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ABSTRACT
The market demand for next-generation flexible electronics is ex-
periencing a significant upsurge, particularly in cost-sensitive con-
sumer applications like smart packaging and smart bandages. These
products are beyond the reach of traditional silicon-based electron-
ics due to their high production cost and rigid form factor. Printed
electronics (PE), with its adaptable and ultra-low-cost solutions,
essentially meet the unique needs of these emerging application
areas. This work presents a novel approach using an evolutionary
algorithm (EA) to design highly bespoke printed analog neuromor-
phic circuits (pNCs) offering robustness against variability inherent
in the printing process. By leveraging this algorithm and designing
robust activation circuits, not only the resistances (weights) in the
crossbar and parameters in the activation circuits, but also the types
of nonlinear circuits (i.e., functional forms of activation functions)
as well as the circuit topologies (neural architecture) can be learned
to enhance the circuit robustness against printing variations. Ex-
periments on 13 benchmark datasets demonstrate that, compared
to the baseline, the proposed methodology can further outperform
the normalized classification error rate by ≈ 55.38% and ≈ 25.11%
under high-precision (±5%) and low-precision (±10%) printing sce-
narios, respectively. Moreover, the algorithm suggests the ReLU as
the most robust activation function (AF) circuit family with only
≈ 21% susceptible to low precision (±10%) printing variation.
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1 INTRODUCTION
Despite the continual advancement in terms of power efficiency
and transistor density, silicon-based electronics can hardly be intro-
duced into many consumer edge applications, which includes smart
packaging [1], smart bandages [2, 3], wearables or other dispos-
able electronics [4–7] for consumer products. In such edge scenar-
ios, devices are required to be flexible, customized, bio-compatible,
and on-demand fabricated, with manufacturing costs expected to
be under a few cents. However, these properties pose substantial
challenge to silicon-based VLSI due to limitations such as bulky
substrates and highly complicated lithography-based processing.

In this regard, printed electronics (PE) stands out as an adaptable
and cost-effective alternative for such applications. The technol-
ogy’s standout characteristic lies in its ability to provide bespoke
application-specific customization requirements, regardless of high
or low volumes, owing to its low-cost nature of the additive printing
process over conventional lithography-based fabrication.

The main benefit of additive printing process is the significant
cost reduction achieved through maskless manufacturing. However,
there are also intrinsic drawbacks in this printing methods: Due to
the limited operational precision of the printing equipments and
the dispersion of ink droplets [8], the geometric (thus electronic)
features of the printed components inevitably deviate from their
designed values, leading to greater variability in the printing pro-
cess compared to the high-resolution lithography-based methods.
Meanwhile, bespoke architectures used in the realization of printed
neuromorphic circuits, along with the use of analog computing [9]
or digital approximation [10], can drastically affect the vulnerability
of these printed circuits to variation. While the variation tolerance
of generic (model-agnostic) neural network (NN) hardware accel-
erators and other machine learning models has been extensively
investigated [9, 11, 12], this aspect remains highly unexplored for
custom hardwired (bespoke) activation functions (AFs) in printed
analog neuromorphic circuits (pNCs) commonly used in PE.

Thus, many efforts, from manufacturing technology to algorith-
mic circuit design, have been devoted to mitigating this issue. In this
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context, our work have adopted a variation-aware evolutionary al-
gorithm (EA), which utilizes various learnable AF circuits to achieve
a variation-robust pNC. In short, the contributions are:

(1) This work proposes the design of printed bespoke learn-
able AF circuits at both circuit and algorithmic level.

(2) This research, for the first time, introduces an innovative EA
approach to optimize pNCs, capable of not only tuning the
AF circuits’ component values but also selecting the most
appropriate type of AF for each neuron per dataset to mit-
igate printing error while performing Neural Architecture
Search (NAS) and training crossbar conductances.

In experiment based on SPICE simulation, the proposed method
demonstrated an improvement in the normalized classification error
rate by 55.38% and 25.11% under ±5% and ±10% variation respec-
tively compared to the baseline. Additionally, it achieved ≈ 21%
higher robustness when ReLU family is selected as the AF.

The rest of this paper is structured as follows: Sec. 2 introduces
PE, pNC, and other preliminaries. Sec. 3 describes the design of
learnable AF circuits and formulation of variation-aware EA. In
Sec. 4, the proposed approach is evaluated with extensive simula-
tions. Finally, Sec. 5 summarizes this work.

2 PRELIMINARIES
2.1 Printed Electronics
PE represents a rapidly evolving electronic fabrication technology
poised to revolutionize domains like wearables, smart sensors, and
the Internet of Things (IoT) [4–6]. Different from traditional silicon-
based VLSI, PE focuses instead on lowering the production cost
through maskless additive manufacturing at low processing tem-
peratures. Due to abundant functional materials, such electronics
boast unique advantages including mechanical flexibility, poros-
ity, non-toxicity, and biodegradability outperforming conventional
lithography-based silicon electronics.

