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Abstract

Cluster analysis aims to find meaningful groups, called clusters, in data. The objects within
a cluster should be similar to each other and dissimilar to objects from other clusters. The
fundamental question arising is whether found clusters are “valid clusters” or not. Existing
cluster validity indices are computation-intensive, make assumptions about the underlying
cluster structure, or cannot detect the absence of clusters. Thus, we present a new cluster
validation framework to assess the validity of a clustering and determine the underlying
number of clusters k£*. Within the framework, we introduce a new merge criterion analyzing
the data in a one-dimensional projection, which maximizes the ratio of between-cluster-
variance to within-cluster-variance in the clusters. Nonetheless, other local methods can be
applied as a merge criterion within the framework. Experiments on synthetic and real-world
data sets show promising results for both the overall framework and the introduced merge
criterion.

Keywords Clustering - Cluster validation - Discriminant analysis - Number of clusters

1 Introduction

Cluster analysis has become an important tool for exploratory data analysis with theoretical
and practical applications in a broad domain, including pattern recognition, image analysis,
and information retrieval. It aims to partition objects of a given data set into meaningful
groups, called clusters, to detect any hidden structure or to summarize large data sets. The
objects within a cluster should be similar to each other and dissimilar to objects from other
clusters. The fundamental issue concerning the validity and applicability of clustering results
remains in finding the appropriate number of clusters k*. While a division with an excessive
number of clusters is non-intuitive and difficult to analyze, a division with too few clusters
results in information loss. Thus, a good balance between accuracy and compressibility has
to be found. Additionally, many popular clustering algorithms require the number of clusters
as an input parameter. Therefore, methods for estimating the optimal number of clusters and
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assessing the validity of a clustering are essential. We recommend, e.g., Rendén et al. (2011)
or Wierzchon (2018) for discussions and Hennig (2015) for a slightly philosophic perspective
on the problem.

Despite the extensive research on the problem of determining the optimal number of
clusters k* (e.g., Dubes, 1987; Peck et al., 1989; Tibshirani et al., 2001; Sugar and James,
2003; von Luxburg, 2010 among others), the outcome is still unsatisfactory (Salvador and
Chan, 2004; Omran et al., 2011) and the problem remains an active field of research, e.g.,
(Fu and Perry, 2020; Dangl and Leisch, 2019; Rossbroich et al., 2022). A common approach
to obtain an estimate is by optimizing a validity index over different values for the number
of clusters k. However, such approaches are computation-intensive, make assumptions about
the underlying cluster structure, or cannot detect the absence of clusters, i.e., k* = 1. Thus,
the suitability of an approach depends on and varies with the data it is applied to. Another
popular approach to determine the optimal number of clusters is introducing stopping rules
for hierarchical clustering (Xu and Wunsch, 2005). Stopping rules define when the procedure
should ideally stop, and the number of clusters of the resulting clustering is used as an estimate
of the optimal number of clusters (Baker and Hubert, 1975; Milligan and Cooper, 1985;
Cerdeira et al., 2012). For example, most lately Geng et al. (2019) presented an algorithm
to assess the number of clusters in a network of communities. For a more general overview,
we refer to, e.g., Hennig et al. (2015); Wiwie et al. (2015); Handl et al. (2005), and Hennig
(2022) for recent applications of cluster evaluation.

Besides the problem of determining the optimal number of clusters £*, the closely linked
problem of assessing the overall validity of a clustering is of paramount importance. Several
methods are proposed to test whether a clustering is valid or a product of randomness. See,
e.g., Rand (1971); Bailey and Dubes (1982); Gates and Hansell (1983); Gordon (1998);
Ingrassia and Punzo (2020); Ullmann et al. (2022) or Liu et al. (2008); Halkidi et al. (2001)
for an overview. However, as in the former problem, most available methods are computation-
intensive or need parametric assumptions. Closely related to the proposed method, existing
local methods aim to decide whether two clusters are separated and thus can be used to fulfill
both tasks given above. Note that they also can be applied as stopping rules for hierarchical
clustering, i.e., as split or merge criteria. For example, Sneath (1977) proposed to test the
distinctness of two clusters C; and C; by measuring the overlap of their projections onto the
intercentroid line connecting the two cluster means. Further frequently used methods were
proposed by Caliriski and Harabasz (1974); Davies and Bouldin (1979) and Rousseeuw and
Kaufman (1990) and are based on some measure of the compactness of a cluster. However,
current research shows that the optimal choice of a criterion to compare a respective clustering
is ambiguous (Arbelaitz et al., 2013; Wierzchon, 2018).

