
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01192-y

EXPERT VOICE

Requirements for modelling tools for teaching

Jörg Kienzle1,2 · Steffen Zschaler3 ·William Barnett3 · Timur Sağlam4 · Antonio Bucchiarone5 · Silvia Abrahão6 ·
Eugene Syriani7 · Dimitris Kolovos8 · Timothy Lethbridge9 · Sadaf Mustafiz10 · Sofia Meacham11

Received: 27 March 2024 / Revised: 5 June 2024 / Accepted: 13 June 2024
© The Author(s) 2024

Abstract
Modelling is an important activity in software development and it is essential that students learn the relevant skills. Modelling
relies on dedicated tools and these can be complex to install, configure, and use—distracting students from learning key
modelling concepts and creating accidental complexity for teachers. To address these challenges, we believe that modelling
tools specifically aimed at use in teaching are required. Based on discussions at a working session organised at MODELS
2023 and the results from an internationally shared questionnaire, we report on requirements for such modelling tools for
teaching. We also present examples of existing modelling tools for teaching and how they address some of the requirements
identified.

Keywords Modelling · Education · Tools · Requirements

Communicated by Bernhard Rumpe.

B Steffen Zschaler
Steffen.Zschaler@kcl.ac.uk

Jörg Kienzle
Joerg.Kienzle@mcgill.ca

William Barnett
Will.Barnett@kcl.ac.uk

Timur Sağlam
timur.saglam@kit.edu

Antonio Bucchiarone
bucchiarone@fbk.eu

Silvia Abrahão
sabrahao@dsic.upv.es

Eugene Syriani
syriani@iro.umontreal.ca

Dimitris Kolovos
dimitris.kolovos@york.ac.uk

Timothy Lethbridge
timothy.lethbridge@uottawa.ca

Sadaf Mustafiz
sadaf.mustafiz@torontomu.ca

Sofia Meacham
smeacham@bournemouth.ac.uk

1 ITIS Software, University of Málaga, Málaga, Spain

2 School of Computer Science, McGill University, Montreal,
Canada

1 Introduction

Modelling is a crucial aspect in software development and
beyond [71]. It enables designers and engineers to efficiently
explore the design space, and provides stakeholderswith suit-
able representations of the system under study. Models are
crucial in helping all involved parties understand, analyse,
and design complex (software) systems. For the modelling
benefits to materialise, the aforementioned activities have to
be supported by modelling tools.

However, most of the academic and industrial tools cur-
rently available are not ideal for teaching modelling [12,

3 Department of Informatics, King’s College, London, UK

4 KASTEL, Karlsruhe Institute of Technology, Karlsruhe,
Germany

5 FBK, Fondazione Bruno Kessler, Trento, Italy

6 IUMTI, Universitat Politècnica de València, Valencia, Spain

7 DIRO, Université de Montréal, Montreal, Canada

8 Department of Computer Science, University of York, York,
UK

9 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

10 Department of Computer Science, Toronto Metropolitan
University, Toronto, Canada

11 Department of Computing and Informatics, Bournemouth
University, Poole, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01192-y&domain=pdf
http://orcid.org/0000-0001-9062-6637


J. Kienzle et al.

22]. Academic tools suffer in general from low maturity and
robustness, and are difficult to install and maintain due to
accumulated technical debt. This is mainly due to the fact
that developing stable and usable (modelling) tools requires
significant development effort and investment, and unfortu-
nately this effort is usually accompanied by too little reward
in terms of academic credit.

Industrial tools, on the other hand, come often with pro-
hibitively high pricing and complexity, and no out-of-the-box
support for teaching-related features, e.g. support for online
collaboration, automated grading, and pedagogical feedback
adapted to the student’s level.

Motivated by this situation, we organised a 1-day work-
ing session on modelling tools for teaching (MTT) at the
26th International Conference on Model-Driven Engineer-
ing Languages and Systems.1 From the discussions that day
it is clear that our community believes that there is a real need
for modern, intuitive MDE tools dedicated to teaching that
are capable of demonstrating that models are highly benefi-
cial development artefacts.We need tools that can inspire our
students to use MDE for real, i.e. to drive other development
activities, as opposed to simply creating pretty drawings to
please the teacher. Because of the limited resources avail-
able for developing MTTs, we can only succeed if we work
towards a common infrastructure for tools that we can col-
laboratively maintain and extend.

As a first step in that direction, we elaborated in our work-
ing session a set of requirements for MTTs. We present
them in this paper organised as follows. Section2 presents
a brief summary of our working session and explains the
questionnaire we sent out to the modelling community after
the workshop. Section3 lists the modelling-related capabil-
ities that we envision are important for MTTs. Section4
presents what we deem important pedagogical functionality
that MTTs should provide. Section5 discusses some techni-
cal requirements on MTTs. Section6 concludes the paper by
presenting some examples of existing MTTs and how they
relate to some of the requirements discussed.

2 Methodology

We briefly describe the methodology used to elicit the
requirements presented in this paper.

2.1 Workshop summary and pilot survey

The purpose of the 1-day working session at MODELS
2023 was to engage in productive discussions regarding
the requirements and necessary infrastructure for MTTs.
Targeted invitations were sent to research groups actively

1 https://modellingtoolsforteaching.github.io/.

involved in developing tools used for teaching computer sci-
ence in undergraduate or graduate classes.

In the first session, participants were allotted five minutes
each to present theMTTs theywereworking on, focussing on
their teaching-related aspects. Subsequent sessions, attended
by an average of 25 people, were dedicated to brainstorming
among attendees.

At the conclusion of the workshop, all participants were
surveyed regarding their perceptions of the importance of
tools, languages, features, and educational practices dis-
cussed earlier. The survey aimed to serve as a prototype
for wider circulation within the community. Despite being
produced within a half-hour timeframe, the survey yielded
valuable insights:

• Participants expressed a keen interest in teaching using
class diagrams and statemachines, alongside othermodel
types albeit with lesser importance.

• Important attributes formodelling technology in teaching
included being free, being user-friendly, having multi-
platform compatibility (including having a web-based
version), having a comprehensive user manual, having a
library of examples, being reliable, having performance
analysis capabilities with feedback, having fast response
time, being capable of code generation, and having a tex-
tual interface available.

Post-workshop, reflection on the prototype survey results
led to the revision of questions and the preparation of a formal
survey for broader circulation, as discussed in the following
section.

2.2 Survey conducted following the workshop

A subgroup of the authors refined the pilot survey2 over the
course of 3 months following the workshop. Ethics approval
was obtained to circulate the revised survey by the end of
January 2024. Targeted sampling methods were employed
for distributing the survey using the following steps:

1. Each workshop attendee was tasked with ensuring that
the survey reached relevant individuals within their insti-
tution, including themselves.

2. Additionally, participants were encouraged to reach out
to colleagues in other institutions within their geographic
region and beyond.

3. The survey was also disseminated through the LinkedIn
and X accounts of several authors.

2 The questions and answer options are openly available from the
King’s College London research data repository, KORDS, at https://
doi.org/10.18742/25429270.

123

https://modellingtoolsforteaching.github.io/
https://doi.org/10.18742/25429270
https://doi.org/10.18742/25429270


Requirements for modelling tools for teaching

Table 1 Summary of survey
questions about modelling tools
for teaching (MTT)

Question Theme

1 Confirmation of consent and teaching experience

2 Number of years they have been teaching

3 Extent to which they teach software modelling

4 Satisfaction with current modelling tools for teaching

5 Improvement areas for MTT (open ended)

6 Importance of teaching specific modelling languages at undergraduate level

7 General user experience attributes with MTT (nine items)

8 Editing and collaboration features of MTT (five items)

9 Language and language-manipulation features of MTT (ten items)

10 Analysis features of MTT (five items)

11 Transformation features of MTT (seven items)

12 Platform capabilities for MTT (nine items)

13 Business and economic issues related to MTT (five items)

14 Languages they would like the tool to generate

15 Teaching practices an MTT should support (13 items)

16 Modelling tools currently used (16 items)

17 Academic rank (for demographic analysis)

18 Continent (for demographic analysis)

19 Gender (for demographic analysis)

By the end of February 2024, we had gathered 59 valid
responses. Only one response was excluded due to incom-
plete answers to the questions. Given the richness and depth
of the data collected, we have decided to publish a compre-
hensive analysis in a separate paper. In that paper, we will
first present the detailed questions of the survey as described
in Table 1, followed by the main insights obtained from the
responses.Here,we provide a brief characterisation of survey
respondents and then focus on some central themes.

We asked about the participant’s general background and
demographics:

• Teaching Experience and Duration (Q2):Respondents
to the survey broadly have substantial experience teach-
ing modelling: 30% of respondents said they have been
teachingmodelling for 20 ormore years. A further 23.3%
have taught modelling for 10–19 years and 25% for 5–10
years. Only two respondents said that they “do not teach
modelling (yet)”.

• Extent of Teaching Software Modelling (Q3):Asignif-
icant portion of respondents teach software modelling to
varying degrees, with 39% heavily involved, 54% mod-
erately involved, and 7% teaching minimally.

• Satisfaction with Current Technology (Q4): Mixed
satisfaction levels were observed among respondents
regarding the current technology available for teach-
ing software modelling, with no respondents indicating
being very satisfied, 54% expressing satisfaction to some
extent, and 36% indicating some level of dissatisfaction.

• Demographics (Q17–19): Participants were roughly
evenly divided among full professors, associate profes-
sors, and assistant professors. Responseswere 74 per cent
from Europe; 16 per cent from North America, and 10
per cent from elsewhere. Respondents were 75 per cent
male and 25 per cent female.

Question 5 was an open-ended question about areas
of modelling that could be improved and features that
were required. The respondents identified several areas
for improvement in software modelling tools for teach-
ing, including various user experience issues, collaborative
editing support, executability, support for modelling for par-
ticular architectures or frameworks, analysis capabilities, a
strong preference for a web-based interface, and concern
about outdated tools, standards, and languages. Many of
these will be discussed in detail in the remainder of the paper.

