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A B S T R A C T   

Excavators are crucial in the construction industry, and developing autonomous excavator systems is vital for 
enhancing productivity and reducing the reliance on manual labor. Accurate estimation of the volume of the 
excavator bucket fill is key for monitoring and evaluating system automation performance. This paper presents 
the use of 2D depth maps as input to a Faster Region Convolutional Neural Network (Faster R-CNN) deep 
learning model for bucket volume estimation. This structure enables high estimation accuracy while maintaining 
fast processing speed. An excavator operation monitoring test bench was established, and the datasets used in the 
study were self-generated for training. A loss function is proposed, combining Cross Entropy with Root Mean 
Squared Error to improve generalization and precision. Comparative results indicate that the proposed approach 
achieves 96.91% accuracy in fill factor estimation and predicts in real-time at about 10 fps, highlighting its 
potential for practical use in automated excavator operations.   

1. Introduction 

Excavators are widely applied in construction and mining industries 
[1], and they are commonly operated in harsh and challenging envi
ronments that require experienced manual labor. Thereby, the auto
mation of excavators has practical significance in enhancing operation 
safety and increasing productivity while reducing the need for highly 
skilled operators [2]. 

The payload volume filled in the bucket is a significant factor indi
cating the productivity of earth-moving machines [3]. Real-time esti
mation of bucket filling volume is one of the key tasks of automatic 
construction machines [4], which can contribute to monitoring and 
improving productivity by observing the effective volume of material 
dug and moved by buckets. Meanwhile, it can also prevent the con
struction machines (e.g. excavators) from potential hazards due to 
contact with uncertain working conditions. To achieve a reliable bucket 
fill estimation system, high estimation accuracy and efficient high real- 
time estimation performance are mandatory. 

1.1. Related works 

Numerous studies have been conducted on the estimation of material 
fill in earth-moving industries [5]. In the tasks of material fill estimation, 
weight-based estimation is often utilized in industrial settings, this 
method estimates fill by weighing containers. Dadhich and Bodin pro
posed a method in which the fill factor can be quantified using a 
weighing scale system integrated within the machine during the lifting 
of the bucket. A weighing scale system uses the pressure in the cylinders 
to calculate the loaded weight [6]. This approach allows the direct 
measurement of the load, however, in practical scenarios, the fill level of 
the excavator bucket varies with multiple factors such as particle den
sity, and moisture content [7]. In contrast, measuring the volume of the 
excavator bucket directly reflects its fill status without the need to 
consider the density of the material particles. Considering that in dy
namic systems, volume is difficult to obtain directly through measure
ments, computer vision-based volume measurement is an effective 
means of obtaining space information. In the task of volume estimation, 
computer vision-based measurement of volumes would commonly be 
deployed in scenarios in which 3D information is required [8]. Usually, a 
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depth sensor can be utilized to obtain 3D spatial information [9]. 
Commonly used are stereo cameras, LiDAR, or sonar. These sensors 
provide spatial information, typically in the form of 3D point clouds or 
2D depth maps. 

1.1.1. Non-learning-based 3D object volume estimation 
Non-learning methods can achieve high accuracy in volume esti

mation tasks when reliable three-dimensional spatial information is 
available as input. Volume estimation tasks benefit from accurate 
measurements of objects' shape and size. Non-learning methods do not 
require the construction of datasets and training networks, but obtain 
the volume of 3D objects by processing 3D information such as point 
clouds [3]. For example, in scenarios where high-quality point cloud 
data is available, projection-based techniques, as detailed in [10], stand 
out as the preferred choice for 3D object detection tasks. Chang and Wu 
presented a method for object volume estimation using a 3D point cloud. 
This method incorporates slicing coupled with the least squares 
approach. Specifically, it applies least squares curve fitting to determine 
the contour of each slice [11]. Guevara presented a method using point 
clouds to represent the volume of the skid steer. The volume is estimated 
with point cloud data by capturing the bucket state and then matching it 
with a pre-built model of the empty bucket [12]. J. Lu introduced a 3D 
point cloud-based method coupled with a position sensor to estimate the 
fill volume of wheel loaders [13]. Although achieving high precision, it 
had low processing speeds of up to 2 s, which limited the real-time 
monitoring performance. In addition, the processing of 3D point 
clouds requires significant computational effort [14], which could limit 
its application in industries. 

1.1.2. Learning-based volume estimation 
A load-weight-based bucket fill study by S. Dadhich implemented a 

time-delayed neural network (TDNN) for estimating the fill factor in a 
loader's bucket filled with medium coarse gravel [5], utilizing pressures 
in the lift and tilt hydraulic cylinders as input features. While this 
approach achieves efficient fill estimation for loaders, its generalization 
ability may be limited when applied to excavators, which typically 
handle more diverse excavation materials. 