Tackling the mentioned challenges of existing cluster validation methods, we present a
new, intuitive, easy-to-implement, and powerful framework, which leverages local methods
to estimate an appropriate number of clusters k* based on a given clustering C and simultane-
ously assess the validity of the given clustering. This is especially useful when no knowledge
of the underlying number of clusters is available. Further and in contrast to others, it does
not require expensive reruns of the clustering algorithm nor any distributional assumptions.
Within the framework, we propose a new, local merge criterion (i.e., local method) based on
the variance of a projection. Here, we compare the variance of all cluster pairs {Cy, C;} € C
in a one-dimensional subspace of the data to the variance of an artificial cluster consisting of
points from Cy and C;. The subspace is constructed by using the direction of Fisher’s Linear
Discriminant Analysis (Fisher, 1936), aiming to maximize the ratio of between to within
variance in the clusters. Therefore, we call the proposed approach CVFLDA — an acronym
of cluster validation based on Fisher’s linear discriminant analysis. Further, we introduce a
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nuance parameter to control the method’s sensitivity. In contrast to existing approaches, the
proposed method does not require computational extensive reruns of the clustering algorithm
and is able to detect cases without an underlying cluster structure, i.e., k* = 1. We show
its applicability in a benchmarking study and demonstrate its superiority above other cluster
evaluation methods in a simulation study as well as with real data set examples. Additionally,
we provide a ready-to-use Python implementation of our method (see Appendix B).

The remaining of the paper is structured as follows: In Section 2, we introduce the new
framework and the proposed merge criterion. Section 3 presents a benchmarking study based
on simulated data. Then, in Section 4, we display the results of multiple applications on
real-world data sets. Last, Section 5 summarises our contribution and points out possible
further developments.

2 Cluster Validation

Consider a multivariate data matrix X = (X;r, XT) e Rmxd consisting of d attributes

> n
observed on n objects. The n-dimensional vector y contains the cluster labels for the respective
objects and k is the number of distinct clusters in the corresponding clustering C. Formally

C = {Cy, ..., Cx} is a clustering such that

k
C;NCy =0, s! =t for all cluster pairs € C and U Co = {x1, ..., X, }.
=1
We assume that the initial number of clusters in the given clustering C is greater or equal
to the optimal number of clusters k*, i.e., k > k™. The optimal number of clusters k* is the
true underlying number of clusters in the data, which is usually unknown. In the following,
we propose a new method to audit the clustering C and return modified cluster labels y’

that correspond to a new clustering C' = { i, ., C ]/2* } The new clustering includes the

estimated number of clusters &* in case of a non-valid, initial clustering C with k > k*.

2.1 Cluster Validation Framework

In this section, we introduce the proposed cluster validation framework. Remember that the
framework only provides a step-by-step procedure in which any desired merge criterion can
be applied.

The framework iteratively evaluates for every cluster pair (Cy, C;) € C whether they are
two true clusters, i.e., well separated, or (part of) one cluster that was wrongly split by a
clustering algorithm. To do so, we propose a merge criterion that compares the variance of a
new, merged cluster and the variance of both initial clusters in a one-dimensional projection.
Next, we sort the cluster pairs in descending order based on their indication of stemming from
the same single cluster, which is measured by our criterion. Finally, we merge the first cluster
pair in the list, meaning the two clusters with the lowest combined scatter (thus being close
together) with respect to the sum of their individual scatters, and repeat the procedure. This
evaluation can be carried out by any merge criteria (local method). The described process
is repeated for the modified clustering until there are only non-mergeable clusters left, i.e.,
the merge criteria rejects the hypothesis of two clusters stemming from the same original
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cluster for each cluster pair. In the end, the method returns the modified clustering and the
corresponding labels, which consist of the estimate for the optimal number of clusters. For the
k-means algorithm used in our simulation study, Melnykov and Michael (2020) discuss the
effect of merging clusters whereas the merging of clusters generated from other algorithms
is discussed, e.g., by Melnykov (2016) and Li (2005). The pseudocode of the framework is
given in Algorithm 1.

Algorithm 1 Cluster Validation Framework.