The responses toQuestion 6 on the importance of teaching
certain modelling languages are presented in Sect. 3.1.1.

Questions 7 through 13 ask about the significance of 50
distinct qualities and features within the realm of modelling
tools and languages, in the context of teaching modelling.
Each item was subject to assessment on a six-point scale,
where respondents were tasked to rating their perceived
importance.

The scale encompassed the following criteria:

• Harmful: Signifying qualities or features that would
introduce unwarranted complexity into the process,
assigned a weighted score of -1.

123



J. Kienzle et al.

• Not needed/not something I would judge a tool by:
Reflecting aspects perceived as extraneous or irrelevant
to the evaluation of a tool, assigned a weighted score of
0.

• Good to have at a basic level: Denoting qualities or
features that are beneficial but not imperative, allocated
a weighted score of 1.

• Important to have at a moderate level: Identifying
qualities or features of moderate significance, granted a
weighted score of 2.

• Essential to have reasonably good capability for this:
Highlighting qualities or features deemed fundamen-
tal with a reasonable level of proficiency, assigned a
weighted score of 3.

• Critical: Must be as extensive and good as possible,
indicating qualities or features of utmost importance,
demanding the highest level of capability, and assigned
a weighted score of 4.

This evaluation framework aimed to discern the varying
degrees of importance attributed to each quality and feature,
thereby facilitating a nuanced understanding of their rele-
vance in the context of teaching modelling. We will discuss
the responses to these questions in Sect. 7 after we have qual-
itatively reported on the workshop discussion that introduced
these requirements.

Question 14 asked about code generation, and what pro-
gramming languages a tool should support. We will discuss
these responses in more detail in Sect. 3.1.5.

Question 15 asked about teaching practices that should
be supported (multiple responses were possible). The most
important practices to be supported include having students
build small models (97 per cent need this); using the tool live
in class (81 per cent); supporting project-based learning (80
per cent); supporting problem-based learning (75 per cent);
having students analyse and criticise models (75 per cent);
and having students improve an existing model (71 per cent).

In Question 16, we asked about the tools respondents
use in teaching modelling. The top modelling tools or tool
types used by the participants were PlantUML, EMF/Ecore/
Emfatic, plain drawing tools (such as Draw.io), Visual
Paradigm,XText, Umple, formalmethods tools,MagicDraw,
Figma, Papyrus, and Sirius.

3 Modelling-capability-related requirements

This section presents a list of modelling-capability-related
requirements that were identified as important for MTTs,
organised into two categories that target distinct groups of
students.

Modelling tools are tools specific to a particular modelling
formalism. Students use them to learn how to model in one

or several languages, learning their syntax, structural and
behavioural semantics. Such tools often come with a dedi-
cated debugger and various development services.

Language workbenches [31] are generic modelling envi-
ronments to create and use arbitrary modelling languages,
like the Eclipse Modelling Framework (EMF) [72]. Students
use them to learn to develop domain-specific modelling lan-
guages, with an emphasis on metamodelling and grammar
design. Although generic services are provided, students
need to develop their own model transformations and code
generators.

3.1 Teachingmodelling with existing languages

In this section, we present requirements on MTTs related to
teaching modelling with existing modelling languages.

3.1.1 Modelling language support

In our survey, we asked respondents “To what extent do you
think each of the following modelling languages should be
taught to undergraduates as a required part of a computer
science or software engineering program?” Here, we report
on their responses.

We asked respondents to rank a set ofmodelling languages
on a scale from “Harmful” to “Critical”. A detailed overview
of the responses is shown in Fig. 1.

The top 4 modelling languages (based on average scores)
areUML sub-languages: class diagrams (with overwhelming
support for criticality), state machines, sequence diagrams,
and use cases—possibly reflecting on the typical syllabus
covered in the teaching of modelling in software engineer-
ing courses at the undergraduate level. Interestingly, this is
followed by entity-relationshipmodels and activity diagrams
on places 5 and 6.

On the other end of the scale, we find formal methods
models other than OCL, Petri nets, goal models, and fea-
turemodels. Notably, formalmethodsmodels attracted seven
votes for “Harmful”, possibly reflecting a continuing percep-
tion that formalmodels are difficult to engagewith, especially
at the undergraduate level.

3.1.2 Textual interface support

Although software modelling is widely thought of as
focussing on diagrams, there are alsomany textual modelling
languages including OCL [56], USE [64] and Umple [49]. In
fact, experience has shown that modellers find it very useful
to be able to define their models textually as well as graphi-
cally [6].

Graphical languages have many advantages, such as tak-
ing advantage of two dimensions and arbitrary shapes, but
there are a variety of benefits of using textual modelling lan-

123



Requirements for modelling tools for teaching

Fig. 1 Responses to Q6 on required modelling languages. This was a semantic-difference scale question and each coloured bar represents the
percentage of responses for each possible answer, centred on “Not needed”

guages in teaching. Students are used to textual editors from
coding; hence, editing text can be faster and more produc-
tive than editing graphics. Copying and pasting in particular
can be easier. Furthermore, commenting and annotating can
be easier in a textual format, since there are no layout con-
straints.

In the survey, we asked about the importance of having a
textual interface available. Sixty-one per cent of respondents
considered this important, essential, or even critical.

Proper support for textual modelling also requires support
for syntax checking andvalidation, syntax highlighting, auto-
completion, debugging, and navigation (the ability to quickly
jump between different sections, e.g. by clicking references).

3.1.3 Support for consistency checking

Modelling tools for teaching should support conformance
checking to ensure that students create model instances that
adhere to the structure described in the language metamodel,
making the modelling process for students less error-prone.
Support for validation checks to make certain that all lan-
guage constraints are upheld is also required (e.g. a state
diagram has only one start state). Warnings and error mes-
sages should be generated to inform students of modelling
mistakes.

3.1.4 Support for views and consistency between views

A fundamental aspect of MDE is the use of multiple mod-
els (views) to describe a given system [21]. These models
may vary depending on the level of abstraction (e.g. from
requirements models to architecture models) and also on the
viewpoint (e.g. structural versus behavioural models) [10].
When teaching modelling, it is important that the student

learns to define models that focus on different sets of con-
cerns and that can be described using one or more languages
(notations).

Maintaining the consistencies of the models manually is a
tedious endeavour without dedicated support from the mod-
elling tool [43]. In Abrahao et al. [1], model integration has
been identified as a challenge affecting user experience with
MDE tools. According to the authors, vertical and horizon-
tal model integration (syntactic and semantic) is essential to
ensure consistency. Therefore, a MTT should help students
understand how the views of the systems are related. Ideally
the tool should propagate changes in one view to the other
views in order to maintain consistency, or alternatively the
tool could signal a validation error.

3.1.5 Support for model
execution/enactment/experimentation

Students need to be able to do something with the models
they produce so that these models become more than “nice
drawings”. We differentiate three different purposes.

For comprehension Models can have different degrees of
formality. While modelling with a low degree of formality
is suitable for communication and documentation purposes,
informal models lack the ability to be used as input to the
software development lifecycle. It is therefore desirable to
teach students to create models that are both understandable
to stakeholders and that can be used to guide subsequent
phases of software development. As several empirical stud-
ies show, models play a fundamental role in helping students
and practitioners in understanding software specifications
(e.g. software requirements [2], source code [68]). MTTs,

123



J. Kienzle et al.

therefore, need to present models in ways that facilitate
comprehension—including appropriate concrete syntax.

For production Another crucial use of models, specifi-
cally in industrial settings, is integrating them into software
systems. Generating textual artefacts from models can be
automated through template-based code generation [73] and
this needs to be supported in MTTs. Especially source code
generation enables students with a programming background
to better engage in MDE and understand its concrete useful-
ness. Some models can be integrated into programs directly
when they are executable, such as models developed in
GEMOC studio [9].

In our survey, we asked respondents “If you would like
code generation (model to text) to be part of your teach-
ing process, which languages are the most important for a
modelling tool to be able to generate?” 3 respondents replied
“None”, presumably indicating that they donot usemodel-to-
text transformation in their teaching, but the overwhelming
majority of respondents appears to include code generation
in their teaching. Figure2 provides an overview of these
responses.

Java is clearly the leading target language for educa-
tors teaching model-to-text transformation (with 51 of 59
respondents choosing it), closely followed by Python (38
respondents). Surprisingly, SQL appears in third place, with
C++ only some distance behind. Other languages mentioned
included JavaScript, Kotlin, C, Go, Rust, and “textual arte-
facts that are not specifically related to a programming
language”.

For analysis The benefits of modelling can be further
demonstrated during teaching by leveraging simulation,
model checking, or traceability analysis methods. This will
allow students to understand the behaviour of systems, ver-
ify the correctness of models, and validate the design. The
need for simulation technologies is even more prevalent now
with the Internet of Things and cyber-physical systems, since
having the means to analyse and validate the system before
incorporating changes into the running system is of criti-
cal importance [41]. Modelling environments for teaching
should have integrated support for interactive simulation
and (virtual) experimentation [53] enabling exploration and
what-if analysis with parameter estimations.

Moreover, support for formal verification of models is
essential for teaching modelling of critical systems [23, 77].
Model checking tools, such as SPIN [37] or UPPAL [47],
could be integrated with MTTs to make them easily avail-
able and allow students to verify their models.

3.1.6 Support for an MDE process

When modelling is used throughout the software devel-
opment lifecycle, i.e. from requirements engineering to
architecture to design, implementation, and testing, teachers
typically ask the students to follow a specific MDE process.
An MTT that is process-aware could provide students with
systematic guidance on which models to elaborate using
which modelling language at what time, as well as help
in maintaining horizontal and vertical traceability between
the models. For collaborative tasks, support for identifying
dependencies between the models would also improve coor-
dination between teams and help in monitoring the progress
of projects.