Computer vision-based methods can be effective solutions for bucket 
fill estimation. Estimating the volume of objects from 2D images is a 
challenging task due to the loss of depth information. However, with the 
advancement of computer vision and deep learning techniques, it has 
become feasible to approximate the volume of objects using single or 
multiple 2D images [15]. Monocular vision-based 2D object identifica
tion (produced by RGB cameras) has been employed to enhance 
numerous automated monitoring systems, benefiting both safety and 
productivity [16]. Since there is no depth information available, tradi
tional computer vision methods can only be applied with certain re
strictions. Prasad introduced a method for single-view reconstruction to 
model smooth shapes from their apparent contours [17]. Choy and 
colleagues introduced a comprehensive method for 3D reconstruction 
using 3D convolutional networks and LSTM, which produces a 3D voxel- 
based representation of the corresponding objects [18]. 

Furthermore, binocular images generated from stereo vision that 
contain depth information are simply called depth maps. Representing 
3D objects using depth maps involves the process of capturing the three- 
dimensional structure of objects or environments based on depth in
formation [19,20]. In contrast to traditional RGB images, depth maps 
contain information about the distance of objects from the camera, 
allowing a more direct estimation of 3D structures. A typical explored 
area is human pose estimation using neural networks [21], where 2D 
images serve as input and the output consists of the three-dimensional 
orientations of human limbs [22]. 

In the field of deep-learning applications for estimating bucket fill of 
construction equipment, Alam [23] presented a deep learning-based 
approach for estimating earth volume in large-scale engineering pro
jects. The models were trained and evaluated using RGB images of trucks 

loaded with varying amounts of fill. However, the evaluation did not 
include tests with data outside the training set, and the training data was 
collected exclusively from a toy truck, leaving the generation ability of 
the model questionable. Lu introduced a learning-based method to es
timate the fill factor of the machine [24], in which a faster region con
volutional neural network (Faster R-CNN) [25] is used for feature 
extraction and classification. The final value for the bucket fill factor is 
obtained through classification and probabilistic-based methods in the 
post-processing stage, in which large data sets are required during 
training for higher accuracy. In the study by W. Guan [4], Mask R-CNN 
was employed for estimating the fill factor of a wheel loader, achieving 
high accuracy. Despite constructing a large dataset of over 75,000 im
ages, the test set required more volume division categories. This issue 
typically arises when fill factor estimation is treated as a classification 
task. 

In summary, volume prediction based on 2D images can significantly 
reduce the computation time and achieve fast processing speed, which is 
crucial for real-time dynamic estimation in industrial applications. As 
2D images, the depth map contains 3D information and is a suitable 
input for the neural network. However, accurate volume estimation 
requires a large amount of training data to ensure the estimation per
formance, which is a typical challenge for learning-based computer 
vision techniques, especially in the presence of data outside the training 
set (i.e., out-of-distribution data). Therefore, it is significant to improve 
the generation capability of deep learning-based methods. 

1.1.3. Deep learning methods in autonomous detection 
In the field of using deep learning-based approaches in autonomous 

target detection, recent publications [26] emphasize the significance of 
achieving high Mean Average Precision (mAP) values and real-time 
processing performance (i.e., frames per second, FPS). Among the 
most popular target detection models, YOLO (You Only Look Once) is 
widely used in autonomous driving and engineering machinery due to 
its efficient real-time processing, although it may sacrifice accuracy, 
especially for small objects [27,28]. 

In contrast, models with a two-stage architecture, such as the above- 
introduced Faster R-CNN, often achieve higher accuracy and better 
localization, making them effective in scenarios with challenging small 
objects or instances that require precise localization [29]. In addition, in 
previous research [4], ResNet is often chosen as the backbone of the 
learning framework, facilitating efficient feature extraction from input 
images which are subsequently used by the Faster R-CNN framework. 
Furthermore, a study by T. Mahendrakar compared Faster R-CNN and 
YOLOv5 and showed that Faster R-CNN performed better in terms of 
accuracy and YOLOv5 had faster inference rates [30]. 

In the task of this study, the requirement for high real-time pro
cessing speed for volume estimation is fulfilled by using depth map, so 
accuracy is a higher priority when selecting the deep learning network. 
Therefore, Faster R-CNN proves to be a suitable choice as it provides 
acceptable real-time performance while ensuring high accuracy. 

1.2. Contributions 

This study proposes a solution for estimating the volume of excavator 
bucket fill. It combines the Faster R-CNN deep learning architecture with 
depth maps as input. This framework is specifically designed for 
classification-regression tasks, enabling the neural network model to 
achieve accurate prediction for data not included in the training set. 
Meanwhile, it reduces computational complexity for higher real-time 
system performance.  

1. To improve the processing speed of fill level estimation, 2D depth 
maps are used as the input for the neural network. A Faster-RCNN 
network with ResNet50 as its backbone is implemented, facilitating 
the detection of the excavator bucket and estimation of its fill factor. 
Compared to traditional methods of processing 3D point clouds, this 
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approach significantly enhances efficiency while maintaining a high 
level of estimation accuracy.  

2. A computer vision recording platform integrated with an excavator 
test bench has been developed, enabling the collection of 1562 im
ages using a stereo camera. This dataset captures a wide range of fill 
degrees and various excavator poses, closely replicating real-world 
operating conditions. Furthermore, a comprehensive dataset anno
tation and distribution method has been established to facilitate 
effective training and testing of the model. 

3. Typically, deep learning-based volume fill factor estimation ap
proaches depend heavily on large training datasets to achieve high 
accuracy and generalization, often resulting in prolonged conver
gence times and weakness with data outside the training dataset. 

