2222 𝐴̃2233 0 0 0
𝐴̃1133 𝐴̃2233 𝐴̃3333 0 0 0
0 0 0 2𝐴̃2233 0 0
0 0 0 0 2𝐴̃1133 0
0 0 0 0 0 2𝐴̃1122

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩̃𝜉 ⊗ 𝑩̃𝜁 . (27)

To describe the component matrix in Eq. (27) only six scalar values are required. However, the special matrix form in Eq. (27)
is only achieved if a certain basis system {𝒆̃1, 𝒆̃2, 𝒆̃3} is used. This basis system coincides with the principal axes of AOrth [52].
Therefore, the basis system of the principal axes {𝒆̃1, 𝒆̃2, 𝒆̃3} is shape-defining. Note that if the basis system {𝒆̃1, 𝒆̃2, 𝒆̃3} does not
oincide with the orthotropic axes of AOrth, the component matrix in Eq. (27) can be completely populated. In this case, it may not
e possible to describe the component matrix of AOrth with only six scalar values. For fourth-order fiber orientation tensors with
eaker symmetry than orthotropy (e.g., arbitrary triclinic fiber orientation tensors), it is not possible to identify an orthonormal
asis system {𝒆̃1, 𝒆̃2, 𝒆̃3} to construct the component matrix of A as outlined in Eq. (27). It is therefore impossible to describe the
hape of an arbitrary triclinic fiber orientation tensors A using only six scalar values within the approach presented in this work.

In summary, an orthotropic fourth-order fiber orientation tensor AOrth requires nine coefficients for a distinct description. Three
oefficients are required to define the rotation, 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩, from the global basis system to the principal axes of AOrth. The remaining
ix coefficients are used to describe the shape of AOrth, as shown in Eq. (27).

.2.2. Decomposition of orientation- and shape-describing features
To impose the form in Eq. (27), the principal axes of AOrth must coincide with the chosen basis system. Following Cintra and

ucker [52], the principal axes of AOrth align with the eigenvectors of the corresponding second-order fiber orientation tensor
= AOrth[𝑰]. Therefore, the orientation-describing feature of an orthotropic fourth-order fiber orientation tensor can be calculated

y solving the eigenvalue problem for 𝑨. Rearranging Eq. (13) the spectral decomposition for 𝑨 reads

𝜦 = 𝑹𝖳𝑨𝑹. (28)

he orthogonal tensor 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ describes the rotation of 𝑨 to its eigensystem. The resulting fourth-order rotation tensor
□ = 𝑹□𝑹𝖳 transforms the principal axes of AOrth to the global basis system. Consequently, the resulting rotated tensor AOrth,∗,

that describes the shape of AOrth, is calculated

AOrth,∗ = 𝑹−1 ⋆ AOrth =
(

𝑹□𝑹𝖳
)𝖳𝖧 AOrth (𝑹□𝑹𝖳

)

=
(

R□

)𝖳𝖧 AOrthR□. (29)

Eq. (29) decomposes orientation- and shape-describing features for orthotropic fourth-order fiber orientation tensors AOrth. All shape
information of AOrth is contained in the tensor AOrth,∗, while the rotation tensor 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ from Eq. (28) contains all the orientation
information of AOrth in the three-dimensional space. Analogous algorithms can be utilized to find the principal axes of an orthotropic
stiffness tensor COrth [see 45,53].

Since the principal axes can be arbitrarily permutated or multiplied by (−1) the found rotation tensor 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ in Eq. (28) is
not distinct [53]. In these cases the coefficient matrix of the resulting AOrth,∗ still has its special form from Eq. (27). In total, there
are 24 different rotation tensors 𝑹, that rotate the principal axes of AOrth to the global basis system. To limit this arbitrariness, the
following two conditions are applied to 𝑹 and AOrth,∗

det(𝑹) = 1 and 𝐴∗
1111 ≥ 𝐴∗

2222 ≥ 𝐴∗
3333. (30)

Eq. (30) postulates a right-handed coordinate system and introduces a convention for the sequence of the principal axes {𝒆̃1, 𝒆̃2, 𝒆̃3}.
By minimizing the rotation angle as an intrinsic metric of 𝑂𝑟𝑡ℎ⟨3⟩, the shape of the tensor AOrth,∗ is uniquely determined.

Note that there are additional cases for non-distinct orientation information caused by material symmetries. If an isotropic fourth-
rder fiber orientation tensor AIso is considered, every basis system will align with the principal axes. In case of a transversal isotropic
aterial symmetry, an infinite number of principal basis systems can be obtained by rotating a suitable basis system around the

ransversal isotropic axis. However, for triclinic or monoclinic material symmetries no orthogonal basis system of principal axes
an be found. Therefore, for triclinic or monoclinic fiber orientation tensors the representation from Eq. (27) does not exist and no

⟨3⟩
9

uitable 𝑹 ∈ 𝑂𝑟𝑡ℎ can be found.
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4.2.3. Reassembly
In the previous sections the decomposition of orthotropic fourth-order fiber orientation tensors AOrth in shape- and orientation-

describing features was presented. The tensor’s shapes are fully defined by AOrth,∗
𝐼 (Eq. (27)), whereas the tensor’s orientations are

ully described by 𝑹𝐼 ∈ 𝑂𝑟𝑡ℎ⟨3⟩ (Eq. (28) and Eq. (29)) The features describing the shape and orientation are interpolated separately.
The shape interpolation is accomplished by utilizing the shape-describing tensors AOrth,∗

𝐼 , the weights 𝑤𝐼 , and one of the presented
hape interpolation methods S in Section 4.3

ĀOrth,∗ = S
(

AOrth,∗
𝐼 , 𝑤𝐼

)

. (31)

he principal axes of ĀOrth,∗ and AOrth,∗
𝐼 coincide with the global coordinate axes {𝒆1, 𝒆2, 𝒆3}.

To execute the orientation interpolation O of the rotation tensors 𝑹𝐼 ∈ 𝑂𝑟𝑡ℎ⟨3⟩, either the dyadic orientation interpolation [24]
r the unit quaternion interpolation method [9] is used

𝑹̄ = O (

𝑹𝐼 , 𝑤𝐼
)

. (32)

ubsequently, the resulting orientation average 𝑹̄ ∈ 𝑂𝑟𝑡ℎ⟨3⟩ is available. Finally, the resulting interpolated fourth-order fiber
rientation tensor ĀOrth can be calculated (compare to Eq. (29))

ĀOrth = 𝑹̄ ⋆ ĀOrth,∗ =
(

𝑹̄□ 𝑹̄𝖳
)

ĀOrth,∗
(

𝑹̄□ 𝑹̄𝖳
)𝖳𝖧

= R̄□ĀOrth,∗ (R̄□

)𝖳𝖧 . (33)

4.3. Shape interpolation for fourth-order orientation tensors

4.3.1. Decomposition-based component interpolation
In the following the decomposition-based component interpolation (DBC) is presented. All results addressing the DBC-method

are denoted by (⋅)DBC. The orientation of the supporting points A𝐼 is extracted in a previous step (refer to Section 4.2.2) and
interpolated separately. For all supporting points A𝐼 , the resulting shape-describing tensors A∗

𝐼 are calculated. Shape interpolation
using the DBC-method does not involve tensor invariants. Instead, the interpolation is carried out by computing a weighted mean
of the tensor components of the shape-describing tensor A∗

𝐼 in the global basis system. The interpolated tensor shape ĀDBC,∗ is
calculated by

ĀDBC,∗ =
𝑁
∑

𝐼=1
𝑤𝐼A∗

𝐼 . (34)

The only difference compared to the classical EU-method (Eq. (7)) is the decomposition into orientation and shape describing features
and their separate interpolation.