Moreover, it would be valuable for MTTs to provide
means for generating skeletons of downstream models (e.g.
deriving a partial design class model from a domain model
or generating an activity diagram from a use case model)
or even models at the same level of abstraction (deriving a
partial domain model from a use case model). In addition to
support forward engineering, tool support for reverse engi-
neering to generate (partial) upstream models would be very
useful for students to gain an understanding of how code is
represented at higher levels of abstractions, and to learn how
to refactor models and then generate other views, code, or
documentation from them (see [11], for instance).

In the context of teaching MDE processes, tool support
for explicitly modelling processes and traceability analysis
would be valuable. Traceability information generated from
software or business process model enactments can be used
for dependency visualisation, origin tracking (for instance,
backtracking from design to requirements artefacts), change
impact analysis, change propagation as well as for stream-
lining and optimising processes (as seen in [34]).

3.2 Teaching the development of newmodelling
languages

In this section, we collect requirements on MTTs used for
teaching students how to develop new modelling languages.
Tools for the development of modelling languages are typi-
cally called Language Workbenches.

3.2.1 Support for different modelling paradigms

An important skill that students need to acquire during an
advancedMDEcourse or a course on software language engi-
neering is the development of a new modelling language, or
adapting an existing modelling language and its modelling
editor to fit a certain domain and/or certain needs.

For textual modelling, the tool should allow students to
develop a grammar, specifying tokens and production rules

123



Requirements for modelling tools for teaching

Fig. 2 Overview of responses to the question on desired target languages for model-to-text generation. The chart excludes the three responses
indicating “None”. Note that multiple responses were possible for this question

from which a parser can be generated as with Xtext.3 To
improve the user experience, students should be able to spec-
ify the styling properties of keywords or rules in the textual
language, customising the font style, colours, and layout.
From that, the MTT should generate an editor with common
services as described in Sect. 3.1.2.

When a graphical notation is better suited for the mod-
elling language, theMTT should allow individualmetamodel
elements to be mapped to their corresponding graphical
representation. To this aim, different techniques could be sup-
ported, e.g. specifying the mapping through programming
(GMF [61]), by annotating the metamodel (Eugenia [45]), or
by explicitly modelling the concrete syntax (Sirius [78]).

3.2.2 Experimentation capabilities

When designing domain-specific languages, it is important
for users to also be able to create sample models side-by-side
to experiment with different design alternatives. To facilitate
this exploratory style of language development, it is desirable
for tools to provide coordinated visualisation capabilities for
bothmodels andmetamodels (e.g. using object/class diagram
notations or even by supporting custom graphical notations
using metamodel annotations in the style of Eugenia [45]).
It is also important that they tolerate (and highlight) incon-
sistencies in models as metamodels evolve.

3.2.3 Automated model management

As the crux of model-driven engineering is automated model
processing, suitable tools must naturally provide support for
composing, and executing a wide range of model manage-
ment activities, e.g. model-to-text transformation, in-place
and mapping model-to-model transformation, model vali-

3 https://eclipse.dev/Xtext/.

dation, model comparison and merging, pattern matching,
model migration, and model simulation.

Ideally, users should not be required to perform any con-
figuration (e.g. to specify which program runs against which
model, or whichmetamodel amodel conforms to) by default.
Offering configuration facilities to support arbitrary complex
modelmanagement scenarios is not advisable as the tool then
starts entering the realm of IDEs, which is undesirable. How-
ever, the tool should offer a smooth transition into an actual
IDE, for example, by allowing the user to download their
artefacts (model, metamodel, model management program)
in a format that can be imported into an IDE (e.g. by auto-
generating a .project file for Eclipse or a Gradle/Maven
build file for compatible IDEs) or by providing a hyperlink
that sets up and launches a web-based IDE (e.g. VS Code,
Gitpod) with the user’s artefacts.

4 Teaching-related requirements

In this section, we elaborate on specific pedagogical support
we believe ourMTTs should provide to support teaching.We
first discuss the importance of aligning MTTs with educa-
tional terminology and standards as well as integrating them
with traditional learning systems, and then split our discus-
sion into modelling-specific support for the teachers and for
the students.

4.1 Alignment with educational terminology and
standards

Ensuring accessibility and quality of learning for a diverse
audience necessitates the widespread utilisation of open edu-
cational resources (OER) [36, 57, 76] in all educational
endeavours. In this context, the education system has used
competences to organise learning and quantify personal and

123

https://eclipse.dev/Xtext/


J. Kienzle et al.

professional growth. Proficiency levels categorising com-
petence items enhance the assessment process, providing
valuable insights into individual mastery.

To fortify this educational approach, there is a need to
align with the competencies and skills elaborated in the most
recent Computing Curricula of the ACM [18], but also with
established models like O*NET,4 ESCO,5 and EntreComp,6

ensuring that skill development resonates with industry stan-
dards.Competences, conceptualised as sets of interconnected
concepts, encapsulate knowledge, principles, and practices
crucial for achieving learning goals. The compilation of
these elements in the competence portfolio offers a struc-
tured overview of skills, knowledge, and aspirations, guiding
students through competence requirements and acquired
competences, where teachers play a central role in ensuring
a logical progression.

To this end, teachers define learning paths, segmenting
them into focussed learning fragments centred on specific
topics. These fragments, supported by associated learning
activities, orchestrate a guided process facilitated by the
progress edges. The progress edge introduces multiple out-
comes from each learning activity, creating a dynamic learn-
ing experience that fosters personalised learning through
diverse outcomes, tailored paths, adaptive feedback, learn-
ing flexibility, and heightened motivation.

4.2 Integration with learning environments

As suggested in [3], external tools, such as MTTs, should
be integrated with traditional virtual learning environments
(VLEs) to maximise the benefits for students and educators.
This will enable the utilisation of common VLE provisions
such as collaboration, communication, assessment, and feed-
back structures that have been proven necessary, effective,
and pedagogically sound [17]. This will provide seamless
integration within the students’ environments and a more
connected and insightful learning experience. Additionally,
it not only makes learning more accessible, but also allows
us to gather valuable information about how students interact
with these tools.By collecting learning analytics [70] through
these tools, educators can understand each student’s progress,
tailoring support to individual needs and facilitating further
the individual learning paths. In essence, the integration of
modelling tools into VLEs supports a personalised educa-
tional journey that incorporates familiar proven pedagogical
methods.

4 Occupational Information Network: https://www.onetonline.org/.
5 European Skills, Competences, Qualifications, and Occupations:
https://esco.ec.europa.eu/.
6 European Entrepreneurship Competence Framework: https://ec.
europa.eu/social/main.jsp?catId=1317.

4.3 Support for teachers

We first discuss requirements from a teacher perspective.

4.3.1 Modelling concepts and example library

Students learnwell fromconcrete examples [54], but creating
substantial high-quality examples requires a significant effort
from teachers. Modelling tools for teaching should, there-
fore, have the ability to integrate with repositories of sample
learning activities, which should be made available as open
education resources (OERs). This could include: activities
where students need to do the same activity with and without
modelling [58]; an annotated repository of example models,
transformations, and other modelling artefacts; or examples
of industrial use of MDE.

4.3.2 Assessment support

Class sizes for software engineering courses continue to
increase, and as a result, the assessment of students is becom-
ing more and more of an issue. We imagine that an MTT
could help a teacher discover or select modelling exercises
from the aforementioned model repository for assessment.
Better even, the MTT could generate modelling exercises, or
variations of a given modelling exercise, to prevent cheat-
ing [33].

But most importantly, teachers need grading support. In
our experience, the grading of models is often more time-
consuming than the grading of code, because for a given
situation there is in many cases more than one way of
modelling it. MTTs should offer mechanisms for defining
marking schemes, i.e. attaching of points to model elements,
ideally in a language-independent way as done in [8, 38].
Automated grading algorithms could compare a student’s
solution with a teacher’s solution, or, for executable mod-
els, run a set of model unit tests to determine the grade of
the student. Ideally, the tool would also generate feedback
for the students to let them know where and why they lost
points. Again, it would be nice to have generic ways of pro-
viding feedback that are independent of a specific modelling
language.

4.3.3 Plagiarism detection

Discouraging plagiarism in education is vital to uphold aca-
demic integrity, ensure fairness in evaluation, and teach
students about ethical behaviour in both academic and pro-
fessional environments. In large courses, however, manual
inspection becomes impractical [27]. Plagiarism tends to be
more prevalent in mandatory assignments, such as those in
beginners’ courses [59], which typically involve a higher
number of students [16]. Thus, we identify the need for tool-

123

https://www.onetonline.org/
https://esco.ec.europa.eu/
https://ec.europa.eu/social/main.jsp?catId=1317
https://ec.europa.eu/social/main.jsp?catId=1317


Requirements for modelling tools for teaching

based solutions to tackle the problemat scale [67]. Plagiarism
detection is well researched for code [55], however, not for
modelling assignments [51]. They pose a unique challenge
due to the fact that models typically operate at a higher level
of abstraction, providing fewer details for detection. Further-
more, approaches designed for code rely on linearization, a
process that is not trivial for models in general. Tool-based
solutions should help teachers by identifying suspicious can-
didates while leaving final decision-making to the teachers
to uphold ethical standards [48]. They also need to provide
explainability and traceability in order for teachers to under-
stand why a student submission is identified as suspicious.

4.3.4 Collaboration

Wedifferentiate collaboration between teachers and between
teachers and students.

Collaboration between teachers We identified at least two
forms of teacher–teacher collaboration that would be helpful
for developing complex learning activities in modelling.