Require: Clustering C, false_clusters = True
C—C
while false_clusters do
false_clusters = False, /ist = empty
for every cluster pair k = (C;, C;) € C' do
Calculate merge criteria for k
if (C}, C}) are false clusters then:
false_clusters = True
Add k to list
end if
end for
Sort list by the possibility of being one cluster
Update C’ by merging first cluster pair from /ist
end while )
return Number of clusters k* and new clustering C’

2.2 Merge Criterion

Besides the simple validation framework, we propose a new, suitable merge criterion to use
therein. For our variance-based approach, we apply a one-dimensional projection in which the
variance between both clusters Cy and C; is maximized and the variance within each cluster
is minimized. Thus, intuitively, the projected data maximizes the contrast between clusters.
Working in such one-dimensional subspaces has already proven successful for clustering
problems by Pefia and Prieto (2001) and Delaigle et al. (2019). As we only consider the
variance of the data (or groups of data), we center it for simpler math and calculate the
scatter, i.e., the scaled covariance matrix by

S=0m-DxcovX) =) (% —wx —p) =) ik, M
i=l1 i=l1

where p represents the d-dimensional mean vector of the data and X; the centered data points
for i € {1,...,n}. Now, remember that we can project a point X; on a one-dimensional
subspace with the help of vector z R withz"z =1, ie.,

f(,‘ = ZTii,
and re-project it to X; by
)A(i = ZZTf(,‘
fori € {1, ..., n}. The squared Euclidean norm of this re-projected vector is given by

a2 Te 12 ,Ta.oT
I xi 3=l 2z x; lI3=2 X;X; z
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and the summation of the squared Euclidean norm of all » samples is given by

n n n
Dltilz=)2"%% z= zT(Zi;iiT>z, 2)
i=1 i=1 i=1
fori € {1,...,n}. It follows (see Egs. 1 and 2) that the former expression is the variance
of the resulting projection, or more precisely, the variance of the corresponding entry in
the scatter matrix X. Thus, the latter is the sum of the squared Euclidean distance of the
reconstructions.
We now define the within-Scatter X of a cluster pair Cy and C; by

ng
Tw=> 2= Y« —punx —

les,t tes,t i=1
where ny is the number of samples and uy = i Z;’i] xl@ the mean of acluster Cy, ¢ € {s, t}.
Equally, the between-Scatter X p of the two clusters is defined by

2

Sp= ) nee—p) (e —p)’
=1

where ny again is the size of cluster Cy, ¢ € {s, t} for the two clusters at hand.
As stated earlier, the optimal projection z maximizes the scatter between the clusters

maxz' ¥ BZ 3)
z
and simultaneously minimizes the within-scatter Xy
minz' ¥ WZ. 4)
z

Therefore, Egs. 3 and 4 can be merged into one optimization problem by

D> BZ
max ) (5 )
z 7' Ywz
which corresponds to the Fisher criterion and reduces to a generalized eigenvalue problem,
where z is the eigenvector with the largest eigenvalue of the matrix A = ¥ v_vl Y p (see Hastie
etal., 2009). Note that this approach is similar to Fisher’s linear discriminant analysis (Fisher,
1936), assuming the clusters are the classes in the data.

For the one-dimensional projection )'ci(e) of an object xl@) € Cy, L ef{s,t}andi € {1,...,ne}
follows

).Ci(e) = szfZ) =z (ue + xl-([) —pe) =2+ zTife) 6)
where w, is the centroid of C,; and sz(fZ) the length of the projection.

With the projection of each cluster at hand, we can now form a new merged cluster Cy,
used for comparison in our merge criterion. Several different ways to do so may come to
mind, including modeling decisions such as the size of the merged cluster, the balance with
regard to both initial clusters, and the choice of elements from each initial cluster. The merged
cluster consists of the cluster-halves of both clusters with the smallest (Euclidean) distance to
the centroid of the respective other cluster in the projection. From simulations, we conclude
that an equally weighted merged cluster seems to be beneficial, i.e., C,, is constructed so
that 50% stem from C and the other 50% stem from C,. Assuming that cluster Cs has more
samples than C;, we can select all |nc, /2] points from the cluster-half of C; closest to Cs.
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For selecting points from Cy, we need further selecting criteria to ensure that both C; and C;
are represented by the same number of points in C,,,. We investigated two strategies to select
[nc, /2] points from Cy: Randomly sampling points (without replacement) of C from the
closest cluster-half and selecting the samples with the closest distance to the centroid of C;.
Empirical results show that the first option leads to more robustness for unbalanced cluster
sizes (see Appendix A.1 for details). Thus, by applying this strategy C,, has the same size as
the smaller cluster of Cy and C;.

In the next step, the sample variances of both initial clusters Cy, C;, and the artificial,
merged cluster C,, are calculated in direction of z, i.e., in the one-dimensional projection.
Recall that the variance of a cluster, e.g., cluster C; with n points X©® = (XEK)T, R x,(,e) T)
in direction of z is equivalent to the variance of the respective projection lengths (see Eq. 6):

var(x) = var(zTu.g +2z'x9)

= var(sz((e)),

where p, represents the mean of the cluster and %© the centered data of cluster Cy, £ € {s, t}.