All tensors A∗
𝐼 are positive-semidefinite, fully symmetric and satisfy the condition

𝑰 ⋅ A∗
𝐼 [𝑰] = 1. (35)

Thus, all A∗
𝐼 are admissible fourth-order fiber orientation tensors. The sum of positive-semidefinite tensors stays positive-semidefinite.

Similarly, the sum of fully symmetric tensors remains fully symmetric. The condition stated in Eq. (35) remains satisfied after
summation,

𝑰 ⋅ ĀDBC,∗[𝑰] = 𝑰 ⋅

( 𝑁
∑

𝐼=1
𝑤𝐼A∗

𝐼

)

[𝑰] =
𝑁
∑

𝐼=1
𝑤𝐼

(

𝑰 ⋅ A∗
𝐼 [𝑰]

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=1 ∀A∗

𝐼

=
𝑁
∑

𝐼=1
𝑤𝐼 = 1. (36)

Thus, the interpolated tensor shape ĀDBC,∗ and the interpolated tensor ĀDBC (Eq. (33)) are both admissible fourth-order fiber
orientation tensors. Note that this shape interpolation is similar to the one proposed by Bauer et al. [37] for orthotropic material
symmetry.

4.3.2. Deviator invariants interpolation
In the following the shape interpolation using deviator invariants (DI) is presented. All results addressing the DI-method are

denoted by (⋅)DI. First, the used invariants are described. The DI-method utilizes the harmonic decomposition for fourth-order fiber
orientation tensors A (see Section 3.2)

A = 7
35

sym (𝑰 ⊗ 𝑰)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

AIso

+ 6
7
sym

(

𝑨′ ⊗ 𝑰
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
ADev2

+ADev4 . (37)

n order to develop an invariant-based interpolation scheme, the orthogonality of the parts AIso,ADev2 and ADev4 is utilized.
The constant term, AIso, is always equal for all admissible fourth-order fiber orientation tensors. Therefore, AIso can be excluded

from the interpolation. The part ADev2 only depends on 𝑨. Therefore, ADev2 can be fully described using the orthogonal invariants
𝐾⟨2⟩

𝛼 , which were introduced by Ennis and Kindlmann [22]

ADev2 ,∗ = ADev2 ,∗ (𝑨) = ADev2 ,∗
(

𝐾⟨2⟩, 𝐾⟨2⟩, 𝐾⟨2⟩
)

. (38)
10

1 2 3
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Using A[𝑰] = 𝑨, the three invariants 𝐾⟨2⟩
𝛼 can be displayed as functions of A. They are referred to as 𝐾DI

𝛼 (𝛼 = 1, 2, 3)

𝐾DI
1 = tr(A[𝑰]), 𝐾DI

2 = ‖ (A[𝑰])′ ‖, 𝐾DI
3 = 3

√

6
det((A[𝑰])′)
‖ (A[𝑰])′ ‖3

. (39)

Note that 𝐾⟨2⟩
1 , 𝐾⟨2⟩

2 , 𝐾⟨2⟩
3 and 𝐾DI

1 , 𝐾DI
2 , 𝐾DI

3 are equal. Although the invariants 𝐾DI
1 , 𝐾DI

2 and 𝐾DI
3 depend on A, their gradients are

till pairwise orthogonal, as shown in Appendix A.
The fourth-order deviator ADev4 is independent of 𝑨. To describe ADev4 unequivocally, three invariants (𝐾DI

4 , 𝐾DI
5 , 𝐾DI

6 ) are
equired. If A is given in the eigensystem of the according 𝑨, the component matrix of ADev4 has the form (in Mandel notation) [2]

ADev4 ,∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−(𝑑1 + 𝑑2) 𝑑1 𝑑2 0 0 0
𝑑1 −(𝑑1 + 𝑑3) 𝑑3 0 0 0
𝑑2 𝑑3 −(𝑑2 + 𝑑3) 0 0 0
0 0 0 2𝑑3 0 0
0 0 0 0 2𝑑2 0
0 0 0 0 0 2𝑑1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝜉 ⊗ 𝑩𝜁 . (40)

The parameters 𝑑1, 𝑑2 and 𝑑3 are multiples of the Kelvin moduli of ADev4 . Due to this fact, they are invariant with respect to all
rotations 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩. Thus, they are suitable invariants for the shape interpolation

𝐾DI
4 = 2𝑑3, 𝐾DI

5 = 2𝑑2, 𝐾DI
6 = 2𝑑1. (41)

The principal axes of the shape-describing tensors ADev4 ,∗ and the global basis system always coincide, which allows calculation of
the invariants 𝐾DI

4 , 𝐾DI
5 and 𝐾DI

6 using the projections (without summation over 𝛼 = 4, 5, 6)

𝐾DI
𝛼 = ADev4 ⋅

(

𝑽 𝛼 ⊗ 𝑽 𝛼
)

= ADev4 ,∗ ⋅
(

𝑩𝛼 ⊗ 𝑩𝛼
)

=
(

A∗ − AIso − ADev2 ,∗
)

⋅
(

𝑩𝛼 ⊗ 𝑩𝛼
)

. (42)

The shape of the fourth-order deviator ADev4 ,∗ is fully described with the invariants 𝐾DI
4 , 𝐾DI

5 and 𝐾DI
6

ADev4 ,∗ = ADev4 ,∗
(

𝐾DI
4 , 𝐾DI

5 , 𝐾DI
6
)

. (43)

To perform the shape interpolation, a weighted mean of the tensor invariants is evaluated

𝐾̄DI
𝑖 =

𝑁
∑

𝐼=1
𝑤𝐼𝐾

DI
𝐼,𝑖 . (44)

The first three interpolated invariants 𝐾̄DI
1 , 𝐾̄DI

2 and 𝐾̄DI
3 describe the shape of ADev2 ,∗ (Eq. (37) and Eq. (38)). The remaining three

interpolated invariants 𝐾̄DI
4 , 𝐾̄DI

5 and 𝐾̄DI
6 describe the shape of ADev4 ,∗ (Eq. (40) and Eq. (43)). The interpolation of the invariants

𝐾̄DI
𝑖 corresponds to the separate interpolation of the individual parts of the harmonic decomposition

ĀDI,∗ = ĀIso,∗
⏟⏟⏟
=const.

+ĀDev2 ,∗ + ĀDev4 ,∗ = AIso + ĀDev2 ,∗
(

𝐾̄DI
1 , 𝐾̄DI

2 , 𝐾̄DI
3
)

+ ĀDev4 ,∗
(

𝐾̄DI
4 , 𝐾̄DI

5 , 𝐾̄DI
6
)

. (45)

Due to the fact that ĀDev2 ,∗ is only dependent on 𝑨∗, the interpolation of ĀDev2 ,∗ can be performed by interpolating 𝑨∗
𝐼 . Therefore,

he invariant-based interpolation method presented by Krauß and Kärger [9] is used. Since Krauß and Kärger [9] use the same
nvariants (Eq. (39)) as the DI-method, Eq. (44) is satisfied for 𝐾̄DI

1 , 𝐾̄DI
2 and 𝐾̄DI

3 . Consequently, only 𝐾̄DI
4 , 𝐾̄DI

5 and 𝐾̄DI
6 have to be

alculated using Eq. (44). The interpolated fourth-order deviator ĀDev4 ,∗ can be calculated by reinserting 𝑑1, 𝑑2 and 𝑑3 into Eq. (40).