In sequential collaboration,multiple teachers edit a shared
learning activity, e.g. because one teacher reuses someone
else’s learning resource in the context of their own teaching,
or because a team of teachers may be co-delivering the same
course. This requires strong version-management support,
made additionally challenging by the requirement to manage
the consistency of a complete learning activity as individual
parts are modified by different teachers over time. Ideally,
an MTT would support authors of learning resources to
review, comment on, and approve suggested changes by other
teachers. Especiallywhen resources are shared across institu-
tional boundaries, a lightweight and asynchronous process of
proposing changes to existingmaterials may facilitate better-
maintained resources than an environment characterised by
a “fork-and-forget” mentality.

In concurrent collaboration, multiple teachers are work-
ing on the same learning activity at the same time. This can
range from co-creation of learning activities to in-class sce-
narios demonstrating collaborative modelling or even using
teaching assistants to help with in-class active learning activ-
ities. These types of collaboration require typical concurrent
editing capabilities, including mechanisms for conflict reso-
lution, and collaborative awareness in modelling tools.

Teacher–student collaboration Teachers collaborate with
students

(i) synchronously to model behaviours and help students
overcome difficulties, as well as

(ii) asynchronously to provide feedback and assessment of
modelling work.

This requires effective mechanisms for appropriate interac-
tion. For example, it is pedagogically inappropriate for the
teacher to directly change the student’smodel. Instead, teach-
ers need to be able to suggestmodel changes, provide critique
and feedback on good and bad model elements, etc. Ideally,
such feedback should be directly connected to the individ-
ual elements of the model, as this allows students to easily
understand the context the feedback is referring to.

This requires modelling-specific mechanisms that can be
used with a wide range of modelling languages and nota-
tions. In particular, the optimal mechanisms will depend on
the type of concrete syntax used. For example, for textual
modelling languages,mechanisms like patch annotation (e.g.
in the style offered in GitHub pull requests) can work very
well for providing asynchronous model feedback.

Teacher–student collaboration on a large scale is currently
facilitated through one-to-many lectures and labs. This pro-
cess could be enhanced by incorporating a “modelling-bot”
functionality, as discussed later in Sect. 4.4.1. Essentially,
this bot will be trained using resources from teachers, past
assessments, and relevant data, aiming to provide instant
feedback at scale. It is important to note that while this does
not replace the unique teacher–student feedback mechanism,
it does automate the correction of common mistakes and
repetitive aspects of the process, benefiting both students and
teachers.

It is worth mentioning that while this approach is applica-
ble across various subjects, modelling particularly stands to
benefit due to the nature of its assessment. Unlike subjects
with clear right or wrong answers, like mathematics, mod-
elling involves diagrams assessed based on quality [40, 52],
which requires a more nuanced evaluation that may be better
supported through the interactive nature of a bot.

4.3.5 Traceability

As discussed in Sect. 3.1, when teaching model-based devel-
opment, students are introduced to modelling the different
aspects or views of a system at the right level of abstraction
using the most appropriate formalism. It is also essential for
students to understand that no model is an island. Models
developed in downstream activities must conform to mod-
els created in upstream activities. Tool support is required
to demonstrate the dependencies between the multitude of
models, possibly with the use of megamodels [7] and/or
macromodels [66].

For software engineering projects that use modelling, an
MTT should provide capabilities for automatically checking
if traceability is maintained between the modelling artefacts.
The checker would assess conformance between models,
for example, whether the design class diagram conforms to
the domain model, or whether the sequence diagram con-
forms to the textual use cases for an application. The checker

123



J. Kienzle et al.

could annotate models and generate traceability information
to highlight the missing links between two modelling levels.

4.4 Support for students

Next, we discuss requirements specifically to support stu-
dents.

4.4.1 Modelling assistants

In recent years, numerous techniques that assist modellers
have been proposed. These recommendation systems offer
suggestions to the modellers based on certain factors, e.g.
similarity between the current content of themodel and exist-
ing models in knowledge repositories, without specifically
focussing on teaching [15, 19, 30, 50, 69].

The participants of the workshop felt that existing
approaches (e.g. DoMoBot [65] and SOCIO [63]) are going
in the right direction, but that more can be done with respect
to teaching support. For example, chatbots and assistants for
modelling should take the current level of the student into
account when providing feedback, i.e. not reveal the correct
solution immediately, but provide just enough of a hint for the
student to be able to determine the solution themselves. Fur-
thermore,modelling assistants that determine a specificweak
point of a student could point them to the relevant teaching
material or suggest specific training exercises. As collabo-
rative learning is often more motivating [25], the modelling
assistant could also group students according to their level
and suggest collaborative exercises tailored to the group’s
learning needs.

4.4.2 Constraining a modelling language

Modelling languages often provide many concepts and fea-
tures, some of which are fundamental, whereas others are
advanced, i.e. not used very often and/or potentially difficult
to grasp for newcomers. For example, whereas the concepts
of class, attribute, and binary associations are fundamental
to modelling using class diagrams, concepts such as asso-
ciation classes or n-ary associations are less often used. To
reduce the cognitive load on students and to guide them in
their learning, we imagine that it would be very useful if
MTTs provided support for restricting the available features
of amodelling language for a given exercise to those required
for solving it. Over time, and as the expertise of the student
grows, more difficult exercises would give access to more
advanced features.

Restricting the available features of a language to a subset
of the language also makes sense to tailor it to the modelling
activity that is being carried out. For example, when creating
a domain model, classes typically do not declare any opera-
tions, nor does one bother modelling visibility. On the other

hand,when a class diagram represents a software design, then
being able to define operations for classes is essential. In this
case, association classes or n-ary associations are typically
not used.

4.4.3 Collaboration

Modelling is often collaborative and MTTs should support
this.

Direct collaborative modelling Modelling tools for teach-
ing should provide opportunities for students to store their
models on a standard version control system to allow asyn-
chronous, offline collaboration with other students. This
requires students to understand version control systems and
their practical use. Additionally, it may be important to pro-
vide adapted support for model comparison and merging.

Students also expect to be able to collaborate syn-
chronously; that is, multiple students would edit the same
model at the same time, possibly each using their computer.
Some modelling tools already support such collaborative
modelling. For example, tools such as Magic Draw, Enter-
prise Architect, and MetaEdit+ [42] already support online
collaboration, including across different domains [35].

Indirect collaboration Students can benefit from learning
from other students’ work [20]. One way of doing this is
to enable peer feedback, where students comment on other
students’ solutions to the same assignment. For this, as men-
tioned in Sect. 4.3.2, it would be beneficial if feedback could
be given through direct annotation of models.

Another, more implicit mechanism is for students to
receive feedback and suggestions based on an analysis of
other students’ submissions. For example, where a student
has not been able to complete a task successfully, the sys-
tem could identify other students who submitted similar, but
successful solutions and use the delta to suggest parts of the
model the student should focus on to develop a correct solu-
tion. Similar systems have been experimented with in the
context of assessing programming tasks [32], but they need
to be developed for modelling education.

4.4.4 Gamification

There is strong interest in utilising gamification inmodelling,
yielding promising initial results [13]. However, the pre-
dominant efforts thus far have involved modellers manually
creating ad hoc gamification environments tailored to spe-
cific experimental scenarios. A genuine push towards fully
integrating gamification into modelling tools remains out-
standing. Notable exceptions, like [13, 24, 26, 60, 75], can
be regarded as early endeavours addressing the gamification
of modelling, particularly in the context of modelling educa-

123



Requirements for modelling tools for teaching

tion. These authors have introduced technical solutions that
target specific learning objectives, such as data/process, and
UML class diagrams modelling.

New MTTs should incorporate a fully fledged gamifica-
tion environment. The game definition mechanisms within
this framework must distinguish various learning dimen-
sions, including learning abstraction, a modelling language,
or a modelling tool.

5 Technical requirements

In this section,we list the technical requirements for our envi-
sioned MTTs. We split the discussion into requirements to
help the students, the teachers and to support the development
of the tools themselves.

5.1 For students

To allow them to focus on the actual modelling activity, stu-
dents should be able to use modelling tools without the need
for installation or complex plugin management. Web-based,
playground-style solutions (like the Epsilon Playground7 or
[5]) may be one approach here, but alternative options (e.g.
integration into common platforms like VS Code) may also
be appropriate.

Students usemany different computing platforms, and it is
essential that the modelling tools used in teaching are avail-
able across these platforms and do not significantly change
the way they work when switching between platforms.

Platform independence especially concerns both the mod-
elling artefacts and the user interface. Regarding the former,
models cannot breakor deviate in their behaviourwhenwork-
ing on different platforms.Regarding the latter, it is important
that demonstrations of teachers or teaching assistants can be
directly reproduced by students, independent of, for example,
their operating system.

Students have many demands on their time and will rarely
be able to complete an activity in one sitting.

It is, therefore, essential that educational modelling tools
provide easy ways of saving intermediary model states and
continuing from such a saved state at a later time. Saving
can be internal to the tool (e.g. to an internal database) or
can be to an external file. Importantly, it must be possible to
export work in a format that is appropriate for submission
of assignments (or to submit directly from within the tool
if more appropriate). This includes simple choices such as
ensuring no absolute paths are used in exported files.

7 https://eclipse.dev/epsilon/playground/.

5.2 For teachers

Teachers can have different requirements depending on a
number of factors, including the extent to which the tool will
be used to support learning and assessment activities within
the course and the available technical skills and infrastruc-
ture.

Teachers who plan to use the tool extensively in their
course and who have technical skills and resources may like
to deploy a version of the tool (e.g. through a Docker image)
on local resources. This allows them to control when to
upgrade to the next version of the tool, to patch/work around
any identified issueswith the tool, and to shield students from
unexpected events. On the other hand, teacherswho only plan
to use the tool for a small, non-critical part of their course
are likely to prefer a ready-to-use public instance (like those
offered by theEpsilonPlayground andUmpleOnline [49]). In
this case, teachers may require configuring the tool with cus-
tom examples (e.g. metamodels, grammars, models, model
management programs) to better integrate with the rest of the
teaching material (e.g. example systems/domains discussed
in lectures). Ideally, doing so should not require teachers to
install an instance of the tool on their own resources; publicly
available instances should provide built-in support for this.
The Epsilon Playground, for example, allows users to config-
ure its set of examples by specifying the location of a JSON
document as a URL parameter.8 Finally, students should be
able to share their work with teachers (e.g. by generating
and sharing a unique URL as is the case with the Epsilon
Playground) and teachers must be able to export their stu-
dents’ work and persist them in a standard format to carry
out further activities (e.g. inspection, marking).