Optimal device performance in PE is typically attained with
vacuum-deposited, highly purified molecular substrates [13]. How-
ever, solution-based fabrication techniques, like spin-coating and
inkjet printing, have gained enough attention for their potential to
optimize manufacturing efficiency and reduce costs [14]. Printing
technologies (as shown in Fig. 1) are generally divided into two
main categories: (i) replication printing, exemplified by gravure

printing (Fig. 1 (a)), which is optimized for high-throughput man-
ufacturing, and (ii) jet printing, with inkjet printing (Fig. 1 (b))
serving as a key paradigm, for the bespoke fabrication of electronic
circuits in smaller quantities. PE utilizes either additive or subtrac-
tive manufacturing methods. As illustrated in Fig. 1 (d)), subtractive
processes involve alternating deposition and etching, and are typi-
cally costlier due to specialized equipment requirements. Additive
processes, in contrast (Fig. 1 (e)), sequentially deposit materials to
form electronic components, as seen in the inkjet printing process.
Despite the lower resolution and increased variability of additive
methods, they offer substantial cost advantages.

Current research in inorganic PE is focused on the development
of N-type Electrolyte-Gated Transistors (n-EGTs) (as shown in Fig. 1
(c)), where the band structure of metal oxides enables significantly
higher electron mobility, allowing these n-EGTs to function effi-
ciently at sub-1V supply voltages [15].

However, additive manufacturing also introduces challenges to
PE, such as low device counts, large device dimensions, and high
variability. Hence, PE does not target to compete with silicon-based
devices in terms of performancewithin VLSI applications, but rather
to complement them in resource-limited and cost-sensitive edge
computing areas, like disposable electronics or wearable devices.
In these scenarios, computational tasks are typically simple and
have a relatively high tolerance to compute imprecision and thus
require only small-scale circuits. Nonetheless, the high printing
variation caused by ink dispersion [8] and printer inaccuracy pose
a substantial influence on printed computing systems.

2.2 Printed Analog Neuromorphic Circuits
With the progression of artificial intelligence, neuromorphic com-
puting has emerged as an effective approach for solving complex
and nonlinear tasks. Small NNs, as enabled by pNCs, are sufficiently
powerful enough for real-time and sensor data processing, with-
out requiring vast computational power and resources associated
with larger NN architectures commonly used in deep learning. This
compatibility is particularly beneficial for various PE target ap-
plications, such as wearable sensors, flexible displays, and smart
bandages [4–6], having specific resource constraints and functional
requirements. Their capacity for on-demand fabrication facilitates
the embedding of pNCs directly onto flexible substrates—something
unattainable with conventional silicon-based hardware, thus mak-
ing them an ideal candidate for applications requiring low device
counts and bespoke customized configurations.

Notably, this computational capacity generally requires only
basic operations such as weighted-sum and nonlinear activation.
Therefore, this streamlined but efficient computing paradigm be-
comes attractive for circuit design, as desired functionalities can
be achieved by the interconnection of simple circuit primitives.
In the context of pNCs, by printing appropriate resistor crossbars
(for weighted-sum) and nonlinear transformation circuits (for AFs),
pNCs can achieve bespoke design for the computational require-
ments of the target applications of PE.

2.2.1 Hardware Primitives. Fig. 2 exemplifies the circuit schematics
of a neuron in printed analog neuromorphic circuits. Fig. 2(a) shows
a neuromorphic circuit resembling an articifial neural network
(ANN) with a 6-4-3 topology. Fig. 2(b) show the schematic of a
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(a) 6-4-3 pNC network
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Figure 2: Overview of (a) 6-4-3 printed neuromorphic network. (b) printed neuron ;(c) negative weight circuit, activation circuit
design and transfer characteristics curve of (d) p-tanh (e) p-sigmoid (f) p-clipped_ReLU and (g) p-ReLU.

printed neuron. Some negative weight circuits (Fig. 2 (c)) are also
incorporated in case required.

Resistor Crossbars. The left part of Fig. 2(b) shows the circuit
schematics of a resistor crossbar in printed neuron. Following
Ohm’s Law and Kirchhoff’s Laws, the resulting output voltage
of the crossbar 𝑉z can be calculated as

𝑉z =
𝑔1
𝐺
𝑉1 +

𝑔2
𝐺
𝑉2 +

𝑔3
𝐺
𝑉3 +

𝑔b
𝐺
𝑉b, (1)

where 𝑔𝑖 signifies the conductances of the resistors 𝑅𝑖 and 𝐺 rep-
resents the aggregate conductance

∑
𝑗 𝑔 𝑗 + 𝑔b + 𝑔d. Evidently, the

output voltage𝑉z is the weighted-sum of the input voltages𝑉𝑖 , with
the weights embodied by the ratio of conductance values between
𝑔𝑖 , 𝑔b and 𝐺 . So, analogous to training ANNs, by designing and
printing suitable conductances, desired weights can be achieved.

Printed negative weight circuit. As the conductances in the cross-
bar resistor array are limited to representing only positive weights,
certain resistors, as shown in Fig. 2(b), are augmented with inverter-
based circuits to introduce negative weight capabilities, as shown
by the detailed circuit schematics in Fig. 2(c). This facilitates the em-
ulation of multiplication operation with negative weights through
the inversion of input voltages. The transfer characteristic of these
negative weight circuits is characterized by a modified negative
tanh function.

neg(𝑉z) = −
(
𝜂N

1 + 𝜂N
2 · tanh

((
𝑉z − 𝜂N

3

)
· 𝜂N

4

))
, (2)

where 𝜼N = [𝜂N
1 , 𝜂

N
2 , 𝜂

N
3 , 𝜂

N
4 ] are auxiliary parameters that modify

the original tanh function, which is ultimately determined by the
physical quantities 𝒒N = [𝑅N

1 , 𝑅
N
2 , 𝑅

N
3 ,𝑊

N
1 , 𝐿N

1 ,𝑊
N
2 , 𝐿N

2 ,𝑊
N
3 , 𝐿N

3 ] in
the circuit. Here,𝑊 N

𝑖
and 𝐿N

𝑖
are geometric features (width and

length) of the transistor 𝑇N
𝑖
. Here, the superscript (·)N denotes the

variables in the Negative weight circuits. Moreover, by optimizing
𝒒N, the shape of negative weight function can be tuned to better fit
specific target tasks. A surrogate circuit model for training 𝒒N was
introduced in [9].

