KIT | KIT-Bibliothek | Impressum | Datenschutz

Modelling of heat transfer and pressure drop during flow boiling of CO$_2$ in a horizontal tube with periodic open cellular inserts

Bender, Jonas 1; Dubil, Konrad ORCID iD icon 2; Korn, Franz 1; Wetzel, Thomas 2; Dietrich, Benjamin 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Thermische Verfahrenstechnik (TVT), Karlsruher Institut für Technologie (KIT)

Abstract:

During flow boiling in horizontal tubes, highly porous inserts can improve the wetting of the tube wall and the convective boiling. The literature focuses on solid sponge structures with irregular cell geometries. Hence, in this work the local heat transfer and pressure drop during flow boiling of CO$_2$ in periodic open cellular structures with cubic and Kelvin cell geometry were investigated. A strong influence of the cell geometry on the heat transfer and pressure drop was found. By combining the Forchheimer term with a two-phase flow method (homogeneous model, drift flux model) a new pressure drop model is proposed. The model has a mean absolute percentage error (MAPE) of 12% . Regarding the heat transfer, high-speed video recordings and an evaluation of the local heat transfer were used to test the tube segments for complete wetting. Thereafter, the convective boiling contribution was extracted from the local data of completely wetted tube segments by subtracting the nucleate boiling contribution. A separate model of the convective boiling is proposed for each cell type. The models have a MAPE of 20% . Finally, the circumferentially averaged heat transfer coefficient was found to follow a superposition of the heat transfer of the liquid and vapor phase.


Verlagsausgabe §
DOI: 10.5445/IR/1000172612
Veröffentlicht am 19.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Thermische Verfahrenstechnik (TVT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 0255-2701, 1873-3204
KITopen-ID: 1000172612
Erschienen in Chemical Engineering and Processing - Process Intensification
Verlag Elsevier
Band 203
Seiten Art.-Nr.: 109891
Vorab online veröffentlicht am 07.07.2024
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page