.3.3. Orthotropic invariants interpolation
In the following the shape interpolation using orthotropic invariants (OI) is presented. All results addressing the OI-method are

enoted by (⋅)OI. First, the used invariants are described. A separate eigenvalue decomposition for the second- and fourth-order fiber
rientation tensor 𝑨 and A is performed. For this purpose, it is used that orthotropic fourth-order fiber orientation tensors A have
he form

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴1111 𝐴1122 𝐴1133 0 0 0
𝐴1122 𝐴2222 𝐴2233 0 0 0
𝐴1133 𝐴2233 𝐴3333 0 0 0
0 0 0 2𝐴2233 0 0
0 0 0 0 2𝐴1133 0
0 0 0 0 0 2𝐴1122

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝜉 ⊗ 𝑩𝜁 (46)

n the basis system of their principal axes. This representation shows that the parameters 2𝐴2233, 2𝐴1133 and 2𝐴1122 are eigenvalues
respectively Kelvin moduli) of A and thus are invariants with respect to 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩

⟨A⟩ ⟨A⟩ ⟨A⟩
11

𝜆4 = 2𝐴2233, 𝜆5 = 2𝐴1133, 𝜆6 = 2𝐴1122. (47)
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Since the principal axes of A and the global basis system align, the according second-order fiber orientation tensor 𝑨 = A[𝑰] is
diagonal

𝑨 =
⎡

⎢

⎢

⎣

𝐴11 0 0
0 𝐴22 0
0 0 𝐴33

⎤

⎥

⎥

⎦

𝒆𝑖 ⊗ 𝒆𝑗 . (48)

Hence, the parameters 𝐴11, 𝐴22 and 𝐴33 are eigenvalues of 𝑨 and consequently are invariants of A with respect to 𝑹 ∈ 𝑂𝑟𝑡ℎ⟨3⟩

𝜆⟨𝑨⟩

1 = 𝐴11, 𝜆⟨𝑨⟩

2 = 𝐴22, 𝜆⟨𝑨⟩

3 = 𝐴33. (49)

The components 𝐴1111, 𝐴2222 and 𝐴3333 in Eq. (46) can be calculated as a function of the Kelvin moduli 𝜆⟨A⟩𝛼 (Eq. (47)) and the
igenvalues 𝜆⟨𝑨⟩

𝛼 of the according second-order fiber orientation tensor 𝑨 (Eq. (49)). If A is given in its principal axes system the
ollowing conditions hold [52]

𝐴1111 + 𝜆⟨A⟩5 + 𝜆⟨A⟩6 = 𝜆⟨𝑨⟩

1 , 𝐴2222 + 𝜆⟨A⟩4 + 𝜆⟨A⟩6 = 𝜆⟨𝑨⟩

2 , 𝐴3333 + 𝜆⟨A⟩4 + 𝜆⟨A⟩5 = 𝜆⟨𝑨⟩

3 . (50)

hese relations are often used to derive closure approximations e.g. [11,54].
The invariants 𝐾⟨2⟩

𝛼 , which were introduced by Ennis and Kindlmann [22], provide suitable shape interpolation for second-order
ensors 𝑨 [9]. In Appendix A it is shown that the gradients of the invariants 𝐾⟨4⟩

𝑖 (𝑖 = 1, 2, 3), depending on A, still provide pairwise
rthogonal gradients. Thus, those invariants are used for the shape interpolation of the OI-method [9,22]

𝐾OI
1 = tr(A[𝑰]), 𝐾OI

2 = ‖ (A[𝑰])′ ‖, 𝐾OI
3 = 3

√

6
det((A[𝑰])′)
‖ (A[𝑰])′ ‖3

. (51)

Since 𝐾OI
𝑖 (𝑖 = 1, 2, 3) can be used for shape interpolation of second-order tensors 𝑨, the invariants from Eq. (51) are used to describe

the eigenvalues 𝜆⟨𝑨⟩

1 , 𝜆⟨𝑨⟩

2 and 𝜆⟨𝑨⟩

3 . Note that 𝐾OI
𝑖 (𝑖 = 1, 2, 3) are similar to 𝐾DI

𝑖 (𝑖 = 1, 2, 3) from Section 4.3.2. Furthermore, the
invariants 𝜆⟨A⟩4 , 𝜆⟨A⟩5 and 𝜆⟨A⟩6 (Eq. (47)) are utilized to describe the remaining invariants 𝐾OI

4 , 𝐾OI
5 and 𝐾OI

6

𝐾OI
4 = 2𝐴∗

2233, 𝐾OI
5 = 2𝐴∗

1133, 𝐾OI
6 = 2𝐴∗

1122. (52)

To perform the shape interpolation, the tensors A∗
𝐼 are used. For those tensors the orthotropic system and the global basis system

always coincide. Thus, the invariants 𝐾OI
4 , 𝐾OI

5 and 𝐾OI
6 can be calculated using the projections (no summation over 𝛼 = 4, 5, 6)

𝐾OI
𝛼 = A ⋅

(

𝑽 𝛼 ⊗ 𝑽 𝛼
)

= A∗ ⋅
(

𝑩𝛼 ⊗ 𝑩𝛼
)

. (53)

To perform the shape interpolation a weighted mean of the tensor invariants is evaluated

𝐾̄OI
𝑖 =

𝑁
∑

𝐼=1
𝑤𝐼𝐾

OI
𝐼,𝑖 . (54)

Since Krauß and Kärger [9] also use the invariants 𝐾OI
1 , 𝐾OI

2 and 𝐾OI
3 to interpolate second-order fiber orientation tensors, their

implementation is used to calculate 𝑨̄∗. The resulting tensor 𝑨̄∗ is diagonal so the eigenvalues 𝜆̄⟨𝑨⟩

1 , 𝜆̄⟨𝑨⟩

2 and 𝜆̄⟨𝑨⟩

3 can be obtained
irectly from the component marix. The remaining interpolated Kelvin moduli 𝜆̄⟨A⟩4 , 𝜆̄⟨A⟩5 and 𝜆̄⟨A⟩6 are calculated using Eq. (54).
inally, the resulting interpolated shape ĀOI,∗ is given with the results for 𝜆̄⟨A⟩𝛼

ĀOI,∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴̄1111
1
2 𝜆̄

⟨A⟩
6

1
2 𝜆̄

⟨A⟩
5 0 0 0

1
2 𝜆̄

⟨A⟩
6 𝐴̄2222

1
2 𝜆̄

⟨A⟩
4 0 0 0

1
2 𝜆̄

⟨A⟩
5

1
2 𝜆̄

⟨A⟩
4 𝐴̄3333 0 0 0

0 0 0 𝜆̄⟨A⟩4 0 0

0 0 0 0 𝜆̄⟨A⟩5 0

0 0 0 0 0 𝜆̄⟨A⟩6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝜉 ⊗ 𝑩𝜁 . (55)

The interpolated coefficients 𝐴̄1111, 𝐴̄2222 and 𝐴̄3333 can be calculated by rearranging Eq. (50)

𝐴̄1111 = 𝜆̄⟨𝑨⟩

1 − 𝜆̄⟨A⟩5 − 𝜆̄⟨A⟩6 , 𝐴̄2222 = 𝜆̄⟨𝑨⟩

2 − 𝜆̄⟨A⟩4 − 𝜆̄⟨A⟩6 , 𝐴̄3333 = 𝜆̄⟨𝑨⟩

3 − 𝜆̄⟨A⟩4 − 𝜆̄⟨A⟩5 . (56)

5. Numerical example

5.1. Problem statement

The validation is performed using the numerical solution of a theoretical problem from fluid mechanics. The relevant equations
are the evolution equations for the fiber orientation tensors A described by Advani and Tucker [6]. In the originally proposed
tensor-valued differential equation (DE) for the fourth-order fiber orientation tensors A [6], the right-hand side is not necessarily
12

fully symmetrized. As a result, the solutions of the DE are not necessarily positive-semidefinite. Therefore, Jack and Smith [55]
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Fig. 3. Problem statement of the continuous point sprue problem.

presented a DE with a fully-symmetrized second term on the right-hand side. The evolution of the fourth-order fiber orientation
tensor A depends on itself, the sixth-order fiber orientation tensor A⟨6⟩, the velocity field 𝒗, its gradient 𝑳 and the material parameters
𝜅e and 𝐶I. The property 𝜅e describes the geometry of the fibers. For elliptical particles, 𝜅e is calculated by 𝜅e = (𝑟2e − 1)∕(𝑟2e + 1) where
the quantity 𝑟e is the ratio of the fiber length to the fiber diameter (aspect ratio). The quantity 𝐶I is a material property that is a
measure for the degree of fiber–fiber interaction in the melt [6].