The derived decision-making policy is straightforward. If the merged cluster C,, has a
larger variance than both original clusters C; and C;, the clusters are separated enough to be
considered true clusters. Otherwise, the variance of the merged cluster indicates that C and
C; are (part of) one cluster, i.e., they are a pair of false clusters.

We compare the variances of the merged cluster and the original clusters in the one-
dimensional projection by introducing an additional parameter, the margin of safety A > 0.
A is defined as a multiplier for the expected standard deviation of the variance and acts as
a sensitivity parameter. The variance S(ze) of a cluster Cy, ¢ € {s, t} and the corresponding
standard deviation of the variance S D) are given by

1 .
2 § - (€) v (0)\2
S([) = a (xl. —x( ))

i=1

ne

1 < (0 T 2
sDw = |23 (@0 702 - 57,)

i=1

where n; is the number of points in the cluster and %) the cluster mean in the projection.
Consequently, two clusters C and C; are assumed to be separated if

Sg) + X x SDgs) < 83, @)
and
%)+ A x SDgy < 83, 8)

If one cluster pair is not well separated, our framework suggests merging the cluster pair
for which S(Zm) /(S(zt) + Sé)) is minimized per iteration, as proposed in Algorithm 1.

The parameter A controls the trade-off between detecting two clusters and merging two
clusters. While large values result in two clusters being merged more easily, small values
result in predicting more distinct clusters. The right choice of A depends on the underlying
data structure. We provide empirical results of the effect of A on the performance of our
proposed method on different synthetic datasets in Sections 3 and Appendix A.2. Generally,
we recommend choosing A based on the underlying data structure and the trade-off between
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the costs associated with having too many clusters versus having too few clusters. If overes-
timating the number of clusters in the data is expensive, A should be set to a higher number.
Otherwise, if an underestimation is more hurtful, A should be chosen smaller.

3 Benchmarking Study

In this section, we present the results of simulations on synthetic data. We evaluated and
compared the performance of the CVFLDA to well-known validation methods on synthetic,
simulated data. Similar to other studies (Milligan and Cooper, 1985; Tibshirani et al., 2001;
Arbelaitz et al., 2013), we apply a clustering algorithm to data with a set of different values for
k (number of clusters) to obtain various clusterings. In our experiment, we use the k-means-
algorithm with arange of k € [2, 15] to obtain different initial clusterings and evaluate cluster
validity indices on them. The estimate for the underlying number of clusters in the data k* of
each index is given by its minimal value. However, one of the strengths of our framework is
that it does not require several clusterings (one for each k) of the “raw”’-data to estimate the
underlying number of clusters. Therefore, it comes with a much lower computational cost
than its competitors. As our framework requires only an initial clustering with k > k*, we
investigate the effect of k >> k* within our framework in Appendix A.3. The computer code
for the CVFLDA is given in Appendix B. Note again that the result naturally depends on the
initial clustering given to the algorithm.

3.1 Baseline Methods

Comparing our proposed method to state-of-art approaches is twofold. First, we compare
the performances of our framework and merge criterion with the “traditional” approach of
optimizing validity indices and the gap statistic. Thus, we calculate the Calinski-Harabasz
(CH), Davies-Bouldin (DB), and Silhouette indices (SIL) which are top performers in com-
parative studies by Milligan and Cooper (1985) and Arbelaitz et al. (2013) for each k. For the
estimate obtained by the gap statistic (GAP) (Tibshirani et al., 2001), we use ten reference
distributions. Second, we evaluate the performance of our merge criterion versus the criterion
by Sneath (1977) (w = +/3 as recommended) by applying both within our framework for a
fixed k = 15. See the Supplementary material linked in Appendix B for a detailed description
of the used baseline methods.