To address this issue, this study proposes a loss function that in
tegrates cross-entropy with Mean Squared Error, treating the bucket 
fill estimation as a combined classification-regression task. This 
approach prioritizes classification to categorize fill levels, and then it 
refines the estimation through regression within the identified clas
ses, resulting in high accuracy and efficiency, particularly for out-of- 
distribution data. 

Below is a detailed breakdown of the methodology into subsections, 
accompanied by a workflow diagram as presented by Fig. 1. (1) Depth 
Map Acquisition and Dataset: Experiments were conducted using an 
excavator test bench setup, and depth maps were acquired using stereo 
cameras. The dataset was organized into training and testing sets for 
model development and evaluation. (2) Methodology: A Faster R-CNN 
architecture was employed as the backbone of the neural network model 
for excavator bucket fill estimation, with a custom loss function inte
grating Cross Entropy and Mean Squared Error to guide the training 
process effectively. (3) Comparative Experiments and Analysis: The 
performance of the model was evaluated during the training phase, 
assessing metrics such as loss function convergence and accuracy. The 
trained model was then tested on unseen data to assess its generalization 
capability and accuracy in estimating excavator bucket fill levels. 

2. Depth map acquisition and dataset 

2.1. Depth map acquisition 

By employing 2D depth maps as input to the neural network, the 
processing time of the estimation can be shortened, thereby ensuring 
real-time estimating performance. To obtain a depth map, an excavation 
scene, including the fill level of the bucket, is continuously captured by 
two laser sensors, as shown in Fig. 2. Depth maps are generated using 

stereo vision techniques. By analyzing the disparity of the objects' pro
jections onto each sensor, the distance to these objects can be calculated, 
as shown in [31]. Finally, the bucket-fill factor can be estimated by post- 
processing the neural network output, which will be introduced in the 
next section. 

To prepare the dataset for training the volume estimation model, it's 
imperative to capture a variety of fill levels. To facilitate data collection, 
a custom data collection platform is implemented as shown in Fig. 3. The 
excavator used for this task is a Sany SY16C with a standard bucket 
capacity of 0.04 m3. Sand was chosen as the fill material because it 
tends to minimize volume discrepancies due to compression during 
transportation. To ensure standardized ground truth for each loading 
operation, a fixed-volume container is used, as shown in the figure, with 
dimensions of 34.5 cm × 24.5 cm × 17.5 cm, allowing for accurate 
measurement of the volume of the fill material. In addition, Fig. 4 shows 
a brief overview of the dataset annotation, including the depth map 
images aligning with fill factors. A Realsense d435i stereo camera is used 
to capture depth maps alongside RGB data. This camera is connected to a 
PC positioned in front of the excavator cabin and securely mounted on a 
tripod. This setup provides an advantageous vantage point for moni
toring bucket orientation and fill factor, closely matching the operator's 
perspective. 

The data recording process includes the following steps: 1) Fill factor 
selection: Select the desired fill factor and load the corresponding ma
terial into the bucket after confirming it with the ground truth; 2) 
Complete operation cycle: Perform a complete operation cycle for each 
fill factor, including rotation, sweeping, and dumping to simulate real 
excavator operations; 3) Operation recording: Record the excavation 
process with the depth camera, and store the data on the connected PC 
for future analysis and model training; 4) Data augmentation: For the 
training dataset, the following augmentation was applied to create 3 
versions of each source image:  

• Random brightness adjustment of between − 10% to +10%  
• Random exposure adjustment of between − 25% to +25%  
• Salt and pepper noise was applied to 2% of the pixels 

Depth Map Acquisition and Dataset

Test bench 
conduction

Depth map
acquisition

Dataset 
distribution

Faster-RCNN-
based model

Loss function 
development

Methodology

Comparative Experiments and Analysis

Training
evaluation

Test 
results

Fig. 1. Depth image with various filling factors.  

Depth imageDisparity map

Fig. 2. Depth map acquisition with a stereo camera.  

Fig. 3. Data acquisition platform.  
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2.2. Dataset annotation and distribution 

Following the data acquisition phase, the next steps involve anno
tating and distributing the datasets. 

To begin with, it is important to determine the specific labels or 
annotations required for the dataset. Images are categorized based on 
the bucket fill factor, with each fill level also including different bucket 
positions under different working poses. 

To improve the generalization ability of the network, the fill factors 
are distributed over a specific interval of 5% between each of the two 
closed classes. As shown in Fig. 5, the annotation for the training data 
within the 5% interval starts from 15% to 80%, such as 15% and 25%, 
and is used exclusively for training (and validation during training). 
Meanwhile, the data with the annotation for testing starts from 17.5% to 
77.5% also with 5% interval, such as 22.5% and 27.5%. This distribution 
strategy ensures that the network can perform accurate predictions for 
fill factors that are not explicitly covered during the training phase. Each 
class in the test set, which includes 13 classes in total, consists of 20 
images. 

In total, through the above steps, datasets of 1562 images are built 
and distributed as follows: a training dataset of 1251 depth images, a 
validation dataset of 51 depth images (used in the training phase), and 
an out-of-distribution (OOD) test dataset of 260 depth images. The im
ages were processed at a resolution of 640 × 480 pixels, which is a 
standard compressed size that reduces the computational complexity in 
real-time processing without compromising significant accuracy. 