Printed activation circuits. Following the crossbar, the signals
are passed through a printed activation circuit to resemble the
AFs in ANNs. The circuit diagram, in Fig. 2(c), is taken from [9].
Analogous to the negative weight circuit, the characteristic curve

of the printed tanh (p-tanh) activation circuit can be represented
by a parameterized tanh function, specifically,

𝑉a = ptanh(𝑉 ) = 𝜂T
1 + 𝜂T

2 · tanh
((
𝑉 − 𝜂T

3

)
· 𝜂T

4

)
(3)

with the auxiliary parameters 𝜼T = [𝜂T
1 , 𝜂

T
2 , 𝜂

T
3 , 𝜂

T
4 ] determined by

𝒒T = [𝑅T
1 , 𝑅

T
2 ,𝑊

T
1 , 𝐿T

1 ,𝑊
T
2 , 𝐿T

2 ]. Similarly, 𝒒T can also be trained
to fit specific target tasks. Also, the superscript (·)T denotes the
variables in the tanh circuits.

In addition to this circuit, we designed three additional activation
circuits mimicking other AFs, i.e., a printed sigmoid (p-sigmoid) cir-
cuit, a printed clipped ReLU (p-clipped ReLU) circuit, and a printed
ReLU (p-ReLU) circuit. With these novel designs, we explore their
abilities in improving the circuit robustness with respect to printing
variations. Detailed descriptions are introduced in Sec. 3.
2.3 Algorithmic Level Design and Optimization
The additive manufacturing process enables the capability of PE to
engineer components with predetermined values through the spec-
ification of their geometric attributes. Thus, by printing customized
conductance values in the resistor crossbar array, which correspond
to the requisite synaptic weights in ANNs, pNCs are allowed to
have bespoke design for target computational functionalities. Ex-
ploiting this capability of pNCs necessitates precise modeling of
the circuit architecture and hardware-aware training process.

Modeling of Printed Neuromorphic Circuit. Based on printed neu-
rons described in Sec. 2.2, the mathematical model of a printed
neuron, taking p-tanh as the example for activation circuit, is given
by

ptanh𝒒T

(∑︁
𝑖

𝑤𝑖

(
𝑉𝑖 · 1{𝜃𝑖≥0} + neg𝒒N (𝑉𝑖 ) · 1{𝜃𝑖<0}

))
, (4)

where𝜃𝑖 is the learnable parameter encoding conductance by𝑔𝑖 = |𝜃𝑖 |
and the presence of a negation circuit via its sign. Moreover, the
indicator function 1{ ·} returns 1 if its condition is true, else 0.
Additionally, the weights𝑤𝑖 are given by

𝑤𝑖 =
|𝜃𝑖 |∑
𝑗 |𝜃 𝑗 |

.

Note that, 𝒒T and 𝒒N are also factors that can influence the
output of the printed neuron. To facilitate their training, a NN-
based surrogate model is employed, transforming the activation
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circuit parameters to their corresponding 𝜼. For training, these
surrogate models are used to approximate the complex mappings
of the learnable circuits [9].

Gradient-Based Optimization. Gradient-based learningwith back-
propagation [16] forms the backbone of training modern ANNs.
However, straightforward gradient-based optimization is unable to
handle problems that encompass differentiable operations. Addi-
tionally, some functions do not provide useful update information
through their gradient, an example being piece-wise constant func-
tions. Another example that relates to this work is that the type of
AF in Eq. (4) cannot be selected via gradient-based methods, as it
amounts to a discrete decision. While the topic of NAS has received
increasing attention, existing methods [17, 18] may be beneficial for
optimizing circuit topologies but have not been adapted for pNCs
yet.

Evolutionary-Based Optimization. EAs draw inspiration from
natural selection and biological evolution. These algorithms utilize
operations such as crossover and mutation to evolve candidate
solutions over time, thereby optimizing them in an incremental
fashion. One of the key benefits of EAs is their high degree of
versatility and adaptability; for instance, they do not require the
problem at hand to be differentiable. This characteristic makes EAs
particularly suitable for a wide range of problems that are otherwise
challenging for traditional optimization methods.

Although it is generally known that EAs may not match the
efficiency of gradient-based optimization methods, particularly in
the context of large-scale problems, this limitation is less signifi-
cant when it comes to the design and optimization of small-scale
NNs. Such NNs are often found in many computing applications
where the flexibility and the computational resources are limited.
Fortunately, these applications are exactly the target domains of
the PE. Moreover, as EAs can be parallelized efficiently, their com-
putational time can be substantially reduced. In sum, despite their
perceived inefficiency in large-scale scenarios, the practical use of
EAs in optimizing small-scale PE for target applications devices
underscores their relevance.

2.4 Related Work
Despite the unique advancements of the printing technology and PE,
the nature of additive manufacturing process introduces multiple
sources of variation in printed components, such as ink dispersion
on substrates, irregularities in droplet jetting, satellite droplets, and
missing droplets [8, 19]. These variations are sometimes modeled
by a uniform distribution of the electrical characteristics of printed
devices with in the printed resolution, specifically the parameters
of the electrolyte-gated transistors (n-EGTs) and is addressed by a
Gaussian Mixture Model at the device level [20, 21].