The solution to the DE is derived for a special case that significantly simplifies the relevant equations. The problem under
consideration involves the point sprue of a plate with infinite diameter, allowing the melt to spread radially unhindered (refer to
Fig. 3(a)). The problem is assumed to be stationary. Therefore, all considered fields are only dependent on the location 𝒙 but not
on the time 𝑡

𝒗(𝒙, 𝑡) = 𝒗(𝒙), A(𝒙, 𝑡) = A(𝒙). (57)

The absence of a velocity component in tangential direction 𝒆𝜑 and thickness direction 𝒆z is assumed, i.e. 𝒗(𝒙) = 𝑣r (𝒙)𝒆r .
Consequently, mass transport in the thickness and tangential direction is not considered in this approach. The velocity field 𝒗 is
assumed to be rotationally symmetric 𝒗(𝒙) = 𝑣r (𝑟, 𝑧)𝒆r . To investigate the influence of a non-constant velocity profile over the plate
thickness 𝑧, the velocity field in radial direction is approached as a quadratic function of the thickness coordinate 𝑧 (see Fig. 3(b)).
The mid-plane of the cavity is located at 𝑧 = 0, while the wall of the cavity is located at 𝑧 = 𝑧0. Using the symmetry condition
𝜕𝑣r
𝜕𝑧 (𝑟, 𝑧 = 0) = 0 and the boundary conditions 𝑣r (𝑟, 𝑧 = 𝑧0) = 𝑣min(𝑟) and 𝑣r (𝑟, 𝑧 = 0) = 𝑣max(𝑟), the 𝑧-dependency of 𝒗 is defined (see

Fig. 3(b)). Furthermore, if the initial values 𝑣max(𝑟 = 𝑟0) = 𝑣max,0 and 𝑣min(𝑟 = 𝑟0) = 𝑣min,0 are specified as well, the velocity field is
completely described by

𝒗(𝒙) = 𝑣r (𝑟, 𝑧)𝒆r =

(

𝑣max,0 −

(

𝑣max,0 − 𝑣min,0
)

𝑧2

𝑧20

)

𝑟0
𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑣r (𝑟,𝑧)

𝒆r . (58)

Here, 𝑟 describes the radial distance to the sprue and 𝑟0 the radial distance where the initial velocity value 𝒗0(𝑧) is specified. The
values 𝑣max,0, 𝑣min,0, 𝑧, 𝑧0, 𝑟 and 𝑟0 are always positive and the conditions 𝑧 ≤ 𝑧0 and 𝑟 ≥ 𝑟0 hold. This particular case closely resembles
the one considered by Krauß and Kärger [9] for second-order fiber orientation tensors 𝑨. Therefore, some parts of the solution can
be derived analogously. However, it addresses the DE for a fourth-order fiber orientation tensor A and considers a non-constant
velocity profile 𝒗 across the plate thickness 𝑧. The solution to the problem is developed in cylindrical coordinates.

To evaluate the DE for the fiber orientation tensor A, the velocity gradient 𝑳 is needed. It is calculated by

𝑳 = grad (𝒗(𝒙)) = −
𝑣r (𝑟, 𝑧)

𝑟
(

𝒆r ⊗ 𝒆r − 𝒆𝜑 ⊗ 𝒆𝜑
)

−
2
(

𝑣max,0 − 𝑣min,0
)

𝑧𝑟0
𝑧20𝑟

𝒆r ⊗ 𝒆𝜑. (59)

Its symmetric part 𝑫 and its skew-symmetric part 𝑾 can be computed using

𝑫 = 1 (

𝑳 +𝑳𝖳
)

and 𝑾 = 1 (

𝑳 −𝑳𝖳
)

. (60)
13
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Fig. 4. Courses of the tensor components of Aana in dependency on the normalized radius 𝑟∕𝑟0. The dimensionless parameters 𝑣min,0∕𝑣max,0 = 1 and 𝜅e = 0.3 as
well as the initial value Aana

0 = AIso are chosen. The solution is not dependent on 𝑧∕𝑧0.

Note that if the velocity function 𝑣r (𝑟, 𝑧) is constant over the plate thickness (e.g., 𝑣min,0 = 𝑣max,0), the velocity gradient is purely
symmetric (𝑳 = 𝑫) and the skew-symmetric part vanishes (𝑾 = 𝟎). This case corresponds to a plug-flow.

Since the considered problem is stated to be stationary, the local change of A on the left-hand side of the DE vanishes [55].
ssuming no interaction between the fibers (𝐶I = 0), the DE is finally simplified to

grad(A)[𝒗] = −
(

𝑾 ◦A − A◦𝑾 + (𝑾 ◦A)𝖳𝖫 − (A◦𝑾 )𝖳𝖱
)

+ 4𝜅𝑒
(

sym (A◦𝑫) − A⟨6⟩[𝑫]
)

. (61)

ote that the operator sym (⋅) applies the index symmetry for all indices. To approximate the sixth-order fiber orientation tensor the
uadratic closure is utilized A⟨6⟩ = A⊗𝑨 [6].

After evaluating Eq. (61) in cylindrical coordinates, a coupled system of 15 scalar DEs is derived. Since the velocity vector 𝒗(𝑟, 𝑧)
s directed in radial direction 𝒆r (see Eq. (58)), only partial derivatives with respect to the radius 𝑟 can be found on the left-hand

side of Eq. (61). As a result, all considered DEs are in fact ordinary DEs. Therefore, the thickness coordinate 𝑧 can be treated as a
parameter that can be specified in advance, and thus the problem can be treated as planar for any given thickness coordinate 𝑧. The
olutions for the tensor components of A in the cylindrical basis system {𝒆r , 𝒆𝜑, 𝒆z} were computed numerically using an explicit

fourth-order Runge–Kutta method, which requires a suitable initial value A0 for the fiber orientation tensor A at the initial radius
𝑟0.

Note that the solutions for the tensor components of A can be calculated analytically if the velocity profile 𝒗(𝑟, 𝑧) is uniform over
the plate thickness (e.g., 𝑣min,0 = 𝑣max,0). The resulting explicit equations to compute the tensor components were obtained using a
computer algebra system. The formulas are provided in Appendix B.

5.2. Continuous solutions

5.2.1. Results of the thickness-independent problem
First, the special case 𝑣max,0 = 𝑣min,0 (plug flow) is considered. The velocity gradient 𝑳 is purely symmetric (𝑳 = 𝑫) and its

skew-symmetric part vanishes 𝑾 = 𝟎. Therefore, the analytical functions given in Appendix B can be used to calculate the resulting
tensor components. The trajectories of the resulting non-zero components of Aana over the normalized radius 𝑟∕𝑟0 are depicted in
Fig. 4. The solution is calculated for 𝜅e = 0.3 and the initial fiber orientation Aana

0 = AIso. Note that in this special case, the velocity
vector 𝒗 is not dependent on the thickness 𝑧 anymore but only on the radius 𝑟. Therefore, the normalized thickness 𝑧∕𝑧0 can be
chosen arbitrarily (see Eq. (58)).