Deep learning models are susceptible to overfitting, which is a 
common challenge due to dataset limitations. To address this issue, as 
explained above, the dataset was carefully designed to avoid excessive 
homogeneity. Specifically, the dataset is small but evenly distributed 
across different bucket fill levels, which helps prevent the model from 

becoming overly specialized in any one class. Furthermore, an effective 
way to verify whether overfitting occurs is to test the model on 
comprehensive OOD data. This step is critical because it demonstrates 
the model's ability to generalize well to new, unseen data, confirming 
that it is not simply memorizing the training set, but rather learning the 
underlying patterns necessary to make accurate predictions in diverse 
scenarios. These are the concerns behind the dataset annotation and 
distribution detailed above. 

3. Method 

3.1. Faster-RCNN-based neural network 

3.1.1. Neural network framework 
This study proposes a customized Faster-RCNN network architecture 

for the computer vision-based bucket-fill estimation. Furthermore, a loss 
function is designed that integrates Cross Entropy with Mean Squared 
Error to improve the accuracy and versatility of the neural network in 
handling classification-regression tasks. 

The Faster R-CNN is an advanced object detection algorithm that 
builds on the foundations of previous architectures such as R-CNN and 
Fast R-CNN [32]. Its primary innovation is the integration of the Region 
Proposal Network (RPN), a component that shares full-image convolu
tional features with the detection network, effectively eliminating the 
computational overhead associated with region proposal generation. 
The RPN is trained end-to-end to produce high-quality region proposals, 
which are then used by the Fast R-CNN for the final detection step. As a 
result of this design, the Faster R-CNN excels at object detection, 
achieving a remarkable combination of accuracy and speed. 

In this section, a customized network architecture is proposed to 
meet the specific requirements of the real-time estimation task, as shown 

20% 40% 60% 80%Fill Factor

Fig. 4. Depth map annotation with bucket fill factor.  

0 5 10 15 20 25 30 35 40 45 50

15
20
25
30

80
17.5
22.5
27.5
32.5

77.5

F
ill

in
g

fa
ct

o
r

[%
] Test

Training

Image data amount 

Fig. 5. Dataset distribution.  
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in Fig. 6. The modified network architecture is primarily based on the 
Faster R-CNN framework. Depth maps are used as the primary input 
data. These images undergo feature extraction using the ResNet-50 
backbone [33], a deep convolutional neural network known for its 
ability to capture intricate patterns and fine details. The ResNet50 
backbone is responsible for extracting high-level features from the input 
images, and these features are then used by the Faster R-CNN framework 
for further fill volume estimation. There are various options for back
bone selection, such as VGG16 and ResNet101. The reason why 
ResNet50 is selected is that it strikes a balance between model depth and 
computational efficiency. 

In addition, the extracted features are used by the Region Proposal 
Network (RPN), which collaborates with the Region of Interest (RoI) 
pooling layer, ensuring that both components leverage shared features 
to improve estimation performance. Following RoI pooling, the network 
uses a fully connected (FC) layer to derive the classification results. The 
outputs include bounding box coordinates and predicted object classes 
(i.e., real-time fill factor), and their associated probability scores, 
providing a comprehensive solution to the bucket-fill estimation task. 

3.1.2. Loss function design 
As mentioned above, the primary outputs include the bounding box 

coordinates and the predicted object classes, especially regarding the 
real-time fill factor. 

In the context of classical classification tasks, the typical output, as 
shown in Table 1, typically consists of one or more classes, each 
accompanied by an associated probability score. This is facilitated by the 
use of specialized activation functions tailored to the needs of classifi
cation, such as sigmoid activation and softmax, which ensure that the 
resulting probabilities sum to one and remain in the [0,1] range. How
ever, a significant challenge arises when confronted with the fill factor, a 
continuous numerical value that inherently transforms the classification 
task into a regression. While a straightforward approach might involve 
linear regression with a linear activation function, the unique charac
teristics of our depth features, which lack linearity, could potentially 
lead to convergence problems during the training process. To address 

this challenge, an innovative approach by introducing a customized loss 
function is proposed for the estimation. This unique loss function en
ables the network to predict continuous values, such as the fill factor, 
while maintaining the robustness and structure of the classification 
model. 

In Fig. 6, the Faster R-CNN classifier processes the region proposals 
generated by the RPN. Each proposal undergoes pooling to achieve a 
fixed size through RoI pooling, resulting in two significant output 
components derived from the RoI:  

• Class scores: This output determines the probability of the proposed 
region belonging to each of the possible classes. 

• Bounding box: For object (i.e., bucket) detection, the network ad
justs the coordinates of the proposal's box to fit the actual object. 

Based on the output of Faster R-CNN, the loss function integrates two 
individual losses, detailed as follows:  

1) Bounding box localization: In bounding box localization, the 
regression loss measures the accuracy of the model in predicting the 
bounding box coordinates for an object. The regression loss is typi
cally calculated using the Mean Squared Error (MSE), a simple and 
widely used loss function that measures the deviation between the 
predicted bounding box adjustments and the ground-truth 
adjustments: 

Lbbox(t, v) =
1
N

∑N

i=1
(ti − vi)

2 (1)  

where t represents the predicted bounding box coordinates, v represents 
the ground-truth bounding box coordinates, and N is the number of 
coordinates.  