Efforts frommultiple aspects has been paid tomitigate the impact
of printing variations, including quality control engineering [22]
and material science [23]. From the algorithmic level, advanced
design strategies that incorporate variation-aware training [9, 24]
are employed. These strategies involve designing circuits with ro-
bustness [25–27] in mind, ensuring that they can tolerate a certain
degree of variation without any performance degradation.

In this work, we focus on device variability in PE and analog
computing by using an EA. In short, our research aims to bridge

this gap of variation-aware training by developing not only bespoke
pNCs, but also more resilient bespoke AF circuits that maintain
high robustness even with the inherent additive manufacturing
printing variation.

3 DESIGN AND METHODOLOGY
In the following, we will provide a detailed description of learnable
AFs and their transfer characteristic curves based on our circuit
design in PE. Fig. 2 (d, e, f) depicts the schematic of different learn-
able activation circuits, i.e., printed sigmoid (p-sigmoid), printed
clipped ReLU (p-clipped_ReLU) and printed ReLU (p-ReLU) design.

3.1 Learnable Activation Function (AF) Circuits
Printed Sigmoid Circuit. Similar to the learnable p-tanh AF circuit

design in Fig. 2 (c), the p-sigmoid AF can also be obtained from this
configuration by replacing the supply voltage VSS = 0 and adding a
small 100 Ω resistance as shown in Fig. 2 (d) and can be modeled by
a suitable mathematical equation with its own distinct parameters.

Table 1: FEASIBLE DESIGN SPACE OF P-SIGMOID CIRCUIT

Range 𝑅S
1 𝑅S

2 𝑊 S
1 𝐿S

1 𝑊 S
2 𝐿S

2
(kΩ) (kΩ) (µm) (µm) (µm) (µm)

minimal 350 40 80 80 500 40
maximal 750 80 600 200 800 80

The equation for a printed sigmoid function is given by

𝑉a = 𝜂S
1 + 𝜂S

2 · sigmoid
((
𝑉z − 𝜂S

3

)
· 𝜂S

4

)
, (5)

where sigmoid(·) function is defined by

sigmoid(𝑥) = 1
1 + e−𝑥

.

where 𝜼S = [𝜂S
1, 𝜂

S
2, 𝜂

S
3, 𝜂

S
4] are auxiliary parameters determined by

the physical quantities 𝒒S = [𝑅S
1 , 𝑅

S
2 ,𝑊

S
1 , 𝐿

S
1 ,𝑊

S
2 , 𝐿

S
2] in the circuit.

Adjusting these parameters allows to adapt the shape of the AF
within the printed circuit.

Printed Clipped ReLU Circuit. A clipped ReLU activation cir-
cuit uses only one transistor and one resistor in series as shown
in Fig. 2 (e) and extends the basic ReLU by imposing an upper bound
to the activation. The output voltage, 𝑉a, is constrained between 0
and a predefined maximum value 𝑉max.

Table 2: FEASIBLE DESIGN SPACE OF P-CLIPPED RELU CIR-
CUIT

Range 𝑅CR
1 𝑊 CR

1 𝐿CR
1

(MΩ) (µm) (µm)
minimal 1 40 80
maximal 10 100 200

The mathematical representation of the clipped ReLU is:

𝑉a =


𝜂CR

1 , 𝑉z < 𝜂CR
3

𝜂CR
2 , 𝑉z > 𝜂CR

4

𝜂CR
2 − 𝜂CR

1
𝜂CR

4 − 𝜂CR
3

𝑉z +
𝜂CR

1 𝜂CR
4 − 𝜂CR

2 𝜂CR
3

𝜂CR
4 − 𝜂CR

3
, otherwise,

(6)
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Figure 3: Overview of the EA-based training of printed neuromorphic circuits (pNCs). (a) Genes that encode nodes and edges.
(b) Crossover from the parent genomes to offsprings. (c) Mutation of the topology and learnable parameters.

where 𝜼CR = [𝜂CR
1 , 𝜂CR

2 , 𝜂CR
3 , 𝜂CR

4 ] are auxiliary parameters deter-
mined by the physical quantities 𝒒CR = [𝑅CR

1 ,𝑊 CR
1 , 𝐿CR

1 ].
The printed clipped ReLU circuit thus models a modified ReLU

function commonly used in ANNs to prevent overactivation by
limiting the maximum output value. The parameters can be tuned
to fit specific requirements, providing flexibility in shaping the acti-
vation characteristics of the ANN. The ability to clip the activation
at a certain level also helps with issues like exploding gradients
during the training process of ANNs.