3.2 Simulation Setup

In the simulation presented in this section, we generate synthetic data sets that contain either
no cluster structure or multivariate clusters. For the cases without a cluster (k* = 1), we
draw n = 300 objects from a uniform distribution over the unit (hyper-) cube embedded
in 2,4, and 8 dimensions. For the cluster-structured data sets, we follow the data gener-
ation process used by Milligan and Cooper (1985); Tibshirani et al. (2001) and Arbelaitz
et al. (2013). The generated data covers variations of the following aspects: dimensions
(2, 4, 8), number of clusters (2, 4, 6, 8), overlap, and respective cluster sizes for the first clus-
ter (n € [100, 200, 400]). The cluster centers are randomly located in the hypercube window
defined by the interval I¢c = [0, 50] x [0, 20] x - -- x [0, 20]. Coincidentally, the variances
for the respective attributes are randomly chosen from the interval Iy, = [0.25, 16]. The
corresponding coordinates for all cluster pairs had to be at least ( I x (Yvarg; + /vare; ))
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apart. For the value of the separation factor f, we sample from a uniform distribution over the
interval [1.37, 1.88]. The factor allows the creation of clusters that are close to each other but
still clearly separable. Potential overlaps in other dimensions were permitted in any form. We
used the described data generation process to simulate different types of clusters; multivariate
Gaussian clusters with and without correlated attributes, skewed and heavy-tailed clusters
(see Supplementary Materials for details). Different from Milligan and Cooper (1985), we
do not use truncated distributions. For each cluster type, we generated three different cluster
structures (mean and variances) for every combination of dimensions and cluster numbers and
repeated each experiment 30 times per cluster structure to get reliable results. In total, 3240
data sets with cluster structure and 300 data sets with a random structure, i.e., no clusters,
were evaluated per cluster structure. Further, we apply all methods on high-dimensional data
and clusterings from hierarchical clustering. From a practitioner’s perspective, the difference
in computational burden may be interesting. We report this in the Supplementary Material.

3.3 Simulation Results

Results for multivariate normal clusters with independent attributes are summarized in
Table 1. The estimates of the CVFLDA,; —( obtain the highest success rate, while CVFLDA,; =
closely follows with the lowest mean and variance of the absolute deviation from the under-
lying number of clusters. The sub-index indicates the chosen margin of safety A. DB and SIL
fail to correctly predict the cluster numbers in almost half of all cases, while gap statistics
and CH index yield respectable results. This impression is confirmed by the high variance of
the absolute difference between the DB and SIL. Interestingly, CH also shows a relatively
high variance despite its good success rate. This indicates few but severe estimation errors.
Further, the low mean difference of the gap statistics implies symmetric estimations of the
number of clusters, whereas DB and SIL permanently underestimate the number of clusters.

Table 1 Mean difference, mean absolute difference, variance of absolute difference, and success rate of the
estimated optimal number of clusters from different cluster validation techniques

Mean Difference Mean absolute Variance absolute Success Rate
Difference Difference
CVFLDA,; o 0.0037 0.2401 0.7670 0.8775
CVFLDA; — -0.1275 0.1898 0.3593 0.8750
CVFLDA,; —» -0.1951 0.2160 0.4132 0.8664
CVFLDA; _3 -0.2324 0.2472 0.5003 0.8596
CVFLDA;_5 -0.3185 0.3235 0.7256 0.8404
CVFLDA;_19 -0.5701 0.5719 1.5362 0.7432
CH -0.0207 0.4040 1.6105 0.8506
DB -0.9420 0.9420 1.7065 0.5059
GAP 0.0648 0.2525 0.4110 0.8167
SIL -0.9284 0.9284 2.1473 0.5870
Sneath -0.3355 0.3355 0.5686 0.7914

Results are based on 3240 synthetic, random data sets with cluster structure (k* > 1). The best result is printed
bold
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(a) Effect of dimensionality. (b) Effect of the number of clusters.

Fig. T Results of different cluster validation techniques over 3240 synthetic, random data sets broken down
by dimensionality and number of underlying clusters, aggregated over all other parameters. Note that we use
the CVFLDA with A =2

Last, applying Sneath’s criterion within the proposed framework also leads to respectable
results, demonstrating the good, general applicability of the proposed, simple framework.

For a more detailed analysis, we report the success rate exemplary of CVFLDA,; _» and
the benchmark methods with respected dimensions and number of clusters in Fig. 1a and
b. Note that for higher dimensions and a smaller number of clusters, the generated clusters
are generally more separated. However, as the plots suggest, our method is more stable for a
change in these factors. The same plot for A € {0, 1, 2, 3, 5, 10} is given in Appendix A.2 and
a table providing individual results for each setting is given in the Supplementary Material.

For the analysis of cases where no clusters are present in the data, i.e., where k* = 1, we
compared the proposed framework with the gap statistics in 2, 4 and 8 dimensions. Remember
that classical indices cannot be used in this setting since they are mathematically not defined
k* = 1. Results are shown in Table 2.