2) Multi-Class Classification: The bucket fill estimation can be 
considered as a multi-class classification task, in which Categorical 
Cross-Entropy (CME) loss is used: 

LCME(yc, p) =
∑M

c=1
yclog(p) (2)  

where M is the number of classes, yc is a binary indicator (0 or 1) 
denoting whether the class label is the correct classification, and p is the 
predicted probability that the observation belongs to the class. 

In simple terms, for each observation, the loss is the negative loga
rithm of the predicted probability for the true class. A high predicted 
probability for the true class (i.e., close to 1) results in a low loss, and 
vice versa. 

Bounding 
Box

Class 
Probability

Region Proposal Network (RPN)

ResNet50

FC layers

Fill Factor

ROI Pooling

Input

Backbone
Output

Faster-RCNN

Fig. 6. Faster-RCNN-based fill volume estimation architecture.  

Table 1 
Classification and regression in machine learning.  

Task Activation 
function 

Loss function Output type 

Regression Linear Mean Square 
Error 

Continuous Value 

Classification 
Sigmoid/ 
Softmax Cross-Entropy 

Discrete Classes & 
Probabilities  
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The design concept of the Classification-Regression Framework ari
ses from the inherent nature of the bucket-fill estimation task, which 
involves both classification and regression components. Classifying the 
volume fill degree to a specific level based on the limited training data 
available is a typical multi-class classification task while determining 
the specific volume value within each class constitutes a regression task. 
Therefore, this study proposes a methodology that combines the clas
sification and regression components to compensate for the limitations 
of a single type of loss. 

Specifically, in this study, the predicted score (i.e., the fill factor) is a 
continuous value in real-time, which is typical for regression tasks, 
although the training set is a distinct category. To ensure accurate pre
dictions on the training set while achieving good generalization to other 
fill factors within the range, a custom loss function based on the Root 
Mean Squared Error (RMSE) for the classification task is used by 

LRMSE(yi, ŷi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ (3)  

where yi is the ground truth value for the ith sample, indicating the 
ground truth fill factor, ŷi is the predicted value for the corresponding 
sample, and N is the number of fill factor classes. In the context of a 
regression problem, RMSE provides a measure of how well the pre
dictions align with the true values. 

Ultimately, the customized loss function of the classification task for 
estimating fill factor is a linear combination of two parts given by 

LCUM = α⋅LRMSE + β⋅LCME (4)  

where α and β are weighting factors appropriately balancing the clas
sification and regression objectives. 

The methodology behind the selection of weighting factors defined 
in Eq. (4) is based on the principle that classification loss (CME) should 
have a higher weight than regression loss (RSME). This strategy ensures 
that the classification component takes precedence and guides the 
model to categorize the fill level into discrete classes, as introduced in 
Fig. 5, thereby narrowing the search space for the regression component. 
The regression component then fine-tunes the estimation within the 
identified classes. This combined approach allows the model to achieve 
high accuracy and efficiency, especially for data not included in the 
training set. In addition, giving the weighting factor for CME to be 
higher is beneficial in balancing initial loss values, as RMSE tends to 
have a larger initial loss, as shown in Fig. 7. 

3.2. Evaluation metrics 

To assess the effectiveness of the trained neural network, two metrics 
are introduced to evaluate the estimation precision. 

The first metric is the Mean Average Precision (mAP). This metric is 
critical in evaluating the accuracy of the classification component of the 
model. It provides a comprehensive measure of how accurately the 
model predicts the correct class at various thresholds. In essence, mAP 
quantifies the model's ability to correctly classify the objects, taking into 
account both false positives and false negatives. The mAP is calculated 
as follows: 

mAP =
1
Q

∑Q

q=1

1
Rq

∑Rq

k=1

P(k)× rel(k) (5)  

where Q is the total number of classes, Rq is the number of retrieved 
items for class q, P(k) is the precision at cut-off k in the list of retrieved 
items, rel(k) is an indicator function that equals 1 if the item at rank k is a 
relevant item (correctly classified), and 0 otherwise. 

The second metric is the Mean Absolute Error (mAE). This metric is 
particularly relevant to the regression component of the model, where 
the goal is to predict the fill factor. The mAE calculates the absolute 
difference between the predicted fill factor values and the true values. It 
provides a clear indication of the model's accuracy in estimating the fill 
factor, with lower mAE values indicating better performance, which is 
given by 

mAE =
1
N

∑N

i=1
∣yi − ŷi∣ (6) 

Together, these metrics provide a comprehensive evaluation of the 
model's performance, encompassing both its classification and regres
sion capabilities. 

Fig. 7. Loss comparison.  

Table 2 
Networks with comparative loss.  