5.3 For MTT developers

MTTs should demonstrate common characteristics of well-
engineered community-driven software to facilitate adoption
and continued development. The implementation should be
accompanied by tests that demonstrate the correct behaviour
of the tool and protect it against regressions. The architecture
and code should be modular, to allow adopters to add/disable
components and services. The code should be implemented
using languages and frameworks that have a substantial user
basis to facilitate long-term maintenance. Finally, the use of
a permissive open-source licence is necessary to facilitate
contributions by the community.

8 See https://eclipse.dev/epsilon/doc/articles/playground/#custom-
examples.

123

https://eclipse.dev/epsilon/playground/
https://eclipse.dev/epsilon/doc/articles/playground/#custom-examples
https://eclipse.dev/epsilon/doc/articles/playground/#custom-examples


J. Kienzle et al.

6 Modelling tool examples

To illustrate the requirements discussed in Sects. 3 to 5, we
present in this section how some of the existing academic
tools nowadays address them.

6.1 Executable modelling with examples in Umple

Umple [49] is an open-source modelling language and tech-
nology designed to improve both education about modelling
and open-source development with models. Umple’s tex-
tual syntax (cf. Sect. 3.1.2) incorporates a variety of model
types including class models, state machines, and feature
models. Most graphical representations can also be edited,
with the edits instantly reflected in the text. Umple generates
code from all its modelling constructs, enabling model-
driven design of complete systems (cf. Sect. 3.1.5). Where
needed, user-defined code in traditional programming lan-
guages including Java, PHP, and Python is embedded in the
same files as the textual models. The result is a textual format
that resembles what students would be used to, given their
experience with any other compiler.

To make it clear to students that serious systems can be
built with models, an extensive online user manual and set of
examples are available. Students also see the write-compile-
execute-repeat cycle and experience satisfaction when they
get a system working that is built from models.

A key feature of Umple is its extensive automatic analysis
of model consistency (cf. Sect. 3.1.3). Several hundred error
messages andwarnings are produced regarding issuesUmple
detects in models. Each error or warning also has its own
dedicated manual page, with live examples showing how to
correct errors.

6.2 Constrainingmodelling languages in TouchCORE

TouchCORE is an academic modelling tool that focuses
on model reuse following the Concern-Oriented Reuse
approach. TouchCORE currently supports several standard
modelling notations, such as class diagrams, sequence dia-
grams, and use case diagrams. It is also possible to define new
domain-specific languages and augment them with concern-
oriented capabilities by integrating them into TouchCORE
using a plugin mechanism.

In addition to the language metamodel, a language defi-
nition in CORE requires the language designer to specify a
set of language actions that define the construction seman-
tics. The actions encapsulate complete editing steps that are
used by the modeller when elaborating a model using the
language. In other words, the language actions constitute the
API for building models with the language.

On top of the language actions, TouchCORE provides the
notion of a perspective [4], which allows a modeller to group

a set of language actions and make them available to the
user for creating models for a specific purpose. For example,
a user can select the Domain Modelling perspective, which
then opens the class diagram editor, but is configured in such
a way that it shields the user from the full power of UML
class diagrams (cf. Sect. 4.4.2). In the Domain Modelling
perspective, it is not possible to create operations for classes,
nor can one specify visibility for attributes or navigability
of associations. On the other hand, if the user selects the
DesignModellingperspective, then the creation of operations
and specification of visibility and navigability is allowed.
On the other hand, the use of association classes and n-ary
associations (where n ≥ 3) is disallowed.

6.3 Web-based playgrounds: addressing
no-installation requirements, teacher
collaboration, and constrainedmodelling
activities

In the world of programming languages, web-based play-
grounds have been around for some time. One of the most
well-known such environments is perhaps www.w3schools.
com [62], which has been offering online training on the
basics of a wide range of programming languages, web
frameworks, etc., for a long time.

With playgrounds no software installation or configura-
tion is required (cf. Sect. 5.1). All learning activities are
accessible from within a web browser with no need for the
student to install complicated tools or set up development
environments. Furthermore, playgrounds are typically set up
for specific activities and provide a bespoke, typically sim-
plified user interface exposing only theminimal functionality
required to support the activity (cf. Sect. 4.4.2). As a result,
students can focus on the interactions required for the activity
without distractions from tool or language complexity.

As a result of these benefits, playgrounds have been
experimented with by MDE tool developers, primarily as
a mechanism for enriching the online documentation of their
tools. For example, the Epsilon Playground provides a range
of examples for using the Epsilon toolkit [44]. Similarly,
the Langium Playground9 allows experimentation with the
Langium language workbench.

The MDENet education platform [5]10 generalises from
these ideas and aims to develop a playground into which
different MDE tools and techniques can be easily inte-
grated. Technically derived from the Epsilon Playground,
the platform introduces declarative specifications for learn-
ing activities and MDE tools. MDE tools are expected to
be packaged as web services offering an API for running
tool-specific actions (for example, a model-transformation

9 https://langium.org/playground/.
10 https://github.com/mdenet/educationplatform/.

123

www.w3schools.com
www.w3schools.com
https://langium.org/playground/
https://github.com/mdenet/educationplatform/


Requirements for modelling tools for teaching

tool would offer an API endpoint which can accept a model,
metamodel, and transformation specification and return the
transformed model). The platform then allows declarative
activity specifications to drawon awhole range of tools avail-
able in this way and constructs a dedicated playground from
each such specification. Activity specifications and the asso-
ciated files can be stored in a GitHub repository, making
them accessible to students, for example, via GitHub class-
room and similar mechanisms. Students are even able to save
back their progress via the platform (cf. Sect. 5.1), whichwill
create a commit in the underlying repository (assuming the
student has sufficient access rights).

Making activity specifications explicit as declarativemod-
els via the GitHub platform makes it possible for these to be
shared and co-developed by different teachers, helping to
address some of the requirements on teacher collaboration
(cf. Sect. 4.3.4).

6.4 Teaching language engineering in graphical,
textual, and projectional language workbenches

Students should be exposed to developing DSMLs using dif-
ferentmodellingparadigms (cf. Sect. 3.2.1).AToMPM[74] is
a web-based graphical modelling environment. Being boot-
strapped, its editor is completely customizable, enabling
teachers to adapt the tool for specific assignments. Focussing
solely on graphical models, students define the concrete syn-
tax of their DSML with SVG elements. As for the abstract
syntax, students usually define it using the built-in UML
class diagram; however, teachers can define other metamod-
elling languages (such as Entity-Relation) as well. AToMPM
also enables the definition of the semantics of the DSL with
rule-based model transformations. Students develop differ-
ent algorithmic skills than needed when programming, being
a declarative specification based on graph transformations.
These transformations are mainly used to refactor, simulate,
or analyse models. Using this tool, students can observe live
animations of their model while running the transformation
continuously or step-by-step.

The Eclipse Modelling Framework offers a variety of
modelling tools that allow students to model both using a
graphical or textual. However, Eclipse’s strength is mostly
in the former. A prominent textual modelling is Xtext [29],
a textual model editor generator. Using Xtext, students
learn to define grammars as well as other core language
engineering components such as validators, postprocessors,
and textual styling. It is compatible with Xtend [28], a
template-based code generation engine. This allows students
to develop code generation skills from high-abstractionmod-
els targeting different programming languages andplatforms.
Within the Eclipse realm, they can also use the ATL [39]
model-to-model transformation engine, specifically tailored
to translate models across modelling languages. ATL trans-

formations are developed with declarative rules augmented
with OCL-like expressions.

Defining DSMLs with projectional language
workbenches, like MPS, differs from the previous modelling
paradigms when developing the concrete syntax of the lan-
guage. In MPS, students define textual projections of their
language. They then define a Java code generator to give the
operational meaning to their language. Alternatively, Gentle-
man [46] is a web-based projectional editor generator where
students develop and use DSMLs in a web browser. In this
case, they define projections for each metamodel element in
the form of a group of HTML widgets. Gentleman also sup-
ports graphical projections. Teachers can easily integrate the
generated projectional editors into full-fledged web applica-
tions demonstrating to students how MDE technologies can
be interleaved with programming technologies seamlessly.

6.5 Gamification with PapyGame

As a plugin for the Papyrus modelling tool,11 PapyGame
aims to gamify the learning of modelling by integrating a
game view within the Papyrus UML editor. This gamifica-
tion (cf. Sect. 4.4.4) is made possible through the utilisation
of a Gamification Engine, enabling the implementation of
key gaming concepts associated with specific learning paths.
The tool utilises a gamification design framework accessible
through user interfaces in a web browser. This integration
serves to enhance the learning experience for users, provid-
ing both effective and enjoyable ways to learn and practice
modelling skills. For educators, PapyGame stands as a valu-
able asset to enrich their students’ learning experiences and
foster improved learning outcomes.

6.6 Skills, concepts, OER, and learning paths in MDE
through the ENCORE platform

The ENCORE platform [14] has been designed and devel-
oped to support teachers and learners both in designing and in
delivering personalised learning paths (cf. Sects. 4.1 and 4.2)
in MDE based on a set of available OERs (cf. Sect. 4.3.1).
In ENCORE, a learning path typically consists of a series
of lessons and modelling activities that build on one another
to create a cohesive educational experience. The process for
creating a learning path generally involves two main steps: i)
creating the learning path by identifying the learning objec-
tives, selecting relevant content and assessment, and using
the most appropriate instructional strategies, e.g. lectures,
group activities or assignments; and ii) delivering the learn-
ing path to students while monitoring students’ progress
and providing support when needed. Through the use of the
ENCOREEnabler for Educators (E4E), educators can access

11 https://ci.eclipse.org/papyrus/view/PapyGame/.