While Sneath’s criterion embedded in our framework correctly identified the absence of
clusters in 100% of the 300 sample data sets, the gap statistic was successful in 93%. When
applying our criterion, the number of correctly identified clusters grows while increasing
the margin of safety A, i.e., the correct cluster number was estimated in only 58% of the

Table 2 Mean difference, mean absolute difference, variance of absolute difference, and success rate of the
estimated optimal number of clusters from different cluster validation techniques

Method Mean Difference Mean absolute Variance absolute Success Rate
Difference Difference
CVFLDA,; o 5.016 5.016 38.976 0.580
CVFLDA,;_ 1.166 1.166 13.038 0.886
CVFLDA,; _» 0.023 0.023 0.062 0.986
CVFLDA; _3 0.003 0.003 0.003 0.996
CVFLDA, _5 0.000 0.000 0.000 1.000
CVELDA, —19 0.000 0.000 0.000 1.000
GAP 0.073 0.073 0.075 0.930
Sneath 0.000 0.000 0.000 1.000

Results are based on 300 random data sets without cluster structure (k* = 1). Best results are printed bold
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Fig. 2 Results of further cluster types, aggregated over all other parameters. Note that we that we use the
CVFLDA with 1 = 2. Further detailed results are reported in the Supplementary Material

datasets for CVFLDA, ¢, but in 100% of the datasets for CVFLDA,—5 and CVFLDA,; _19.
We observe that the margin of safety A indeed acts as a nuance parameter to control the
method’s sensitivity, meaning an increasing value of A decreases the chance of overestimating
the number of clusters while reducing its sensitivity. From our simulations on Gaussian
clusters with uncorrelated variables, we observe that for this underlying data structure, A = 2
is a reasonable choice. The success rate in settings with cluster structure is only slightly
smaller than with A = 1, but the absence of clusters is detected significantly more reliably.
For cluster structures with larger overlaps (e.g., Gaussian clusters with correlated variables,
heavy-tailed and skewed clusters), smaller values for A, i.e., A = 1, seem to perform better.
These observations reflect a general trade-off in clustering. The risk of detecting clusters
in random noise increases when the risk of not detecting (overlapping) clusters decreases.
Hence, methods that identify random noise well usually perform worse in detecting clusters,
particularly when there are overlaps in the data and vice versa.

Table 3 Characteristics of

real-world data sets used in the Dataset # Instances # Attributes # Clusters

study Ecoli 336 7 8
Glass 214 9 7
Haberman 306 3 2
Iris 150 4 3
Palmer Penguin 344 6 3
Seeds 210 7 3
Transfusion 748 4 2
Vertebral Column 310 6 3
WineQuality Red 1599 8 10
Yeast 1484 8 10
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Our method remains competitive on various cluster types, as summarized in Fig. 2 and
reported in detail in the Supplementary Material. The CVFLDA performs well with correlated
data and delivers consistently good results, closely followed by the Calinski-Harabasz index,
which only struggles with a higher number of clusters. For heavy-tailed data, the GAP
statistic seems to be superior, followed by the CH index and CVFLDA. Furthermore, our
experiments show that one should be careful with the CVFLDA on skewed data, as the
success rate is very low in this case. However, the success rates of all other methods also
decrease massively, indicating a need for further research on cluster validation with skewed
data. Finally, CVFLDA tends to be slightly weaker than its competitors on high-dimensional
data but still achieves success rates of > 90% in our experiments.

To summarize, we recommend performing a careful descriptive analysis of the available
data before selecting a cluster validation method. Such an analysis helps to understand the
results of the cluster validation indices better and avoids drawing false conclusions from
the data. For example, CVFLDA results are trustworthy in Gaussian settings but should
be supplemented or replaced in settings with heavy-tailed and skewed data. In general, we
recommend using several validation indices simultaneously for more comprehensive results
and informed decisions.

4 Application on Real World Data

Supplementary to the simulations, we evaluate our validation approach on different data
sets from the University of California - Irvine (UCI) machine learning repository (Dua and
Graff, 2017) and the Palmer Penguin dataset.! In general, interpreting the cluster validation
results from these data sets should be done with caution since they are usually intended for
supervised learning and consequently not well adapted for the clustering problem (Arbelaitz
et al., 2013). Detailed information about the selected data sets can be found in Table 3.

On each data set, we tested the different approaches 15 times to account for randomness
included in the clustering, the construction of C,, and the evaluation of the gap statistic. The
established methods are evaluated on the result of a k-means clustering with k € [2, £*+10],
where k* is the real number of clusters. As an input for our validation framework, we use the
result of a single clustering with k = k* 4+ 10. Experimental results are displayed in Table 4.