ID Loss function 

CME Cross-entropy: loss = CME (i.e., Eq. (2)) 
RMSE RMSE: loss = RMSE (i.e., Eq. (3)) 
CUM Custom: loss = 5⋅CME+ 0.5⋅RMSE (i.e., Eq. (4))  
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4. Comparative experiments and analysis 

In this section, the comparative experimental results are presented 
and analyzed to evaluate the performance of the models trained with 
different loss functions. A comparative set of experiments is outlined in 
Table 2, where the three loss functions (i.e., CME, RMSE, and CUM 
introduced in the above section) for each model are specified. Each 
model is identified by the name of its corresponding loss function. 

4.1. Comparative training evaluation 

Throughout the training phase, transfer learning techniques are used 
to expedite the process. Initially, specific layers of the model are frozen 
for the first 20 epochs, after which these layers are unfrozen to allow for 
weight updates. 

Aiming at validating the advantage of the selected Faster R-CNN 
training structure in the task of this study, a comparison between Faster 
R-CNN and YOLOv5 using the same training dataset is performed. To 
ensure a fair comparison between these two deep learning network 
structures, Faster R-CNN utilized the default cross-entropy loss, while 
YOLOv5 utilized the default typical binary classification loss. As shown 
in Fig. 8, after 40 epochs, Faster R-CNN achieved a mAP of around 0.99, 
which was higher than YOLOv5's mAP of 0.77. 

Fig. 7 shows a comparison of the loss results for the three network 
models, including the training and validation sections. While the inte
gration of a new loss component leads to an initial rise in the loss value 
in the early stages of training, the loss function generally converges 
around the 40th epoch. 

In terms of precision during training, there is a noticeable distinction 
in mean average precision between the customized loss CUM (defined in 
Eq. (4)), the original cross-entropy loss CME (defined in Eq. (2)), and the 
original root mean square loss RMSE (defined in Eq. (3)). As shown in 
Fig. 9, the mAP of the CUM model outperforms the RMSE model, indi
cating the effective incorporation of the cross-entropy component in 
improving accuracy. 

In addition, regarding the evaluation of the volume fill factor esti
mation accuracy, Fig. 10 shows that all three models achieve a satis
factory mean absolute error (mAE) converging to a low value of 0.25% 
after 35 epochs. It is clearly shown that the CUM achieves the fastest 
mAE convergence. Overall, CUM shows the most exceptional perfor
mance among the three models during training. 

4.2. Test results 

Comparative tests are performed in this section with the three 
selected loss functions. It is worth noting that the test data is indepen
dent of the training dataset. This distributional approach, as shown in 
Fig. 5, ensures a rigorous evaluation of the model's generalization ca
pabilities when exposed to out-of-distribution data. It provides signifi
cance for its real-world applicability and robustness. In addition, a 
computer equipped with an NVIDIA RTX 3060 GPU is used for real-time 
processing. This setup allows for concurrent processing of RGB and 
depth maps, ensuring efficient real-time performance of industrial mo
bile machines. 

The comparison of the estimation results is presented in Fig. 11. It 
shows that the model using the proposed loss function CUM achieves 
significantly lower error rates on the test data compared to the cross- 
entropy loss model CME. This result indicates that the custom loss 
function improves the generalizability of the model. The combination of 
RMSE and cross-entropy further improves the model's adaptability to 
data beyond the training set. 

The average errors (eAE) of the comparative models are shown in 
Fig. 12. A satisfactory average error of 3.09% is achieved by the pro
posed CUM, indicating an accuracy of 96.91% in its estimates. In 
contrast, the CME has a significantly higher error rate of 22.64%. This 
significant difference underscores the effectiveness of the custom loss 
function in improving the accuracy of the test, which demonstrates the 
strength of the model with the proposed custom loss function in learning 
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the underlying data patterns and achieving high estimation accuracy in 
practical applications. 

It is worth noting that the high accuracy of the proposed approach 
was achieved with a low requirement for the size of training data. As 
introduced in Section 1.1.2, the study by Lu [24] used a dataset of 
41,610 samples with 20,882 samples allocated for training, achieving a 
volume estimation accuracy of 95.25%. In contrast, our method utilized 
a significantly smaller dataset of 1251 samples and achieved a testing 

accuracy of 96.91% even with OOD data. This comparison highlights 
our method's higher sample efficiency and better generalization capa
bility with a substantially smaller dataset. 

Furthermore, achieving high real-time processing speeds is crucial 
for the practical implementation of computer vision-based systems in 
real-world applications. Using the depth stream as input to the proposed 
network training model, the output results (including bounding boxes, 
predicted fill class, and estimated fill factor) are then overlaid on the 
corresponding RGB stream for visualization and in-depth analysis. In the 
real-time recording shown in Fig. 13, the model achieves a fast real-time 
prediction speed of approximately 10 frames per second (fps) (with each 
frame processed within 100 ms). This processing speed is significantly 
faster compared to 3D point cloud-based approaches (e.g., [13] as dis
cussed in the Introduction). This performance demonstrates the pro
posed model's exceptional real-time capabilities, ensuring reliable fill 
factor estimation in excavator operations. 