Printed ReLU Circuit. The printed ReLU activation circuit as
shown in Fig. 2 (f), uses four resistors and one transistor and im-
plements a piecewise linear function that maintains the linearity
for positive inputs while nullifying negative inputs. As the trans-
fer characteristic curve has a slope in the negative half and has a
smooth transition at 𝑉z = 0, neither the ideal ReLU function, nor
its variation, e.g., LeakyReLU [28] function nor thesoftplus [29]
function, is sufficient to precisely describe the printed ReLU circuit.
Thus, we combine a softplus function to provide the smoothness
at 𝑉z = 0 and a constant linear function to provide the slope at
negative half. Consequently, the function that describes printed
Table 3: FEASIBLE DESIGN SPACE OF P-RELU CIRCUIT

Range 𝑅R
1 𝑅R

2 𝑅R
3 𝑅R

4 𝑊 R
1 𝐿R

1
(kΩ) (kΩ) (kΩ) (kΩ) (µm) (µm)

minimal 10 500 1 30 200 80
maximal 100 2000 20 100 800 120

ReLU circuit is : designed as

𝑉a = 𝜂R
1 · (𝑥 − 𝜂R

3 ) + 𝜂
R
2 · softplus(𝑉z − 𝜂R

3 , 𝜂
R
5 ) + 𝜂

R
4 , (7)

where the softplus(·, ·) function is expressed by

softplus(𝑥, 𝑘) = 1
𝑘
· log(1 + e𝑘 ·𝑥 )

where 𝜼R = [𝜂R
1 , 𝜂

R
2 , 𝜂

R
3 , 𝜂

R
4 , 𝜂

R
5 ] are auxiliary parameters deter-

mined by the physical quantities 𝒒R = [𝑅R
1 , 𝑅

R
2 , 𝑅

R
3 , 𝑅

R
4 ,𝑊

R
1 , 𝐿R

1 ].
This function has now been mostly used due to its simplicity and

efficiency in promoting sparse activations in NNs. The component
values can be tuned to modify the activation threshold, allowing for

the emulation of various ReLU-like behaviors. This tuning capabil-
ity makes printed ReLU versatile for different applications within
ANNs, providing a more dynamic response compared to fixed AFs.

3.2 Evolutionary Architecture Search
We propose an innovative EA inspired by the classical NeuroEvo-
lution of Augmenting Topologies (NEAT) [30] to design highly
bespoke pNC. The proposed algorithm not only tunes the compo-
nent values within the AF circuits but also selects the most appro-
priate type of AF per layer per dataset to mitigate the effects of
printing variation and outperform the error rate. In this problem
statement, the parameters have certain constraints; conductances in
the crossbar resistor arrays are limited to representing only positive
weights. EAs are more convenient for considering the constraints
on learnable parameters and are also suitable for non-differentiable
problems, unlike gradient-based methods. As designing the circuit
topology (i.e., the neural architecture) and selecting the optimal
activation functional forms represent a discrete decision space, we
can leverage the ability of EAs for such discrete problems.

We strategically encode the printed pNCs so that the circuit
topology are jointly optimized during evolution, leading to neural
architecture search. Additionally, the algorithm trains the crossbar
conductances (i.e., weights) and optimizes the type of AF circuits
for each printed neuron per dataset, along with the learnable pa-
rameters 𝒒 in the AF circuits. With this enhanced search space, the
resulting pNCs are expected to be more robust against printing vari-
ation, leading to a reduction in the post-mapping accuracy degra-
dation compared to those trained by gradient methods, where only
crossbar conductances and parameters in AF circuits are learned.

The key components of the proposed algorithm are shown in
Fig. 3. Each genome represents a pNCs and comprises two types
of genes encoding the circuit specifications: node genes (Fig. 3(a-
1)) and edge genes (Fig. 3(a-2)). Initially, a population of genomes
is created and categorized into multiple species based on node
and edge similarities. The number of offspring for each species is
determined based on its mean fitness. Top-performing genomes are
preserved unchanged for the next generation, while others undergo
crossover and mutation. When the termination criteria are met,
the most optimized solution is obtained according to the defined
fitness function, as will be discussed in Sec. 3.3. In the following,
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we explain how the genome encoding, as well as the processes of
crossover and mutation for the proposed algorithm, are adjusted.

Encoding. The node gene represents a neuron and consists of
learnable parameters, including resistors 𝑅b and 𝑅d and learnable
parameters of the candidate AF circuit and the negative weight
circuit, i.e., 𝒒. Additionally, it also contains a learnable and dis-
crete variable that determines which candidate activation circuit
is selected to connect to the crossbar output. Each node gene
is uniquely identified by a global index. On the other hand, the
edge gene denotes connections between neurons and comprises
a learnable resistance 𝑅 in the crossbar for weights, along with
a learnable boolean parameter indicating the connectivity state
(enabled/disabled) for circuit topology. Each edge gene is distin-
guished by the indices of the connected nodes, and all edges are
directional, meaning (𝑖, 𝑗) ≠ ( 𝑗, 𝑖). Here, we denote the set of genes
from all the genomes in the population as .

Crossover. In the proposed algorithm, unique genes (not shared
between parents) of the fitter parent are directly inherited by the
offspring, as illustrated by node 6 in the offspring from parent 1
in Fig. 3(b). For common genes, crossover involves the random
inheritance of genes from the shared topological structure (genes
with identical global index) of both parent genomes, as demon-
strated in Fig. 3(b) for node 3, which is common between the two
parents. During crossover, the features of each gene are exchanged
randomly between the parents, with a higher probability of selec-
tion for the fitter parent. Subsequently, the mutation process is
applied to the offspring.