Despite the problem being planar, all non-zero components of Aana
0 change with increasing normalized radii 𝑟∕𝑟0. Independent

of the choice of the initial value Aana
0 and the material parameter 𝜅e, the magnitude of 𝐴ana

rrrr , 𝐴
ana
rr𝜑𝜑, 𝐴

ana
rrzz and 𝐴ana

zzzz decay with
increasing normalized radius 𝑟∕𝑟0. The value of 𝐴ana

𝜑𝜑zz initially increases and then decreases at a slower rate than the other
tensor components. Only the 𝐴ana

𝜑𝜑𝜑𝜑 component converges towards the value of one. As the normalized radius 𝑟∕𝑟0 increases, the
orientation state becomes more anisotropic. At the limit 𝑟 → ∞, the solution of the continuous point sprue problem is unidirectional
(lim𝑟→∞ A = 𝒆𝜑 ⊗ 𝒆𝜑 ⊗ 𝒆𝜑 ⊗ 𝒆𝜑) for all admissible initial values. The analogous observation was made by Krauß and Kärger [9] for
second-order fiber orientation tensors (lim𝑟→∞ 𝑨 = 𝒆𝜑 ⊗ 𝒆𝜑).

All solutions Aana are fully symmetric, positive semi-definite, and the trace is normalized. Therefore, all solutions Aana are
admissible fourth-order fiber orientation tensors. However, the material symmetry of solutions differ depending on the initial fiber

ana ana
14

orientation tensor A0 . If the initial value A0 is chosen isotropic (as in Fig. 4) an orthotropic fourth-order fiber orientation tensor
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a

Fig. 5. Courses of the tensor components of Anum in dependency on the normalized radius 𝑟∕𝑟0. The dimensionless parameters 𝑧∕𝑧0 = 0.9, 𝑣min,0∕𝑣max,0 = 0.3 and
𝜅e = 0.3 as well as the initial value A0 = AIso are chosen here.

is obtained for 𝑟∕𝑟0 > 1, whose principal axes correspond to the coordinate axes {𝒆r , 𝒆𝜑, 𝒆z}. If the initial value Aana
0 is chosen

orthotropic, the solution for 𝑟∕𝑟0 > 1 remains orthotropic if the principal axes of the initial value Aana
0 align with the coordinate

axes {𝒆r , 𝒆𝜑, 𝒆z}. If an orthotropic initial value Aana
0 is chosen whose principal axes do not align with the coordinate axes {𝒆r , 𝒆𝜑, 𝒆z},

a triclinic fiber orientation tensor is obtained for 𝑟∕𝑟0 > 1. If the initial value Aana
0 is chosen triclinic, the resulting tensors Aana are

triclinic for any normalized radius 𝑟∕𝑟0 ≥ 1, except in the limit 𝑟 → ∞ where the solution becomes unidirectional.

5.2.2. Results of the thickness-dependent problem
Now, the condition 𝑣max,0 = 𝑣min,0 is dismissed, and the radial velocity component 𝑣r from Eq. (58) is indeed described with a

quadratic function. Consequently, the resulting velocity gradient is not purely symmetric anymore (𝑾 ≠ 𝟎 for all 𝑧∕𝑧0 ≠ 0). The
parameters are chosen 𝑧∕𝑧0 = 0.9, 𝑣min,0∕𝑣max,0 = 0.3 and 𝜅e = 0.3. The initial fiber orientation tensor is again considered isotropic
Anum
0 = AIso. The trajectories of the non-zero tensor components for the now considered case are displayed in Fig. 5.

Unlike the previous example (Section 5.2.1), the courses of the tensor components are oscillating. The amplitude of the
oscillations increases if 𝑧∕𝑧0 or 𝑣min,0∕𝑣max,0 is raised, or if 𝜅e is decreased. Increasing 𝑧∕𝑧0 or 𝑣min,0∕𝑣max,0 causes an increasing
skew-symmetric part of the velocity gradient 𝑾 . Additionally, a decreasing 𝜅e decreases the influence of the symmetric part 𝑫
on the right-hand side of the DE (Eq. (61)). Since no oscillations were observed in the previous example (Section 5.2.1), it can be
concluded that the oscillations are directly caused by the skew-symmetric part of the velocity gradient 𝑾 . Similarly to the previous
example, the magnitude of each tensor component decays with increasing normalized radius 𝑟∕𝑟0. Again, the only exception to this is
𝐴num
𝜑𝜑𝜑𝜑. This behavior is observed for arbitrary initial values Anum

0 and arbitrary parameter sets. Note that the components 𝐴num
rrrrz, 𝐴

num
𝜑𝜑rz

and 𝐴num
zzrz are non-zero in this particular case, which was not observed in the thickness-independent case from Section 5.2.1 (refer

to Fig. 4).
Since the solutions are always fully symmetric, positive-semidefinite, and the trace is normalized, all solutions Anum are admissible

fourth-order fiber orientation tensors. However, the material symmetry of solutions differ depending on the initial fiber orientation
tensor Anum

0 . If the initial value Anum
0 is chosen isotropic (as in Fig. 4 and Fig. 5), an orthotropic fourth-order fiber orientation tensor

is obtained for 𝑟∕𝑟0 > 1.

5.3. Application of interpolation methods on a discrete problem

5.3.1. Procedure
To assess the performance of the different interpolation methods, they are applied to an associated discrete problem. The

continuous point sprue problem from Section 5.1 is employed to generate data for the discrete problem. Note that the developed
interpolation methods from Section 4 are designed for orthotropic fiber orientation tensors; therefore, the isotropic fiber orientation
tensor is used as an initial value, Anum

0 = AIso. The schematic visualization of the associated discrete problem is presented in Fig. 6.
The hexahedral cell considered, as shown in Fig. 6(b), has a square base with an edge length of

√

2𝛥𝑥 and a height of 2𝛥𝑧. The
spect ratio of the cell is denoted as 𝑎C = 𝛥𝑥∕(

√

2𝛥𝑧).
The location of the middle of the cell can be described using

𝒙 = 𝑟 cos(𝜑 )𝒆 + 𝑟 sin(𝜑 )𝒆 + 𝑧 𝒆 . (62)
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Fig. 6. Discretization of the equivalent point sprue problem in the plane and the thickness direction.

Here, 𝑟M and 𝜑M describe the position of 𝒙M relative to the origin  in the (𝒆1, 𝒆2)-plane using cylindrical coordinates (Fig. 6(a)).
The coordinate 𝑧M describes the according component in thickness (𝒆3) direction (Fig. 6(b)). The locations of the supporting points
𝒙𝐼 with 𝐼 = 1..8 can be calculated analogously. Since the numerical solutions of the continuous problem only depend on the radii
𝑟𝐼 and the thickness coordinates 𝑧I, the fiber orientation tensors in the vertices A𝐼 = Anum(𝒙𝐼 ) can be computed. Similarly, the
fiber orientation tensor in the middle of the cell can be computed AM = Anum(𝒙M). In the following, the calculated fiber orientation
tensors in the middle AM and the vertices A𝐼 are considered exact. Therefore, they can be used to evaluate the performance of the
shape interpolation methods S from Section 4.

The fiber orientation tensors A𝐼 at the eight vertices of the cell are used as support points. The fiber orientation tensor AM,
which is located in the center of the cell, is used as a comparison value for the interpolation Ā. Since the vertices 𝒙𝐼 each have
the same distance to the center 𝒙M, the weights at the supporting points can be chosen to be equal 𝑤𝐼 = 0.125 for 𝐼 = 1..8. The
fiber orientation tensors calculated at the supporting points A𝐼 are given in the basis system {𝒆r , 𝒆𝜑, 𝒆z}. In order to perform the
interpolation of the fiber orientation tensors, they must be given in the same basis system. Therefore, the fiber orientation tensors
A𝐼 are transformed into the basis system {𝒆1, 𝒆2, 𝒆3}. The angle 𝜑M is chosen 𝜑M = 𝜋∕6.