4.3. Discussion 

This study, as fundamental research, aims to provide a solution for 
real-time volume estimation during earth-moving operations. The 
method uses 2D depth maps as input to a Faster R-CNN deep learning 
model, which achieves high fill factor estimation accuracy while 
maintaining real-time processing speed. In addition, a custom loss 
function tailored to the classification-regression task is introduced, 
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which further enhances the generalization capabilities of the network. 
The results demonstrate the feasibility and effectiveness of the proposed 
approach in addressing the challenges associated with automated 
excavator operations. By accurately estimating the volume of material in 
the excavator bucket, the method contributes to improving productivity 
and worker safety in the construction industry. 

5. Conclusion and limitations 

In this paper, depth maps are used as input in combination with 
Faster-RCNN to estimate the fill factor (volume) of an excavator bucket, 
achieving high estimation accuracy in real-time. A customized dataset 
containing 1562 depth maps with the different poses of the excavator 
during the working cycle was created for network training. In particular, 
a customized loss foundation was designed for the deep-learning neural 
network to specifically solve the classification-regression task of this 
study, improving the versatility of the neural network. A remarkable 
average mean absolute accuracy of 96.91% is achieved by the proposed 
approach in comparative experiments without training with a large 
quantity of data. Furthermore, the proposed approach has superior 
computational efficiency, achieving high processing speed in real-time 
and maintaining a frame rate over 10 FPS due to the application of 
depth maps. This combination of high accuracy and speed underscores 
the potential of depth images and deep learning to revolutionize volume 

estimation tasks in construction and excavation scenarios, providing a 
reliable operation evaluation approach for automated excavator 
systems. 

The designed framework and the loss function possess universality 
and repeatability. However, despite the promising results, this study is 
constrained by the availability of only one excavator testbench (i.e., the 
Sany SY16C), which limits the demonstration of the generalizability of 
the proposed approach. The dataset used in the study is tailored to a 
specific excavation setup, indicating the need for more diverse datasets 
to strengthen the robustness of the approach in different construction 
environments. In future work, a broader range of excavator models 
should be used to further improve and validate the applicability of the 
proposed method to different construction scenarios. In addition, due to 
the characteristics of depth cameras, depth map generation is compro
mised at low lux levels. Considering that operations in low-light con
ditions during rainy or snowy days are typically avoided, as excavators 
are generally not used in such scenarios. For night-time operations, 
additional lighting would be required to be configured. 

Research elements 

The dataset customized in this study and the codes can be accessed 
at: https://gitlab.kit.edu/bobo.helian/bucket-fill-estimation.git. 
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State of the art on 3d reconstruction with rgb-d cameras, Comp. Graph. Forum 37 
(2) (2018) 625–652, https://doi.org/10.1111/cgf.13386. 

[16] J. Shen, W. Yan, P. Li, X. Xiong, Deep learning-based object identification with 
instance segmentation and pseudo-lidar point cloud for work zone safety, Comput. 
Aided Civ. Inf. Eng. 36 (12) (2021) 1549–1567, https://doi.org/10.1111/ 
mice.12749. 

[17] M. Prasad, A. Fitzgibbon, Single view reconstruction of curved surfaces, in: 2006 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR’06) Vol. 2, 2024, pp. 1345–1354, https://doi.org/10.1109/ 
CVPR.2006.281. 

[18] C. Choy, J. Gwak, S. Savarese, 4D spatio-temporal convnets: Minkowski 
convolutional neural networks, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 3075–3084, https://doi.org/ 
10.1109/CVPR.2019.00319. 

[19] P. Li, B. Zhou, C. Wang, G. Hu, Y. Yan, R. Guo, H. Xia, Cnn-based pavement defects 
detection using grey and depth images, Autom. Constr. 158 (2024) 105192, 
https://doi.org/10.1016/j.autcon.2023.105192. 

[20] S. Foix, G. Alenya, C. Torras, Lock-in time-of-flight (tof) cameras: a survey, IEEE 
Sensors J. 11 (9) (2011) 1917–1926, https://doi.org/10.1109/ 
JSEN.2010.2101060. 

[21] S. Li, A.B. Chan, 3D human pose estimation from monocular images with deep 
convolutional neural network, in: Computer Vision–ACCV 2014: 12th Asian 
Conference on Computer Vision, Singapore, Singapore, November 1–5, 2014, 
Revised Selected Papers, Part II 12, Springer, 2015, pp. 332–347, https://doi.org/ 
10.1007/978-3-319-16808-1_23. 

[22] D. Maji, S. Nagori, M. Mathew, D. Poddar, Yolo-pose: Enhancing yolo for multi 
person pose estimation using object keypoint similarity loss, in: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 
pp. 2637–2646, https://doi.org/10.48550/arXiv.2204.06806. 

[23] F. Alama, H. Koa, H. Leea, C. Yuanb, Deep learning approach for volume 
estimation in earthmoving operation, Int. J. Industr. Eng. Manag. (IJIEM) 14 (1) 
(2023), https://doi.org/10.24867/IJIEM-2023-1-323. 

[24] J. Lu, Z. Yao, Q. Bi, X. Li, A neural network–based approach for fill factor 
estimation and bucket detection on construction vehicles, Comput. Aided Civ. Inf. 
Eng. 36 (12) (2021) 1600–1618, https://doi.org/10.1111/mice.12675. 