123

https://ci.eclipse.org/papyrus/view/PapyGame/


J. Kienzle et al.

Fig. 3 Top responses to Q7 to 13 on required features of MTTs. This was a semantic-difference scale question and each coloured bar represents
the percentage of responses for each possible answer, centred on “Not needed”

the ENCORE database and include in the specific learning
paths the relevant OERs that target specific skills in MDE.
A second enabler, the ENCORE Enabler for Learners (E4L),
supports the delivery of the resulting learning path to stu-
dents by leveraging notebook interfaces. Each notebook can
be configured to provide and assess a specific learning path
and can be augmented with gamification mechanisms to pro-
mote students’ learning engagement.

7 Conclusion

While modelling is an important activity in software engi-
neering, modelling tools are often not good enough to be
used efficiently and effectively in teaching contexts. Based
on discussions in a 1-dayworking session atMODELS 2023,
we have reported a catalogue of requirements on future mod-
elling tools for teaching (MTTs).

We conducted an international survey and asked partic-
ipants which features they would value particularly highly
in a modelling tool for teaching. Figure 3 gives an overview
over the top 17 features based on participants’ responses on
a semantic-difference scale.

Notably, participants strongly care about the usability
aspects of modelling tools. Respondents consistently under-
score the significance of features such as general ease of
use, fast response time, and the ability to hide unneeded fea-
tures. These elements are foundational to the user experience,
as they directly impact efficiency and user satisfaction. A

tool’s intuitive interface and seamless navigation are pivotal
in facilitating the modelling process, enabling users to focus
on their tasks without grappling with unnecessary complexi-
ties.Note, also, that usability alreadyplayed an important role
in the responses to the initial survey we conducted directly
during the workshop.

Moreover, participants emphasise reliability. This encom-
passes not only the stability and robustness of the tool but also
its ability to consistently deliver accurate results and perform
as expected under various conditions. Users prioritise tools
that they can rely on to execute tasks reliably, minimising the
risk of errors and disruptions in their workflow.

In addition to usability and reliability, the data highlights
the importance of functionality geared towards enhancing
collaboration and learning. Features such as the ability for
students to save and load models, version control, and the
presence of a library/repository of examples facilitate knowl-
edge sharing, iteration, and experimentation.

Furthermore, accessibility and affordability emerge as
significant determinants of tool adoption and usage. The abil-
ity to run on all main laptop platforms and the availability of
free usage for educators and students are important to respon-
dents. These features ensure inclusiveness and democratise
access to modelling tools, making them accessible to a
broader audience regardless of their technological or finan-
cial constraints.

Developing the next generation of MTTs must be a com-
munity effort. We invite everyone interested in these topics

123



Requirements for modelling tools for teaching

to join our efforts and build better tools for future teaching
of modelling.

Acknowledgements We thank all the participants of the Workshop
on Modelling Tools for Teaching (https://modellingtoolsforteaching.
github.io/) held in conjunction with MODELS 2023 in Västeras, Swe-
den for their contributions to the discussions that led to this paper.
Zschaler andBarnett’s contributionswere partially supported by theUK
Engineering and Physical Sciences Research Council (EPSRC) as part
of MDENet—the expert network in model-driven engineering—(Grant
Reference EP/T030747/1). Abrahão’s contributions were partially sup-
portedby theStateResearchAgency (AEI) under theUCI-Adapt Project
(PID2022-140106NB-I00). Kienzle’s contributions were partially sup-
ported by Junta de Andalucía under Project QUAL21 010UMA.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abrahão, S., Bordeleau, F., Cheng, B.H.C., Kokaly, S., Paige, R.F.,
Störrle, H., Whittle, J.: User experience for model-driven engi-
neering: challenges and future directions. In: 20th ACM/IEEE
International Conference onModel Driven Engineering Languages
and Systems, MODELS 2017, Austin, TX, USA, September 17–
22, 2017, pp. 229–236. IEEE Computer Society (2017)

2. Abrahão, S., Gravino, C., Insfrán, E., Scanniello, G., Tortora, G.:
Assessing the effectiveness of sequence diagrams in the compre-
hension of functional requirements: results from a family of five
experiments. IEEE Trans. Softw. Eng. 39(3), 327–342 (2013)

3. Alario-Hoyos, C., Bote-Lorenzo, M.L., Gómez-Sánchez, E.,
Asensio-Pérez, J.I., Vega-Gorgojo, G., Ruiz-Calleja, A.: Glue! An
architecture for the integration of external tools in virtual learning
environments. Comput. Educ. 60(1), 122–137 (2013)

4. Ali, H., Mussbacher, G., Kienzle, J.: Perspectives to promote mod-
ularity, reusability, and consistency in multi-language systems.
Innov. Syst. Softw. Eng. 18(1), 5–37 (2022)

5. Barnett, W., Zschaler, S., Boronat, A., Garcia-Dominguez, A.,
Kolovos, D.: An online education platform for teaching MDE. In:
Proceedings of Educators Symposium at MODELS 2023 (2023)

6. Bezivin, J., France, R., Gogolla, M., Haugen, O., Taentzer, G.,
Varro, D.: Teaching modeling: why, when, what? In: Ghosh, S.
(ed.) Models in Software Engineering, pp. 55–62. Springer, Berlin
(2010)

7. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the
large and modeling in the small. In: EuropeanWorkshop onModel
Driven Architecture, pp. 33–46. Springer (2003)

8. Bian, W., Alam, O., Kienzle, J.: Is automated grading of mod-
els effective? Assessing automated grading of class diagrams. In:
Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, pp. 365–376
(2020)

9. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni,
J., Combemale, B.: Execution framework of the GEMOC Studio
(tool demo). In: International Conference on Software Language
Engineering, pp. 84–89. Association for Computing Machinery
(2016)

10. Bruneliere, H., Burger, E., Cabot, J., Wimmer, M.: A feature-based
survey of model view approaches. Softw. Syst. Model. 18, 1931–
1952 (2019)

11. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: a model
driven reverse engineering framework. Inf. Softw. Technol. 56(8),
1012–1032 (2014)

12. Bucchiarone, A., Cabot, J., Paige, R.F., et al.: Grand challenges in
model-driven engineering: an analysis of the state of the research.
Softw. Syst. Model. 19, 5–13 (2020)

13. Bucchiarone, A., Savary-Leblanc, M., Le Pallec, X., Cicchetti, A.,
Gérard, S., Bassanelli, S., Gini, F., Marconi, A.: Gamifying model-
based engineering: the PapyGame experience. Softw. Syst. Model.
22(4), 1369–1389 (2023)

14. Bucchiarone, A., Vazquez-Ingelmo, A., Garcia-Holgado, A.,
Barandoni, S., Schiavo, G., Mosser, S., Pierantonio, A., Zschaler,
S., Barnett, W.: Towards personalized learning paths to empower
competency development in model driven engineering through the
ENCORE platform. In: Educators Symposium at MODELS 2023
(2023)

15. Burgueño, L., Clarisó, R., Gérard, S., Li, S., Cabot, J.: An NLP-
based architecture for the autocompletion of partial domainmodels.
In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) Advanced Informa-
tion Systems Engineering, pp. 91–106. Springer, Cham (2021)

16. Camp, T., Adrion, W.R., Bizot, B., Davidson, S., Hall, M., Ham-
brusch, S., Walker, E., Zweben, S.: Generation cs: the growth of
computer science. ACM Inroads 8(2), 44–50 (2017)

17. Castañeda, L., Selwyn, N.: More than tools? Making sense of the
ongoing digitizations of higher education. Int. J. Educ. Technol.
High. Educ. 15(1), 1–10 (2018)

18. CC2020 Task Force: Computing Curricula 2020: Paradigms for
Global Computing Education. Association for ComputingMachin-
ery, New York (2020)

19. Cerqueira, T.G.O., Ramalho, F., Marinho, L.B.: A content-based
approach for recommending UML sequence diagrams. In: Gou,
J. (ed.) The 28th International Conference on Software Engineer-
ing and Knowledge Engineering, SEKE 2016, Redwood City, San
Francisco Bay, USA, July 1–3, 2016, pp. 644–649. KSI Research
Inc. and Knowledge Systems Institute Graduate School (2016)

20. Chakarvarti, P.: Investigating the effectiveness of peer feedback
in developing critical thinking skills in undergraduate students. J.
Educ. Rev. Provis. 2(3), 91–95 (2022)

21. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches
for software and system modelling: a systematic literature review.
Softw. Syst. Model. 18, 3207–3233 (2019)

22. Ciccozzi, F., Famelis, M., Kappel, G., Lambers, L., Mosser, S.,
Paige, R.F., Pierantonio, A., Rensink, A., Salay, R., Taentzer, G.,
Vallecillo, A., Wimmer, M.: How do we teach modelling and
model-driven engineering? A survey. In Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineer-
ingLanguages andSystems:CompanionProceedings, pp. 122–129
(2018)

23. Combemale, B., Crégut, X., Dieumegard, A., Pantel, M., Zalila, F.:
Teaching mde through the formal verification of process models.
Electron. Commun. EASST 52 (2012)

24. Cosentino, V., Gérard, S., Cabot, J.: A model-based approach to
gamify the learning ofmodeling. In: Proceedings of the 5th Sympo-
sium on Conceptual Modeling Education and the 2nd International
iStar Teaching Workshop Co-located with the 36th International
Conference on Conceptual Modeling (ER 2017), Valencia, Spain,
November 6–9, 2017, pp. 15–24 (2017)

123

https://modellingtoolsforteaching.github.io/
https://modellingtoolsforteaching.github.io/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. Kienzle et al.