5.3.2. Error metrics
In order to compare the interpolation results Ā with the numerical solution, scalar evaluation metrics are required. In total three

rotation invariant scalars 𝑓 (A) are used

‖A‖ =
√

A ⋅ A, FA4(A) =
‖A − AIso

‖

‖A‖
and 𝐾⟨4⟩

2 (A) = ‖ (A[𝑰])′ ‖. (63)

The analogous quantities for second-order tensors 𝑨 have already been used by Krauß and Kärger [9] to evaluate their interpolation
results. Therefore, ‖A‖ and FA4(A) will be used again for fourth-order fiber orientation tensors A. The invariant 𝐾⟨4⟩

2 (A) is used
because it is part of the orthogonal invariants [22] that were very suitable for the shape interpolation of second-order tensors 𝑨.
The fiber orientation tensors in the cell center AM, which are calculated by means of the numerical solution, are used as the reference
solution. In each case, the relative errors 𝜀rel are considered

𝜀rel =
𝑓 (Ā) − 𝑓 (AM)

𝑓 (AM)
. (64)

5.3.3. Results and discussion for fixed relative mesh sizes
Fig. 7 shows the relative errors of the different interpolation methods for the problem described in Section 5.3.1. The

closure-based interpolation method (CL) is used as a comparison interpolation method. The CL-method interpolates the according
second-order fiber orientation tensors 𝑨𝐼 by using the methods from Krauß and Kärger [9]. Afterwards, the resulting interpolated
tensor 𝑨̄CL is mapped to ĀCL using the IBOF-closure [56]. To perform the IBOF-closure, fiberoripy [57] is used.

All evaluated error measures are defined in Section 5.3.2. The considered parameter set is given by
𝑧M
𝑧

= 0.3,
𝑣min,0

𝑣
= 0.3, 𝜅e = 0.3,

𝛥𝑥
𝑟

= 1, 𝑎C = 10 and 𝛥𝑧 =
𝛥𝑥

√
. (65)
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Fig. 7. Relative errors for an isotropic initial value Anum
0 and the parameterset from Eq. (65). (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

s an initial value Anum
0 , the isotropic fiber orientation tensor AIso is used since it guarantees orthotropic solutions Anum for all radii

𝑟. The trajectories of the relative errors in Fig. 7 partially overlap. In order to clearly distinguish the progressions of the different
interpolation methods, the trajectories are marked by colored dots. In the limit 𝑟M∕𝑟0 → ∞ (not shown in Fig. 7) the deviations of
all interpolation methods disappear.

In general, Fig. 7 shows that the EU-method (red, Eq. (7)) produces the worst interpolation results for all considered errors.
Similar to the DBC-method (purple, Section 4.3.1), the EU-method averages the tensor components in a Euclidean manner. However,
the DBC-method rotates the tensors to their shape-defining coordinate system to realize the decomposition into orientation- and
shape-defining features. This indicates that an interpolation method, where the tensor shape is separated from the tensor orientation,
generally provides better results than Euclidean averaging of the tensor components in the global basis system.

The relative errors of the DBC-method, the DI-method (blue, Section 4.3.2) and the OI-method (turquoise, Section 4.3.3) hardly
differ from each other. To interpolate the tensor shape using the OI- or the DI-methods, tensor invariants are calculated and
interpolated. Hence, these interpolation methods are more complex than the DBC-method. The DBC-method does not require the
calculation of tensor invariants (and an associated return path). Nevertheless, the DBC-method yields results that are not inferior to
the results of the other decomposition-based interpolation methods.

The deviation of the results from the CL-method (green) is significantly smaller than that from the EU-method (red). Nevertheless,
they clearly stand out from the deviations of the other interpolation methods. In particular, the deviations in the errors ‖ ⋅ ‖ and
FA4(⋅) for large normalized radii (𝑟M∕𝑟0 > 3) should be emphasized here. The reason for these characteristic deviations in the range
𝑟M∕𝑟0 > 3 is that the IBOF-closure cannot map the averaged second-order fiber orientation tensor 𝑨̄CL to AM. For this reason, the
deviation of the CL-method appears like a systematic error in the interpolation. For large normalized radii 𝑟M∕𝑟0 → ∞, the numerical
solution Anum is a unidirectional fiber orientation tensor, which can be obtained by the used IBOF-closure [56]. Because of this, the
deviation of the CL-method vanishes in the limit 𝑟M∕𝑟0 → ∞. For the error measure 𝐾⟨4⟩

2 , the curve of the CL-method (green) lies on
the curves of the decomposition-based interpolation methods. The reason for this is that the second-order fiber orientation tensors
𝑨, which are interpolated in the CL-method, rely on the tensor invariants 𝐾⟨4⟩

1 , 𝐾⟨4⟩
2 and 𝐾⟨4⟩

3 in the same way as the OI-method
(turquoise) and the DI-method (blue).

5.3.4. Results and discussion for variable relative mesh sizes
In Fig. 8, the relative deviations of the error measures defined in Section 5.3.2 are plotted for different normalized in-plane mesh

sizes 𝛥 ∕𝑟 . Fig. 8 can be used to examine how a change of the in-plane mesh size 𝛥 ∕𝑟 affects the error measures considered. For
17
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Fig. 8. Relative errors for an isotropic initial value Anum
0 and variable mesh sizes 𝛥𝑥∕𝑟0 ∈ [0.5..2]. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

the interpolation, the EU-method (red), the CL-method (green) and the shape interpolation using DI (blue) are used. The considered
parameter set is

𝑧M
𝑧0

= 0.3,
𝑣min,0

𝑣max,0
= 0.3, 𝜅e = 0.3,

𝛥𝑥
𝑟0

= [0.5..2], 𝑎C = 10 and 𝛥𝑧 =
𝛥𝑥

√

2𝑎C
. (66)

Note that the aspect ratio of the cell 𝑎C is considered constant. Thus, the cell becomes thicker with an increasing in-plane mesh size
𝛥𝑥∕𝑟0.

Fig. 8 reveals that the EU-method exhibits the largest errors for small normalized radii (𝑟M∕𝑟0 < 4). In contrast, the relative errors
of the DI-method, for the same normalized in-plane mesh size 𝛥𝑥∕𝑟0, consistently remain smaller than those of the EU-method. For
the error measure 𝐾⟨4⟩

2 , the relative errors of the CL-method align with those of the DI-method. This alignment is attributed to both
the DI-method and the CL-method, relying on the same orthogonal invariants 𝐾⟨2⟩

𝑖 for shape interpolation.
For large normalized radii (𝑟M∕𝑟0 > 4) and small normalized in-plane mesh sizes (𝛥𝑥∕𝑟0 < 0.75), the relative errors for the

norm ‖ ⋅ ‖ and the relative anisotropy FA4(⋅) of the EU-method are smaller than those of the CL-method. The reason for this is that
the IBOF-closure cannot map the interpolated second-order fiber orientation tensor 𝑨̄CL to the numerical solution AM. For large
normalized radii (𝑟M∕𝑟0 > 4) and small normalized in-plane mesh sizes (𝛥𝑥∕𝑟0 < 0.75), the error caused by the closure is larger
than that caused by the interpolation. For small normalized radii (𝑟M∕𝑟0 < 4) and large normalized mesh sizes 𝛥𝑥∕𝑟0 > 0.75, the
CL-method (green) consistently outperforms the EU-method (red).