[25] R. Girshick, Fast r-cnn, in: 2015 IEEE International Conference on Computer Vision 
(ICCV), 2015, pp. 1440–1448, https://doi.org/10.1109/ICCV.2015.169. 

[26] Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Object detection in 20 years: a survey, Proc. 
IEEE 111 (3) (2023) 257–276, https://doi.org/10.1109/JPROC.2023.3238524. 

[27] J. Yao, D. Cai, X. Fan, B. Li, Improving yolov4-tiny rsquo;s construction machinery 
and material identification method by incorporating attention mechanism, 
Mathematics 10 (9) (2022), https://doi.org/10.3390/math10091453. URL, 
https://www.mdpi.com/2227-7390/10/9/1453. 

[28] Y. Xiang, J. Zhao, W. Wu, C. Wen, Y. Cao, Automatic object detection of 
construction workers and machinery based on improved yolov5, in: W. Guo, 
K. Qian (Eds.), Proceedings of the 2022 International Conference on Green 
Building, Civil Engineering and Smart City, Springer Nature Singapore, Singapore, 
2023, pp. 741–749, https://doi.org/10.1007/978-981-19-5217-3_74. 

[29] P. Soviany, R.T. Ionescu, Optimizing the trade-off between single-stage and two- 
stage deep object detectors using image difficulty prediction, in: 2018 20th 
International Symposium on Symbolic and Numeric Algorithms for Scientific 
Computing (SYNASC), 2018, pp. 209–214, https://doi.org/10.1109/ 
SYNASC.2018.00041. 

[30] T. Mahendrakar, A. Ekblad, N. Fischer, R. White, M. Wilde, B. Kish, I. Silver, 
Performance study of yolov5 and faster r-cnn for autonomous navigation around 
non-cooperative targets, in: 2022 IEEE Aerospace Conference (AERO), 2022, 
pp. 1–12, https://doi.org/10.1109/AERO53065.2022.9843537. 

[31] R.A. Hamzah, H. Ibrahim, et al., Literature survey on stereo vision disparity map 
algorithms, J. Sens. 2016 (2016), https://doi.org/10.1155/2016/8742920. 

[32] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: towards real-time object detection 
with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (6) 
(2017) 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031. 

[33] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 
pp. 770–778, https://doi.org/10.1109/CVPR.2016.90. 

B. Helian et al.                                                                                                                                                                                                                                  

https://doi.org/10.1111/mice.12952
https://doi.org/10.1111/mice.12952
https://doi.org/10.1016/j.autcon.2018.10.013
https://doi.org/10.1016/j.autcon.2016.05.009
https://doi.org/10.1016/j.autcon.2016.05.009
https://doi.org/10.1016/B978-0-444-88286-8.50011-8
https://doi.org/10.1016/B978-0-444-88286-8.50011-8
https://doi.org/10.1016/j.aei.2023.101875
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/TITS.2019.2892405
https://doi.org/10.1109/TITS.2019.2892405
https://doi.org/10.1109/CACS.2017.8284244
https://doi.org/10.1016/j.autcon.2020.103207
https://doi.org/10.1016/j.autcon.2020.103207
https://doi.org/10.1016/j.measurement.2020.108114
https://doi.org/10.1016/j.measurement.2020.108114
https://doi.org/10.1016/j.aei.2021.101501
https://doi.org/10.1111/cgf.13386
https://doi.org/10.1111/mice.12749
https://doi.org/10.1111/mice.12749
https://doi.org/10.1109/CVPR.2006.281
https://doi.org/10.1109/CVPR.2006.281
https://doi.org/10.1109/CVPR.2019.00319
https://doi.org/10.1109/CVPR.2019.00319
https://doi.org/10.1016/j.autcon.2023.105192
https://doi.org/10.1109/JSEN.2010.2101060
https://doi.org/10.1109/JSEN.2010.2101060
https://doi.org/10.1007/978-3-319-16808-1_23
https://doi.org/10.1007/978-3-319-16808-1_23
https://doi.org/10.48550/arXiv.2204.06806
https://doi.org/10.24867/IJIEM-2023-1-323
https://doi.org/10.1111/mice.12675
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.3390/math10091453
https://www.mdpi.com/2227-7390/10/9/1453
https://doi.org/10.1007/978-981-19-5217-3_74
https://doi.org/10.1109/SYNASC.2018.00041
https://doi.org/10.1109/SYNASC.2018.00041
https://doi.org/10.1109/AERO53065.2022.9843537
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.90

	Computer vision-based excavator bucket fill estimation using depth map and faster R-CNN
	1 Introduction
	1.1 Related works
	1.1.1 Non-learning-based 3D object volume estimation
	1.1.2 Learning-based volume estimation
	1.1.3 Deep learning methods in autonomous detection

	1.2 Contributions

	2 Depth map acquisition and dataset
	2.1 Depth map acquisition
	2.2 Dataset annotation and distribution

	3 Method
	3.1 Faster-RCNN-based neural network
	3.1.1 Neural network framework
	3.1.2 Loss function design

	3.2 Evaluation metrics

	4 Comparative experiments and analysis
	4.1 Comparative training evaluation
	4.2 Test results
	4.3 Discussion

	5 Conclusion and limitations
	Research elements
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