Mutation. Mutation, as depicted in Fig. 3(c), is a two-stage pro-
cess involving genome-level mutation for neural architecture and
gene-level mutation for the parameters related to node and edge
genes. At the genome-level, mutations can involve either the addi-
tion (Fig. 3(c-1)) or deletion (Fig. 3(c-2)) of edges between existing
nodes, and similarly, nodes can be added (Fig. 3(c-3)) or deleted
(Fig. 3(c-4)) at existing edges. When deleting a edge, a random edge
is selected. Before deleting a node, edges associated with that node
are removed to prevent disruption. Importantly, to avoid the extinc-
tion of new genomes, new structures should not influence genome
fitness. Therefore, to maintain unchanged circuit output (and thus
performance), the conductance of new edges should be initialized
to zero when adding edges. Additionally, when adding a node to
an edge, as shown in Fig. 3(c-3), the existing edge is disabled (not
deleted) and the new node is introduced with two connections
to replace said edge. To preserve the output, the conductance on
edge (𝑘, 𝑗) should be initialized by that of the edge (𝑖, 𝑗), whereas
the output of the node 𝑘 should be the same as that of node 𝑖 .
At the gene-level, mutation involves perturbing crossbar conduc-
tance 𝜽 and nonlinear circuit parameters 𝒒 by adding scaled samples
from a normal distribution 𝑝 (𝜽 ) and 𝑝 (𝒒) respectively (Fig. 3(c-5)).
The type of selected activation circuit mutates randomly among
[p-sigmoid, p-tanh, p-ReLU, p-clipped_ReLU] (Fig. 3(c-6)), while
the state parameter of the edge is determined by a Bernoulli vari-
able (Fig. 3(c-7)).

3.3 Variation-aware Training with NAS
Variation-aware training is critical in optimizing the reliability and
performance of pNCs, which often suffer from intrinsic printing
variations. We therefore integrate the proposed NAS to dynamically
adjust the design of pNCs, ensuring that they not only meet desired
classification accuracy, but also demonstrate resilience to printing
variations. This methodology not only enhances the adaptability of
pNCs but also their usefulness in real scenarios, where variations
are a critical concern.

In this framework, all parameter corresponding to printed resis-
tances, i.e., 𝜽 and transistors, i.e., 𝒒, are subject to processs variation
arising from ink dispersion on the substrate, droplet jetting oddness
and satellite drops wetting [31]. Each printing/processing step of
the resistances and the n-EGTs (channel, dielectric, and top-gate)
introduces variations resulting in non-Gaussian distributions for
both the process and electrical parameters of this technology[32].
Consequently, these parameters are modeled as random variables
to account for the inherent printing variations, i.e., 𝜽 ∼ 𝑝 (𝜽 ) and
𝒒 ∼ 𝑝 (𝒒) respectively. These variables adhere to their respective
probability distributions to mirror potential deviations arising from
the printing process. To evaluate the robustness of different archi-
tectures against these variabilities and thus guide the evolution
process, the expected loss with respect to parameter variation is
used as the training objective, namely

minimizeL = E𝜽 ,𝒒 {𝐿(𝜽 , 𝒒,D)} ,

=

∫
𝜽

∫
𝒒
𝐿(𝜽 , 𝒒,D)𝑝 (𝜽 )𝑝 (𝒒) d𝜽 d𝒒,

(8)

where D = {𝒙,𝒚} refers to the target datasets, while 𝐿(·) refers to
the cross-entropy loss [33], which is commonly used to improve
classification accuracy. However, Eq. (8) poses a challenge that the
optimization variable 𝜽 and 𝒒 will be integrated out. To facilitate
the training of these parameters, we introduce a reparameterization
strategy [34] to decouple the learnable parameters from the ran-
dom variables expressing the variation. Consequently, 𝜽 = 𝜽 0 ⊙ 𝜺𝜃
and 𝒒 = 𝒒0 ⊙ 𝜺𝑞 , where 𝜽 0 and 𝒒0 denote target values to be opti-
mized, while each element in 𝜺𝜃 and 𝜺𝑞 follows a distribution 𝑝 (𝜀)
respectively. With this approach, the training objective can be re-
formulated as

minimizeL = E𝜺𝜃 ,𝜺𝑞
{
𝐿(𝜽 0 ⊙ 𝜺𝜃 , 𝒒0 ⊙ 𝜺𝑞,D)

}
,

=

∫
𝜺𝜃

∫
𝜺𝑞

𝐿(𝜽 0 ⊙ 𝜺𝜃 , 𝒒0 ⊙ 𝜺𝑞,D)𝑝 (𝜺𝜃 )𝑝 (𝜺𝑞) d𝜺𝜃 d𝜺𝑞,

(9)
With Eq. (9), the parameters 𝜽 0 and 𝒒0 can be trained to guar-

antee the optimal classification accuracy under the expectation
of given variation 𝑝 (𝜺𝜃 ) and 𝑝 (𝜺𝑞). However, the integration in
Eq. (9) still has no closed form, which poses challenge to its op-
timization. For this, we employ an estimation of the integration
through Monte-Carlo sampling, i.e.,

L ≈ 1
𝑁

𝑁∑︁
𝑛=1

𝐿(𝜽 0 ⊙ 𝜺′
𝜃
, 𝒒0 ⊙ 𝜺′𝑞,D), (10)
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Table 4: Simulation Result and Runtime of gradient-based approach without variation and comparison with EA with baseline
in (i) high precision printing (5% variation) and (ii) low-precision printing (10% variation) on 13 Benchmark Datasets.