The relative deviations of the EU- method and the DI-method become smaller with decreasing normalized in-plane mesh sizes
𝛥𝑥∕𝑟0. Considering FA4(⋅), the EU-method gives similar good results with 𝛥𝑥∕𝑟0 = 0.5 as the DI-method with 𝛥𝑥∕𝑟0 = 1.625.
Considering 𝐾⟨4⟩

2 , the EU-method gives similar good results for 𝛥𝑥∕𝑟0 = 0.5 as the DI-method with 𝛥𝑥∕𝑟0 = 1.25. This shows that the
DI-method is able to give similar good interpolation results as the EU-method for much coarser meshes. In this specific example,
the in-plane edge length of the hexahedral cells in Fig. 6(b) can be increased to about two to three times that of the EU-method.
This allows the DI-method to achieve similar interpolation results without a significant increase in relative deviation.

Considering the error measure FA4(⋅) for large normalized radii (𝑟M∕𝑟0 > 3), the relative deviations of the CL-method are smaller
for large normalized mesh sizes 𝛥𝑥∕𝑟0 than for small normalized mesh sizes. This unexpected behavior is attributed to the employed
closure approach. For small normalized radii (𝑟M∕𝑟0 < 4), the interpolated second-order fiber orientation tensor 𝑨̄ does not map
to A due to the IBOF-closure. Therefore, for smaller normalized mesh sizes 𝛥 ∕𝑟 , the relative error of FA (⋅) approaches the
18
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systematic error caused by closure. This error is problem-specific and may not solely reflect the quality of the interpolation method
itself.

5.4. Summary of interpolation results

Overall, the EU-method consistently yields the poorest interpolation results across all scenarios. As the spatial discretization
𝑥∕𝑟0 is refined, the errors decrease rapidly, and the interpolation results converge towards the exact solution. All results obtained
sing the EU-method are admissible fourth-order fiber orientation tensors.

The CL-method outperforms the EU-method significantly for small normalized radii (𝑟M∕𝑟0 < 3) and large normalized mesh sizes
𝛥𝑥∕𝑟0 > 0.75), but not always for small normalized mesh sizes (𝛥𝑥∕𝑟0 < 0.75). The slower convergence of the CL-method to the

exact solution is attributed to the systematic error introduced by the closure. However, exclusively for small normalized mesh sizes
and strongly aligned grid points (here 𝑟M∕𝑟0 ≫ 5), the CL-method is inferior to the EU-method. Despite this, the CL-method yields
admissible fourth-order fiber orientation tensors, and its computational effort is comparatively small, leveraging well-established
methods from literature [9,57]. In conclusion, the CL-method serves as a viable alternative to the EU-method.

The DBC-method consistently provides excellent interpolation results, yielding admissible fourth-order fiber orientation tensors.
It is a comparatively simple interpolation method since it does not require the calculation of any tensor invariants. Its simplicity and
superior performance, compared to the EU-method, highlight the effectiveness of separating tensor shape and orientation in spatial
interpolation of fourth-order tensors. In conclusion, the DBC-method can be evaluated as a very good and efficient alternative to
the EU-method.

The DI-method and OI-method are evaluated together for all errors since their relative deviations coincide. In each case, six tensor
invariants are used for interpolation. Both interpolation methods utilize the three orthogonal invariants 𝐾⟨2⟩

𝑖 . Both methods provide
excellent interpolation results. For the DI- and the OI-method, tensor invariants have to be calculated. Despite their algorithmic
complexity, requiring the calculation of tensor invariants and the return path to the shape of the averaged fourth-order fiber
orientation tensor, the DI- and OI-methods did not outperform the simpler DBC-method in the considered example. Nonetheless,
the DI- and OI-methods are viable alternatives to the EU-method.

In Section 5.3.4 the influence of the normalized mesh size 𝛥𝑥∕𝑟0 on the interpolation result of the DI-, the CL- and the EU-method
were investigated. It was shown that the EU-method can only reach equally decent results (compared to the DI-method) with much
finer meshes.

6. Conclusion and outlook

This work presents the development of interpolation methods for the decomposition-based interpolation of fourth-order fiber
orientation tensors. Section 2 provides an overview of the related works. A literature review on spatial interpolation of fourth-
order tensors indicates that the topic has not yet been considered in a mechanical context. Currently, the state of the art is limited
to interpolation methods for averaging second-order tensors.

Section 4 describes the extraction of orientation- and shape-describing features from orthotropic fourth-order fiber orientation
tensors. In contrast to second-order fiber orientation tensors, spectral decomposition did not provide an adequate decomposition of
orientation- and shape-describing features for fourth-order fiber orientation tensors. However, known methods can be utilized for the
interpolation of orientation-describing features. For the interpolation of shape-describing features, different approaches with varying
complexity are described. Describing the shape of second-order tensors benefits from using tensor invariants whose gradients are
orthogonal. It was shown that the gradients of the tensor invariants used for second-order tensors are still orthogonal when described
by fourth-order tensors. Therefore, they serve as a proper choice to describe the shape of fourth-order orientation tensors.

Section 5 derives the numerical solution for a continuous problem from fluid mechanics. This solution is utilized to generate
reference data for the associated discrete problem. Based on the discrete problem, the interpolation methods developed in Section 4
are applied and evaluated. The results show a significant improvement in interpolation accuracy compared to conventional methods.

The new interpolation methods developed for the mechanical context of the CAE chain can significantly reduce information loss
between simulation steps. This results in overall improved simulation results for the holistic component design process. Additionally,
in design processes where a conventional mapping procedure requires a very fine mesh discretization, a coarser simulation mesh
can be selected in upstream and downstream simulation steps. This can save computing time while maintaining the quality of the
simulation results.

Within the scope of this work, only fiber orientation tensors with orthotropic material symmetry are considered. This is due to
the fact that most fiber orientation tensors related to the virtual manufacturing process are at least orthotropic. For measured fourth-
order fiber orientation tensors from 𝜇CT-scans, which are triclinic rather than orthotropic, the developed interpolation techniques
cannot be applied. This is due to the fact that it is impossible to find an orthonormal basis system that can distinctly describe the
triclinic tensor’s shape as outlined in this work. Therefore, future works will focus on the development of interpolation schemes for
triclinic fourth-order fiber orientation tensors.
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ppendix A. Orthogonality of tensor invariant gradients

The tensor invariants 𝐾⟨2⟩
𝑖 are defined in dependency on 𝑨 [22]

𝐾⟨2⟩
1 = tr(𝑨), 𝐾⟨2⟩

2 = ‖𝑨′
‖, 𝐾⟨2⟩

3 = 3
√

6
det(𝑨′)
‖𝑨′

‖

3
. (67)

Krauß and Kärger [9] used them to interpolate tensor shapes. Good interpolation results were achieved using these tensor invariants.
Note that the invariants 𝐾⟨2⟩

𝑖 and 𝐾⟨4⟩
𝑖 are equal but given in different dependencies. In the following, it is proved that the invariants

𝐾⟨4⟩
1 , 𝐾⟨4⟩

2 and 𝐾⟨4⟩
3 , which depend on A, still satisfy the orthogonality condition

𝜕𝐾⟨4⟩
𝑖

𝜕A
⋅
𝜕𝐾⟨4⟩

𝑗

𝜕A
= 0 ∀𝑖 ≠ 𝑗. (68)

The tensor invariants 𝐾⟨4⟩
𝑖 are utilized in both the DI-method (Section 4.3.2) and the OI-method (Section 4.3.3) to average tensor

shapes.
To prove the condition, the identity 𝑨 = A[𝑰] is used to apply the chain rule to the derivatives in Eq. (68). In index notation the

condition is derived as follows (𝛼 = 1, 2, 3)

