KIT | KIT-Bibliothek | Impressum | Datenschutz

Strained single crystal high entropy oxide manganite thin films

Zhao, Zhibo 1; Waqar, Moaz; Jaiswal, Arun Kumar 2; Raghavan, Aaditya Rangan; Fuchs, Dirk 2; Lin, Jing 1; Brezesinski, Torsten ORCID iD icon 1; Bhattacharya, Subramshu S.; Hahn, Horst 1; Pan, Xiaoqing; Kruk, Robert 1; Sarkar, Abhishek 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

The ability to accommodate multiple principal cations within a single crystallographic structure makes high entropy oxides (HEOs) ideal systems for exploring new composition–property relationships. In this work, the high-entropy design strategy is extended to strained single-crystal HEO-manganite (HEO-Mn) thin films. Phase-pure orthorhombic films of (Gd$_{0.2}$ La$_{0.2}$ Nd$_{0.2}$ Sm$_{0.2}$ Sr$_{0.2}$ )MnO$_{3}$ were deposited on three different single-crystal substrates: SrTiO$_{3}$ (STO) (100), NdGaO$_{3}$ (110), and LaAlO$_{3}$ (LAO) (100), each inducing different degrees of epitaxial strain. Fully coherent growth of the thin films is observed in all cases, despite the high degree of lattice mismatch between HEO-Mn and LAO. Magnetometry measurements reveal distinct differences in the magnetic properties between epitaxially strained HEO-Mn thin films and their bulk crystalline HEO counterparts. In particular, the bulk polycrystalline HEO-Mn shows two magnetic transitions as opposed to a single one observed in epitaxial thin films. Moreover, the HEO-Mn film deposited on LAO exhibits a significant reduction in the Curie temperature, which is attributed to the strong variation of the in-plane lattice parameter along the thickness of the film and the resulting changes in the Mn–O–Mn bond geometry. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172613
Veröffentlicht am 23.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2024
Sprache Englisch
Identifikator ISSN: 0003-6951, 1520-8842, 1077-3118
KITopen-ID: 1000172613
Erschienen in Applied Physics Letters
Verlag American Institute of Physics (AIP)
Band 125
Heft 1
Seiten Art.-Nr.: 011902
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page