Dataset
Reference accuracy High-precision printing (±5%) Low-precision printing (±10%) Runtime
(without variation) Baseline EA Baseline EA Baseline (min) EA (min/pop)

Acute Inflammation 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.012 1.000 ± 0.000 183.9 9.5
Balance Scale 0.902 ± 0.017 0.880 ± 0.004 0.896 ± 0.008 0.877 ± 0.008 0.881 ± 0.012 205.9 21.6
Breast Cancer Wisconsin 0.971 ± 0.001 0.963 ± 0.008 0.966 ± 0.006 0.931 ± 0.039 0.949 ± 0.012 180.9 11.6
Cardiotocography 0.879 ± 0.007 0.774 ± 0.004 0.857 ± 0.005 0.763 ± 0.002 0.794 ± 0.007 178.0 19
Energy Efficiency (𝑦1) 0.915 ± 0.019 0.889 ± 0.032 0.916 ± 0.026 0.847 ± 0.012 0.866 ± 0.011 194.6 15.1
Energy Efficiency (𝑦2) 0.894 ± 0.016 0.883 ± 0.023 0.891 ± 0.038 0.867 ± 0.026 0.866 ± 0.021 189.4 10.3
Iris 0.965 ± 0.005 0.912 ± 0.034 0.923 ± 0.050 0.843 ± 0.045 0.882 ± 0.039 178.8 7.3
Mammographic Mass 0.788 ± 0.003 0.782 ± 0.017 0.810 ± 0.018 0.766 ± 0.053 0.764 ± 0.055 190.9 5.0
Pendigits 0.577 ± 0.054 0.554 ± 0.038 0.559 ± 0.039 0.548 ± 0.047 0.553 ± 0.050 198.3 14.2
Seeds 0.891 ± 0.031 0.820 ± 0.034 0.851 ± 0.023 0.820 ± 0.041 0.827 ± 0.007 176.0 6.4
Tic-Tac-Toe Endgame 1.000 ± 0.001 0.713 ± 0.012 0.765 ± 0.018 0.660 ± 0.017 0.716 ± 0.019 177.1 6.4
Vertebral Column (2 cl.) 0.830 ± 0.007 0.716 ± 0.007 0.794 ± 0.004 0.661 ± 0.000 0.685 ± 0.004 180.6 4.6
Vertebral Column (3 cl.) 0.811 ± 0.010 0.634 ± 0.086 0.791 ± 0.016 0.634 ± 0.075 0.734 ± 0.059 130.9 9.6
Average 0.879 ± 0.013 0.809 ± 0.023 0.848 ± 0.019 0.786 ± 0.029 0.809 ± 0.023 181.9 10.81

.
where 𝜺′

𝜃
∼ 𝑝 (𝜺𝜃 ) and 𝜺′𝑞 ∼ 𝑝 (𝜺𝑞) are samples drawn from their

respective distribution in each calculation of 𝐿. Moreover,𝑁 denotes
the number of samples utilized to estimate the integration.

Finally, Eq. (10) is utilized within the training objective (i.e., fit-
ness function 𝑓 (𝑥))) of the variation-aware training. For the train-
ing objective, we also consider the expected classification accuracy
𝐴𝐶𝐶 , i.e.,

𝑓 (x) = 𝐴𝐶𝐶 − L, (11)

With this objective, NAS aims not only to improve the classifica-
tion accuracy of pNCs, but also improve the robustness against in-
trinsic stability with respect to variations. This process involves an
assortment of optimization techniques, which may extend beyond
conventional gradient-based methods, to seek out architectures that
guarantee reliable performance despite the unpredictable nature of
the printing process. The ultimate aim of using NAS in this context
is to strike an optimal balance between performance and resilience,
ensuring proper operation in real scenarios.
4 EVALUATION
To assess the effectiveness of the proposed method, we utilized
PyTorch to implement the algorithm1 and carried out experiments
on 13 benchmark datasets. These datasets are also used in other
state-of-the-art studies on pNCs [12, 35], and match the complexity
within the application domains of PE.
4.1 Experiment Setup
We conduct training on the pNC utilizing the EA methodology and
test it on 13 benchmark datasets against the established gradient-
based optimization techniques as a baseline of this work.

Circuit Setup. The AF circuits in Fig. 2 (top (e), (f), (g)) were
designed based on the well-developed n-EGT P-PDK [20] and the
ranges of learnable parameters are determined by performing sweep
analysis. We used Cadence Virtuoso2 tool to simulate the transfer
characteristics (as shown in Fig. 2 ( bottom (e), (f), (g))) in SPICE.

Initialization. Drawing insights from other works on EA and
guided by a series of preliminary trials, we have strategically ini-
tialized the network topologies for all datasets as unconnected

1https://github.com/Neuromophic/eNAS_learnable_selectable_LNC.
2https://www.cadence.com/en_US/home.html

networks, which consist solely of nodes corresponding to the num-
ber of outputs, featuring only #output nodes. The population for
these experiments is robustly set at 1, 000 individuals. Each node is
initialized to have a random AFs circuit among the given design.

In terms of the mutation mechanisms employed, we have defined
specific probabilities for the genetic alterations within the network
structures: the probability of introducing either a new node or a new
connection is set at a substantial rate of 0.7, while the probability
for the deletion of a node or a connection is comparatively lower, at
0.3. Moreover, there exists a 0.1 chance that any given edge within
the network will toggle its state from enabled to disabled, or vice
versa, as part of the mutation process. Moreover, the mutation rate
of changing selected AFs circuit is 0.1.