𝜕𝐾⟨4⟩
𝛼

𝜕A
=̂

𝜕𝐾⟨4⟩
𝛼

𝜕𝐴𝑖𝑗𝑘𝑙
=

𝜕𝐾⟨2⟩
𝛼

𝜕𝐴𝑚𝑛

𝜕𝐴𝑚𝑛
𝜕𝐴𝑖𝑗𝑘𝑙

=
𝜕𝐾⟨2⟩

𝛼
𝜕𝐴𝑚𝑛

𝜕𝐴𝑚𝑛𝑜𝑜
𝜕𝐴𝑖𝑗𝑘𝑙

=
𝜕𝐾⟨2⟩

𝛼
𝜕𝐴𝑚𝑛

𝛿𝑖𝑚𝛿𝑗𝑛𝛿𝑘𝑙 =
𝜕𝐾⟨2⟩

𝛼
𝜕𝐴𝑖𝑗

𝛿𝑘𝑙 . (69)

q. (69) shows that the gradients of 𝐾⟨4⟩
𝛼 can be displayed in dependency of 𝑨. The condition is reformulated in symbolic notation

𝜕𝐾⟨4⟩
𝛼

𝜕A
=

𝜕𝐾⟨2⟩
𝛼

𝜕𝑨
⊗ 𝑰 (70)

The gradients of 𝐾⟨2⟩
𝛼 are calculated by Ennis and Kindlmann [22]. They satisfy the condition

𝜕𝐾⟨2⟩
𝑖

𝜕𝑨
⋅
𝜕𝐾⟨2⟩

𝑗

𝜕𝑨
= 0 ∀𝑖 ≠ 𝑗. (71)

The orthogonality condition in Eq. (68) can be evaluated by using the result from Eq. (70) and the condition from Eq. (71)

𝜕𝐾⟨4⟩
𝑖

𝜕A
⋅
𝜕𝐾⟨4⟩

𝑗

𝜕A
=

(

𝜕𝐾⟨2⟩
𝑖

𝜕𝑨
⊗ 𝑰

)

⋅
⎛

⎜

⎜

⎝

𝜕𝐾⟨2⟩
𝑗

𝜕𝑨
⊗ 𝑰

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝜕𝐾⟨2⟩
𝑖

𝜕𝑨
⋅
𝜕𝐾⟨2⟩

𝑗

𝜕𝑨

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

⊗𝑰

= 0, ∀𝑖 ≠ 𝑗. (72)

Eq. (72) shows that the gradients of the tensor invariants 𝐾⟨4⟩ (𝑖 = 1, 2, 3) are orthogonal.
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Appendix B. Analytical solution for the point sprue problem

The following section presents the equations that analytically solve the continuous problem discussed in Section 5.1. Note that
he equations are derived for the special case where the velocity vector 𝒗 is independent of the plate thickness (e.g., 𝑣max,0 = 𝑣min,0).
herefore, the analytical method is not valid for all cases.

In cylindrical coordinates the components are (in Mandel notation)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴rrrr 𝐴rr𝜑𝜑 𝐴rrzz
√

2𝐴rr𝜑𝑧
√

2𝐴rrrz
√

2𝐴rrr𝜑

𝐴𝜑𝜑𝜑𝜑 𝐴𝜑𝜑zz
√

2𝐴𝜑𝜑𝜑z
√

2𝐴𝜑𝜑rz
√

2𝐴𝜑𝜑r𝜑

𝐴zzzz
√

2𝐴zz𝜑𝑧
√

2𝐴zzrz
√

2𝐴zzr𝜑

sym.
2𝐴𝜑𝜑zz 2𝐴zz𝜑z 2𝐴𝜑𝜑rz

2𝐴rrzz 2𝐴rr𝜑z
2𝐴rr𝜑𝜑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝜉 ⊗ 𝑩𝜁 . (73)

he Mandel basis vectors are

𝑩1 = 𝒆r ⊗ 𝒆r , 𝑩4 =

√

2
2

(𝒆𝜑 ⊗ 𝒆z + 𝒆z ⊗ 𝒆𝜑),

𝑩2 = 𝒆𝜑 ⊗ 𝒆𝜑, 𝑩5 =

√

2
2

(𝒆r ⊗ 𝒆z + 𝒆z ⊗ 𝒆r ),

𝑩3 = 𝒆z ⊗ 𝒆z, 𝑩6 =

√

2
2

(𝒆r ⊗ 𝒆𝜑 + 𝒆𝜑 ⊗ 𝒆r ).

o ensure a clear notation, the following abbreviation 𝛼(𝑟) for the denominator is defined as follows

𝛼(𝑟) =
(

−2𝐴𝜑𝜑𝑧𝑧0 + 1 − 2𝐴𝑟𝑟𝑧𝑧0 − 𝐴𝑟𝑟𝑟𝑟0 − 𝐴𝜑𝜑𝜑𝜑0
)

𝑟0
4𝜅e + 2𝑟2𝜅e 𝑟02𝜅e𝐴𝜑𝜑𝑧𝑧0

+ 2𝑟−2𝜅e 𝑟06𝜅e𝐴𝑟𝑟𝑧𝑧0 + 𝑟−4𝜅e 𝑟0
8𝜅e𝐴𝑟𝑟𝑟𝑟0 + 𝑟4𝜅e𝐴𝜑𝜑𝜑𝜑0. (74)

inally, the components of the fourth-order fiber orientation tensor that solve the problem in Section 5.1 (for velocity vectors 𝒗 that
re independent of the plate thickness) can be calculated by

𝐴ana
rrrr (𝑟) =

𝐴rrrr0𝑟−4𝜅e 𝑟08𝜅e
𝛼(𝑟)

, 𝐴ana
𝜑𝜑𝜑z(𝑟) =

𝐴𝜑𝜑𝜑z0𝑟0𝜅e 𝑟3𝜅e

𝛼(𝑟)
,

𝐴ana
rr𝜑𝜑(𝑟) =

𝐴rr𝜑𝜑0𝑟04𝜅e

𝛼(𝑟)
, 𝐴ana

𝜑𝜑𝑟𝑧(𝑟) =
𝐴𝜑𝜑rz0𝑟03𝜅e 𝑟𝜅e

𝛼(𝑟)
,

𝐴ana
rrzz(𝑟) =

𝐴rrzz0𝑟−2𝜅e 𝑟06𝜅e
𝛼(𝑟)

, 𝐴ana
𝜑𝜑r𝜑(𝑟) =

𝐴𝜑𝜑r𝜑0𝑟2𝜅e 𝑟02𝜅e

𝛼(𝑟)
,

𝐴ana
rr𝜑z(𝑟) =

𝐴rr𝜑z0𝑟05𝜅e 𝑟−𝜅e

𝛼(𝑟)
, 𝐴ana

zzzz(𝑟) =
𝐴zzzz0𝑟04𝜅e

𝛼(𝑟)
,

𝐴ana
rrrz(𝑟) =

𝐴rrrz0𝑟07𝜅e 𝑟−3𝜅e
𝛼(𝑟)

, 𝐴ana
zz𝜑z(𝑟) =

𝐴zz𝜑z0𝑟03𝜅e 𝑟𝜅e

𝛼(𝑟)
,

𝐴ana
rrr𝜑(𝑟) =

𝐴rrr𝜑0𝑟06𝜅e 𝑟−2𝜅e

𝛼(𝑟)
, 𝐴ana

zzrz(𝑟) =
𝐴zzrz0𝑟05𝜅e 𝑟−𝜅e

𝛼(𝑟)
,

𝐴ana
𝜑𝜑𝜑𝜑(𝑟) =

𝐴𝜑𝜑𝜑𝜑0
𝑟4𝜅e

𝛼(𝑟)
, 𝐴ana

zzr𝜑(𝑟) =
𝐴zzr𝜑0𝑟04𝜅e

𝛼(𝑟)
,

𝐴ana
𝜑𝜑zz(𝑟) =

𝐴𝜑𝜑zz0𝑟2𝜅e 𝑟02𝜅e

𝛼(𝑟)
,

where the components 𝐴ana
𝑖𝑗𝑘𝑙0 denote the components of the initial fiber orientation tensor Aana

0 .
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