25. Damayanti, E., Nur, F., Anggereni, S., Taufiq, A.U.: The effect
of cooperative learning on learning motivation: a meta-analysis.
Buletin Psikologi 31(1), 116 (2023)

26. De Smedt, J., DeWeerdt, J., Serral, E., Vanthienen, J.: Gamification
of declarative process models for learning and model verification.
In: Reichert, M., Reijers, H.A. (eds.) Business Process Manage-
ment Workshops, pp. 432–443. Springer, Cham (2016)

27. Devore-McDonald, B., Berger, E.D.: Mossad: Defeating software
plagiarism detection. Proc. ACM Program. Lang. 4(OOPSLA), 1–
28 (2020)

28. Efftinge, S., Köhnlein, J., Zarnekow, S.: Xtend—modernized java.
https://eclipse.dev/Xtext/xtend/. Last visited May 10 2024

29. Efftinge, S., Köhnlein, J., Zarnekow, S.: Xtext language develop-
ment framework. https://eclipse.dev/Xtext/. Last visited May 10
2024

30. Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML class rec-
ommender system for software design. In: 2016 IEEE/ACS 13th
International Conference of Computer Systems and Applications
(AICCSA), pp. 1–8 (2016)

31. Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R.,
Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat,
G.D.P., Molina, P.J., Palatnik, M., Pohjonen, R., Schindler, E.,
Schindler, K., Solmi, R., Vergu, V.A., Visser, E., van der Vlist,
K., Wachsmuth, G., van der Woning, J.: Evaluating and compar-
ing language workbenches: existing results and benchmarks for the
future. Comput. Lang. Syst. Struct. 44, 24–47 (2015)

32. Gross, S., Mokbel, B., Paassen, B., Hammer, B., Pinkwart,
N.: Example-based feedback provision using structured solution
spaces. Int. J. Learn. Technol. 9(3), 248–280 (2014)

33. Gómez-Abajo, P., Guerra, E., Lara, J.: Automated generation and
correction of diagram-based exercises for Moodle. Comput. Appl.
Eng. Educ. 31, 08 (2023)

34. Hassane, O., Mustafiz, S., Khendek, F., Toeroe, M.: MAPLE-
T: a tool for process enactment with traceability support. In:
ACM/IEEE 22nd International Conference onModel Driven Engi-
neering Languages and Systems Companion (MODELS-C), pp.
759–763 (2019)

35. Herac, E., Assunção, W.K.G., Marchezan, L., Haas, R., Egyed, A.:
A flexible operation-based infrastructure for collaborative model-
driven engineering. J. Obj. Technol. 22(2), 2:1-2:14 (2023)

36. Hilton, J.: Open educational resources, student efficacy, and user
perceptions: a synthesis of research published between 2015 and
2018. Educ. Technol. Res. Dev. 68(3), 853–876 (2020)

37. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng.
23(5), 279–295 (1997)

38. Hosseinibaghdadabadi, M., Alam, O., Almerge, N., Kienzle, J.:
Automated grading of use cases. In: Proceedings of the 26th Inter-
national Conference on Model Driven Engineering Languages and
Systems, MODELS ’23, pp. 106–116, New York, NY, USA. Asso-
ciation for Computing Machinery (2023)

39. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1), 31–39 (2008)

40. Karasneh, B., Stikkolorum, D., Larios, E., Chaudron, M.: Quality
assessment of UML class diagrams. In: Proceedings of Educators’
Symp at MoDELS (2015)

41. Kecskemeti, G., Casale, G., Jha, D.N., Lyon, J., Ranjan, R.: Mod-
elling and simulation challenges in internet of things. IEEE Cloud
Comput 4(1), 62–69 (2017)

42. Kelly, S.: Collaborative modelling with version control. In: Fed-
eration of International Conferences on Software Technologies:
Applications and Foundations, pp. 20–29. Springer (2017)

43. Klare, H., Kramer, M.E., Langhammer, M., Werle, D., Burger, E.,
Reussner, R.: Enabling consistency in view-based system develop-
ment: the vitruvius approach. J. Syst. Softw. 171, 110815 (2021)

44. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book.
http://www.eclipse.org/gmt/epsilon/doc/book/ (2009)

45. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.:
Eugenia: towards disciplined and automated development ofGMF-
based graphical model editors. Softw. Syst. Model. 16, 229–255
(2017)

46. Lafontant, L.-E., Syriani, E.: Gentleman: a light-weight web-based
projectional editor generator. In: Model Driven Engineering Lan-
guages and Systems: Companion Proceedings, pp. 1–5. ACM
(2020)

47. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J.
Softw. Tools Technol. Transf. 1, 134–152 (1997)

48. Le, T., Carbone, A., Sheard, J., Schuhmacher, M., de Raath, M.,
Johnson, C.: Educating computer programming students about pla-
giarism through use of a code similarity detection tool. In: 2013
Learning andTeaching inComputing andEngineering, pp. 98–105.
IEEE (2013)

49. Lethbridge, T.C., Forward, A., Badreddin, O., Brestovansky, D.,
Garzon, M., Aljamaan, H., Eid, S., Orabi, A.H., Orabi, M.H.,
Abdelzad, V., Adesina, O., Alghamdi, A., Algablan, A., Zakari-
apour, A.: Umple: model-driven development for open source and
education. Sci. Comput. Program. 208, 102665 (2021)

50. Lucrédio, D., Fortes, R.P.M.,Whittle, J.: MOOGLE: a metamodel-
based model search engine. Softw. Syst. Model. 11(2), 183–208
(2012)

51. Martínez, S., Wimmer, M., Cabot, J.: Efficient plagiarism detec-
tion for software modeling assignments. Comput. Sci. Educ. 30(2),
187–215 (2020)

52. Modi, S., Taher, H.A., Mahmud, H.: A tool to automate student
UML diagram evaluation. Acad. J. Nawroz Univ. 10(2), 189–198
(2021)

53. Mustafiz, S., Vangheluwe, H.: Explicit modelling of statechart
simulation environments. In: Proceedings of the 2013 Summer
Computer Simulation Conference, SCSC’13, Vista, CA. Society
for Modeling & Simulation International (2013)

54. Nainan, M., Balakrishnan, B.: Design and evaluation of worked
examples for teaching and learning introductory programming at
tertiary level. Malays. Online J. Educ. Technol. 7, 30–44 (2019)

55. Novak, M., Joy, M., Kermek, D.: Source-code similarity detection
and detection tools used in academia: a systematic review. ACM
Trans. Comput. Educ. 19(3), 1–37 (2019)

56. Object Management Group. Object constraint language. https://
www.omg.org/spec/OCL, 2014. Last accessed 15 February 2024

57. Otto, D.: Adoption and diffusion of open educational resources
(OER) in education: a meta-analysis of 25 OER-projects. Int. Rev.
Res. Open Distrib. Learn. 20(5), 122–140 (2019)

58. Panach, J.I., Pastor, Ó.: A practical experience of how to teach
model-driven development to manual programming students.
Enterp. Model. Inf. Syst. Architect. 18(6), 1 (2023)

59. Park, C.: In other (people’s) words: plagiarism by university
students-literature and lessons. Assess. Eval. High. Educ. 28(5),
471–488 (2003)

60. Pflanzl, N.: Gameful business process modeling. In: Mendling,
J., Rinderle-Ma, S. (eds.) Proceedings of the 7th International
WorkshoponEnterpriseModeling and InformationSystemsArchi-
tectures, EMISA 2016, volume 1701 of CEURWorkshop Proceed-
ings, pp. 17–20. CEUR-WS.org (2016)

61. Plante, F.: Introducing the GMF runtime. https://www.eclipse.
org/articles/Article-Introducing-GMF/article.html, 2006. Last
accessed 15 February 2024

62. Refsnes Data. W3Schools Website. http://www.w3schools.com.
Last accessed 15 May 2024

63. Ren, R., Castro, J.W., Santos, A., Dieste, O., Acuña, S.T.: Using
the SOCIO chatbot for UML modelling: a family of experiments.
IEEE Trans. Softw. Eng. 49(1), 364–383 (2022)

64. Richters, M., Gogolla, M.: Validating UML models and OCL con-
straints. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000–The
UnifiedModeling Language, pp. 265–277. Springer, Berlin (2000)

123

https://eclipse.dev/Xtext/xtend/
https://eclipse.dev/Xtext/
http://www.eclipse.org/gmt/epsilon/doc/book/
https://www.omg.org/spec/OCL
https://www.omg.org/spec/OCL
https://www.eclipse.org/articles/Article-Introducing-GMF/article.html
https://www.eclipse.org/articles/Article-Introducing-GMF/article.html
http://www.w3schools.com


Requirements for modelling tools for teaching

65. Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: Automated,
interactive, and traceable domain modelling empowered by artifi-
cial intelligence. Softw. Syst. Model. 21(3), 1015–1045 (2022)

66. Salay, R., Mylopoulos, J., Easterbrook, S.: Using macromodels to
manage collections of related models. In: Advanced Information
Systems Engineering: 21st International Conference, CAiSE 2009,
Amsterdam, The Netherlands, June 8–12, 2009. Proceedings 21,
pp. 141–155. Springer (2009)

67. Sağlam, T., Schmid, L., Hahner, S., Burger, E.: How students
plagiarizemodeling assignments. In: Proceedings of the 26th Inter-
national Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’23, New York, NY,
USA. Association for Computing Machinery (2023)

68. Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J.A., Tor-
tora, G., Risi, M., Dodero, G.: Do software models based on the
UML aid in source-code comprehensibility? Aggregating evidence
from 12 controlled experiments. Empir. Softw. Eng. 23(5), 2695–
2733 (2018)