In general, we observe that the performance of the validation methods largely depends
on the data set. In detail, we see that the gap statistic performs best with an average mean
absolute deviation of 1.980 and an average variance absolute deviation of 0.500 over all
datasets. In this setting, our method follows closely behind with an average mean absolute
deviation of 2.026 and an average variance absolute deviation of 0.768. Note, however, that
the results largely depend on the dataset at hand. Further, observe that the CH has an average
variance close to zero, but an average mean absolute deviation of 4.186 over all datasets.
Hence, it is very stable but not precise. Also, Sneath’s criteria embedded in our framework
results in a very low average variance of 0.054 but simultaneously displays a higher average
mean absolute deviation of 3.393.

1 https://allisonhorst.github.io/palmerpenguins
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Table 4 Mean absolute difference and variance of absolute of the estimated optimal number of clusters from
different cluster validation techniques for real-world data sets

Data set Method Mean Absolute Difference Variance Absolute Difference
Ecoli CVFLDA 1.533 0.782
CH 5.000 0.000
DB 6.000 0.000
GAP 3.467 1.182
SIL 7.000 0.000
Sneath 7.000 0.000
Glass CVFLDA 3.800 2.960
CH 3.933 0.062
DB 5.133 8.382
GAP 2.000 1.067
SIL 2.133 0.116
Sneath 4.400 0.240
Haberman CVFLDA 0.733 0.196
CH 2.000 0.000
DB 1.000 0.000
GAP 0.000 0.000
SIL 1.000 0.000
Sneath 1.000 0.000
Iris CVFLDA 1.267 0.729
CH 0.000 0.000
DB 1.000 0.000
GAP 3.333 1.156
SIL 1.000 0.000
Sneath 1.000 0.000
Palmer Penguin CVFLDA 1.733 0.196
CH 8.933 0.062
DB 8.733 0.196
GAP 1.000 0.000
SIL 1.000 0.000
Sneath 2.000 0.000
Seeds CVFLDA 0.800 0.427
CH 0.000 0.000
DB 0.000 0.000
GAP 0.000 0.000
SIL 1.000 0.000
Sneath 1.600 0.240
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Table 4 continued

Data set Method Mean Absolute Difference Variance Absolute Difference
Transfusion CVFLDA 1.333 0.489
CH 9.000 0.000
DB 4.733 14.062
GAP 0.000 0.000
SIL 5.333 19.022
Sneath 1.000 0.000
Vertebral Column CVFLDA 1.933 0.062
CH 1.000 0.000
DB 0.000 0.000
GAP 4.000 0.400
SIL 0.000 0.000
Sneath 1.933 0.062
Winequality Red CVFLDA 1.800 1.093
CH 4.000 0.000
DB 4.000 0.000
GAP 4.000 0.000
SIL 4.000 0.000
Sneath 5.000 0.000
Yeast CVFLDA 5.333 0.755
CH 8.000 0.000
DB 4.333 0.622
GAP 2.000 1.200
SIL 5.933 0.996
Sneath 9.000 0.000

5 Conclusion

In this paper, we presented a new cluster validation technique based on a simple pairwise
comparison of clusters and a merge criterion defined on a one-dimensional projection of
the data. The used projection is similar to Fisher’s Linear Discriminant Analysis, aiming
to maximize the ratio of between-variance to within variance in the clusters. However, we
emphasize that the proposed framework can be applied to other merge criteria as well. In
general, we conclude that the proposed validation technique is especially useful when no
knowledge of the underlying number of clusters is available. In cases with no cluster structure
in the data, it is able to detect this absence. Otherwise, it returns an improved clustering with
an estimate of the optimal number of clusters * based on the initial clustering. In the paper,
we demonstrated the performance of the new cluster validation method on simulated and
real-world data and compared it with other well-known validity indices. Last, ready-to-use
computer code is provided.

For future research, further improvements of the method, e.g., the development of a kernel-
ized version, seem to be promising. Also, an application within spectral clustering approaches
seems possible.
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A Ablation Study

In this section, we provide further experimental results of design components of our frame-
work. Specifically, we first discuss the strategy of how the merged cluster C,, is constructed.
Then, we demonstrate the effect of the parameter A in the merge criterion. Finally, we inves-
tigate the robustness of the performance of our method to the initial clustering and the
performance of our method under overlapping cluster structures.