In terms of variation, we take uniform distribution, i.e., 𝜺𝜃 ∼
U[1 − 𝜖, 1 + 𝜖] and 𝜺𝑞 ∼ U[1 − 𝜖, 1 + 𝜖], to reflect the printing
variation, because the printing variation is primarily determined by
the geometric variation of the printing shape which varies within
one printing pixel. More specific, we select an 𝜖 = 5% to simulate a
relatively high printing precision, while another 𝜖 = 10% to simu-
lates a relatively low printing precision. This is because the typical
printing resolutions range from 20 µm to 100 µm [19], whereas the
component feature sizes in printed neuromorphic circuits are on
the order of 1 mm [35]. Moreover, for Monte-Carlo sampling, we
select 𝑁 = 20 for numerical estimation of the integration, as it can
already yield sufficiently precise estimation in our experiments.

Training. In training (evolution) process, we utilize a full-batch
training, with termination upon a patience threshold of 100 gener-
ations. This specific criterion hinges on observing no significant
improvement in the performance metrics on the validation dataset
over the aforementioned span of generations. To ensure that our
findings are statistically reliable and to mitigate the variability due
to stochastic elements of the training process, we repeat the training
sessions ten times for each value of 𝛾 , employing different random
seeds for each session, varying from 1 to 10. This repetition ensures
that we achieve sufficiently optimal and robust solutions.

Baseline. To conduct experiment with baseline approach, we
perform training with topologies initialized as #input-3-#output.
We use the Adam [36] optimizer with default parameterization
to train parameters. We start with an initial learning rate of 0.1
and halve it after a 100-epoch patience. Additionally, the training

https://github.com/Neuromophic/eNAS_learnable_selectable_LNC
https://www.cadence.com/en_US/home.html
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Figure 4: Results of the printing error rate enhancement in
13 benchmark datasets with (i) ±5% and (ii) ±10% variation.

Figure 5: Percentage of AFs selected during (i) no (ii) ±5% and
(iii) ±10% variation averaged over 13 benchmark datasets.

process is stopped, when the learning rate was halved 10 times.
Other setups are kept the same as its EA counterpart.

To provide an upper bound classification accuracy of each dataset,
we also trained the pNCs without any variation, i.e., 𝜖 = 0. Because
the accuracy in this case can be seen as the theoretically high-
est achievable values. We denote the accuracy in this case as the
reference accuracy.

4.2 Result
After completing the training of all pNCs, we carefully select the
most optimal pNCs w.r.t to the random seed in each experimental
setup based on their performance on the validation loss. These
selected circuits are the ones designed for physical realization. Sub-
sequently, we evaluate their performance on the test sets. In testing,
all pNCs are tested and trained under the identical variations.

The mean, standard deviation of their accuracy and their corre-
sponding runtime performances are presented in Tab. 4, showing
a scalar average across all datasets for a clearer comparison of dif-
ferent training configurations. Additionally, Fig. 4. illustrates the
improvement in printing error rates. Also, Fig. 5 details the selec-
tion percentages of various learnable AF circuits, highlighting their
preferences during the training process.

4.3 Discussion
Tab. 4 compares the performance of the EAs to a baseline gradient-
based method across 13 benchmark datasets under conditions of
high-precision (±5%) and low-precision (±10%) printing. The refer-
ence accuracy shows the performance without variation, providing
a reference point for evaluating the resilience of the algorithms
under variation. For both scenarios (±5% and ±10%), EA maintains
comparable accuracy to the baseline across all datasets. Also, run-
time analysis reveals that EA’s runtime depends on the population
size and the extent of parallel processing utilized. EA can signif-
icantly reduce runtime through parallel processing, contrary to
the baseline method’s total sequential runtime and can offer more
robust solutions per iteration.

In Fig. 4, EAs demonstrate robust error rate, with a significant
enhancement of 55.38% in ±5% and 25.11% in ±10% scenarios, com-
pared to the baseline, thus highlighting the EAs capability to effec-
tively manage printing variations, thereby reducing error rates.

To the end, Fig. 5 illustrates the selection percentages of different
AFs used in EA under varying printing conditions. In worst-case
scenario with ±10% variation, the ReLU family emerges as more
favored, selected ≈ 21% of the time, up from ≈ 14% with no varia-
tion. This trend-line shift of the ReLU family suggests their ability
to induce sparsity in NNs, encouraging the exploration of diverse
solutions by focusing on relevant features. This leads to perfor-
mance stability and better generalization, making ReLU-based NNs
more suitable and robust in environments with higher uncertainty
and variability. In contrast, p-tanh is the most preferred, chosen
≈ 55% of the time, due to its high sensitivity and effectiveness in
stable conditions (no variation). However, p-sigmoid consistently
maintains a steady selection rate across all levels of variation.

Therefore, it is worthy to conclude that the various learnable
AF circuits and variation-aware training using NAS approach both
contribute to a significant improvement in classification error-rate
and robustness of pNCs.
5 CONCLUSION
Printed Electronics, owing to their distinctive features, are gaining
significant attention for the evolution of next-generation electronics.
In this realm, analog printed neuromorphic circuits are becoming
increasingly popular due to their ability to provide customized
computational functions at a minimal cost for target applications.
However, the maskless additive manufacturing process increases
variability, challenging consistent performance.

To enhance the robustness of printed neuromorphic circuits and
mitigate the effects of printing variations, we propose an evolution-
ary algorithm to train printed neuromorphic circuits with selectable
activation circuits and optimal neural architecture, including pa-
rameters like crossbar conductances and physical quantities in
nonlinear circuits. This approach not only opens new optimiza-
tion opportunities but also enhances robustness against printing
variations. Future research may further explore parallel computing
using evolutionary algorithms.
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