69. Segura, A.M., Pescador, A., de Lara, J., Wimmer, M.: An exten-
sible meta-modelling assistant. In: 2016 IEEE 20th International
Enterprise DistributedObject Computing Conference (EDOC), pp.
1–10 (2016)

70. Sønderlund, A.L., Hughes, E., Smith, J.: The efficacy of learning
analytics interventions in higher education: a systematic review.
Br. J. Educ. Technol. 50(5), 2594–2618 (2019)

71. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software
Development: Technology, Engineering. Management. Wiley,
Hoboken (2006)

72. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education, London (2008)

73. Syriani, E., Luhunu, L., Sahraoui, H.: Systematic mapping study
of template-based code generation. Comput. Lang. Syst. Struct.
52(1), 43–62 (2018)

74. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., Ergin, H.: AToMPM: a web-based modeling envi-
ronment. In: MODELS’13 Invited Talks, Demonstration Session,
Poster Session, and ACM Student Research Competition, volume
1115, pp. 21–25, Miami FL. CEUR-WS.org (2013)

75. Tantan, O.C., Lang, D., Boughzala, I.: Towards gamification of the
data modeling learning. In: MCIS 2017: 11th Mediterranean Con-
ference on Information Systems, Sep 2017, Genova, Italy (2017)

76. Unesco. Recommendation on open educational resources (OER).
https://www.unesco.org/en/legal-affairs/recommendation-open-
educational-resources-oer, November 2019. Accessed: 2023-07-
19

77. Varró, D.: Automated formal verification of visual modeling lan-
guages by model checking. Softw. Syst. Model. 3, 85–113 (2004)

78. Viyović, V., Maksimović, M., Perisić, B.: Sirius: a rapid devel-
opment of DSM graphical editor. In: IEEE 18th International
Conference on Intelligent Engineering Systems (INES’14), pp.
233–238 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jörg Kienzle is a researcher at ITIS
Software, Universidad de Málaga,
Málaga, Spain, and Full Profes-
sor at McGill University, Mon-
tréal, Québec, Canada, where he
leads the Software Composition
and Reuse lab (SCORE). His
research interests include model-
driven software development, soft-
ware product lines, separation of
concerns, reuse, software compo-
sition, and modularity. Further
information about him can be
found at https://djeminy.github.io.

Steffen Zschaler is a Reader in
Software Engineering at King’s
College London. His research
interests are in model-driven engi-
neering, focussing on modularity,
optimisation, and the principled
engineering of simulations. He is
the director of MDENet, the
expert network in model-driven
engineering, where he has led on
the development of the MDENet
Education Platform to improve the
accessibility of MDE tools to stu-
dents. More details about his
research and teaching can be

found at www.steffen-zschaler.de.

WilliamBarnett is former Research
Software Engineer at King’s Col-
lege London who contributed to
the development and maintenance
of the MDENet Education Plat-
form. His main areas of inter-
est are model-driven development,
software architecture, and embed-
ded systems. More details about
his research can be found at www.
wdbar.net.

Timur Sağlam is a doctoral
researcher at the KASTEL Insti-
tute at Karlsruhe Institute of Tech-
nology (KIT). He is the project
lead of the widely used open-
source plagiarism detector JPlag.
His research interests involve soft-
ware plagiarism detection, partic-
ularly obfuscation attacks on
software plagiarism detectors.
More details about his research
and teaching can be found at
https://dsis.kastel.kit.edu/staff_
saglam.php.

123

https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://djeminy.github.io
www.steffen-zschaler.de
www.wdbar.net
www.wdbar.net
https://dsis.kastel.kit.edu/staff_saglam.php
https://dsis.kastel.kit.edu/staff_saglam.php


J. Kienzle et al.

Antonio Bucchiarone is a Senior
Researcher at the Motivational
Digital Systems (MoDiS) unit of
the Bruno Kessler Foundation
(FBK) in Trento, Italy. His
research activity is focussed on
many aspects of Software Engi-
neering for Adaptive Socio-
Technical Systems. He has inves-
tigated advanced methodologies
and techniques supporting the def-
inition and development of game-
ful systems in different domains
(i.e. education, sustainable mobil-
ity, etc.) where being adaptable is

a key intrinsic characteristic. He was the General Chair of the 12th
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2018). Dr. Bucchiarone is an Associate Editor of the
IEEE Transactions on Intelligent Transportation Systems (T-ITS) Jour-
nal, of the IEEE Software Magazine and of the IEEE Technology and
Society Magazine.

Silvia Abrahão is Full Profes-
sor of Software Engineering in
the Department of Computer Sci-
ence at the Universitat Politècnica
de Valéncia (Spain). She is also
Director of the Master’s Program
in Software Systems Engineering
and Technology at UPV. She is
associate editor for IEEE Soft-
ware, ACM Transactions on Soft-
ware Engineering and Methodol-
ogy and Automated Software
Engineering journals. She is on
the editorial board of the journal
Software and Systems Modelling

and on the advisory editorial board of the Journal of Software: Prac-
tice and Experience. She is also a member of the ACMs Women in
Computing leadership team. Her research interests include the adap-
tation of user interfaces using AI techniques, human factors in soft-
ware engineering, quality assurance in model-driven engineering, the
empirical assessment of software modelling approaches and the inte-
gration of usability/UX into software development. Contact her at
https://sabrahao.wixsite.com/dsic-upv.

Eugene Syriani is a Full Pro-
fessor in computer science at the
University of Montreal. His main
research interests fall in software
engineering based on the model-
driven engineering (MDE) appro-
ach, domain-specific languages,
code generation, collaborative mo-
delling, simulation-based design,
digital twins, and user experience.
He has a long history of teaching
MDE and software design. He has
also led the development of sev-
eral MDE frameworks and tools.
More details about his research

and teaching can be found at http://www.iro.umontreal.ca/~syriani/.

Dimitris Kolovos is a Professor
of Software Engineering in the
Department of Computer Science
at the University of York, where
he researches and teaches auto-
mated and model-driven software
engineering. He is also an Eclipse
Foundation committer, leading the
development of the open-source
Epsilon model-driven software
engineering platform, and an edi-
tor of the Software and Systems
Modelling journal. He has co-
authored more than 150 peer-
reviewed papers and his research

has been supported by the European Commission, UK’s Engineering
and Physical Sciences Research Council (EPSRC), InnovateUK and
by companies such as Rolls-Royce and IBM.

Timothy Lethbridge is a Profes-
sor at the University of Ottawa,
Canada. His research currently
focuses on software modelling
tools, particularly the user expe-
rience of such tools, their educa-
tional use, code generation, and
the Umple technology. He is a
licenced Professional Engineer, a
senior member of both ACM and
IEEE and a fellow of the Cana-
dian Information Processing Soci-
ety (CIPS). He received the IEEE
Computer Society TCSE Outstand-
ing Educator Award in 2016. He

is co-general-chair of the International Conference on Software Engi-
neering (ICSE) 2025 in Ottawa. More details about his research and
teaching can be found at www.umple.org/tcl.

Sadaf Mustafiz is an Assistant
Professor in the Department of
Computer Science at Toronto
Metropolitan University. She
received her Ph.D. and M.Sc. in
Computer Science from McGill
University. Her research interest
is in the area of model-driven
software engineering with a focus
on requirements engineering,
domain-specific modelling, multi-
paradigm modelling, process
modelling, and model-based sim-
ulation. More details about her
research and teaching can be found

at https://cs.torontomu.ca/~sadaf/.

123

https://sabrahao.wixsite.com/dsic-upv
http://www.iro.umontreal.ca/~syriani/
www.umple.org/tcl
https://cs.torontomu.ca/~sadaf/


Requirements for modelling tools for teaching

SofiaMeacham is a Principal Aca-
demic in Software Engineering in
the Computing and Informatics
Department at Bournemouth Uni-
versity, where she teaches model-
based design and systems engi-
neering. She has worked on sev-
eral EU-funded projects in R&D,
telecommunication industries and
academia, and has a background
in embedded systems and formal
methods. Her research interests
lie in domain-specific languages
and model-driven engineering for
diverse domains from telecommu-

nications industries to medical applications.

123


	Requirements for modelling tools for teaching
	Abstract
	1 Introduction
	2 Methodology
	2.1 Workshop summary and pilot survey
	2.2 Survey conducted following the workshop

	3 Modelling-capability-related requirements
	3.1 Teaching modelling with existing languages
	3.1.1 Modelling language support
	3.1.2 Textual interface support
	3.1.3 Support for consistency checking
	3.1.4 Support for views and consistency between views
	3.1.5 Support for model execution/enactment/experimentation
	3.1.6 Support for an MDE process

	3.2 Teaching the development of new modelling languages
	3.2.1 Support for different modelling paradigms
	3.2.2 Experimentation capabilities
	3.2.3 Automated model management


	4 Teaching-related requirements
	4.1 Alignment with educational terminology and standards
	4.2 Integration with learning environments
	4.3 Support for teachers
	4.3.1 Modelling concepts and example library
	4.3.2 Assessment support
	4.3.3 Plagiarism detection
	4.3.4 Collaboration
	4.3.5 Traceability

	4.4 Support for students
	4.4.1 Modelling assistants
	4.4.2 Constraining a modelling language
	4.4.3 Collaboration
	4.4.4 Gamification


	5 Technical requirements
	5.1 For students
	5.2 For teachers
	5.3 For MTT developers

	6 Modelling tool examples
	6.1 Executable modelling with examples in Umple
	6.2 Constraining modelling languages in TouchCORE
	6.3 Web-based playgrounds: addressing no-installation requirements, teacher collaboration, and constrained modelling activities
	6.4 Teaching language engineering in graphical, textual, and projectional language workbenches
	6.5 Gamification with PapyGame
	6.6 Skills, concepts, OER, and learning paths in MDE through the ENCORE platform

	7 Conclusion
	Acknowledgements
	References