A.1 Construction of Cp,

Figure 3 below visualizes the success rate for different construction principles of the merged
cluster C,, in a two-dimensional setting and several degrees of imbalance of the cluster
sizes. Specifically, we increase the number of points in C; with respect to the total number
of samples. We generate two Gaussian clusters with mean p; = (0,0) and pu, = (4,0)
and the identity matrix as covariance matrix. The sample size n reflects the total number of
objects combined in both clusters, so n = nc, + nc,. We observe that balancing (random
half), meaning that C,, is constructed by selecting 50% of the points randomly (without
replacement) from the closest cluster-half (distance to the centroid of the other cluster in the
projection) of both clusters, outperforms the other two methods. Especially in situations with
unbalanced cluster sizes, the method outperforms its competitors, and hence, we recommend
using this construction principle for Cy,. Balancing (closest), which selects the closest points
in ascending order (by distance), has the worst performance overall, whereas taking the full
closest half of each cluster lies in between. Note that the resulting cluster C,, in the latter case

does not necessarily consist of 50% of the points stemming from each of the initial clusters
as in both former cases.
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Fig. 3 Success rate of CVFLDA with A = 2 for different construction methodologies of C;, over the total
number of points and cluster size ratios. All results are averaged out of 1000 simulation runs
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Gaussian Clusters with Correlation (n = 500)

t-distributed Clusters (n = 500)

1.00 4 P T 0.15 4
- \ \
hd 4 \ \
o J \ “
i ! \ \ A
J \ N
! ,’ \ \ AI\N? V‘\l’k,
d 1 % \ Iy v ”'\ h
/ /! ‘ \ AT Ny
1 - . \ " U W
/ S \ \ /‘I‘I ! N Y
0.00_=#==-" Neo e 000 _====a¥=io st Bt ettt
) T T T T T T ) T T T T T T
0.08 0.22 0.36 0.50 0.64 0.78 0.08 0.22 0.36 0.50 0.64 0.78
n n
mor s o
Balancing (random half) — == Balancing (closest) === Closest half

Fig. 4 Success rate of CVFLDA with A = 2 for different construction methodologies of Cy, over the total
number of points and cluster size ratios. All results are averaged out of 1000 simulation runs

To show that this effect is robust for different distributions, we repeated this experiment
with Gaussian clusters, with a randomly chosen covariance matrix, and with t-distributed
clusters (df = 5). Results are shown in Fig. 4 and are consistent with the findings from
standard Gaussian clusters. Note, that performance on t-distributed data decreases, as with
heavy-tailed data the two distributions are more overlapping.

A.2 Effect of A

In Fig. 5, we show the effect of different values of the safety margin parameter A on synthetic
data with Gaussian clusters from Section 3. We observe that increasing values of A result
in a worse performance for lower dimensional data or if many clusters are present. If the
number of true clusters increases there are more overlaps in the cluster structure due to our
data-generating process. Similarly, in higher dimensions, the clusters are more distinct. This
shows once again that larger values of A perform worse, especially when the cluster structure
has overlaps.
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(a) Effect of dimensionality.
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(b) Effect of cluster number.

Fig.5 Results of CVFLDA with different values of A over 3240 synthetic, random data sets broken down by
dimensionality and number of underlying clusters (k* > 1), aggregated over all other parameters

A.3 Effect of Initial Overestimation

Our proposed framework assumes that the initial clustering has at least as many clusters as
the underlying partitioning, i.e., k > k*. However, this does not impose a strong restriction
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on applying our framework. We tested the effect of different levels of initial overestimation
(k > k*) on the accuracy for randomly generated multivariate normal clusters in varying
dimensions (2, 4, 8), number of clusters (2, 4, 6, 8), and sizes similar to Section 3. As Fig. 6
suggests, the accuracy does not vary significantly with the level of initial overestimation,
and hence one can apply our framework as long as the initial clustering overestimates the
underlying partitioning to some extent.
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Fig.6 Accuracy of the CVFLDA with A = 2 for different levels of initial overestimation

A.4 Effect of Overlapping Cluster Structure

Naturally, when the “true” clusters are overlapping (meaning that the corresponding densities
significantly overlap) finding the underlying true cluster structure and validating a clustering
is challenging. We observe that the performance of our proposed method increases if the
“true” clusters are more distinct, i.e., less overlapping. We generated two two-dimensional
standard Gaussian clusters C| and C,, where we keep the mean of C; fixed in the origin and
the mean of C> moves along the x-axis. We provide the results in Fig. 7. Intuitively, if two
clusters are distinct there is a gap between them consisting of low density of points. In this
case, the variance of the merged cluster is expected to be larger, which is why they are more
easily identified as true clusters.

Fig.7 Success rate of CVFLDA 1.00 4
for two Gaussian clusters where
their overlap is controlled by the
location of the center of C5. All
results are averaged out of 1000
simulation runs
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B Code Availability

Ready-to-use computer code (Python) is available at the following web address: https://
github.com/NoraSchneider/CVFLDA.
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